TOTAL POSITIVITY, SCHUBERT POSITIVITY, AND GEOMETRIC SATEKE

THOMAS LAM AND KONSTANZE RIETSCH

ABSTRACT. Let G be a simple and simply-connected complex algebraic group, and let $X \subset G^\vee$ be the centralizer subgroup of a principal nilpotent element. Ginzburg and Peterson independently related the ring of functions on X with the homology ring of the affine Grassmannian Gr_G. Peterson furthermore connected this ring to the quantum cohomology rings of partial flag varieties G/P.

The first aim of this paper is to study three different notions of positivity on X: (1) Schubert positivity arising via Peterson’s work, (2) total positivity in the sense of Lusztig, and (3) Mirkovic-Vilonen positivity obtained from the MV-cycles in Gr_G. Our first main theorem establishes that these three notions of positivity coincide. The second aim of this paper is to parametrize the totally nonnegative part of X, confirming a conjecture of the second author.

In type A a substantial part of our results were previously established by the second author. The crucial new component of this paper is the connection with the affine Grassmannian and the geometric Satake correspondence.

1. Introduction

Let G be a simply connected, semisimple complex linear algebraic group, split over \mathbb{R}. The Peterson variety \mathcal{Y} may be viewed as the compactification of the stabilizer $X := G^\vee_Y$ of a standard principal nilpotent F in $(g^\vee)^*$ (with respect to the coadjoint representation of G^\vee), which one obtains by embedding X into the Langlands dual flag variety G^\vee/B^\vee and taking the closure there.

Ginzburg [9] and Peterson [25] independently showed that the coordinate ring $\mathcal{O}(X)$ of the variety X was isomorphic to the homology $H_*(Gr_G)$ of the affine Grassmannian Gr_G of G, and Peterson discovered moreover that the compactification \mathcal{Y} encodes the quantum cohomology rings of all of the flag varieties G/P. Peterson’s remarkable work in particular exhibited explicit homomorphisms between localizations of $qH^*(G/P, \mathbb{C})$ and $H_*(Gr_G, \mathbb{C})$ taking quantum Schubert classes σ_w^P to affine homology Schubert classes ξ_x. These homomorphisms were verified in [19].

The first aim of this paper is to compare different notions of positivity for the real points of X: (i) the affine Schubert positive part $X_{\geq 0}^f$ where affine Schubert classes ξ_x take positive values via Ginzburg and Peterson’s isomorphism $H_*(Gr_G) \simeq \mathcal{O}(X)$; (ii) the totally positive part $X_{>0} := X \cap U^\vee_{>0}$ in the sense of Lusztig [21]; and (iii) the Mirkovic-Vilonen positive part $X_{>0}^{MV}$ where the classes of the Mirkovic-Vilonen cycles from the geometric Satake correspondence [24] take positive values.
Our first main theorem (Theorem 7.1) states that these three notions of positivity coincide. For G of type A the coincidence $X^a_{>0} = X_{>0}$ was already established in [29], where instead of $X^a_{>0}$, the notion of quantum Schubert positivity was used. In general quantum Schubert positivity is possibly weaker than affine Schubert positivity. It follows from [29] that the notions coincide in type A, and we verify that they coincide in type C in Appendix A.

Our second main theorem (Theorem 7.3) is a parametrization of the totally positive $X_{>0}$ and totally nonnegative $X_{\geq 0}$ parts of X. We show that they are homeomorphic to $\mathbb{R}^n_{>0}$ and $\mathbb{R}^n_{\geq 0}$ respectively. This was conjectured by the second author in [29] where it was established in type A. In type A_n we have that $X = G^F$ is the n-dimensional subgroup of lower-triangular unipotent Toeplitz matrices, and thus the parametrization $X_{\geq 0} \simeq \mathbb{R}^n_{\geq 0}$ is a “finite-dimensional” analogue of the Edrei-Thoma theorem [6] parametrizing infinite totally nonnegative Toeplitz matrices, appearing in the classification of the characters of the infinite symmetric group. The results of this article give an arbitrary type generalization.

The strategy of our proof is as follows: to show that $X^a_{>0} \subseteq X^{MV}_{>0}$ we use a result of Kumar and Nori [18] stating that effective classes in $H_*(\text{Gr}_G)$ are Schubert-positive. We then use the geometric Satake correspondence [9, 24] to describe $X^{MV}_{>0}$ via matrix coefficients, and a result of Berenstein-Zelevinsky [2] to connect to the totally positive part $X_{>0}$.

Finally, to connect $X_{>0}$ back to $X^a_{>0}$, we parametrize the latter directly by combining the positivity of the 3-point Gromov-Witten invariants of $QH^*(G/B)$ with the Perron-Frobenius theorem. This argument follows the strategy of [29].

There is a general phenomenon [21, 2] that totally positive parts have “nice parametrizations”. This phenomenon is closely related to the relation between total positivity and the canonical bases [22], and also the cluster algebra structures on related stratifications [7]. Indeed our work suggests that the coordinate ring $\mathcal{O}(X)$ has the affine homology Schubert basis $\{\xi_w\}$ as a “dual canonical basis”, and that the Hopf-dual universal enveloping algebra $U(g^F)$ has the cohomology affine Schubert basis $\{\xi^w\}$ as a “canonical basis”. Certainly the affine Schubert bases have the positivity properties expected of canonical bases.

In [30] the type A parameterization result for the totally positive part $X_{>0}$ of the Toeplitz matrices X is proved in a completely different way, using a mirror symmetric construction of X. This approach does not however prove the interesting positivity properties of the bases we study in this paper. The mirror symmetric approach was partly generalized to other types in [32], where the existence of a totally positive point in X for any choice of positive quantum parameters is proved (but not its uniqueness).

Acknowledgements. The authors would like to thank Dale Peterson for his beautiful results which underly this work. The second author also thanks Dima Panov for some helpful conversations. The authors thank Victor Ginzburg for a question which led to the inclusion of Section 6.2.

2. Preliminaries and notation

Let G be a simple linear algebraic group over \mathbb{C} split over \mathbb{R}. Usually G will be simply connected. Denote by $\text{Ad} : G \to GL(\mathfrak{g})$ the adjoint representation of G on its Lie algebra \mathfrak{g}. We fix opposite Borel subgroups B^+ and B^- defined over \mathbb{R} and intersecting in a split torus T. Their Lie algebras are denoted by \mathfrak{b}^+ and \mathfrak{b}^-.
respectively. We will also consider their unipotent radicals U^+ and U^- with their Lie algebras u^+ and u^-.

Let $X^*(T)$ be the character group of T and $X_*(T)$ the group of cocharacters together with the usual perfect pairing $\langle \cdot, \cdot \rangle : X^*(T) \times X_*(T) \rightarrow \mathbb{Z}$. We may identify $X^*(T)$ with a lattice inside \mathfrak{h}^*, and $X_*(T)$ with the dual lattice inside \mathfrak{h}. These span the real forms \mathfrak{h}^*_R and \mathfrak{h}_R, respectively.

Let $\Delta_+ \subset X^*(T)$ be the set of positive roots corresponding to \mathfrak{b}^+, and Δ_- the set of negative roots. There is a unique highest root in Δ_+ which is denoted by θ. Let $I = \{1, \ldots, n\}$ be an indexing set for the set $\Pi := \{\alpha_i \mid i \in I\}$ of positive simple roots. The α_i-root space $\mathfrak{g}_{\alpha_i} \subset \mathfrak{g}$ is spanned by Chevalley generator e_i and $\mathfrak{g}_{-\alpha_i}$ is spanned by f_i. The split real form of \mathfrak{g}, denoted \mathfrak{g}_R, is generated by the Chevalley generators e_i, f_i.

Let $Q := \langle \alpha_1, \ldots, \alpha_n \rangle_\mathbb{Z}$ be the root lattice. We also have the fundamental weights $\omega_1, \ldots, \omega_n$, and the weight lattice $L := \langle \omega_1, \ldots, \omega_n \rangle_\mathbb{Z}$ associated to G. If G is simply connected, we have the relations

$$Q \subset X^*(T) = L \subset \mathfrak{h}^*.$$

Let Q^\vee denote the lattice spanned by the simple coroots, $\alpha_1^\vee, \ldots, \alpha_n^\vee$, and L^\vee the lattice spanned by the fundamental coweights $\omega_1^\vee, \ldots, \omega_n^\vee$. Then Q^\vee is the dual lattice to L and L^\vee the dual lattice to Q, giving

$$Q^\vee \subset X_*(T) \subset L^\vee \subset \mathfrak{h},$$

in the case where G is simply connected. We set $\rho = \sum_{i \in I} \omega_i$ and write $\text{ht}(\lambda^\vee) = \langle \rho, \lambda^\vee \rangle$ for the height of $\lambda^\vee \in Q^\vee$.

For any Chevalley generator e_i, f_i of \mathfrak{g} we may define a ‘simple root subgroup’ by

$$x_i(t) = \exp(t e_i), \quad y_i(t) = \exp(t f_i), \quad \text{for } t \in \mathbb{C}.$$

Let $W = N_G(T)/T$ be the Weyl group of G. It is generated by simple reflections s_1, \ldots, s_n. The length function $\ell : W \rightarrow \mathbb{N}$ gives the length of a reduced expression of $w \in W$ in the simple reflections. The unique longest element is denoted w_0, and for a root α, we let r_α denote the corresponding reflection. For any simple reflection s_i we choose a representative \check{s}_i in G defined by

$$\check{s}_i := x_i(-1)y_i(1)x_i(-1).$$

If $w = s_{i_1} \cdots s_{i_m}$ is a reduced expression, then $\check{w} := \check{s}_{i_1} \cdots \check{s}_{i_m}$ is a well-defined representative for w, independent of the reduced expression chosen. W is a poset under the Bruhat order \leq.

We denote the Langlands dual group of G by G^\vee, or $G^\vee_\mathbb{C}$ to emphasize that we mean the algebraic group over \mathbb{C}. The notations for G^\vee are the same as those for G but with added $^\vee$ and any other superscripts moved down, for example $B^+_\mathbb{C}$ for the analogue of B^+.

2.1 Parabolic subgroups. Let P denote a parabolic subgroup of G containing B^+, and let \mathfrak{p} be the Lie algebra of P. Let I_P be the subset of I associated to P consisting of all the $i \in I$ with $\check{s}_i \in P$ and consider its complement $I^P := I \setminus I_P$.

Associated to P we have the parabolic subgroup $W_P = \langle s_i \mid i \in I_P \rangle$ of W. We let $W^P \subset W$ denote the set of minimal coset representatives for W/W_P. An element w lies in W^P precisely if for all reduced expressions $w = s_{i_1} \cdots s_{i_m}$ the last index i_m always lies in I^P. We write w^P or w^P_0 for the longest element in W^P, while the
longest element in W_P is denoted w_P. For example $w_0^B = w_0$ and $w_B = 1$. Finally P gives rise to a decomposition

$$\Delta_+ = \Delta_{P,+} \sqcup \Delta_{P,+}^P.$$

Here $\Delta_{P,+} = \{ \alpha \in \Delta_+ \mid \langle \alpha, \omega_i^\vee \rangle = 0 \text{ all } i \in I^P \}$, so that

$$p = b^+ \oplus \bigoplus_{\alpha \in \Delta_{P,+}} g_{-\alpha},$$

and $\Delta_{P,+}^P$ is the complement of $\Delta_{P,+}$ in Δ_+. For example $\Delta_{B,+} = \emptyset$ and $\Delta_{B,+}^B = \Delta_+$.

3. Total Positivity

3.1. Total positivity. A matrix A in $GL_n(\mathbb{R})$ is called totally positive (or totally nonnegative) if all the minors of A are positive (respectively nonnegative). In other words A acts by positive or nonnegative matrices in all of the fundamental representations $\Lambda^k \mathbb{R}^n$ (with respect to their standard bases). In the 1990’s Lusztig [21] extended this theory dating back to the 1930’s to all reductive algebraic groups. This work followed his construction of canonical bases and utilized their deep positivity properties in types ADE.

Let G be a simple algebraic group, split over the reals. For the rest of this paper the definitions here will be applied to G^\vee rather than G.

The totally nonnegative part $U^+_{>0}$ of U_+ is the semigroup generated by $\{ x_i(t) \mid i \in I \text{ and } t \in \mathbb{R}_{>0} \}$. Similarly the totally nonnegative part $U^-_{>0}$ of U_- is the semigroup generated by $\{ y_i(t) \mid i \in I \text{ and } t \in \mathbb{R}_{>0} \}$. The totally positive parts are given by $U^+_{>0} = U^+_{>0} \cap B^- w_0 B^-$ and $U^-_{>0} = U^-_{>0} \cap B^+ w_0 B^+$.

3.2. Matrix coefficients. Suppose $\lambda \in X^*(T)$ is dominant. Then we have a highest weight irreducible representation V_λ for G. The Lie algebra g also acts on V_λ as does its universal enveloping algebra $U(g)$. We fix a highest weight vector v^+_λ in V_λ. The vector space V_λ has a real form given by $V_{\lambda,\mathbb{R}} = U(g_\mathbb{R}) \cdot v^+_\lambda$.

Let $(\cdot)^T : U(g) \to U(g)$ be the unique involutive anti-automorphism satisfying $e_i^T = f_i$. We let $\langle.,.\rangle : V_\lambda \times V_\lambda \to \mathbb{C}$ denote the unique symmetric, non-degenerate bilinear form (Shapovalov form) [17, II, 2.3] satisfying

$$(3.1) \quad \langle u \cdot v, v' \rangle = \langle v, u^T \cdot v' \rangle \quad \text{ for all } u \in U(g), \; v, v' \in V_\lambda,$$

normalized so that $\langle v^+_\lambda, v^+_\lambda \rangle = 1$. The Shapovalov form is real positive definite on $V_{\lambda,\mathbb{R}}$, see [17, Theorem 2.3.13].

We will be studying total positivity in the Langlands dual group G^\vee of a simply-connected group G. Thus G^\vee will be adjoint. Let G^* be the simply-connected cover of G^\vee. Then the unipotent subgroups of G^* and G^\vee can be identified, and so can their totally positive (resp. negative) parts. The purpose of this observation is to allow the evaluation of matrix coefficients of fundamental representations on the unipotent subgroup of G^\vee. (The adjoint group G^\vee itself may not act on these representations.)

Thus for a fundamental weight ω_i (not necessarily a character of G!) and a vector $v \in V_{\omega_i}$ we have a matrix coefficient

$$y \mapsto \langle v, y \cdot v^+_{\omega_i} \rangle.$$
on U^-. The following result follows from a theorem ([2, Theorem 1.5]) of Berenstein and Zelevinsky (note that every chamber weight is a w_0-chamber weight in the terminology of [2]).

Proposition 3.1. Let $y \in U^-$. Then y is totally positive if and only if for any $i \in I$ we have

$$\langle \dot{w} \cdot v^+, y \cdot v^+ \rangle > 0$$

for each $w \in W$, where v^+_i denotes a highest weight vector in the irreducible highest weight representation V_{s_i}.

We will need the following generalization of the above Proposition.

Proposition 3.2. Let $y \in U^-$. Suppose for any irreducible representation V_λ of G with highest weight vector v^+_λ, and any weight vector v which lies in a one-dimensional weight space of V_λ such that $\langle v, x \cdot v^+_\lambda \rangle > 0$ for all totally positive $x \in U^-_{>0}$ we have

$$\langle v, y \cdot v^+_\lambda \rangle > 0.$$

Then y is totally positive.

The proof of Proposition 3.2 is delayed until Section 13. If G is simply connected then this Proposition 3.2 follows from Proposition 3.1. The difference arises if G is not simply connected, in which case the fundamental weights may not be characters of the maximal torus of G.

Remark 3.3. Suppose G is simply-laced. Then the matrix coefficients of $x \in U^-_{>0}$ in the canonical basis of any irreducible representation V_λ are positive. It follows that for any $v \neq 0$ lying in a one-dimensional weight space of V_λ, either v or $-v$ has the property that $\langle v, x \cdot v^+_\lambda \rangle > 0$ for all $x \in U^-_{>0}$.

4. **The affine Grassmannian and geometric Satake**

In this section, G is a simply connected linear algebraic group over \mathbb{C}. Let $\mathcal{O} = \mathbb{C}[[t]]$ denote the ring of formal power series and $\mathcal{K} = \mathbb{C}((t))$ the field of formal Laurent series. Let $\text{Gr}_G = G(\mathcal{K})/G(\mathcal{O})$ denote the affine Grassmannian of G.

4.1. **Affine Weyl group.** Let $W_{af} = W \ltimes X_*(T)$ be the affine Weyl group of G. For a cocharacter $\lambda \in X_*(T)$ we write $t_\lambda \in W_{af}$ for the translation element of the affine Weyl group. We then have the commutation formula $wt_\lambda w^{-1} = t_{w \cdot \lambda}$. The affine Weyl group is also a Coxeter group, generated by simple reflections s_0, s_1, \ldots, s_n, where $s_0 = r_0 \ell_{-\theta^\vee}$. It is a graded poset with its usual length function $\ell : W_{af} \to \mathbb{Z}_{\geq 0}$, and Bruhat order \geq.

Let W_{af}^- denote the minimal length coset representatives of W_{af}/W. Thus we have canonical bijections

$$X_*(T) \longleftrightarrow W_{af}/W \longleftrightarrow W_{af}^-.$$

The intersection $X_*(T) \cap W_{af}^-$ is given by the anti-dominant translations, that is t_λ where $\langle \alpha_i, \lambda \rangle \leq 0$ for each $i \in I$.

Note that an element λ of $X_*(T)$ viewed as a map from \mathbb{C}^* to T can also be reinterpreted as an element of $T(\mathcal{K})$. We denote this element by t^λ. The two should not be confused since the isomorphism $W_{af} \to N_G(\mathcal{K})(T)/T$ sends t_λ to $t^{-\lambda}$.
4.2. Geometric Satake and Mirkovic-Vilonen cycles. The affine Grassmanian is an ind-scheme \([17, 9, 24]\). The \(G(\mathcal{O})\)-orbits \(\text{Gr}_\lambda\) on \(\text{Gr}_G\) are parametrized by the dominant cocharacters \(\lambda \in X^+_c(T)\). Namely,

\[
\text{Gr}_\lambda := G(\mathcal{O})t^\lambda G(\mathcal{O})/G(\mathcal{O}).
\]

The geometric Satake correspondence \([9, 20, 24]\) (with real coefficients) states that the tensor category \(\text{Perv}(\text{Gr}_G)\) of \(G(\mathcal{O})\)-equivariant perverse sheaves on \(\text{Gr}_G\) with \(\mathbb{C}\)-coefficients is equivalent to the tensor category \(\text{Rep}(G^\vee_\mathbb{C})\) of finite-dimensional representations of the Langlands dual group \(G^\vee_\mathbb{C}\). (For our purposes the tensor structure will be unimportant.) The simple objects of \(\text{Perv}(\text{Gr}_G)\) are the intersection cohomology complexes \(IC_\lambda\) of the \(G(\mathcal{O})\)-orbit closures \(\text{Gr}_\lambda\). They correspond under the geometric Satake correspondence to the highest weight representations \(V_\lambda\) of \(G^\vee\). Furthermore, we have a canonical isomorphism

\[
IH^*(\text{Gr}_\lambda) = H^*(\text{Gr}_G, IC_\lambda) \simeq V_\lambda.
\]

Mirkovic and Vilonen found explicit cycles in \(\text{Gr}_G\) whose intersection homology classes give rise to a weight-basis of \(V_\lambda\) under the isomorphism \((4.2)\). We denote by \(\text{MV}_{\lambda,w}\) the MV-cycle with corresponding vector \(v \in V_\lambda\). For \(w \in W\), the weight-space \(V^G_\lambda(w\lambda)\) is one-dimensional. We denote by \(\text{MV}_{\lambda,w}\) the corresponding MV-cycle. Thus \([\text{MV}_{\lambda,w}]_{IH} \in IH^*(\text{Gr}_\lambda) \simeq V_\lambda\) has weight \(w\lambda\). All the statements of this section hold with \(\mathbb{R}\)-coefficients: we take perverse sheaves with \(\mathbb{R}\)-coefficients, and consider the representations of a split real form \(G^\vee_\mathbb{R}\) of the Langlands dual group.

4.3. Schubert varieties in \(\text{Gr}_G\). Let \(I \subset G(\mathcal{O})\) denote the Iwahori subgroup of elements \(g(t)\) which evaluate to \(g \in B^+\) at \(t = 0\). The \(I\)-orbits \(\Omega_\mu\) on \(\text{Gr}_G\), called Schubert cells, are labeled by all (not necessarily dominant) cocharacters \(\mu \in X_*(T)\). Explicitly,

\[
\Omega_\mu = I \, t^\mu G(\mathcal{O})/G(\mathcal{O}).
\]

Alternatively, we may label Schubert cells by cosets \(xW \in W_{af}/W\) or minimal coset representatives \(x \in W^{-}_{af}\), using the bijection \((1.1)\). Choosing a representative \(\hat{\mu}\) of \(\mu\), we have

\[
\Omega_\mu = I \, \hat{\mu} G(\mathcal{O})/G(\mathcal{O}).
\]

The Schubert cell \(\Omega_\mu = \Omega_x\) is isomorphic to \(C^0(x)\) whenever \(x \in W^{-}_{af}\). We note that \(\Omega_{\mu} = \Omega_{t_{-\mu}}\) if \(\mu\) is dominant, compare Section \(4.1\). The Schubert varieties \(X_\mu = \Omega^\ast_x\), alternatively denoted \(X_\mu = \Omega_{t_{-\mu}}\), are themselves unions of Schubert cells: \(X_\mu = \sqcup_{v \leq x} \Omega_v\). The \(G(\mathcal{O})\) orbits are also unions of Schubert cells:

\[
\text{Gr}_\lambda = \bigsqcup_{w \in W} \Omega_{w\cdot\lambda}.
\]

In particular the largest one of these, \(\Omega_\lambda \cong C^0(t_{-\lambda})\), is open dense in \(\text{Gr}_\lambda\) (where we assumed \(\lambda\) dominant), and so

\[
\overline{\text{Gr}_\lambda} = \overline{\Omega_\lambda} = X_\lambda.
\]

Thus every \(G(\mathcal{O})\)-orbit closure is a Schubert variety, but not conversely. Moreover \(\overline{\text{Gr}_\lambda}\) has dimension \(\ell(t_{-\lambda})\), which equals \(2\, \text{ht}(\lambda)\).

We note that the \(M\nu\)-cycle \(MV_{\lambda,v}\) is an irreducible subvariety of \(\overline{\text{Gr}_\lambda}\) of dimension \(\text{ht}(\lambda) + \text{ht}(\nu)\) if \(v\) lies in the \(\nu\)-weight space of \(V_\lambda\), see \([24, \text{Theorem } 3.2]\). In particular \(MV_{\lambda,\lambda} = \overline{\text{Gr}_\lambda}\) and \(MV_{\lambda,w\cdot\lambda}\) is just a point.
4.4. The (co)homology of Gr_G. The space Gr_G is homotopic to the based loop group ΩK of polynomial maps of S^1 into the compact form $K \subset G$ [27, 26]. Thus the homology $H_*(\text{Gr}_G; \mathbb{C})$ and cohomology $H^*(\text{Gr}_G; \mathbb{C})$ are commutative and co-commutative graded dual Hopf algebras over \mathbb{C}.

Ginzburg [9] (see also [3]) and Dale Peterson [25] described $H_*(\text{Gr}_G, \mathbb{C})$ as the coordinate ring of the stabilizer subgroup of a principal nilpotent in $(g^\vee)^*$. Namely, in our conventions, let $F \in (g^\vee)^*$ be the principal nilpotent element defined by

$$F = \sum_{i \in I} (e_i^\vee)^*,$$

where $(e_i^\vee)^*(\zeta) = 0$ if $\zeta \in g^\vee_{\alpha}$ for $\alpha \neq \alpha_i$, and $(e_i^\vee)^*(e_j^\vee) = 1$. Let $X = (G^\vee)_F$ denote the stabilizer of F inside G^\vee, under the coadjoint action. It is an abelian subgroup of U^\vee of dimension equal to the rank of G. Then the result from [9, 25] says that $H_*(\text{Gr}_G)$ is Hopf-isomorphic to the ring of regular functions on X. Moreover, the cohomology, $H^*(\text{Gr}_G, \mathbb{C})$ is Hopf-isomorphic to the universal enveloping algebra $U(g^\vee_F)$ of the centralizer of F, as graded dual.

We note that Ginzburg [9] works over \mathbb{C} while Peterson [25] works over \mathbb{Z}, but the details of Peterson’s work are so far unpublished.

Our choice of principal nilpotent F is compatible via Peterson’s isomorphism [6, 3], see [19], with the conventions in [15, 16, 31], and is related to the choice in [9, 25] by switching the roles of B^+ and B^-. In terms of the above presentation of $H_*(\text{Gr}_G)$, the fundamental class of an MV-cycle can be described as follows. Let $\langle \cdot, \cdot \rangle : H^*(\text{Gr}_G) \times H_*(\text{Gr}_G) \to \mathbb{C}$ be the pairing obtained from cap product composed with pushing forward to a point.

Proposition 4.1. Suppose $\text{MV}_{\lambda,v}$ is the MV-cycle with corresponding weight vector $v \in V_\lambda$ under (4.2). Let $u \in \mathcal{U}(g^\vee_F) \simeq H^*(\text{Gr}_G)$. Then the fundamental class $[\text{MV}_{\lambda,v}] \in H_*(\text{Gr}_G)$ satisfies

$$\langle u, [\text{MV}_{\lambda,v}] \rangle = \langle u \cdot v, v^- \rangle,$$

where v^- is the lowest weight vector of V_λ (in the MV-basis).

Proof. The argument is essentially the same as [9] Proposition 1.9; the main difference is that in our conventions u is lower unipotent, rather than upper unipotent, however accordingly Gr_λ is in our conventions the MV-cycle representing the highest weight vector, whereas it is the lowest weight vector in [9]. So the difference is that everywhere the roles of B^+ and B^- are interchanged. By [9, Theorem 1.7.6], the action of $u \in \mathcal{U}(g^\vee_F)$ on V_λ is compatible with the action of the corresponding element in $H^*(\text{Gr}_G)$ on $I^H(\text{Gr}_\lambda)$. Under (4.2), the vector v is sent to $[\text{MV}_{\lambda,v}]|H$ which maps to the fundamental class $[\text{MV}_{\lambda,v}]$ under the natural map from the intersection cohomology $I^H(\text{Gr}_\lambda)$ to the homology $H_*(\text{Gr}_\lambda)$. Also, under the fundamental class map the action of $H^*(\text{Gr}_G)$ on $I^H(\text{Gr}_\lambda)$ is sent to the cap product of $H^*(\text{Gr}_G)$ on $H_*(\text{Gr}_\lambda)$. Finally, pushing forward to a point is the same as pairing with v^- (in our conventions). So we get the identity

$$\langle u, [\text{MV}_{\lambda,v}] \rangle = \pi_*(u \cap [\text{MV}_{\lambda,v}]) = \langle v^-, u \cdot v \rangle,$$

where $\pi : X \to \{ pt \}$. \qed
4.5. Schubert basis. We have

\[H_*(\text{Gr}_G) = \bigoplus_{x \in W_{af}} \mathbb{C} \cdot \xi_x, \quad H^*(\text{Gr}_G) = \bigoplus_{x \in W_{af}} \mathbb{C} \cdot \xi^x, \]

where the \(\xi_w \) are the fundamental classes \([X_w]\) of the Schubert varieties, and \(\{\xi^w\} \) is the cohomology basis (dual under the cap product). Suppose \(\lambda \) is dominant, then we also have

\[H_*(\text{Gr}_\lambda) = \bigoplus_{x \in W_{af}} \mathbb{C} \cdot \xi_x, \quad x \leq t - \lambda \]

because of (4.3) and the decomposition of \(X_\lambda \) into Schubert cells.

By Ginzburg/Peterson’s isomorphism, we will often think of a Schubert basis element \(\xi_w \) as a function on \(X \). The Schubert basis of \(H_*(\text{Gr}_G) \) has the following factorization property:

Proposition 4.2 ([25] [19]). Suppose \(w_t, t_\mu \in W_{af} \). Then \(\xi_{w_t} \xi_{t_\mu} = \xi_{w_t + t_\mu} \).

We remark that if \(w_t \in W_{af} \), then necessarily \(t \) is anti-dominant.

5. The quantum cohomology ring of \(G/P \)

5.1. The usual cohomology of \(G/P \) and its Schubert basis. For our purposes it will suffice to take homology or cohomology with complex coefficients, so \(H^*(G/P, \mathbb{C}) \) will stand for \(H^*(G/P) \). By the well-known result of C. Ehresmann, the singular homology of \(G/P \) has a basis indexed by the elements \(w \in W_P \) made up of the fundamental classes of the Schubert varieties,

\[X_P^w := \overline{B^+ w P/P} \subseteq G/P. \]

Here the bar stands for (Zariski) closure. Let \(\sigma^P_w \in H^*(G/P) \) be the Poincaré dual class to \([X_P^w]\). Note that \(X_P^w \) has complex codimension \(\ell(w) \) in \(G/P \) and hence \(\sigma^P_w \) lies in \(H^{2\ell(w)}(G/P) \). The set \(\{\sigma^P_w \mid w \in W_P\} \) forms a basis of \(H^*(G/P) \) called the Schubert basis. The top degree cohomology of \(G/P \) is spanned by \(\sigma^P_0 \) and we have the Poincaré duality pairing

\[H^*(G/P) \times H^*(G/P) \rightarrow \mathbb{C}, \quad (\sigma, \mu) \mapsto \langle \sigma \cup \mu \rangle \]

which may be interpreted as taking \(\langle \sigma, \mu \rangle \) to the coefficient of \(\sigma^P_w \) in the basis expansion of the product \(\sigma \cup \mu \). For \(w \in W_P \) let \(PD(w) \in W_P \) be the minimal length coset representative in \(w_0 w W_P \). Then this pairing is characterized by

\[\langle \sigma^P_w \cup \sigma^P_v \rangle = \delta_{w, PD(v)}. \]

5.2. The quantum cohomology ring \(qH^*(G/P) \). The (small) quantum cohomology ring \(qH^*(G/P) \) is a deformation of the usual cohomology ring by \(\mathbb{C}[q^P_1, \ldots, q^P_k] \), where \(k = \dim H^2(G/P) \), with structure constants defined by 3-point genus 0 Gromov-Witten invariants. For more background on quantum cohomology, see [8].

We have

\[qH^*(G/P) = \oplus_{w \in W_P} \mathbb{C}[q^P_1, \ldots, q^P_k] \cdot \sigma^P_w \]
where σ^P_w now (and in the rest of the paper) denotes the quantum Schubert class.

The quantum cup product is defined by

$$\sigma^P_v \cdot \sigma^P_w = \sum_{u \in W^P} \langle \sigma^P_u, \sigma^P_v, \sigma^P_w \rangle \ q^d \sigma^P_{PD(u)},$$

where q^d is multi-index notation for $\prod_{i=1}^k q_i^{d_i}$, and the $\langle \sigma^P_u, \sigma^P_v, \sigma^P_w \rangle$ are genus 0, 3-point Gromov-Witten invariants. These enumerate rational curves in G/P, with a fixed degree determined by d, which pass through generic translates of three Schubert varieties. In particular, $\langle \sigma^P_u, \sigma^P_v, \sigma^P_w \rangle$ is a nonnegative integer.

The quantum cohomology ring $qH^*(G/P)$ has an analogue of the Poincaré duality pairing which may be defined as the symmetric $\mathbb{C}[q_1^P, \ldots, q_k^P]$-bilinear pairing

$$qH^*(G/P) \times qH^*(G/P) \rightarrow \mathbb{C}[q_1^P, \ldots, q_k^P], \quad (\sigma, \mu) \mapsto \langle \sigma \cdot \mu \rangle_q$$

where $\langle \sigma \cdot \mu \rangle_q$ denotes the coefficient of σ^P_{uv} in the Schubert basis expansion of the product $\sigma \cdot \mu$. In terms of the Schubert basis the quantum Poincaré duality pairing on $qH^*(G/P)$ is given by

$$(5.1) \quad \langle \sigma^P_w \cdot \sigma^P_v \rangle_q = \delta_{w,PD(v)},$$

where $v, w \in W^P$, and $PD : W^P \rightarrow W^P$ is the involution defined in Section 5.1.

Equation (5.1) can for example be deduced from Fulton and Woodward’s results on the minimal coefficient of q in a quantum product.

6. Peterson’s theory

In this section we summarize Peterson’s results concerning his geometric realizations of $qH^*(G/P)$ and their relationship with $H_*(\text{Gr}_G)$.

6.1. Definition of the Peterson variety. Each Spec($qH^*(G/P)$) turns out to be most naturally viewed as lying inside the Langlands dual flag variety G^\vee/B^\vee, where it appears as a stratum (non-reduced intersection with a Bruhat cell) of one n-dimensional projective variety called the Peterson variety. This remarkable fact was discovered and shown by Dale Peterson [25].

The condition

$$(\text{Ad}(g^{-1}) \cdot F)(X) = 0 \text{ for all } X \in [u^\vee, u^\vee],$$

defines a closed subvariety of G^\vee invariant under right multiplication by B^\vee. Thus they define a closed subvariety of G^\vee/B^\vee. This subvariety \mathcal{Y} is the Peterson variety for G. Explicitly we have

$$\mathcal{Y} = \{ gB^\vee \in G^\vee/B^\vee \mid \text{Ad}(g^{-1}) \cdot F \in [u^\vee, u^\vee] \}.$$

For any parabolic subgroup $W_P \subset W$ with longest element w_P define \mathcal{Y}_P as non-reduced intersection,

$$\mathcal{Y}_P := \mathcal{Y} \times_{G^\vee/B^\vee} (B^\vee_+ w_P B^\vee_+/B^\vee_+).$$

1We thank L. Mihalcea for pointing out that it also follows from Proposition 3.2 of “Finiteness of cominuscule quantum K-theory” by Buch, Chaput, Mihalcea, and Perrin.
Remark 6.1. For $P = B$ we have a map
\begin{equation}
\mathcal{Y}_B \to \mathcal{A}_G : \ uB^\vee \mapsto u^{-1} \cdot F,
\end{equation}
where $\mathcal{A}_G \subset (g^\vee)^*$ is the degenerate leaf of the Toda lattice. This map is an isomorphism as follows from classical work of Kostant [14]. Kostant also showed that \mathcal{Y}_B is irreducible [15].

The isomorphism between $qH^*(G/B)$ and the functions on the degenerate leaf of the Toda lattice was established by B. Kim [12] building on [10].

6.2. Irreducibility of \mathcal{Y}. It is not immediately obvious from the above definition that the Peterson variety \mathcal{Y} is irreducible. In other words apart from the the closure of \mathcal{Y}_B it could a priori contain some other irreducible components coming from intersections with other Bruhat cells. We include a sketch of proof (put together from [25]) that this doesn’t happen, and that therefore \mathcal{Y} is irreducible, n-dimensional and equal to the closure of \mathcal{Y}_B. Namely we have the following proposition.

Proposition 6.2 (Dale Peterson). If $w = w_P$, the longest element in W_P for some parabolic subgroup P, then $\mathcal{Y} \cap B^\vee wB^\vee/B^\vee$ is nonempty and of dimension $|I^P|$. Otherwise $w^{-1} \cdot (−\Pi^\vee) \not\subset \Delta^\vee \cup \Pi^\vee$ and $\mathcal{Y} \cap B^\vee wB^\vee/B^\vee = \emptyset$.

Sketch of proof. Clearly $w^{-1} \cdot F$ needs to lie in $b_{11} := [u_{w^\vee}, u_{w^\vee}]^\times$ for $\mathcal{Y} \cap B^\vee wB^\vee/B^\vee$ to be non-empty. So $w^{-1} \cdot (−\Pi^\vee) \not\subset \Delta^\vee \cup \Pi^\vee$. This is the case if and only if $w = w_P$ for some parabolic P, by a lemma from [25] reproduced in [28, Lemma 2.2].

Consider the map
\begin{equation}
\psi : U^\vee_+ \to \ (u^\times)^*,
\end{equation}
\begin{equation}
u \mapsto (u^{-1} \cdot F)|_{u^\vee}.
\end{equation}

The coordinate rings of U^\vee_+ and $(u^-)^*$ are polynomial rings. On U^\vee_+ consider the \mathbb{C}^*-action coming from conjugation by the one-parameter subgroup of T^\vee corresponding to $\rho \in X_\alpha(T^\vee)$. On $(u^\times)^*$ let \mathbb{C}^* act by $z \cdot X_\alpha = z^{-\langle \alpha, \rho \rangle + 1}X_\alpha$ for $X_\alpha \in \alpha$-weight space of $(u^\times)^*$ and $\alpha \in \Delta^\vee_+$. Then ψ^* is a homomorphism of (positively) graded rings, namely it is straightforward to check that ψ is \mathbb{C}^*-equivariant.

Also ψ has the property that $\psi^{-1}(0) = \{0\}$ in terms of \mathbb{C}-valued points, or indeed over any algebraically closed field. Peterson proves this in [25] by considering the B^\vee-Bruhat decomposition intersected with U^\vee_+. Namely, the only way $\psi(u)$ can be 0 for $u \in U^\vee_+ \cap B^\vee wB^\vee$ is if $w = e$, wherefore u must be the identity element in U^\vee_+.

It follows from these two properties that ψ is finite. For example by page 660 in Griffiths-Harris and using the \mathbb{C}^*-action to go from the statement locally around zero, to a global statement, or by another proposition in Peterson’s lectures [25].

Let
\begin{equation}
U_P := \psi^{-1}((w_P \cdot b_{11})|_{u^\vee}) = \{u \in U^\vee_+ | (u^{-1} \cdot F)|_{u^\vee} \in (w_P \cdot b_{11})|_{u^\vee}\}.
\end{equation}

Since $u^{-1} \cdot F \in F + h + (u^\times)^*$ for $u \in U^\vee_+$ and $F + h \subset w_P \cdot b_{11}$, we can drop the restriction to u^\vee_+ on both sides of the condition above, and we have a projection map
\begin{equation}
U_P = \{u \in U^\vee_+ | u^{-1} \cdot F \in w_P b_{11}\} = \{u \in U^\vee_+ | w_P^{-1} u^{-1} \cdot F \in b_{11}\} \to \mathcal{Y} \cap B^\vee w_P B^\vee/B^\vee
\end{equation}
taking $u \in U_P$ to $uw_P B^\vee$, which is a fiber bundle with fiber $\cong \mathbb{C}^{(wP)}$.

Since \(\psi \) is finite the dimension of \(U_P \) is equal to the dimension of the subspace \((w_P \cdot \eta_P)|_{u^\vee} \) inside \((\mathcal{V}^\vee)^* \). This dimension is just \(|P| + \ell(w_P) \), by looking at the weight space decomposition. So \(\mathcal{V} \cap B^\vee_P B^\vee / B^\vee \) has dimension \(|P| \). \(\Box \)

6.3. **Geometric realization of** \(qH^*(G/P) \). Recall the stabilizer \(X \) of the principal nilpotent \(F \), which is an \(n \)-dimensional abelian subgroup of \(U^\vee \). Using an idea of Kostant’s [13, page 304], the Peterson variety may also be understood as a compactification of \(X \). Namely,

\[
\mathcal{V} = \overline{Xw_0B^\vee / B^\vee} \subset G^\vee / B^\vee.
\]

For the parabolic \(P \) let

\[
\mathcal{V}_P^\vee := \mathcal{V}_P \times_{G^\vee / B^\vee} Xw_0B^\vee / B^\vee = (X \times_{G^\vee} B^\vee \cdot \mathcal{V}^\vee) \mathcal{V}^\vee, \\
\]

or equivalently,

\[
\mathcal{V}_P^\vee = \mathcal{V}_P \times_{G^\vee / B^\vee} B^\vee \mathcal{V}^\vee / B^\vee.
\]

We define

\[
X_P := X \times_{G^\vee} B^\vee \mathcal{V}^\vee,
\]

so that the above is an isomorphism \(\mathcal{V}_P^\vee \cong X_P \).

Theorem 6.3 (Dale Peterson).

1. The \(\mathcal{V}_P \) give rise to a decomposition

\[
\mathcal{V}(\mathbb{C}) = \bigsqcup_{P} \mathcal{V}_P(\mathbb{C}).
\]

2. For \(P = B \) we have

\[
qH^*(G/B) \sim \mathcal{O}(\mathcal{V}_B),
\]

via the isomorphism (6.1) of \(\mathcal{V}_B \) with the degenerate leaf of the Toda lattice of \(G^\vee \).

3. If \(w \in W_P \), then the the function \(S^w \in \mathcal{O}(\mathcal{V}_B) \) associated to the Schubert class \(\sigma_w \) defines a regular function \(S^w_P \) on \(\mathcal{O}(\mathcal{V}_P) \). There is an (uniquely determined) isomorphism

\[
qH^*(G/P) \sim \mathcal{O}(\mathcal{V}_P)
\]

which takes \(\sigma_w^P \) to \(S^w_P \).

4. The isomorphisms above restrict, to give isomorphisms

\[
qH^*(G/P)[q_1^{-1}, \ldots, q_k^{-1}] \sim \mathcal{O}(\mathcal{V}_P).
\]

In particular, Theorem 6.3(1) gives

\[
X(\mathbb{C}) = \bigsqcup_{P} X_P(\mathbb{C}).
\]
6.4. Quantum cohomology and homology of the affine Grassmannian.

Theorem 6.4 (Dale Peterson).

1. The composition of isomorphisms

\[(6.3) \quad H_*(Gr_G)[\xi_1^{-1}_\lambda] \cong \mathcal{O}(X_B) \cong \mathcal{O}(J_B^*) \cong qH^*(G/B)[q_1^{-1}, \ldots, q_n^{-1}] \]

is given by

\[(6.4) \quad \xi_{w_1}^*= q_{\lambda^w} \sigma^B_{w} \]

where \(q_{\nu} = q_1^{a_1}\nu_2^{a_2} \cdots q_n^{a_n}\) if \(\nu = a_1\alpha_1^{\vee} + \cdots + a_n\alpha_n^{\vee}\).

2. More generally, for an arbitrary parabolic \(P\) the composition

\[(6.5) \quad (H_*(Gr_G)/J P)[(\xi_1^{-1}_{\pi P(t, \lambda)})] \cong \mathcal{O}(X_P) \cong \mathcal{O}(J_P^*) \cong qH^*(G/P)[q_1^{-1}, \ldots, q_k^{-1}] \]

is given by

\[(6.6) \quad \xi_{w_P(t, \lambda)}^{-1} \xi_{\pi P(t, \lambda)}^{-1} \rightarrow q_{\eta P(\lambda^w)} \sigma^P_{w} \]

where \(J_P \subset H_*(Gr_G)\) is an ideal, \(\pi_P\) maps \(W_{sl}\) to a subset \((W_P)_{sl}\), and \(\eta_P\) is the natural projection \(Q^\vee \rightarrow Q^\vee /Q^\vee_P\) where \(Q^\vee_P\) is the root lattice of \(W_P\).

Lam and Shimozono [19] verified that the maps (6.3) (resp. 6.6) are isomorphisms from \(H_*\) to \(qH^*(G/B)\) (respectively from, in the parabolic case, \(H_*(Gr_G)/J P\) to \(qH^*(G/P)\)). We do not review the definitions of \(J_P\) and \(\pi_P\) here, but refer the reader to [19].

Remark 6.5. In [19] it is not shown that the isomorphism (6.4) is the one induced by the geometry of \(X\). We sketch how this can be achieved.

First, Kostant [15] Section 5] expresses the quantum parameters as certain ratios of ‘chamber minors’ on \(X\). Ginzburg’s [9] Proposition 1.9] also expresses the translation affine Schubert classes \(\xi_{t, \lambda}\) as matrix coefficients, since \(\xi_{t, \lambda} = [X_\lambda] = [Gr_\lambda] = [MV_{\lambda, \nu}]\). This allows one to compare \(\xi_{t, \lambda}\) with \(q_{\lambda}\) as functions on \(X_B\), and see that they agree. Namely both are equal to \(x \mapsto (x \cdot v_1^\vee, v_\lambda^\vee)\).

Let \(\tilde{\lambda} = m\tilde{\omega}_i^\vee\) be a positive multiple of \(\omega_i^\vee\) contained in \(Q^\vee\). We now compare the functions \(\xi_{s_i t, \lambda}\) and \(q_{\lambda^i} \sigma_{s_i}\) on \(X_B\). For the function \(\sigma_{s_i}\), Kostant gives a formula in [15] (119] as a ratio of matrix coefficients on \(X\). For the function \(\xi_{s_i t, \lambda}\), one notes that since \(\lambda\) is a multiple of \(\omega_i^\vee\), then \(t, \lambda \in W_{sl}^t\) covers only \(s_it, \lambda\) in the Bruhat order of \(W_{sl}^t\). It follows that \(H_{2t(t, \lambda) - 2}(G_{\lambda})\) is one-dimensional, spanned by \(\xi_{s_i t, \lambda}\). Similarly the weight space \(V_{\lambda}(\lambda - \alpha_i^\vee)\) is one-dimensional. If we let \([MV_{\lambda, \nu}]\) be the unique MV-cycle with \(v\) of weight \(v = \lambda - \alpha_i^\vee\), then this gives a cycle in homology of degree \(2(h(t, \lambda) + h(t, \nu)) = 4h(\lambda) - 2 = 2t(t, \lambda) - 2\). So we have that the homology class \([MV_{\lambda, \nu}]\) is a positive integral multiple of the Schubert class \(\xi_{s_i t, \lambda}\). Proposition 4.4 allows one to write \([MV_{\lambda, \nu}]\) as a matrix coefficient on \(X\) and compare it with Kostant’s formula for \(q_{\lambda^i} \sigma_{s_i}\). Finally we see in this way that \(q_{\lambda^i} \sigma_{s_i}\) is a positive integral multiple of \(\xi_{s_i t, \lambda}\) as function on \(X_B\).

Now we can compose this isomorphism \(qH^*(G/B)[q_1^{-1}, \ldots, q_n^{-1}] \cong \mathcal{O}(X_B) \cong H_*(Gr_G)[\xi_1^{-1}]\) with the isomorphism \(H_*(Gr_G)[\xi_1^{-1}] \rightarrow qH^*(G/B)[q_1^{-1}, \ldots, q_n^{-1}]\) defined by (6.4) going the other way. This way we get a map \(qH^*(G/B)[q_1^{-1}, \ldots, q_n^{-1}] \rightarrow qH^*(G/B)[q_1^{-1}, \ldots, q_n^{-1}]\) which takes every \(q_i\) to \(q_i\) but \(\sigma_{s_i}\) to a positive integral
multiple of σ_s. However the images of the σ_s still need to obey the unique quadratic relation in the quantum cohomology ring, which identifies a quadratic form in the q_i's with a linear form in the q_i's. The σ_s's cannot be rescaled by positive integer multiples and this relation still hold, unless all of the integer factors are 1, which means that σ_s must go to σ_{s_0}.

Since $qH^*(G/B)[q_1^{-1}, \ldots, q_n^{-1}]$ is generated by the σ_s, as ring over $\mathbb{C}[q_1^\pm, \ldots, q_n^\pm]$ the map $qH^*(G/B)[q_1^{-1}, \ldots, q_n^{-1}] \to qH^*(G/B)[q_1^{-1}, \ldots, q_n^{-1}]$ considered above is the identity. Therefore (6.4) is the inverse to the map $qH^*(G/B)[q_1^{-1}, \ldots, q_n] \cong \mathcal{O}(X_B) \cong H_q(Gr_G)[\xi_w^{-1}]$, and we are done.

7. MAIN RESULTS

In the rest of the paper we will be working with the \mathbb{R}-structures on all our main objects. Since $X, Y, H_q(Gr_G), qH^*(G/P)$ are in fact all defined over \mathbb{Z} there is no problem with this. All our notations for positivity and nonnegativity refer to \mathbb{R}-points. We now define

(AP) The subset

$$X_{>0}^\text{af} = \{ x \in X \mid \xi_w(x) > 0 \text{ for all } w \in W_{\text{af}} \}$$

of affine Schubert positive elements.

(MVP) The subset

$$X_{>0}^\text{MV} = \{ x \in X \mid [\text{MV}_w](x) > 0 \text{ for all MV-cycles} \}$$

of MV-positive elements.

(TP) The totally positive subset defined by Lusztig’s theory,

$$X_{0} := X \cap U_{-,>0}. $$

(QP) The subset

$$X_{0}^\text{Schubert} := \{ x \in X_B \mid \sigma_w^B(x) > 0 \text{ all } w \in W \}$$

of quantum Schubert positive elements defined in terms of the quantum Schubert basis and Peterson’s isomorphism $qH^*(G/B)[q_1^{-1}, \ldots, q_n^{-1}] \cong \mathcal{O}(X_B)$.

Define the totally nonnegative part $X_{\geq 0} = X \cap U_{-,\geq 0}$ of X, and the affine Schubert nonnegative part $X_{\geq 0}^\text{af}$ of X as the set of points $x \in X$ such that $\xi_w(x) \geq 0$ for every affine Schubert class ξ_w. We can now state our first main theorem.

Theorem 7.1. The first three notions of positivity in X agree: we have $X_{>0} = X_{\geq 0}^\text{af} = X_{\geq 0}^\text{MV}$, and for the fourth we have $X_{>0} \subset X_{\geq 0}^\text{Schubert}$. Furthermore, we have $X_{\geq 0} = X_{\geq 0}^\text{af} = X_{\geq 0}^\text{Schubert}$.

Therefore the first three notions of positivity are equivalent, and the fourth is at worst weaker. We note that by (6.3) affine Schubert positivity is equivalent to quantum Schubert positivity with additional positivity of the quantum parameters. Therefore $X_{\geq 0}^\text{af} \subset X_{\geq 0}^\text{Schubert}$ is immediate.

Conjecture 7.2. We have $X_{\geq 0} = X_{\geq 0}^\text{Schubert}$.

Conjecture (7.2) was shown in [29] for type A. We will verify it in Appendix A for type C.

By the isomorphism

$$\mathbb{C}[Y_P] \cong qH^*(G/P)[(q_1^P)^{-1}, \ldots, (q_k^P)^{-1}]$$
from Theorem 6.3 combined with $X_P \cong Y_P^*$, we have a morphism
\[\pi^P = (q_1^P, \ldots, q_k^P) : X_P \to (\mathbb{C}^*)^k. \]
Let $X_{P,>0} := X_P \cap X_{>0}$. In particular $X_{B,>0} = X_{>0}$.

Theorem 7.3.

1. π^P restricts to a bijection $\pi^P_P : X_{P,>0} \to \mathbb{R}^n_{>0}$.
2. $X_{P,>0}$ lies in the smooth locus of X_P, and the map π^P is etale on $X_{P,>0}$.
3. The maps π^P_P glue to give a homeomorphism $\Delta_{>0} : X_{>0} \to \mathbb{R}^n_{>0}$.

8. One direction of Theorem 7.1

Lemma 8.1. If $x \in X$ is affine Schubert positive, then it is MV-positive.

Proof. The main result of Kumar and Nori [18], applied to Gr_G, shows that every effective cycle in Gr_G is homologous to a positive sum of Schubert cycles. It follows that the fundamental class $[\text{MV}_{\lambda,v}]$ of an MV-cycle is a positive linear combination of the Schubert classes ξ_w. \qed

Lemma 8.2. Suppose $X_{MV}^{>0} \cap X_{>0} \neq \emptyset$. Then $X_{MV}^{>0} \subseteq X_{>0}$.

Proof. Suppose V_λ is a representation of G^\vee with highest weight λ and μ is a weight of V_λ with one-dimensional weight space.

Let $[\text{MV}_{\lambda,\mu}]$ be the MV-cycle representing a weight vector v with weight μ in V_λ under the isomorphism $[4.2]$. Then for $x \in X$, we have by Proposition 4.1, $[\text{MV}_{\lambda,\mu}](x) = \langle x, [\text{MV}_{\lambda,\mu}] \rangle = \langle x \cdot v, v_\lambda^\vee \rangle = \langle v, x^T \cdot v_\lambda^\vee \rangle$. Note that we are really thinking of V_λ as a lowest weight representation by fixing the lowest weight vector v_λ^\vee (of weight $w_0\lambda$).

Now suppose that that there is a vector v' in the weight space $V_\lambda(\mu)$ satisfying $\langle v', y \cdot v_\lambda^\vee \rangle > 0$ for all $y \in U^+_{>0}$. Since the weight space $V_\lambda(\mu)$ is one-dimensional it follows that the MV-basis element $v = c_{\lambda,\mu} v'$ for a scalar $c_{\lambda,\mu}$. Choose $x_0 \in X_{MV}^{>0} \cap X_{>0}$. Such an x_0 exists by our assumption. Then we see that the scalar is positive,

\[c_{\lambda,\mu} = \frac{\langle x_0 \cdot v, v_\lambda^\vee \rangle}{\langle x_0, v', v_\lambda^\vee \rangle} = \frac{[\text{MV}_{\lambda,\mu}](x_0)}{[\text{MV}_{\lambda,\mu}](x)} > 0. \]

Now suppose $x \in X_{MV}^{>0}$ is an arbitrary element. Then

\[\langle v', x^T \cdot v_\lambda^\vee \rangle = \frac{1}{c_{\lambda,\mu}} \langle v, x^T \cdot v_\lambda^\vee \rangle = \frac{1}{c_{\lambda,\mu}} [\text{MV}_{\lambda,\mu}](x) > 0. \]

By Proposition 5.2 (applied with “positive Borel” B^+ taken to be $B_{>0}^\vee$), this implies that x^T is totally positive. Clearly then x is totally positive. \qed

Lemma 8.3. The principal nilpotent $f^\vee = \sum f_i^\vee$ goes to a positive multiple of the affine Schubert class $\xi^\vee \in H^2(\text{Gr}_G)$ under the isomorphism $U((g^\vee)^F) \cong H^*(\text{Gr}_G)$.

Proof. Since \(H^2(\text{Gr}_G) \) is 1-dimensional we know that \(f^\vee = c\xi^\alpha \) under the identification \(U((g^\vee)^F) \cong H^*(\text{Gr}_G) \). We want to show that \(c \) is positive.

Consider the exponential \(\exp(f^\vee) = \exp(c\xi^\alpha) \) as an element of the completion \(H^*(\text{Gr}_G) \), and choose \(\lambda \) such that \(s_it_\lambda \in W_{af}^- \). If we evaluate the (localized) homology class \(\xi_{s_it_\lambda} \xi_{t_\lambda}^{-1} \) on this element we obtain

\[
\xi_{s_it_\lambda} \xi_{t_\lambda}^{-1}(\exp(f^\vee)) = \xi_{s_it_\lambda} \xi_{t_\lambda}^{-1}(\exp(c\xi^\alpha))
\]

\[
= \xi_{s_it_\lambda} \xi_{t_\lambda}^{-1}(1 + c\xi^\alpha + \frac{c^2}{2!}(a_2) + \frac{c^3}{3!}(a_3) + \cdots)
\]

\[
= \frac{e^{k-1}}{(k-1)!} \xi_{s_it_\lambda} (a_{k-1}) \xi_{t_\lambda} (a_k)^{-1}
\]

\[
= \frac{k}{c} \xi_{s_it_\lambda} (a_{k-1}) \xi_{t_\lambda} (a_k)^{-1},
\]

where \(\ell(t_\lambda) = k = \ell(s_it_\lambda) + 1 \) and the \(a_i \in H^{2i}(\text{Gr}_G) \) are positive linear combinations of Schubert classes, since all cup product Schubert structure constants of \(H^*(\text{Gr}_G) \) are positive \([18]\). Therefore \(c \) is positive if and only if \(\xi_{s_it_\lambda} \xi_{t_\lambda}^{-1}(\exp(f^\vee)) \) is positive.

We now compute \(\xi_{s_it_\lambda} \xi_{t_\lambda}^{-1}(\exp(f^\vee)) \) in a different way. Under Peterson’s isomorphism \([6,3]\)

\[
(8.1) \quad \xi_{s_it_\lambda} \xi_{t_\lambda}^{-1} \mapsto \sigma_{s_it_\lambda}.
\]

Consider the element of \(X_{>0} \), the totally positive part of \(X_B \), given by \(\exp(f^\vee) \). Using \([8,3]\) and identifying both \(H_*(\text{Gr}_G) \) and \(qH^*(G/B)[q_1^{-1}, \ldots, q_n^{-1}] \) with \(\mathbb{C}[X_B] \) as in \([6,3]\), we can evaluate

\[
(8.2) \quad \xi_{s_it_\lambda} \xi_{t_\lambda}^{-1}(\exp(f^\vee)) = \sigma_{s_it_\lambda}(\exp(f^\vee)).
\]

The right hand side here is a quotient of two ‘chamber minors’ of \(\exp(f^\vee) \) by Kostant’s formula \([15, \text{Proposition } 33]\). Therefore the total positivity of \(\exp(f^\vee) \) implies

\[
(8.3) \quad \xi_{s_it_\lambda} \xi_{t_\lambda}^{-1}(\exp(f^\vee)) > 0.
\]

\[\square\]

Lemma 8.4. The element \(x = \exp(f^\vee) \) lies in \(X_{>0}^{af} \).

Proof. A Schubert class \(\xi_w \) in \(H_*(\text{Gr}_G) \) can be evaluated against \(\exp(f^\vee) \) by viewing \(f^\vee \) as element of \(H^2(\text{Gr}_G) \), expanding \(\exp(f^\vee) \) as a power series and pairing \(\xi_w \) with each summand. But Lemma 8.3 implies that \(\exp(f^\vee) \) expands as a positive linear combination of Schubert classes. This implies that \(\xi_w(\exp(f^\vee)) > 0 \) for all \(w \in W_{af}^- \).

\[\square\]

Lemma 8.5. We have \(X_{>0}^{MV} \subseteq X_{>0} \) and \(X_{\geq 0}^{MV} \subseteq X_{\geq 0} \).

Proof. In Lemma 8.3 we found a totally positive point \(x \in X_{>0} \), namely \(x = \exp(f^\vee) \), which is also affine Schubert positive. Since affine Schubert positive implies MV-positive, by Lemma 8.1 this means that \(x \in X_{>0}^{MV} \cap X_{>0} \). Now Lemma 8.2 implies that \(X_{\geq 0}^{MV} \subseteq X_{\geq 0} \). The second inclusion is an immediate consequence. \[\square\]

Corollary 8.6. We have \(X_{>0}^{af} \subseteq X_{>0}^{MV} \subseteq X_{>0} \) and \(X_{\geq 0}^{af} \subseteq X_{\geq 0}^{MV} \subseteq X_{\geq 0} \).
9. Parametrizing the affine Schubert-positive part of X_P

Let $X_{P,>0}^{af} = X_{P,>0}^{af} \cap X_P$ denote the points $x \in X_P$ such that $\xi_w(x) \geq 0$ for every affine Schubert class ξ_w. First we note that π^P takes values in $\mathbb{R}_{>0}^k$ on $X_{P,>0}^{af}$. Indeed, by definition $q_i^P(x) \neq 0$ for $x \in X_P$, and expressing the quantum parameters q_i^P in terms of affine Schubert classes ξ_w using Theorem 6.4(2), it follows that $x \in X_{P,>0}^{af}$ has $q_i^P(x) > 0$ for all $i \in P$. It follows from the following result that we also have $X_{B,>0}^{af} = X_{>0}^{af}$.

Lemma 9.1. Suppose $x \in X_{P,>0}^{af}$. Then $\sigma^P_w(x) > 0$ for all $w \in W^P$.

Proof. It follows from Theorem 6.4(2) and the definitions that $\sigma^P_w(x) \geq 0$. Suppose $\sigma^P_w(x) = 0$. Let r_θ denote the reflection in the longest root, and $\pi_P(r_\theta) \in W^P$ be the corresponding minimal length parabolic coset representative. Proposition 11.2 of [19] states that

$$\sigma^P_{\pi_P(r_\theta)} \sigma^P_w = q_{i_P(\theta, \psi, w)} \sigma^P_{\pi_P(r_\theta w)} + q_{i_P(\theta, \psi)} \sum_{s_i w < w} a_i \sigma^P_{s_i w}.$$

We refer the reader to Appendix A and [19] for the notation used here. Applying this repeatedly, we see that for large ℓ, the product $(\sigma^P_{\pi_P(r_\theta)})^\ell \sigma^P_w$ is a (positive) combination of quantum Schubert classes which includes a monomial in the q_i^P. This contradicts $q_i^P(x) > 0$ for each i. \square

The remainder of this section will be devoted to the proof of the following proposition.

Proposition 9.2. The map $\pi_{P,>0}^P : X_{P,>0}^{af} \rightarrow \mathbb{R}_{>0}^k$ is bijective.

We follow the proof in type A given in [29], shortening somewhat the proof of our Lemma 9.4 below (Lemma 9.3 in [29]), by using a result of Fulton and Woodward [8]: the quantum product of Schubert classes is always nonzero.

Fix a point $Q \in (\mathbb{R}_{>0}^k)^k$ and consider its fiber under $\pi = \pi^P$. Let us define

$$R_Q := qH^*(G/P)/(q_1^P - Q_1, \ldots, q_k^P - Q_k).$$

This is the (possibly non-reduced) coordinate ring of $\pi^{-1}(Q)$. Note that R_Q is a $|W^P|$-dimensional algebra with basis given by the (image of the) Schubert basis.

We will use the same notation σ^P_w for the image of a Schubert basis element from $qH^*(G/P)$ in the quotient R_Q. The proof of the following result from [29] holds in our situation verbatim.

Lemma 9.3 ([29] Lemma 9.2]). Suppose $\mu \in R_Q$ is a nonzero simultaneous eigenvector for all linear operators $R_Q \rightarrow R_Q$ which are defined by multiplication by elements in R_Q. Then there exists a point $p \in \pi^{-1}(Q)$ such that (up to a scalar factor)

$$\mu = \sum_{w \in W^P} \sigma^P_w(p) \sigma^P_{D(w)}.$$

\square

Set

$$\sigma := \sum_{w \in W^P} \sigma^P_w \in R_Q.$$
Suppose the multiplication operator on R_Q defined by multiplication by σ is given by the matrix $M_\sigma = (m_{v,w})_{v,w \in W^P}$ with respect to the Schubert basis. That is,

$$\sigma \cdot \sigma_v^P = \sum_{w \in W^P} m_{v,w} \sigma_w^P.$$

Then since $Q \in \mathbb{R}_{\geq 0}^+$ and by positivity of the structure constants it follows that M_σ is a nonnegative matrix.

Lemma 9.4 ([29] Lemma 9.3). M_σ is an indecomposable matrix.

Proof. Suppose indirectly that the matrix M_σ is reducible. Then there exists a nonempty, proper subset $V \subset W^P$ such that the span of $\{\sigma_v \mid v \in V\}$ in R_Q is invariant under M_σ. We will derive a contradiction to this statement.

First let us show that $1 \in V$. Suppose not. Since $V \neq \emptyset$ we have a $v \neq 1$ in V. Since $1 \notin V$, the coefficient of σ_1 in $\sigma_w \cdot \sigma_v$ must be zero for all $w \in W^P$, or equivalently

$$\langle \sigma_w \cdot \sigma_v \cdot \sigma_w^P \rangle_Q = 0$$

for all $w \in W^P$. Here by the bracket $\langle \ , \rangle_Q$ we mean $\langle \ , \rangle_q$ evaluated at Q. But this (9.1) implies $\langle \sigma_w \cdot \sigma_v \cdot \sigma_w^P \rangle_q = 0$, since the latter is a nonnegative polynomial in the q^I's which evaluated at $Q \in \mathbb{R}_{\geq 0}^+$ equals 0. Therefore $\sigma_w \cdot \sigma_w^P = 0$ in $qH^*(G/P)$, by quantum Poincaré duality. This leads to a contradiction, since by work of W. Fulton and C. Woodward [8] no two Schubert classes in $qH^*(G/P)$ ever multiply to zero.

So V must contain 1. Since V is a proper subset of W^P we can find some $w \notin V$. In particular, $w \neq 1$. It is a straightforward exercise that given $1 \neq w \in W^P$ there exists $\alpha \in \Delta^+_P$ and $v \in W^P$ such that

$$w = vr_\alpha, \quad \text{and} \quad \ell(w) = \ell(v) + 1.$$

Now $s_\alpha \in \Delta^+_P$ means there exists $i \in I^P$ such that $\langle \alpha, \omega_i^P \rangle \neq 0$. And hence by the (classical) Chevalley Formula we have that $\sigma_{s_i} \cdot \sigma_v$ has σ_w as a summand. But if $w \notin V$ this implies that also $v \notin V$, since $\sigma \cdot \sigma_v$ would have summand $\sigma_{s_i} \cdot \sigma_v$ which has summand σ_w. Note that there are no cancellations with other terms by positivity of the structure constants.

By this process we can find ever smaller elements of W^P which do not lie in V until we end up with the identity element, so a contradiction. \qed

Given the indecomposable nonnegative matrix M_σ, then by Perron-Frobenius theory (see e.g. [29] Section 1.4) we know the following.

The matrix M_σ has a positive eigenvector μ which is unique up to scalar (positive meaning it has positive coefficients with respect to the standard basis). Its eigenvalue, called the Perron-Frobenius eigenvalue, is positive, has maximal absolute value among all eigenvalues of M_σ, and has algebraic multiplicity 1. The eigenvector μ is unique even in the stronger sense that any nonnegative eigenvector of M_σ is a multiple of μ.

Suppose μ is this eigenvector chosen normalized such that $\langle \mu \rangle_Q = 1$. Then since the eigenspace containing μ is 1–dimensional, it follows that μ is joint eigenvector
for all multiplication operators of R_Q. Therefore by Lemma 9.3 there exists a $p_0 \in \pi^{-1}(Q)$ such that

$$
\mu = \sum_{w \in W^P} \sigma_w^P(p_0) \sigma_{P_D(w)}^P.
$$

Positivity of μ implies that $\sigma_w^P(p_0) \in \mathbb{R}_{>0}$ for all $w \in W^P$. Of course all of the $q_i(p_0) = Q_i$ are positive too. Hence $p_0 \in X_{P,>0}^a$. Also the point p_0 in the fiber over Q with the property that all $\sigma_w^P(p_0)$ are positive is unique. Therefore

$$(9.2) \quad X_{P,>0}^a \to \mathbb{R}_{>0}$$

is a bijection.

10. Proof of Theorem 7.3 (2)

We establish Theorem 7.3 (2) for $X_{P,>0}^a$ instead of $X_{P,>0}^a$. In Proposition 11.3, we will establish the equality $X_{P,>0}^a = X_{P,>0}^a$.

Since $qH^*(G/P)$ is free over $\mathbb{C}[q^1_1, \ldots, q^k_1]$, it follows that π^P is flat. Let $Q = \pi^P(p_0)$. Let $R = qH^*(G/P)$ and $I \subset R$ the ideal $(q_1 - Q_1, \ldots, q_k - Q_k)$. The Artinian ring $R_Q = R/I$ is isomorphic to the sum of local rings $R_Q \cong \bigoplus_{x \in (\pi^P)^{-1}(Q)} R_x/I R_x$. And for $x = p_0$ the local ring $R_{p_0}/I R_{p_0}$ corresponds to the Perron–Frobenius eigenspace of the multiplication operator M_x from the above proof. Since this is a one-dimensional eigenspace (with algebraic multiplicity one) we have that $\dim(R_{p_0}/I R_{p_0}) = 1$. It follows that the map π^P is unramified at the point p_0. Thus, for example by [11, Ex.III.10.3], π^P is etale at p_0. Since $(\mathbb{C}^*)^k$ is smooth, it follows that X_P is smooth at p_0.

11. Proofs of Theorem 7.1 and Theorem 7.3 (1)

Lemma 11.1. $X_{\geq 0}$ and $X_{\geq 0}^a$ are closed subsemigroups of X.

Proof. For $X_{\geq 0}$ this follows from the fact that $(U^\vee)_{\geq 0}$ is a subsemigroup of U^\vee, and $X \subset U^\vee$ is a subgroup. For $X_{\geq 0}^a$, closed-ness follows from the definition. Suppose $x, y \in X_{\geq 0}^a$. Then for any affine Schubert class ξ_w, we have

$$
\xi_w(xy) = \Delta(\xi_w)(x \otimes y) = \sum_{v,u} c_{v,u}^{w} \xi_v(x) \otimes \xi_u(y) \geq 0
$$

where Δ denotes the coproduct of $H_*(Gr_G)$, and $c_{v,u}^{w} \geq 0$ are nonnegative integers [13]. Thus $xy \in X_{\geq 0}^a$. \qed

The first statement of Theorem 7.1 follows from Corollary 8.6 and the following proposition.

Proposition 11.2. The totally positive part and the affine Schubert positive part of X agree,

$$
X_{\geq 0}^a = X_{>0}.
$$

Proof. Our proof is identical to the proof of Proposition 12.2 from [29].

By [15, Section 5] or combining Theorem 6.3 with [9 Proposition 1.9], we see that each q_i is a ratio of ‘chamber minors’ and so π^B takes positive values on $X_{>0}$.

By Corollary [8.6] we have the following commutative diagram

\[
\begin{array}{ccc}
X^a_{>0} & \xrightarrow{\pi^B} & X_{>0} \\
\cong & \downarrow & \\
\\
\mathbb{R}^n_{>0} & \xrightarrow{\pi^B} & \\
\end{array}
\]

where the top row is clearly an open inclusion and the maps going down are restrictions of \(\pi^B\). By [9.2] and Section 10 the left hand map to \(\mathbb{R}^n_{>0}\) is a homeomorphism. It follows from this and elementary point set topology that \(X^a_{>0}\) must be closed inside \(X_{>0}\). So it suffices to show that \(X_{>0}\) is connected.

Proof. Suppose \(u \in X\) and \(t \in \mathbb{R}\), let

\[(11.1) \quad u_t := t^{-\rho} ut^\rho,
\]

where \(t \mapsto t^\rho\) is the one-parameter subgroup of \(T^\rho\) corresponding to the coroot \(\rho\) (a coroot relative to \(G^\rho\)). Then \(u_0 = e\) and \(u_1 = u\), and if \(u \in X_{>0}\), then so is \(u_t\) for all positive \(t\).

Let \(u, u' \in X_{>0}\) be two arbitrary points. Consider the paths

\[
\gamma : [0, 1] \to X_{>0}, \quad \gamma(t) = uu_t',
\]

\[
\gamma' : [0, 1] \to X_{>0}, \quad \gamma'(t) = uu_t'.
\]

Note that these paths lie entirely in \(X_{>0}\) since \(X_{>0}\) is a semigroup (Lemma [11.1]). Since \(\gamma\) and \(\gamma'\) connect \(u\) and \(u'\), respectively, to \(uu'\), it follows that \(u\) and \(u'\) lie in the same connected component of \(X_{>0}\), and we are done.

The second statement of Theorem 11.2 and Theorem 7.3(1) follow from:

Proposition 11.3. We have \(\overline{X_{>0}} = X_{\geq 0} = X \cap U_{\geq 0}'\). We have \(X^a_{>0} = X^a_{\geq 0}\).

Proof. Suppose \(x \in X_{>0}\). Then for any \(u \in X_{>0}\), we have \(u_t \in X_{>0}\) for all positive \(t\), where \(u_t\) is defined in (11.1). The curve \(t \mapsto x(t) = xu_t\) starts at \(x(0) = x\) and lies in \(X_{>0}\) for all \(t > 0\). Therefore \(x \in \overline{X_{>0}}\) as desired.

The same proof holds for \(X^a_{>0}\), using Lemma [11.1] and the fact that \(u_t \in X_{>0} = X^a_{\geq 0}\) (Proposition [11.2]).

12. Proof of Theorem 7.3(3)

To define \(\Delta_{>0}\), we set \(\Delta_i = \xi_{m_i \omega_i^\vee}\), where \(m_i\) is chosen so that \(m_i \omega_i^\vee \in Q^\vee\). Then \(\Delta_{>0} = (\Delta_1, \ldots, \Delta_n)\).

It follows from the explicit description [19] of \(\pi_P(t_\lambda)\) and \(\eta_P(\lambda)\) of Theorem 6.3 that for each \(i\), some power of \(q_i^P\) is equal to \(\xi_i \xi^\mu_\lambda\) on \(X_P\), for certain \(\lambda, \mu \in Q^\vee\). Furthermore, the map

\[
\pi^P_{>0} = (q_1^P, \ldots, q_k^P) : X_{P,>0} \to \mathbb{R}^k_{>0}
\]

is related to the map

\[
\Delta^P_{>0} = (\Delta_{i_1}, \Delta_{i_2}, \ldots, \Delta_{i_k}) : X_{P,>0} \to \mathbb{R}^k_{>0}
\]

by a homeomorphism of \(\mathbb{R}^k_{>0}\), where \(P = \{i_1, i_2, \ldots, i_k\}\). But \(X_{\geq 0} = \bigcup X_{P,>0}\), so we have that

\[
\Delta_{\geq 0} : X_{\geq 0} \to \mathbb{R}^n_{\geq 0}
\]
is bijective. So $\Delta_{\geq 0}$ is continuous and bijective. Since Δ is finite it follows that it is closed, that is, takes closed sets to closed sets. (This holds true also in the Euclidean topology, since the preimage of a bounded set under a finite map must be bounded, compare [33, Section 5.3]). Since $X_{\geq 0}$ is closed in X the restriction $\Delta_{\geq 0}$ of Δ to $X_{\geq 0}$ is also closed. Therefore $\Delta^{-1}_{\geq 0}$ is continuous.

13. Proof of Proposition 3.2

It suffices to prove the Proposition for G of adjoint type. Call a dominant weight λ allowable if it is a character of the maximal torus of adjoint type G.

We note that the tensor product $V = V_\lambda \otimes V_\mu$ of two irreducible representations inherits a tensor Shapovalov form $\langle \cdot,\cdot \rangle$ defined by $\langle v \otimes w, v' \otimes w' \rangle = \langle v, v' \rangle \langle w, w' \rangle$. This is again a positive-definite non-degenerate symmetric form on $V_{\lambda,\mathbb{R}} \otimes V_{\mu,\mathbb{R}}$ satisfying (3.1). It follows from (3.1) that if $V_\rho, V_\rho' \subset V$ are irreducible subrepresentations, and $\nu \neq \rho$ then $\langle v, v' \rangle = 0$ for $v \in V_\rho$ and $v' \in V_\rho'$. Thus if the highest-weight representation V_ρ occurs in V with multiplicity one, the restriction of $\langle \cdot,\cdot \rangle$ from V to V_ρ must be a positive-definite non-degenerate symmetric bilinear form satisfying (3.1), and thus must be a multiple of the Shapovalov form. By scaling the inclusion $V_\rho \subset V$, we shall always assume that the restricted form is the Shapovalov form. The above comments extend to the case of n-fold tensor products.

13.1. Type A_n. We shall establish the criterion used in Proposition 3.1. First suppose n is even. Let V_{ω_i} be a fundamental representation, and let $v^+_{\omega_i} \in V_{\omega_i}$ be the highest weight vector, and $v = \check{w} \cdot v^+_{\omega_i}$ an extremal weight vector. The weight space with weight $\check{w} \cdot (n+1)\omega_i$ is extremal (and one-dimensional) in $V_{(n+1)\omega_i}$, and $V_{(n+1)\omega_i}$ is an irreducible representation for $PSL_{n+1}(\mathbb{C})$. Thus for y as in Proposition 3.1

$$\langle v, y \cdot v^+_{\omega_i} \rangle^{n+1} = \langle y, v^+_{\omega_i} \rangle^{\otimes (n+1)} > 0.$$

Since n is even, this implies that $\langle v, y \cdot v^+_{\omega_i} \rangle > 0$.

For odd n, let us fix $w \in W$, and consider the set of signs $a_i = \text{sign}(\langle \check{w} \cdot v_{\omega_i}, y \cdot v_{\omega_i} \rangle)$. We want to prove that the a_i are all $+1$. Note that a sum of (not necessarily distinct) fundamental weights, $\omega_{i_1} + \cdots + \omega_{i_k}$, is allowable precisely if it is trivial on the center of SL_{n+1}, that is if $i_1 + \cdots + i_k$ is divisible by $n+1$. Let (i_1, i_2, \ldots, i_k) be such a sequence of indices, for which $\omega_{i_1} + \cdots + \omega_{i_k}$ is allowable. Then the weight $w(\omega_{i_1} + \cdots + \omega_{i_k})$ is an extremal weight of the representation $V_{\omega_{i_1} + \cdots + \omega_{i_k}}$ of $PSL_{n+1}(\mathbb{C})$, and we have

$$\langle \check{w} \cdot v^+_{\omega_{i_1}}, y \cdot v^+_{\omega_{i_2}}, \cdots \langle \check{w} \cdot v^+_{\omega_{i_k}}, y \cdot v^+_{\omega_{i_1}} \rangle \rangle = \langle \check{w} \cdot v^+_{\omega_{i_1}} \otimes \cdots \otimes v^+_{\omega_{i_k}}, y \cdot (v^+_{\omega_{i_1}} \otimes \cdots \otimes v^+_{\omega_{i_k}}) \rangle > 0.$$

Therefore $a_{i_1} \ldots a_{i_k} = +1$ if $i_1 + \ldots + i_k = n+1$. In particular $a_i a_i^{n+1-i} = +1$, implying that $a_i = +1$ for even i, and $a_i = a_1$ for odd i.

We now show that $a_1 = +1$. Let $V = V_{\omega_1} = \mathbb{C}^{n+1}$ with standard basis $\{v_1, \ldots, v_{n+1}\}$, and let $Z = V^{\otimes (n+1)}$. If we take $v^+_{\omega_1} = v_1$ then the Shapovalov form on V is the standard symmetric bilinear form given by $\langle v_i, v_j \rangle = \delta_{i,j}$. Let us consider $U = V_{(n+1)\omega_1} = \text{Sym}^{n+1}(V)$, which occurs with multiplicity 1 in Z and
has standard basis \(\{ v_{i_1} \ldots v_{i_{n+1}} \mid 1 \leq i_1 \leq i_2 \leq \ldots \leq i_{n+1} \leq n+1 \} \) of symmetrized tensors,
\[
v_{i_1} \ldots v_{i_{n+1}} = \frac{1}{(n+1)!} \sum_{\sigma \in S_{n+1}} v_{\sigma(i_1)} \otimes v_{\sigma(i_2)} \otimes \cdots \otimes v_{\sigma(i_{n+1})}.
\]

These are clearly orthonormal for the tensor Shapovalov form restricted to \(U \), which is the Shapovalov form \(\langle \cdot, \cdot \rangle_U \) of \(U \). We have \(\tilde{w} \cdot v_1 = v_k \) for some \(k \). Consider the vector \(z = v_k^+ v_k \in U \) which has weight \(\tilde{w} \cdot \omega_1 + n \omega_1 \). Clearly \(\langle z, x \cdot v_{n+1}^+ \rangle_U = \langle v_k^+ v_k, x \cdot v_{n+1}^+ \rangle_U > 0 \) for all totally positive \(x \in U^- \), and \(z \) lies in a 1-dimensional weight space of \(U \). Therefore our assumptions imply that
\[
0 < \langle z, y \cdot v_{n+1}^+ \rangle_U = \langle v_k^+ v_k, y \cdot v_{n+1}^+ \rangle_Z = \langle v_1, y \cdot v_1 \rangle^n \langle v_k, y \cdot v_1 \rangle = \langle v_k, y \cdot v_1 \rangle.
\]

Since \(\langle v_k, y \cdot v_1 \rangle_U = \langle \tilde{w} \cdot v_{\omega_1}^+, y \cdot v_{\omega_1}^+ \rangle_U \) this says precisely that \(a_1 = +1 \).

13.2. Type \(B_n \). The approach we use for the other Dynkin types can also be applied in this case, but we shall proceed using a different approach. The adjoint group of type \(B_n \) is \(\text{SO}_{2n+1}(\mathbb{C}) \). We realize \(\text{SO}_{2n+1}(\mathbb{C}) \) as subgroup of \(\text{SL}_{2n+1}(\mathbb{C}) \) following Berenstein and Zelevinsky in [2] by setting
\[
\text{SO}_{2n+1}(\mathbb{C}) = \{ A \in \text{SL}_{2n+1}(\mathbb{C}) \mid A J A^t = J \},
\]
for the symmetric bilinear form
\[
J = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}.
\]

Let \(\tilde{e}_i, \tilde{f}_i \) be the usual Chevalley generators of \(\mathfrak{sl}_{2n+1} \). Then we can take \(e_i = \tilde{e}_i + \tilde{e}_{2n+1-i} \) and \(f_i = \tilde{f}_i + \tilde{f}_{2n+1-i} \) to be Chevalley generators of \(\text{SO}_{2n+1}(\mathbb{C}) \), and we have a corresponding pinning. Let \(\tilde{T} \) denote the maximal torus of diagonal matrices in \(\text{SL}_{2n+1} \) with character group \(X^*(\tilde{T}) = \mathbb{Z}\langle \tilde{e}_1, \ldots, \tilde{e}_{2n+1} \rangle/(\sum \tilde{e}_i) \), where \(\tilde{e}_i(t) \) is the \(i \)-th diagonal entry of \(t \). The maximal torus \(T \) of \(\text{SO}_{2n+1}(\mathbb{C}) \) in this embedding looks like
\[
T = \left\{ t = \begin{pmatrix} t_1 & \cdots & t_n & 1 & t_n^{-1} & \cdots & t_1^{-1} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ & & & & & & \end{pmatrix} \middle| t_i \in \mathbb{C}^* \right\}.
\]

The restriction of characters from \(\tilde{T} \) to \(T \) gives a map \(X^*(\tilde{T}) \to X^*(T) \) whose kernel is precisely generated by the characters \(\tilde{e}_i + \tilde{e}_{2n-i+2} \) for \(1 \leq i \leq n \) and \(\tilde{e}_{n+1} \).

By [2] the totally nonnegative part of \(\text{SO}_{2n+1}(\mathbb{C}) \) is the intersection of \(\text{SO}_{2n+1}(\mathbb{C}) \) with the totally nonnegative part of \(\text{SL}_{2n+1}(\mathbb{C}) \).

Consider an element \(y \in U^- \subset \text{SO}_{2n+1}(\mathbb{C}) \) satisfying the condition [2, Corollary 7.2]. We want to show that \(y \) is totally positive as element of \(U^- \), or equivalently by [2]
In the Weyl group \tilde{W} of SL_{2n+1} let $w = (s_1s_{2n})(s_2s_{2n-1})\ldots(s_n s_{n+1})s_n$. Then multiplying w with itself n times gives a reduced expression for the longest element w_0 of \tilde{W}. By the Chamber Ansatz of [1] we can associate to this reduced expression a set of ‘chamber minors’ which suffice to check the total positivity of any element of $\tilde{U}^− \subset SL_{2n+1}(\mathbb{C})$.

The chamber minors can be worked out graphically using the pseudo-line arrangement for the reduced expression. For w the pseudo-line arrangement is illustrated in Figure 13.2. We concatenate n copies of this pseudo-line arrangement together to get the relevant pseudo-line arrangement w_0. To every chamber in the arrangement we associate a set $J \subset \{1, \ldots, 2n+1\}$, by recording the numbers of the lines running below the chamber. We order them, so let $j_1 < \ldots < j_k$ be the elements of J, and associate a minor to J by setting

$$\tilde{\Delta}_J(y) := \Delta_J(y^T) = \langle y^T \cdot e_{j_1} \wedge \ldots \wedge e_{j_k}, v^+_{\tilde{\omega}_k} \rangle = \langle e_{j_1} \wedge \ldots \wedge e_{j_k}, y \cdot v^+_{\tilde{\omega}_k} \rangle,$$

where Δ_J is the ‘chamber minor’ as defined in [1]. Here $k = |J|$ and $v^+_{\tilde{\omega}_k} = e_1 \wedge \ldots \wedge e_k$ is the highest weight vector of the irreducible representation $V_{\tilde{\omega}_k} = \bigwedge^k \mathbb{C}^{2n+1}$ of $SL_{2n+1}(\mathbb{C})$.

By our assumption, y lies in $SO_{2n+1}(\mathbb{C})$ and we know that matrix coefficients of y of a certain type are positive. Indeed, a chamber minor $\tilde{\Delta}_J(y) = \langle e_{j_1} \wedge \ldots \wedge e_{j_k}, y \cdot v^+_{\tilde{\omega}_k} \rangle$ is of this allowable type precisely if $v = e_{j_1} \wedge \ldots \wedge e_{j_k}$ lies in a 1-dimensional weight space of the restricted representation, $Res_{SO_{2n+1}}V_{\tilde{\omega}_k}$.

All the weight spaces of fundamental representations $V_{\tilde{\omega}_k}$ of $SL_{2n+1}(\mathbb{C})$ are 1-dimensional. Furthermore, the weights which stay non-zero when we restrict to $SO_{2n+1}(\mathbb{C})$ all stay distinct. Therefore their weight spaces stay 1-dimensional. (Whereas the zero weight space of $Res_{SO_{2n+1}}V_{\tilde{\omega}_k}$ becomes potentially higher dimensional). Now the weight vector $e_{j_1} \wedge \ldots \wedge e_{j_k}$ in $V_{\tilde{\omega}_k}$ has weight $\tilde{\varepsilon}_{j_1} + \ldots + \tilde{\varepsilon}_{j_k}$, which restricts to a non-zero weight of the torus T of SO_{2n+1} precisely if the set J of indices is ‘asymmetric’ about $n+1$, so if there is some $m \in J$ for which $2n+2-m$ is not in J.

The following Claim implies that the chamber minors of our reduced expression $w_0 = w^n$ all have this property. Therefore $\Delta_J(y) > 0$ for these minors, by (3.2). And therefore y is totally positive, as desired.
The pseudo-line arrangement is made up of proof of the Claim: \(\mu \) follows from the fact that there are no weights in Figure 13.2. The \(j \)-th part of the pseudo-line arrangement either lies in between the lines labeled dominance order. □

Every chamber in the pseudo-line arrangement associated to the reduced expression \(w_0 = w^n \) in the proof for type \(B_n \).

Claim: Every chamber in the pseudo-line arrangement associated to the reduced expression \(w_0 = w^n \) lies between lines labeled \(k \) and \(2n + 2 - k \) for some \(k \).

Proof of the Claim: The pseudo-line arrangement is made up of \(n \) copies of the one in Figure 13.2. The \(j \)-th copy is illustrated in Figure 13.2. Any chamber in this part of the pseudo-line arrangement either lies in between the lines labeled \(j \) and \(2n + 2 - j \), or between the lines \(j + 1 \) and \(2n + 1 - j \). This proves the claim.

13.3. **Type** \(C_n \). The order of the weight lattice modulo the root lattice (index of connection) is 2. Let us choose a basis \(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \in \mathfrak{t}^*_\mathbb{R} \) so that the long simple root is \(\alpha_1 = 2\varepsilon_1 \), and the short simple roots are \(\alpha_k = \varepsilon_k - \varepsilon_{k-1} \) for \(2 \leq k \leq n \). Note that \(\omega_{n-1} = \varepsilon_{n-1} + \varepsilon_n \) is allowable, while \(\omega_n = \varepsilon_n \) is not. For the fundamental representations \(V_{\omega_i} \) for \(1 \leq i \leq n - 2 \), which are not representations of the adjoint group, we consider \(V_{\omega_i + \omega_n} \subset V_{\omega_i} \otimes V_{\omega_n} \). (Note that since \(\omega_n \) is also not allowable and the index of connection is 2, \(\omega_i + \omega_n \) is allowable.) Then for any \(w \in W \) we have

\[
\langle \dot{w} \cdot v_{\omega_i}, y \cdot v_{\omega_n} \rangle = \langle \dot{w} \cdot (v_{\omega_i}^+ \otimes v_{\omega_n}^+), y \cdot (v_{\omega_i}^+ \otimes v_{\omega_n}^+) \rangle > 0,
\]

by assumption (13.2) on \(y \). It remains to show that \(\langle \dot{w} \cdot v_{\omega_i}, y \cdot v_{\omega_n} \rangle > 0 \), since then \(\langle \dot{w} \cdot v_{\omega_i}, y \cdot v_{\omega_n} \rangle > 0 \) for all \(w \in W \) and fundamental weights \(\omega_i \), whereby \(y \) has to be totally positive, because of Proposition 13.1.

We now consider \(V = V_{\omega_n} \), which is \(2n \)-dimensional with weights \(\pm \varepsilon_k \) for \(1 \leq k \leq n \). We have the following:

Lemma 13.1.

1. The equivalence relation on the weights of \(V = V_{\omega_n} \) generated by \(\lambda \sim \mu \) if \(\lambda + \mu \in W \cdot \omega_{n-1} \) has a single equivalence class.
2. \(\omega_{n-1} \) appears as a weight in \(V_{2\omega_n} \) with multiplicity 1. The weight \(\omega_{n-1} \) appears as a weight in \(V \otimes V \) with multiplicity 2.
3. \(V_{\omega_{n-1}} \) occurs as an irreducible factor of \(V \otimes V \) with multiplicity 1.

Proof: We have \(W \cdot \omega_{n-1} = \{ \pm \varepsilon_i \pm \varepsilon_j \mid 1 \leq i < j \leq n \} \). (1) follows by inspection. The first statement of (2) follows from the fact that \(2\omega_n - \omega_{n-1} = \alpha_n \) is a simple root. The second statement of (2) follows by inspection of the weights of \(V \). (3) follows from the fact that there are no weights \(\mu \) satisfying \(2\omega_n > \mu > \omega_{n-1} \) in dominance order. □
We may now proceed as in the proof for A_n for n odd. We consider the inclusion $U = V_{2\omega_n} \subset V \otimes V = Z$ and look at a vector $z \in U$ with weight $\nu = \lambda + \mu \in W \cdot \omega_{n-1}$. We first argue that z can be chosen so that $\langle z, x \cdot v_{2\omega_n}^\pm \rangle > 0$ for all totally positive $x \in U_{>0}^-$. In [2, Corollary 7.2], Berenstein and Zelevinsky show that there is an inclusion $Sp_{2n}(\mathbb{C}) \rightarrow SL_{2n}(\mathbb{C})$ such that the image of the totally positive part $U_{>0}^-$ of the unipotent of Sp_{2n} lies in the totally nonnegative part of SL_{2n}. Now, V is the standard representation of SL_{2n} and contains the irreducible representation $Sym^2(V)$. The restriction of $Sym^2(V)$ to $Sp_{2n}(\mathbb{C})$ contains the representation U, and $v_{2\omega_n}^\pm$ is exactly the highest-weight vector of $Sym^2(V)$. By Remark [3,3] we can choose weight vectors $z \in Sym^2(V)$ such that $\langle z, x \cdot v_{2\omega_n}^\pm \rangle > 0$ for all x which are totally positive in the unipotent of SL_{2n}. It follows that $\langle z, x \cdot v_{2\omega_n}^\pm \rangle > 0$ for $x \in U_{>0}^-$. Under the inclusion $U \subset Z$, the vector z is a linear combination of $v_\lambda \otimes v_\mu$ and $v_\mu \otimes v_\lambda$ by Lemma [13.1,2]. Here $\lambda, \mu \in W \cdot \omega_n$, and if $\lambda = w \cdot \omega_n$, then $v_\lambda = \hat{w} \cdot v_{\omega_n} \in V$ and similarly for μ. We have $z = Av_\lambda \otimes v_\mu + Bv_\mu \otimes v_\lambda$ for positive A, B. Using Lemma [13.1,3], we obtain that

$$0 < \langle z, y \cdot v_{2\omega_n}^\pm \rangle = \langle Av_\lambda \otimes v_\mu + Bv_\mu \otimes v_\lambda, y \cdot (v_{\omega_n}^\pm \otimes v_{\omega_n}^\pm) \rangle z = (A + B) \langle v_\lambda, y \cdot v_{\omega_n}^\pm \rangle \langle v_\mu, y \cdot v_{\omega_n}^\pm \rangle V.$$

It follows that $\langle v_\lambda, y \cdot v_{\omega_n}^\pm \rangle$ and $\langle v_\mu, y \cdot v_{\omega_n}^\pm \rangle$ have the same sign. By Lemma [13.1,1] λ, μ can be any two weights in $W \cdot \omega_n$ in the arguments above, therefore $\langle v_\lambda, y \cdot v_{\omega_n}^\pm \rangle$ has the same sign as $\langle v_{\omega_n}^\pm, y \cdot v_{\omega_n}^\pm \rangle = 1$. This concludes the proof in the C_n case.

13.4. Type D_n. We take as simple roots $\alpha_1 = \varepsilon_1 + \varepsilon_2$ and $\alpha_k = \varepsilon_k - \varepsilon_{k-1}$ for $2 \leq k \leq n$. Let us consider the (spin) representation $V = V_{\omega_3}$ with highest weight $1/2(\varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_n)$. The argument is the same as for C_n (using also Remark [3,3], after the following Lemma. Note that ω_3 is allowable.

Lemma 13.2.

1. The equivalence relation on the weights of V generated by $\lambda \sim \mu$ if $\lambda + \mu \in W \cdot \omega_3$ has a single equivalence class.
2. ω_3 appears as a weight in $V_{2\omega_i}$ with multiplicity 1. The weight ω_3 appears as a weight in $V \otimes V$ with multiplicity 2.
3. V_{ω_3} occurs as an irreducible factor of $V \otimes V$ with multiplicity 1.

Proof. The representation V has dimension 2^{n-1}, with weights the even signed permutations of the vector $(1/2, 1/2, \ldots, 1/2) \in \mathbb{R}^n$. The rest of the argument is identical to the proof of Lemma [13.1].

13.5. Type E_6. The index of connection of E_6 is 3, which is odd. The proof for A_n with n even can be applied here essentially verbatim.

13.6. Type E_7. We fix a labelling of the Dynkin diagram by letting 7 label the minuscule node (at the end of the long leg), and 6 be the unique node adjacent to 7. We note that ω_6 is allowable. The argument is the same as for C_n (using also Remark [3,3], after the following Lemma.

Lemma 13.3.
(1) The equivalence relation on the weights of V generated by $\lambda \sim \mu$ if $\lambda + \mu \in W \cdot \omega_0$ has a single equivalence class.

(2) ω_0 appears as a weight in $V_{2\omega_7}$ with multiplicity 1. The weight ω_0 appears as a weight in $V \otimes V$ with multiplicity 2.

(3) V_{ω_0} occurs as an irreducible factor of $V \otimes V$ with multiplicity 1.

Proof. Can be verified by computer, which we did using John Stembridge’s coxeter/veyl package.

13.7. Types E_8, F_4, and G_2. The adjoint group is simply-connected, so there is nothing to prove here.

Appendix A. Quantum Schubert positivity implies affine Schubert positivity in type C

We shall need the quantum Chevalley formula of $qH^*(G/B)$, due to Peterson [25] and Fulton-Woodward [8].

For $w \in W$, define $\pi_P(w) := w_1$, where $w = w_1 w_2$ with $w_1 \in W^P$ and $w_2 \in W_P$. Also we have that 2ρ is the sum of positive roots and set $2\rho_P := \sum_{\alpha \in \Delta_{P^+}} \alpha$. Let Q_P^\vee be the sublattice of Q^\vee spanned by the simple coroots α_j^\vee for $j \in I_P$, and let $\eta_P : Q^\vee \to Q^\vee/Q_P^\vee$ be the natural projection. We let $w > v$ denote a cover in Bruhat order.

Theorem A.1 (Quantum equivariant Chevalley formula [25,8]). Let $i \in IP$ and $w \in W^P$. Then we have in $qH^*(G/P)$

$$\sigma_i^P \sigma_{w_P} = \sum_\alpha \langle \alpha^\vee, \omega_i \rangle \sigma_{w_{r_\alpha}}^P + \sum_\alpha \langle \alpha^\vee, \omega_i \rangle q_{\eta_P(\alpha^\vee)} \sigma_{\pi_P(w_{r_\alpha})}^P$$

where the first summation is over $\alpha \in \Delta_P^+ \cup I_P$ such that $wr_\alpha > w$ and $w_{r_\alpha} \in W^P$, and the second summation is over $\alpha \in \Delta_P^+$ such that $\ell(\pi_P(w_{r_\alpha})) = \ell(w) + 1 - \langle \alpha^\vee, 2(\rho - \rho_P) \rangle$.

It is known that in the second summation, we only need to sum over α such that $\ell(r_\alpha) = (\alpha^\vee, 2\rho) - 1$.

We now let G be of type C_n. We choose conventions so that the $\alpha_1, \ldots, \alpha_{n-1}$ are short and α_n is long. One may check that the positive coroots α^\vee satisfying $\ell(r_\alpha) = (\alpha^\vee, 2\rho) - 1$ are exactly those of the form $\alpha_{i_1}^\vee + \alpha_{i_2}^\vee + \cdots + \alpha_{i_k}^\vee$.

Proposition A.2. Conjecture [2,2] holds in type C_n.

Proof. Since we already know that we have $X_{>0} = X_{>0}$ and $X_{>0} \subseteq X_{>0}^{\text{Schubert}}$, it suffices to show that any quantum Schubert positive point is also affine Schubert positive. By Theorem [6,4] it suffices to show that if $x \in X_{>0}^{\text{Schubert}}$ then $q_i(x) > 0$ for each $i \in I$.

Now let $i \in I$, and let v_i be the longest element in W^P_i, where P_i is the maximal parabolic labeled by i. Let us consider the product $\sigma_i^x \sigma_{w_i}$ and apply Theorem [A.1] for the base $P = B$. Since $v_i \alpha < 0$ for any $\alpha \in \Delta_P^+$, we see that the first summation of (1) is empty. We note that $\ell(v_i r_\alpha) = \ell(v_i) - \ell(r_\alpha)$ if and only if $r_\alpha \in W^P_i$. The only such coroots α^\vee which also satisfy $\ell(r_\alpha) = (\alpha^\vee, 2\rho) - 1$ are $\alpha_{i_1}^\vee$ and $\beta_{i_2}^\vee := \alpha_{i_2}^\vee + \cdots + \alpha_{i_k}^\vee$ in the case $1 \leq i \leq n - 1$, and if $i = n$ we only have α_n^\vee. Thus we obtain

$$\sigma_i^x \sigma_{w_i} = q_i q_{i_1} q_{i_2} \cdots q_{i_k} \sigma_{i_{i_{k+1}}}$$ for $i \neq n$

$$\sigma_i^x \sigma_{w_i} = q_i \sigma_{v_i, s_i}$$
It follows that if $\sigma^w(x) > 0$ for all $w \in W$ then $q_i(x) > 0$ for all i. □

REFERENCES

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 USA

E-mail address: tfylam@umich.edu

King’s College London

E-mail address: konstanze.rietsch@kcl.ac.uk