A RANDOMISED TRIAL EVALUATING ANAKINRA IN EARLY ACTIVE RHEUMATOID ARTHRITIS

Ian C Scott (MBChB, MSc, PhD)1,2, Fowzia Ibrahim (MSc)3, Gemma Simpson (BSc)3, Anna Kowalczyk (PhD)3, Beverley White-Alao (BSc)4, Andrew Hassell (MBChB, MD, M Med Ed)5, Michael Plant (MD)6, Selwyn Richards (MA, BM BCh, MSc)7, David Walker (MA, MD)8, David L Scott (MD)3

1. Department of Medical and Molecular Genetics, King’s College London, 8th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT, UK.

2. Academic Department of Rheumatology, Centre for Molecular and Cellular Biology of Inflammation, 1st Floor, New Hunt’s House, Guy’s Campus, King’s College London, Great Maze Pond, London, SE1 1UL, UK.

3. Department of Rheumatology, 3rd Floor, Weston Education Centre, King’s College London, Cutcombe Road, London, SE5 9RJ, UK.

4. King’s Clinical Trials Unit at KHP, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, SE5 8AF, UK.

5. Department of Rheumatology, Haywood Hospital, High Lane, Burslem, Stoke-on-Trent, Staffordshire, ST6 7AG, UK.

6. Department of Rheumatology, James Cook University Hospital, Marton Road, Middlesbrough, TS4 3BW, UK.

7. Department of Rheumatology, Poole Hospital, Longfleet Road, Poole BH15 2JB, UK.

8. Department of Rheumatology, Freeman Hospital, Freeman Road, High Heaton, Newcastle upon Tyne, NE7 7DN, UK.

Corresponding Author
Dr Ian C Scott, Department of Medical and Molecular Genetics, King’s College London, 8th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT, UK.
Email: ian.scott@kcl.ac.uk; Telephone: 020 7188 2601; Fax: 020 7188 2585

Abstract Word Count: 243 words
Manuscript Word Count: 1,449 words
Short Running Title: Anakinra in early active RA
ABSTRACT

Objective

The effectiveness of anakinra (interleukin-1 receptor antagonist) in early rheumatoid arthritis (RA) is unknown. We evaluated the efficacy of anakinra (combined with methotrexate) in a randomised clinical trial of early active RA patients.

Methods

The Combination Anti-Rheumatic Drugs in Early RA-2 (CARDERA-2) trial was a randomised trial of early (duration <1 year) active RA. Patients were randomised to 12-months of: (1) methotrexate or (2) anakinra-methotrexate. Follow-up lasted 2 years. The primary outcome was erosive progression (changes from baseline in modified Larsen scores). Secondary outcomes were changes from baseline in disease activity score on a 28-joint count (DAS28), health assessment questionnaire (HAQ), and quality of life (EQ-5D) scores alongside ACR responder rates.

Results

154 patients received the allocated intervention (from 259 screened). Similar Larsen score progression was seen at 12 and 24-months in patients receiving anakinra-methotrexate (mean changes from baseline of 2.50 and 5.10, respectively) and methotrexate monotherapy (mean changes from baseline of 4.16 and 5.20, respectively). Lower improvements in DAS28 and HAQ scores were seen at all time-points in anakinra-methotrexate treated patients; these were significantly less at 24-months (DAS28 \(P=0.04 \); HAQ \(P=0.02 \)). Significantly lower EQ-5D score increases were seen at 12-months with anakinra-methotrexate \((P=0.03) \). Anakinra-
methotrexate was associated with more serious adverse events (11 vs. 6 patients) and toxicity-related withdrawals (10 vs. 2 patients) compared with methotrexate.

Conclusion

Anakinra (combined with methotrexate) is not effective in early, active RA. It provided no clinical benefits beyond methotrexate monotherapy and had more serious adverse events.

MeSH Indexing Terms

Arthritis, Rheumatoid; Interleukin 1 Receptor Antagonist Protein; Clinical Trial.
INTRODUCTION

Current rheumatoid arthritis (RA) management focuses on early intensive treatment with disease-modifying anti-rheumatic drugs (DMARDs) escalated to biologics in refractory cases [1]. First-line biologics like tumour necrosis factor (TNF)-inhibitors are effective in early and established RA [2]. Anakinra, an interleukin-1 receptor antagonist (IL-1ra), is approved for DMARD refractory moderate-severe RA [3]. Its efficacy in established RA is less than TNF-inhibitors [4]; consequently it is infrequently used in RA management. Its efficacy in early RA is unknown.

Treatments are usually most effective if instituted promptly after RA onset [5]. We therefore evaluated the efficacy of anakinra in a randomised clinical trial of early active RA patients. Our primary hypothesis was that in early active RA, anakinra-methotrexate combination therapy is superior to methotrexate monotherapy in reducing erosive progression.

MATERIALS AND METHODS

Trial design

The Combination Anti-Rheumatic Drugs in Early RA-2 (CARDERA-2) trial was an open-label, multicentre, two-armed trial. Patients were randomised equally to methotrexate monotherapy or anakinra-methotrexate combination therapy. Active treatment was given for 12-months; follow-up lasted 24-months.

Centres

Routine rheumatology clinics at 11 English centres.
Inclusion/Exclusion Criteria

Included patients met the 1987 American College of Rheumatology (ACR) classification criteria, had early (duration <12 months), active disease (three from: ≥3 swollen joints, ≥6 tender joints, ≥45 minutes morning stiffness, erythrocyte sedimentation rate (ESR) ≥28mm/hr), were aged ≥18 years and could give informed consent.

Excluded patients had other inflammatory arthropathies, previous methotrexate treatment, contraindications/intolerance to the trial drugs, other serious medical disorders or were using oral steroids.

Interventions

Open-label methotrexate started at 7.5mg/week, and increased two weekly by 2.5mg to 15mg/week. Further increases to 25mg/week occurred if clinically needed. Other DMARD monotherapies were started for significant side-effects or inadequate responses.

Open-label anakinra (100mg/day by subcutaneous injection) was given with methotrexate (as outlined above).

Study treatments were given for 12-months. Subsequent treatment was decided by patients’ rheumatologists.
Outcomes

Primary Outcome

Erosive progression, as captured by changes from baseline in modified Larsen scores.

Secondary Outcomes

Changes from baseline in disease activity score for 28-joint counts (DAS28), health assessment questionnaire (HAQ) and quality of life (EQ-5D) scores alongside ACR-20, 50 and 70 responder rates.

Assessments

Hand and feet X-rays were taken at 0, 12 and 24-months. Other outcomes were additionally assessed at 6-months. Assessors were independent to the supervising clinician and blinded to treatment. Radiographs were read chronologically by one rheumatologist (DLS) experienced in radiological scoring, blinded to treatment.

Adverse Events

These were captured, irrespective of their relation to treatment.

Sample Size

CARDERA-2 tested the hypothesis that anakinra-methotrexate would reduce the number of patients developing new erosions by 40% over 12-months compared with methotrexate monotherapy. Existing data suggested 71% of patients receiving methotrexate would develop new erosions over 12-months. Showing a 40% reduction with 5% significance and 90%
power required 66 patients per group. Allowing for 20% dropouts the sample size was 158 patients.

Randomisation

Patients were randomly allocated to one group. The trial statistician generated the allocation sequence using random number tables. Randomisation (stratified by region) used 6 random treatment assignments in blocks of 4. Randomisation numbers were assigned chronologically at screening visits. Metrologists and the trial co-ordinator were unaware of the allocation sequence. Treatment assignments were in a locked cabinet in the co-ordinating centre pharmacy for emergency access.

Statistical Analysis

Intention-to-treat (ITT) analyses evaluated treatment effects on changes from baseline in Larsen scores (primary outcome) and DAS28, HAQ and EQ-5D scores (secondary outcomes) at 12 and 24-months using linear regression. Univariate analyses used relevant outcomes as response variables and treatment as the explanatory variable. Multivariate analyses added demographic variables (gender, age, ethnicity, disease duration) as covariates. Robust standard errors (SE) were used. ACR responder rates were evaluated using logistic regression, accounting for demographic variables. Statistical significance was 5% using a 2-sided P-value. As 12-month Larsen scores were only missing in 9 patients (3 methotrexate; 6 anakinra-methotrexate) and DAS28/HAQ/EQ-5D in 4 patients (1 methotrexate; 3 anakinra-methotrexate) missing data were not imputed. Data management and analyses were performed using Stata, version 12.0 (Stata Corp, College Station, TX).
Ethical Review
CARDERA-2 was approved by the South East Research Ethics Committee (REC reference number MREC 02/1/089). All participants provided informed consent.

RESULTS

Participants

259 patients were screened (Figure 1): 100 were excluded (37 ineligible; 59 declined); 159 were randomised to treatment; 154 received the allocated intervention.

Baseline Characteristics

These were similar between groups (Table 1). Baseline radiological damage was greater in the anakinra-methotrexate group (mean Larsen scores 15.3 vs. 7.0).

Patients Analysed

Of the 154 patients receiving treatment (Figure 1), 118 (77%) continued therapy for 12-months (20 discontinued treatment; 5 lost to follow-up). 12 and 24-month data were available for Larsen scores in 145 (94%) and 130 (84%) patients, respectively and for DAS28, HAQ, and EQ-5D scores in 150 (97%) and 131 (85%) patients, respectively.

Primary Outcome

Lower Larsen score increases were seen at 12 and 24-months with anakinra-methotrexate (Figure 2; mean change from baseline of 2.50 and 5.10) compared with methotrexate monotherapy (mean change from baseline of 4.16 and 5.20). These differences between groups were not significant (Table 2).
Secondary Outcomes

DAS28
Greater DAS28 reductions were seen at 12 and 24-months with methotrexate monotherapy (Figure 2; mean change from baseline of -2.22 and -2.42) compared with anakinra-methotrexate (mean change from baseline of -2.10 and -1.80). This was significant at 24-months (Table 2; adjusted model $P=0.04$).

HAQ
Greater HAQ score reductions were seen at 12 and 24-months with methotrexate monotherapy (Figure 2; mean change from baseline of -0.45 and -0.48) compared with anakinra-methotrexate (mean change from baseline of -0.37 and -0.25). This was significant at 24-months (Table 2; adjusted model $P=0.02$).

EQ-5D
Greater EQ-5D score improvements were seen at 12 and 24-months with methotrexate monotherapy (Figure 2; mean change from baseline of 0.21 and 0.20) compared with anakinra-methotrexate (mean change from baseline of 0.11 and 0.15). This was significant at 12-months (Table 2; adjusted model $P=0.03$).

ACR Responder Rates
At 12-months more patients attained an ACR20 and ACR50 response with anakinra-methotrexate compared with methotrexate monotherapy; the opposite was seen for ACR70 responses. None of these differences were significant (Table 2).
At 24-months more patients attained ACR20, ACR50 and ACR70 responses with methotrexate monotherapy. A significant difference was seen for ACR20 response rates; the adjusted OR for attaining an ACR20 response with anakinra-methotrexate compared with methotrexate was 0.44 (95% CI 0.21-0.93; \(P=0.03 \)).

Adverse Events

136 adverse events occurred. More occurred with anakinra-methotrexate than with methotrexate monotherapy (70 vs. 66), although this was not significant (fisher’s exact test \(P=0.99 \)). More serious adverse events occurred with anakinra-methotrexate than with methotrexate monotherapy (11 vs. 6).

Withdrawals

Significantly more withdrawals were seen (chi-square test \(P=0.007 \)) with anakinra-methotrexate than with methotrexate monotherapy (Figure 1; 19 vs. 6 patients). This difference was mainly due to toxicity; 2 and 10 patients withdrew from receiving methotrexate monotherapy and anakinra-methotrexate, respectively due to toxicity.

DISCUSSION

CARDERA-2 shows anakinra combined with methotrexate is not effective in early, active RA. It had no benefits beyond methotrexate monotherapy on erosive progression, disability, disease activity or quality of life. It gave more serious adverse events and was more frequently discontinued due to adverse effects. After 24-months, patients who had received anakinra-methotrexate had significantly more active disease and disability than patients receiving methotrexate monotherapy.
The inefficacy of IL-1 inhibition in early RA was disappointing. There is strong evidence that IL-1 is a pivotal cytokine in established RA. In such patients the IL-1β isoform is abundant in plasma [6] and synovial fluid [7] (compared with controls) and serum levels correlate with disease severity [6]. IL-1 inhibition significantly reduces joint destruction in mouse models [8] and established RA patients [9]; it also effectively reduces disease activity in established RA [4]. Our findings suggest biologic pathways governing RA activity may differ between early and established disease. The apparent worsening of clinical outcomes after 24-months in patients receiving anakinra was unexpected. As it is unlikely that anakinra will be used in this setting, the underlying reasons for this worsening are of no practical clinical consequence and remain unexplained.

Our study has several strengths. The randomisation process was rigorous, outcomes were evaluated by assessors blinded to patient treatment, multiple centres were involved and an ITT analysis was used. It has several limitations. Patients were un-blinded because injection site reactions with anakinra make full blinding impractical. Some data were missing, albeit at low levels. As with other contemporary early RA cohorts, erosive progression was low (only 26% had a minimal clinically important annual increase in Larsen scores of ≥2.3 units over the first 12-months [10]), reducing the power to detect treatment effects on erosive progression.

In conclusion, anakinra is ineffective in early active RA. Our findings support the National Institute for Health and Care Excellence’s (NICE) decision to not recommend its use in RA management [11].
ACKNOWLEDGEMENTS

CARDERA-2 was funded by Amgen Ltd. ICS receives funding from Arthritis Research UK (Grant Reference Number 19739), the National Institute for Health Research (NIHR) (Clinical Lectureship) and the Academy for Medical Sciences (Starter Grant for Clinical Lecturers).

REGISTRATION

CARDERA-2 was registered at the ISRCTN registry (http://www.isrctn.com) using the identification number ISRCTN15819795.
REFERENCES

Table 1. Baseline Patient Characteristics by Treatment Group

<table>
<thead>
<tr>
<th>Patient Characteristic</th>
<th>Methotrexate Monotherapy (N=75)</th>
<th>Anakinra-Methotrexate (N=79)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age in Years (SD)</td>
<td>54 (13)</td>
<td>56 (12)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>54 (72)</td>
<td>54 (68)</td>
</tr>
<tr>
<td>Caucasian, n (%)</td>
<td>67 (89)</td>
<td>65 (82)</td>
</tr>
<tr>
<td>Mean Disease Duration, Months (SD)</td>
<td>0.14 (0.19)</td>
<td>0.13 (0.15)</td>
</tr>
<tr>
<td>Mean Larsen (SD)</td>
<td>7.0 (10.5)</td>
<td>15.3 (18.7)</td>
</tr>
<tr>
<td>RF-Positive, n (%)</td>
<td>54 (72)</td>
<td>53 (67.1)</td>
</tr>
<tr>
<td>Mean DAS28 (SD)</td>
<td>6.45 (1.22)</td>
<td>6.37 (1.19)</td>
</tr>
<tr>
<td>Mean HAQ (SD)</td>
<td>1.58 (0.79)</td>
<td>1.49 (0.71)</td>
</tr>
<tr>
<td>Mean EQ-5D (SD)</td>
<td>0.39 (0.34)</td>
<td>0.40 (0.34)</td>
</tr>
</tbody>
</table>

n = number; SD = standard deviation; RF = Rheumatoid Factor; DAS28 = Disease Activity Score on a 28-joint count; HAQ = Health Assessment Questionnaire
Table 2. Regression Models Showing the Effect of Anakinra on Disease Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>12-months</th>
<th>24-months</th>
<th>12-months</th>
<th>24-months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1 (Unadjusted)</td>
<td>Model 2 (Adjusted)*</td>
<td>Model 1 (Unadjusted)</td>
<td>Model 2 (Adjusted)*</td>
</tr>
<tr>
<td></td>
<td>Linear Regression</td>
<td>Logistic Regression</td>
<td>Linear Regression</td>
<td>Logistic Regression</td>
</tr>
<tr>
<td></td>
<td>β (95% CI)</td>
<td>P-value</td>
<td>β (95% CI)</td>
<td>P-value</td>
</tr>
<tr>
<td>Larsen</td>
<td>-1.70 (-4.73, 1.34)</td>
<td>0.27</td>
<td>-0.10 (-3.27, 3.07)</td>
<td>0.95</td>
</tr>
<tr>
<td>HAQ</td>
<td>0.08 (-0.15, 0.32)</td>
<td>0.49</td>
<td>0.23 (-0.02, 0.48)</td>
<td>0.07</td>
</tr>
<tr>
<td>EQ-5D</td>
<td>-0.09 (-0.21, 0.02)</td>
<td>0.09</td>
<td>-0.04 (-0.17, 0.08)</td>
<td>0.48</td>
</tr>
<tr>
<td>DAS28</td>
<td>0.16 (-0.45, 0.78)</td>
<td>0.60</td>
<td>0.62 (-0.10, 1.35)</td>
<td>0.09</td>
</tr>
</tbody>
</table>

* Model 2 includes following covariates: age, gender, ethnicity, disease duration; methotrexate monotherapy used as reference group in linear and logistic regression models.
Figure 1. Consort Flowchart for CARDERA-2

Assessed for Eligibility (n = 259)

- Excluded (n = 100)
 - Not consented (n = 59)
 - Ineligible (n = 37)
 - No data recorded (n = 4)

Randomised (n = 159)

Allocated to MTX Monotherapy (n = 77)
- Received allocated intervention (n = 75)
- Did not receive allocated intervention (n = 2)
 - Reason: No baseline data

Allocated to MTX + Anakinra (n = 82)
- Received allocated intervention (n = 79)
- Did not receive allocated intervention (n = 3)
 - Reason: No baseline data

Lost to Follow-Up (n = 4)
- Disease progression n = 1
- Patient decision n = 2
- Toxicity of treatment n = 1

Discontinued Intervention (n = 15)
- Disease progression n = 2
- Patient decision n = 4
- Toxicity of treatment n = 9

Lost to Follow-Up (n = 1)
- Patient decision n = 1

Discontinued Intervention (n = 5)
- Disease progression n = 3
- Toxicity of treatment n = 2

Analysis

Intention-to-Treat: n = 75 (100%)
Completers: n = 62 (82.7%)

Intention-to-Treat: n = 79 (100%)
Completers: n = 56 (70.9%)
Figure 2. Treatment Effect on Larsen, DAS28, HAQ and EQ-5D Scores

Mean change from baseline with standard error bars shown at each time point for each outcome; *=denotes significant difference between treatment arms at \(P<0.05 \) (from adjusted linear regression model).