Blocking the Passage: \(\text{C}_{60} \) Geometrically Clogs \(\mathbf{K}^+ \) Channels

Matteo Calvaresi,*,†,‡ Simone Furini,*‡ Carmen Domene,§−,† Andrea Bottoni,‡ and Francesco Zerbetto*,†

ABSTRACT Classical molecular dynamics (MD) simulations combined with docking calculations, potential of mean force estimates with the umbrella sampling method, and molecular mechanic/Poisson−Boltzmann surface area (MM-PBSA) energy calculations reveal that \(\text{C}_{60} \) may block \(\mathbf{K}^+ \) channels with two mechanisms: a low affinity blockage from the extracellular side, and an open-channel block from the intracellular side. The presence of a low affinity binding-site at the extracellular entrance of the channel is in agreement with the experimental results showing a fast and reversible block without use-dependence, from the extracellular compartment. Our simulation protocol suggests the existence of another binding site for \(\text{C}_{60} \) located in the channel cavity at the intracellular entrance of the selectivity filter. The escape barrier from this binding site is \(\sim 21 \) kcal/mol making the corresponding kinetic rate of the order of minutes. The analysis of the change in solvent accessible surface area upon \(\text{C}_{60} \) binding shows that binding at this site is governed purely by shape complementarity, and that the molecular determinants of binding are conserved in the entire family of \(\mathbf{K}^+ \) channels. The presence of this high-affinity binding site conserved among different \(\mathbf{K}^+ \) channels may have serious implications for the toxicity of carbon nanomaterials.

KEYWORDS: fullerene · \(\mathbf{K}^+ \) channels · nanotoxicity · molecular dynamics · protein nanoparticle interaction

Biocomposites and hybrid biomaterials based on carbon nanoparticles (CNPs) satisfy many requisites of long-term biocompatibility and biological-level performance.1−12 However, a toxicological profile of CNPs is emerging,13−18 which also involves CNP interaction with proteins.19−27 The design of new hybrids and the improvement of existing ones may depend crucially on the knowledge of the protein recognition pocket28−31 for CNPs that can allow the design of new functionalization patterns of the CNPs22−34 able to modulate their interaction with the protein.19−31 \(\mathbf{K}^+ \) channels represent one of the primary antitarget (i.e., an unwanted target) in drug development and nanomedicine because their blockage causes potentially serious side effects. A growing list of pharmacological agents were restricted in their use, withdrawn from the market, or did not receive regulatory approval because of undesirable interactions with this class of membrane proteins.35 \(\mathbf{K}^+ \) channels regulate the fluxes of \(\mathbf{K}^+ \) ions across cell membranes and govern a variety of functions that range from cardiac, skeletal, and muscle contraction to epithelial transport of nutrients and ions.36,37 The pore domain of \(\mathbf{K}^+ \) channels is made by four subunits symmetrically arranged around the permeation axis. Each subunit is characterized by the presence of two transmembrane helices (inner and outer helices). The region responsible for selective conduction of \(\mathbf{K}^+ \) ions (selectivity filter) is located in the P-loop that links the outer and the inner helices. On the intracellular side of the selectivity filter, the pore opens into a water-filled cavity. In the closed-state of the channel, the inner helices close the intracellular entrance of the cavity. Instead in the open-state, the inner helices are bent and the intracellular entrance of the cavity is wide open. The architecture of the pore domain is conserved in all the experimental structures of \(\mathbf{K}^+ \) channels known to date.38−45 Park et al. found experimentally that \(\text{C}_{60} \) and carbon nanotubes can block ion channels,46 with a fast and reversible mechanism without use-dependence. This behavior may be explained by CNPs binding at the extracellular entrance of the selectivity filter of \(\mathbf{K}^+ \) channels.46

* Address correspondence to matteo.calvaresi3@unibo.it, simone.furini@unisi.it, francesco.zerbetto@unibo.it.

Received for review October 29, 2014 and accepted April 14, 2015.

Published online April 14, 2015

10.1021/nn506164s

© 2015 American Chemical Society
In molecular dynamics (MD) simulations by Kraszewski et al., \(C_{60} \) molecules did not bind to the extracellular entrance of the selectivity filter. These MD simulations revealed alternative binding sites located at the protein–lipid interface, which may be responsible for impaired channel activity.\(^{47}\) Kraszewski et al. considered also the possibility that \(C_{60} \), because of its hydrophobicity, can pass the cellular membrane and block the channel from the intracellular side.\(^{47}\) Indeed, when \(C_{60} \) was placed close to the intracellular entrance of the pore, it migrated toward the internal cavity. Subsequently, a large conformational change stabilized the binding.\(^{47}\) Monticelli et al. explored an alternative explanation for the altered functioning of \(K^+ \) channels.\(^{48}\) The authors tested the possibility that \(C_{60} \) alters the activity of ion channels through a lipid-mediated interaction. However, the simulations showed that the presence of \(C_{60} \) in the membrane interior has marginal effects on \(K^+ \) channel conformations.\(^{48}\) Understanding the activity of \(C_{60} \) in \(K^+ \) channels requires the potential energy surface of the \(C_{60} \)-channel interactions. The large number of atoms of the system complicates its calculation. To overcome this hurdle, we combined classical MD simulations, docking calculations, potential of mean force (PMF) estimates with umbrella sampling, and molecular mechanic/Poisson–Boltzmann surface area (MM-PBSA) energy calculations.

RESULTS AND DISCUSSION

The atomic model of the channel was based on the experimental structure of the MthK protein, which corresponds to an open-state of the pore.\(^{45}\) The channel was embedded in a pre-equilibrated bilayer of 160 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) molecules and the system was solvated by \(\sim 10,000 \) water molecules, 24 \(K^+ \) ions and 12 \(Cl^- \) ions were added. Three \(K^+ \) ions were placed in the selectivity filter together with two water molecules. After equilibration, an unrestrained MD trajectory of 100 ns was carried out (more details in the Methods section).

Blockage from the Extracellular Side. Experimental results by Park et al.,\(^{46}\) imply the presence of an extracellular binding site for \(C_{60} \). The free energy of a \(C_{60} \) molecule moving between the entrance of the selectivity filter and the extracellular compartment can provide quantitative information about the existence of this extracellular binding site. Umbrella sampling simulations were used to calculate the profile of the potential of mean force along a reaction coordinate, \(z \), that describes the distance between the center of mass of the selectivity filter (backbone atoms of residues Thr59 to Gly633) and the center of mass of \(C_{60} \) (Figure 1).

\(C_{60} \) bound to the entrance of the selectivity filter is a local energy minimum. This minimum corresponds to the binding site proposed by Park and co-workers.\(^{46}\) Its energy is \(\sim 4 \) kcal/mol higher than the energy of a molecule moving between the entrance of the selectivity filter and the extracellular compartment. Snapshots of representative configurations are shown using gray cartoons for two opposing subunits of the MthK channel, green spheres for \(K^+ \) ions in the selectivity filter, cyan spheres for \(C_{60} \), red dots for water molecules closer than 6 Å to any atom of \(C_{60} \).

Figure 1. PMF for the movement of \(C_{60} \) from the extracellular entrance of the selectivity filter (located at \(z = 11 \) Å) to the extracellular compartment. Snapshots of representative configurations are shown using gray cartoons for two opposing subunits of the MthK channel, green spheres for \(K^+ \) ions, red dots for water molecules closer than 6 Å to any atom of \(C_{60} \).

\(C_{60} \) molecule in bulk solution. As a consequence, \(C_{60} \) is expected to block the MthK channel from this extracellular site only at high concentrations. A second minimum is also present, with \(C_{60} \) floating above the filter at a position where it can still interfere with ion conduction. These results agree with the dose-dependent blockage of the channel by carbon nanoparticles. The residues in the protein loops surrounding the extracellular entrance of the selectivity filter show a high variability among \(K^+ \) channels. Interactions of \(C_{60} \) with different sets of residues may increase or decrease the energy of these extracellular binding sites by a few kcal/mol, thus affecting the blocking affinity of \(C_{60} \) from the extracellular side. Experimentally it is observed that carbon nanoparticles inhibit EXP-2, KVS-1, human KCNQ1, Kv4.2, and HERG potassium channels to different extents.\(^{46}\) The free energy profile calculated by umbrella sampling and the local energy minima for \(C_{60} \) near the extracellular entrance of the selectivity filter are also in agreement with the rapid off-rates and the fully reversible block observed experimentally.\(^{46}\) In fact, washing the system during the measurements would allow the restoration of the full activity of the channel since \(C_{60} \) can easily unbind from the extracellular sites.

Blockage from the Intracellular Side. Docking calculations with a protocol able to recognize protein-CNPs interactions and structures sampled from the MD trajectory of the MthK channel, were used to define the initial structure of the \(C_{60} \)-MthK complex (more details in the Methods section).\(^{23,24,49,50}\) The docking protocol suggests that the most favorable binding site for \(C_{60} \) in MthK is located in the intracellular cavity, in close proximity to the selectivity filter of the channel (Figure 2). Blockage from the intracellular site was previously proposed by Kraszewski et al.\(^{43}\) However, in their MD simulations of MthK, \(C_{60} \) approaches the intracellular entrance of the channel, binds near the pore entrance (minimum \(z_S \) in Figure 3), and induces closure of the intracellular gate of the channel.
On the contrary in our docked structure C\textsubscript{60} is located immediately below the selectivity filter (minimum z\textsubscript{1} in Figure 3).

Interestingly, the docked structure was stable in a 100 ns MD trajectory, with an average deviation of C\textsubscript{60} from the docked structure lower than 0.8 Å. The resolution of the protein structure was 1.45 Å. The small deviation observed in the dynamics validates a posteriori the use of the docking procedure to generate plausible structures. The radius at the intracellular gate was stable in our MD trajectory, and comparable to the value measured in an MD trajectory without C\textsubscript{60} inside the cavity (Figure S1 in the Supporting Information). The PMF for the entrance of C\textsubscript{60} into the intracellular cavity was calculated by umbrella sampling simulations, along the same reaction coordinate previously used to analyze C\textsubscript{60}-blockage from the sampling simulations, along the same reaction coordinate previously used to analyze C\textsubscript{60}-blockage from the sampling simulations. The black line illustrates the PMF computed using the full umbrella sampling trajectories; gray lines show the PMF computed using either the first or the second half of the umbrella sampling trajectories. Snapshots of representative conformations are shown using gray cartoons for two opposing subunits of the MthK channel, licorice representation for residues Ile84, Ala88 and Glu92 that face the intracellular cavity, green spheres for K+ in the selectivity filter, cyan spheres for C\textsubscript{60} red dots for water molecules closer than 6 Å to any of the C\textsubscript{60} atoms.

On the time scale of the experiments performed by Park et al., C\textsubscript{60} does not have sufficient time to reach the binding site located in the intracellular cavity. Under these conditions, a high concentration of C\textsubscript{60} molecules in the extracellular compartment can only populate the extracellular binding site of the selectivity filter. Microscopic techniques showed that on the hours time scale, C\textsubscript{60} is taken up by cells and is distributed within the cytoplasm, in lysosomes, aligned along the plasma membrane and within the nucleus.56–63 Fullerene molecules cross the external cellular membrane and penetrates inside the cell following multiple energy-dependent pathways such as clathrin-mediated endocytosis, lipid-raft/caveolae-mediated endocytosis, and macropinocytosis.56–60

Carbon nanoparticles of a different nature, such as small diameter nanotubes, could be accommodated in the intracellular cavity in analogy to C\textsubscript{60}. They could also establish further interactions with the intracellular sidewalls of the protein, which may provide a clogging activity with a higher energy escape barrier.

The mechanism of channel blocking appears to be governed by geometrical factors and to lack any other physical/chemical component that is usually required by conventional channel blockers. In other words, while the binding of conventional blockers to K+ channels is governed by residue-specific interactions, the binding of C\textsubscript{60} emerges from the complementarity between the

<table>
<thead>
<tr>
<th>location z [Å]</th>
<th>energy [kcal/mol]</th>
<th>closest residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>z1</td>
<td>13.5</td>
<td>Ala88, Thr59, Ile84</td>
</tr>
<tr>
<td>z2</td>
<td>14.0</td>
<td>Ala88, Thr59, Ile84</td>
</tr>
<tr>
<td>z3</td>
<td>16.1</td>
<td>Ala88, Ile84, Gly85</td>
</tr>
<tr>
<td>z4</td>
<td>17.2</td>
<td>Ala88, Gly85, Ile84</td>
</tr>
<tr>
<td>z5</td>
<td>19.4</td>
<td>Ala88, Gly92, Gly85</td>
</tr>
<tr>
<td>z6</td>
<td>21.1</td>
<td>Ala88, Val89, Gly92</td>
</tr>
<tr>
<td>z7</td>
<td>27.9</td>
<td>Val18, Val89, Gly92</td>
</tr>
<tr>
<td>z8</td>
<td>30.5</td>
<td>Ala20, Val18, Ang93</td>
</tr>
</tbody>
</table>

The PMF presents four minima, separated by energy barriers that range from 1.6 to 3.1 kcal/mol (Table 1 and Figure 3). These barriers are easily overcome thermally. Once C\textsubscript{60} is in the pore, the escape barrier of ~21 kcal/mol makes the corresponding kinetic rate of the order of minutes (4 × 10–3 s−1) at physiological temperature. The binding energy of C\textsubscript{60} to the intracellular cavity is higher than the current estimates of the energy differences between C\textsubscript{60} in water solution and in the lipid bilayer that was recently calculated in the 14–20 kcal mol−1 range.51–55 Thus, thermodynamically this site is favored with respect to the embedding of C\textsubscript{60} in the hydrophobic core of the membrane bilayer.
blocker and the intracellular cavity of the channel. Indeed, the analysis of the change in solvent accessible surface area (ΔSASA) upon C$_{60}$ binding shows that binding is governed purely by shape complementarity (Figure 4), a phenomenon that resembles well-known encapsulation of pristine C$_{60}$ molecules by macrocyclic receptors.64 C$_{60}$ accommodates itself in the cavity, where it fits perfectly, and then it "picks up" whatever binding contributions it can from the residues forming the binding pocket. Another mechanism is also in operation. As hydrophobic C$_{60}$ clogs the pore, it sheds water molecules (hydrophobic effect), as shown in Figure 4B. The complementary fit between C$_{60}$ and the protein is evident also from the analysis of the root-mean-square fluctuations (RMSF) of the backbone atoms upon C$_{60}$ binding (Figure 5). As C$_{60}$ approaches its binding site, the fluctuations of the residues are reduced and the residues become glued to the fullerene cage. The phenomenon is particularly clear in the P-loop and in the selectivity filter, which are strongly stabilized by C$_{60}$ binding. The energy of binding calculated by MM-PBSA was -29.2 kcal/mol (Table S1 in the Supporting Information), which is around 8 kcal/mol lower than the value estimated by umbrella sampling simulations. The entropic cost of binding is not included in the MM-PBSA calculations. Since the binding of C$_{60}$ to the cavity causes a marked decrease in mobility (Figure 5), this approximation is likely responsible for the overestimate of the binding energy.

MM-PBSA can be used to estimate the net contribution of the individual amino acids to the binding energy (Figure 6). The residue contributing the most to the binding energy is threonine at the N-terminal of the selectivity filter (Thr59). This residue is conserved as threonine or serine in the entire K$^+$ channels family. Other residues that provide a favorable interaction with C$_{60}$ are Ile84 and Ala88. Similar residues are found at these positions in all the voltage-gated K$^+$ channels (Ile or Val at position 84; Ala, Gly or Val at position 88).65 The most important contribution to the binding energy arises from van der Waals interactions between these three amino acids and C$_{60}$ (Table S1 in the Supporting Information). MM-PBSA also revealed the destabilizing effect on binding of some residue not exposed to the cavity, such as Thr86, Phe87, and Val89. The side chains of Thr86 and Val89 are directed toward the interior of the protein. The presence of C$_{60}$ in the cavity forces these residues in strained configurations,

Figure 4. (A) Change in solvent accessible surface area (ΔSASA) upon C$_{60}$ binding. (B) Water molecules inside the intracellular cavity. ΔSASA calculated as $\text{SASA}_{\text{MthK-C60}} - \text{SASA}_{\text{MthK}} - \text{SASA}_{\text{C60}}$, where $\text{SASA}_{\text{MthK-C60}}$, $\text{SASA}_{\text{MthK}}$, and SASA_{C60} are the SASA of the complex, of isolated MthK and of C$_{60}$. A water molecule was considered inside the cavity when it was above the center of mass of residues Ile99 and below the center of mass of residues Thr59. Panels (A) and (B) were generated from the umbrella sampling trajectories used for the PMF calculations.

Figure 5. Root mean square fluctuations (RMSF) of the backbone atoms calculated from the average of the four protein chains. The structural elements of MthK are shown at the top. The red line after the P-loop corresponds to residues TVGYG of the selectivity filter.

Figure 6. Contribution to the binding energy from protein residues as estimated by MM-PBSA calculations. (A) Change in binding energy ($\Delta$$\Delta$G) caused by the removal of the side chain atoms of the protein residues 47 to 99. (B) Snapshot from the MD trajectory of the MthK-C$_{60}$ complex with residues Thr59, Ile84, and Ala88 in blue (residues with highest $\Delta$$\Delta$G); residues Thr86, Phe87, and Val89 in red (residues with lowest $\Delta$$\Delta$G); and C$_{60}$ in cyan.
with an associated energy cost. Instead, Phe87 points to the cavity, and the destabilizing effect is due to the fact that upon C60 binding the hydroxyl group of Phe87 is no longer able to interact with water molecules in the intracellular cavity.

CONCLUSION

The atomistic simulations presented in this investigation suggest that C60 can block K⁺ channels with two mechanisms: a fast reversible blockage from the extracellular side, in line with experimental results of Park et al., and an energetically favored open-channel block from the intracellular side, never tested experimentally. The residues at the extracellular entrance of the channel, which mutate in different K⁺ channels, may modify the binding energy to this site and modulate the affinity of extracellular blockage. On the contrary, the calculations show that binding of C60 to the intracellular site is governed purely by shape complementarity.

The presence of these two binding sites/mechanisms resembles the situation observed for quaternary ammonium pore blockers such as TEA.66,67 TEA blocks K⁺ channels both from the intracellular and the extracellular side, and the binding sites for intracellular and extracellular blockage coincide with those proposed here for C60.66,67 TEA blocks nearly every K⁺-channel, when acting from the intracellular side, while blockage from the extracellular side is sensitive to the kind of channel considered and to mutations in the extracellular pore loops.66,67 A similar mechanism can operate for C60. Fullerene molecules can cross the external cellular membrane and penetrate inside the cell. According to our analyses, the intracellular binding site has an extremely high affinity for C60. Moreover, this site is highly conserved in K⁺ channels, which would make fullerene a potent non-selective blocker of K⁺-channels. Experimental tests are needed to confirm the existence of this intracellular binding site. If C60 is trapped in the cavity upon closure of the intracellular gate, it can result in a use-dependent open-channel block. This cumulative and indiscriminate blockage of K⁺ channels may have serious implications for the toxicity of carbon nanomaterials.

METHODS

Docking: The C60-MthK Complex Structure Generation. The starting structures for the docking calculations were sampled from the MD trajectory of MthK with a period of 20 ns. These structures were screened for their potential binding to C60. Docking models were obtained using the PatchDock algorithm.68 PatchDock takes as input two molecules and computes three-dimensional transformations of one of the molecules with respect to the other with the aim of maximizing surface shape complementarity, while minimizing the number of steric clashes. Given a protein and a molecule, PatchDock (i) divides their surfaces into patches according to the surface shape (concave, convex, or flat), (ii) applies the geometric hashing algorithm to match concave patches with convex patches and flat patches with flat patches and generates a set of candidate transformations. (iii) Each candidate transformation is further evaluated by a set of scoring functions that estimate both the shape complementarity and the atomic desolvation energy of the complex.69 Redundant solutions are discarded by use of rmsd (root-mean-square deviation) clustering. The algorithm implicitly addresses surface flexibility by allowing minor perturbations. Accurate rescoring of the complexes is then carried out using FireDock program.70 This method simultaneously targets the problem of flexibility and scoring of solutions produced by fast rigid-body docking algorithms. Possible local readjustments of the protein structure are accounted for. Side-chain flexibility is modeled by rotamers and Monte Carlo minimization.71 Following the rearrangement of the side-chains, the relative position of the docking partners is refined by Monte Carlo minimization of the binding score function. Desolvation free energy in the binding process is taken into account by a solvation model using estimated effective atomic contact energies (ACE).83 All the candidates are ranked by the FireDock binding score and the structure with the highest value is retained as starting structure for the MD simulation of the C60-MthK complex.

Molecular Dynamics Simulations. MD simulations were run for three atomic systems: the C60-MthK complex, the MthK channel without C60, and C60 alone. The latter system was simulated for 100 ns, after solvating C60 in ~600 water molecules. The atomic structure of MthK was based on the Protein Data Bank entry 3LDC.84 Default protonation states were used for all ionizable residues. N- and C-terminals were methylamidated and acetylated, respectively. The channel was centered in the x–y plane with the permeation axis aligned to the z-axis, and it was embedded in a pre-equilibrated bilayer of 160 DOPC molecules. The aromatic belt defined by the amphipathic residues Trp46 was aligned with the upper layer of the lipid membrane. Lipid molecules closer than 2.0 Å to protein atoms were removed. The system was solvated by ~10,000 water molecules, and 24 K⁺ ions and 12 Cl⁻ ions were added. Three K⁺ ions were manually placed in binding sites S4, S2 and S0 of the selectivity filter, while water molecules were placed in the remaining binding sites S3 and S1. In order to equilibrate the atoms around the channel, 10,000 steps of energy minimization and 400 ps of MD were performed, with harmonic restraints applied to protein backbone atoms and to the ions in the selectivity filter. An unrestored MD trajectory of 100 ns followed. The minimal energy configuration identified by the docking analysis was used to define the starting structure to be used in MD simulation of the C60-MthK complex. The complex C60-MthK as identified by docking was superimposed on the last frame of the MD trajectory of MthK using the protein backbone atoms as reference. Then, the atomic coordinates of C60 in the model system of the C60-MthK complex were defined as in the docking complex. Water molecules closer than 1.3 Å from C60 atoms were removed. Harmonic restraints were initially applied to C60 atoms and to protein backbone atoms, and gradually removed during a 1.5 ns period. Afterward, 100 ns of unrestrained MD were simulated. MD simulations were run using NAMD2.9,72 and the CHARMM-27 all atom force field with CMAP correction.73 The TIP3 model was used for water molecules.74 Long-range electrostatic interactions were treated by the particle mesh Ewald algorithm.75 with a maximum grid spacing of 1.0 Å, van der Waals interactions were gradually smoothed off at 10 Å (cutoff distance 12 Å). Langevin dynamics controlled the temperature at 300 K, and the Nose–Hoover Langevin pressure control was used to keep a pressure of 1 bar.67 Bonds with hydrogen atoms were restrained by the SETTLE algorithm,78 in order to use a time step of 2 fs.

MM/PBSA Energy Calculations. The energy of binding, ΔG, was calculated as

\[\Delta G = G_{C60-MthK} - (G_{MthK} + G_{C60}) \]

1
where $G_{C_{60}-MthK}$, G_{MthK}, and $G_{C_{60}}$ are respectively the free energies of the complex, the MthK channel, and the fullerene molecule. The energy of each molecular species was defined as the sum of the following terms:

$$G = E_{\text{bond}} + E_{\text{vdw}} + E_{\text{elec}} + G_{\text{polar}} + G_{\text{nonpolar}}$$

(2)

In the former equation, E_{bond} is the contribution from the molecular mechanics bond energy, i.e., sum of bond, angle, and dihedral energies; E_{vdw} is the molecular mechanics van der Waals energy contribution; E_{elec} is the molecular mechanics electrostatic energy; and G_{polar} and G_{nonpolar} are polar and nonpolar contributions to the solvation energy. Polar and nonpolar contributions to the solvation energy were calculated using the APBS software. The probe radius for the definition of the molecular surfaces was 1.4 Å. The relative dielectric constants were set to 80 and 2 respectively for the solvent and for the solutes. The nonpolar solvation energy was assumed proportional to the solvent accessible surface area, with proportionality constant equal to 0.0072 kcal/mol Å². The triple-trajectory paradigm was adopted; i.e., the energy terms were calculated using separate MD trajectories for the C_{60}-MthK complex, and for the isolated channel and C_{60}. The trajectories were sampled with a time lag of 1 ns. The contribution to the binding energy of the i-th residue was estimated as $\Delta \Delta G_i = \Delta \Delta G - \Delta \Delta G_i$, where $\Delta \Delta G_i$ is the binding energy after the removal of the side chain atoms of residues i from the atomic structures of MthK and C_{60}-MthK. A positive value of $\Delta \Delta G_i$ corresponds to a residue that stabilizes the binding of C_{60} to the channel.

Umbrella Sampling. The umbrella sampling technique was used to compute the potential of mean force (PMF) for the movement of C_{60} between the extracellular entrance of the selectivity filter and the extracellular compartment and between the intracellular cavity of MthK and the intracellular compartment. The distance along the z-axis between the center of mass of the selectivity filter (backbone atoms of residues 59 to 63) and the center of mass of C_{60} was used as reaction coordinate.

The starting configuration for the analysis of extracellular binding site was generated manually, placing the C_{60} molecule immediately above the selectivity filter, and removing K+ ions and water molecules within 5 Å of C_{60} atoms. In order to equilibrate the surrounding atoms, 10,000 steps of energy minimization and 2 ns of MD were performed, with harmonic restraints applied to protein backbone atoms and to the ions in the selectivity filter. The initial configurations for the umbrella sampling simulations were generated by a steered MD simulation, with a harmonic restraint applied to the same reaction coordinate used for the umbrella sampling simulations (force constant equal to 10 kcal mol⁻¹ Å⁻²) that moved with constant velocity from 9.5 to 21.5 Å in the course of a 12 ns trajectory. The center of the harmonic restraint (force constant equal to 10 kcal mol⁻¹ Å⁻²) in umbrella sampling simulations moved in 1.0 Å steps between 9.5 and 21.5 Å, and a 2 ns trajectory was simulated for each restraining position. For each umbrella sampling simulation, the frame of the steered MD simulation with value of the reaction coordinate closer to the center of the harmonic potential was used as starting structure. The same protocol was used to estimate the PMF for intracellular blockage of MthK by C_{60}. The starting configuration for this calculation was the last frame of the unrestrained MD simulation of the C_{60}-MthK complex. The C_{60} molecule was moved from 14 Å, C_{60} immediately below the selectivity filter, to 30 Å, C_{60} in intracellular solution in a 16 ns steered MD simulation. Then, the same range of the reaction coordinate was analyzed by umbrella sampling simulations. Umbrella sampling that exhibited a drift in the value of the reaction coordinate were extended up to 8 ns. The cumulative simulations time for the two PMF calculations was 96 ns. Since the displacement of C_{60} in the x–y plane is naturally bounded inside the channel but not in the extracellular solution, lateral movements of C_{60} were artificially confined by a biasing potential. The biasing potential for C_{60} closer than 8 Å to the channel axis, while it increased harmonically with the distance from the axis outside this cylindrical region (force constant equal to 10 kcal mol⁻¹ Å⁻²).

The unbiased PMF was computed using the weighted histogram analysis method.

Conflict of Interest: The authors declare no competing financial interest.

Supporting Information Available: Radius at the intracellular entrance of the channel in simulations with C_{60} inside the cavity and without C_{60} and per-residue C_{60} binding energy. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES

