Brain natriuretic peptide: Much more than a biomarker

Luigino Calzetta, Augusto Orlandi, Clive Page, Paola Rogliani, Barbara Rinaldi, Giuseppe Rosano, Mario Cazzola, Maria Gabriella Matera

PII: S0167-5273(16)31459-0
Reference: IJCA 23076

To appear in: International Journal of Cardiology

Received date: 16 June 2016
Revised date: 5 July 2016
Accepted date: 7 July 2016

Please cite this article as: Calzetta Luigino, Orlandi Augusto, Page Clive, Rogliani Paola, Rinaldi Barbara, Rosano Giuseppe, Cazzola Mario, Matera Maria Gabriella, Brain natriuretic peptide: Much more than a biomarker, International Journal of Cardiology (2016), doi: 10.1016/j.ijcard.2016.07.109

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Brain natriuretic peptide: much more than a biomarker

Luigino Calzetta¹, Augusto Orlandi², Clive Page³, Paola Rogliani¹, Barbara Rinaldi⁴, Giuseppe Rosano⁵,⁶, Mario Cazzola¹, Maria Gabriella Matera⁴

¹Department of Systems Medicine and ²Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; ³The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom; ⁴Department of Experimental Medicine, Second University of Naples, Naples, Italy; ⁵Cardiovascular & Cell Science Institute, St George’s Hospital NHS Trust, University of London, London, United Kingdom; and ⁶Department of Medical Sciences, IRCCS San Raffaele, Rome, Italy

Corresponding author: Prof. Mario Cazzola, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy, e-mail mario.cazzola@uniroma2.it
Abstract

Brain natriuretic peptide (BNP) modulates several biological processes by activating the natriuretic peptide receptor A (NPR-A). Atria and ventricles secrete BNP. BNP increases natriuresis, diuresis and vasodilatation, thus resulting in a decreased cardiac workload.

BNP and NT-proBNP, which is the biologically inactive N-terminal portion of its pro-hormone, are fast and sensitive biomarkers for diagnosing heart failure. The plasma concentrations of both BNP and NT-proBNP also correlate with left ventricular function in patients with acute exacerbation of COPD, even without history of heart failure. Several studies have been conducted in vitro and in vivo, both in animals and in humans, in order to assess the potential role of the NPR-A activation as a novel therapeutic approach for treating obstructive pulmonary disorders. Unfortunately, these studies have yielded conflicting results.

Nevertheless, further recent specific studies, performed in ex vivo models of asthma and COPD, have confirmed the bronchorelaxant effect of BNP and its protective role against bronchial hyperresponsiveness in human airways. These studies have also clarified the intimate mechanism of action of BNP, represented by an autocrine loop elicited by the activation of NPR-A, localized on bronchial epithelium, and the relaxant response of the surrounding ASM, that does not expresses NPR-A.

Therefore, this review explores the teleological activities and paradoxical effects of BNP with regard of chronic obstructive respiratory disorders, and
provides an excursus on the main scientific findings that explain why BNP should be considered much more than a biomarker.

Keywords

BNP, NPR-A, asthma, COPD, human airway smooth muscle
1. Background

Natriuretic peptide (NP) hormones are small cardiovascular-derived peptides characterized by a 17 aminoacid ring and include atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) [1]. NPs are encoded by different genes, synthesized as prepropeptides and stored as high molecular mass propeptides (proANP, proBNP and proCNP). The cleavage of propeptide results in the formation of the daughter ANP, BNP and CNP, which are characterized by lower molecular mass [1].

NPs modulate several biological effects by interacting with specific natriuretic peptide receptors (NPRs) including NPR-A, NPR-B and NPR-C, a family of homologous single-transmembrane, glycosylated receptors [2, 3]. The stimulation of NPR-A and NPR-B activates an intracellular particulate domain with guanylate cyclase (GC) activity that promotes the synthesis of cyclic guanosine monophosphate (cGMP) [4]. NPR-C does not modulate cGMP levels but inhibits adenylyl cyclase (AC) and activates phospholipase C (PLC), and removes NPs from the circulation. In fact NPR-C serves as a “clearance” receptor leading to internalization and lysosomal degradation of NPs [5, 6].

ANP and BNP are the biological ligands of NPR-A, whereas CNP preferentially binds to NPR-B. ANP and BNP both have a relatively high affinity for their respective receptor sub-types, although ANP is about 10 fold more potent than BNP [1, 7]. NPR-A is expressed in the cardiovascular system (cardiac atria and ventricles, aorta and peripheral vasculature), kidney, skin, platelets, and sympathetic fibers [1]. In both animals and man NPR-A has also been widely identified on a variety of pulmonary cells such as endothelial and smooth muscle cells of pulmonary blood vessels, type II
alveolar cells, and epithelial and airway smooth muscle cells in bronchi and bronchioles [8-12], whereas NPR-B is mainly expressed in veins as compared with arteries [7].

2. Cardiovascular and renal actions of NPs

Under physiological conditions ANP is secreted from cardiac atria, BNP from both atria and ventricles, whereas CNP is mainly released primarily from nervous tissue and vascular endothelium [1]. However, in a number of cardiovascular disorders and conditions associated with elevated blood pressure or volume overload, increased gene expression of ANP may be detected in the left ventricle [13] in association with rapid and constant enhancement of BNP transcripts [14, 15].

ANP and BNP have similar pharmacological profiles since they act on the same NP receptor and can induce natriuresis, vasodilatation and inhibition of aldosterone synthesis. Furthermore, these NPs have anti-mitogenic effects on endothelial and vascular smooth muscle cells [16]. In the central nervous system both ANP and BNP induce thirst suppression, inhibition of the release of antidiuretic and adrenocorticotropic hormones, as well as a reduction of sympathetic tone. Altogether these effects contribute to the hypotensive properties of NPs [16].

The action of CNP is different compared with that of ANP and BNP since it acts as an autocrine/paracrine mediator in blood vessels, through the modulation of vascular tone and cell growth [1, 16]. Thus, CNP is less effective at inducing diuresis and natriuresis compared with the other NPs but
is more effective at modulating the autonomic control of vascular tone [17, 18].

These pharmacological properties of NPs underpin why they have been implicated in the pathogenesis of congestive heart failure, as proposed by Woodard and Rosado [19]. In fact ANP and BNP increase both natriuresis and diuresis and induce local vasodilatation in response to cardiac failure, whereas CNP modulates the cardiac remodeling and inhibits the proliferation of vascular smooth muscle cells (VSMCs) [19]. Taken together, these actions of NPs lead to a reduction in blood pressure and circulatory volume, resulting in a decreased cardiac workload [19].

3. BNP as a biomarker

There is a large body of evidence that the levels of BNP and the biologically inactive N-terminal portion of its pro-hormone, NT-proBNP, correlate well with the severity of heart failure [20]. Since they function as an indicator of increased ventricular mass and a surrogate marker for heart failure, NT-proBNP and BNP are regarded as biomarkers, namely biological parameters that are objectively measured and evaluated as indicators of normal biological processes, pathogenic processes or pharmacological responses to a therapeutic intervention [21].

NT-proBNP has a longer plasma half-life and exists at considerably higher concentrations compared with BNP [22]. It is significantly more stable at room temperate and current laboratory assays are highly sensitive and specific.
Furthermore, all commercially available NT-proBNP assays utilize the same set of antibodies, which greatly simplifies intra-laboratory comparisons.

When used in conjunction with other clinical information, BNP and NT-proBNP levels are useful in establishing or ruling out the diagnosis of heart failure in patients with acute dyspnea [23]. For both BNP and NT-proBNP to exclude acute heart failure in symptomatic patients, very low values are necessary [24]. For BNP, the value is approximately 20 to 30 pg/mL, while for NT-proBNP, a cut point that has a negative predictive value of 98% to 99% is 300 pg/mL. Values above these levels, whether or not they are below the rule in cut point, may be associated with heart failure. However, the International Collaborative Of NT-proBNP (ICON) study [25] suggested that, for the exclusion of acute heart failure, a general age-independent cut-point of 300 pg/ml should be used, whereas for diagnosis of heart failure, age-dependent cut-points are more useful: namely NT-proBNP >450 pg/ml for patients <50 years; >900 pg/ml for patients in between 50 and 75 years; and NT-proBNP >1,800 for patients >75 years.

Since the use of BNP and NT-proBNP for the diagnosis of heart failure has dramatically impacted the standard of care in this pathological condition, all major societies recommend the use of these biomarkers for the diagnosis of heart failure in their clinical practice guidelines [20, 26, 27]. BNP and NT-proBNP concentrations typically fall with therapies proven to improve mortality in heart failure with decreased left ventricular ejection fraction [28-30]. BNP-guided therapies decrease mortality and reduce cardiovascular events, although do not decrease overall hospitalizations.
Adding routine BNP testing in patients with a history of asthma or chronic obstructive pulmonary disease (COPD) increases the detection of newly diagnosed or previously unrecognized chronic heart failure by approximately 20% [31]. In any case, BNP levels are elevated in patients with pulmonary diseases, at least in those with concomitant right ventricular (RV) dysfunction and pulmonary arterial hypertension [32], although BNP levels are significantly lower in right heart failure due to COPD compared with right heart failure due to left ventricular systolic heart failure [33].

Elevated BNP concentrations identify significant pulmonary hypertension with a sensitivity of 0.85 and specificity of 0.88 and predicted mortality [34]. It has been shown that plasma BNP levels may be elevated in patients with COPD and correlate not only with pulmonary arterial pressure but also with forced vital capacity (FVC), forced expiratory volume in 1 s (FEV₁) and partial arterial oxygen pressure [35]. However, there is contrasting documentation indicating that plasma BNP levels are also elevated in patients with stable COPD without pulmonary hypertension or cor pulmonale [36]. In these patients, there is no significant correlation between plasma BNP level and pulmonary function or hypoxia, but there is a significant correlation between plasma BNP level and % ejection fraction and pulmonary artery systolic pressure. Intriguingly, they are also increased in patients with COPD with normal right ventricular function after exercise [37].

Several studies have highlighted the importance of the BNP dosage in detecting left ventricular dysfunction in patients with acute exacerbation of COPD (AECOPD), even without history of heart failure [38-40], although echocardiographic examinations are able to document cardiac systolic and
diastolic dysfunction in only a small number of patients during the AECOPD [41]. Whatever the case may be, the period until initial AECOPD in subjects with high plasma BNP level seems to be significantly shorter [36]. Furthermore, in patients with AECOPD, BNP levels independently predict the need for intensive care [42], and elevated levels of NT-proBNP are strong predictors of early mortality among patients admitted to hospital with acute exacerbations of COPD independently of other known prognostic indicators [43]. There may be a link between an elevated level of BNP or NT-proBNP and increased cardiovascular mortality in AECOPD, although the data currently available are not conclusive [44].

4. NPs and airway smooth muscle cell

Several studies have revealed that airway smooth muscle (ASM) cells obtained from subjects with asthma display mechanical and phenotypical differences from that of ASM obtained from non-asthmatic subjects. ASM cells obtained from subjects with asthma showed a marked increase in force generation, capacity of shortening, degree of shortening and sensitivity to agonists [45, 46]. Moreover, hypertrophy of ASM in patients with severe asthma has been associated with a 5-fold greater positivity for markers of proliferating than ASM obtained from healthy subjects [47]. However, other studies failed to document mechanical differences between ASM derived from asthmatic and non-asthmatic donors [48, 49]. An increased amount of expression of contractile cytoskeletal proteins that characterizes the contractile phenotype have also been described [50], as have phenotypic differences in the sensitivity to proliferative and apoptotic stimuli for ASM [51].
Studies on the expression of components of the contractile cytoskeletal have also been observed in ASM obtained by endobronchial biopsy from subjects with asthma, demonstrated as an increased mRNA expression of myocytic markers, including myosin light chain kinase and total smooth muscle myosin heavy chain, when compared to ASM obtained from non-asthmatic donors [52, 53]. The increased expression of specific smooth muscle markers has been linked to increased bronchial smooth muscle mass and ASM cell functional differences observed in asthmatic patients [54]. Most of the information concerning the effects of BNP on ASM cell proliferation has been obtained from in vitro models. For example, BNP inhibited angiotensin II-induced smooth muscle cell proliferation, likely mediated by a decreased calcium influx, reduced ROS production and Akt signal transduction [55].

5. Expression of NPRs in human bronchi

RT- and qRT-PCR both documented that human bronchial tissue expresses significant levels of NPR-A transcripts, whereas the gene expression of NPR-B and NPR-C were scarce or even not detectable [8]. As evidenced by immunohistochemistry, NPR-A was localized at the level of bronchial epithelium and inflammatory cells of lamina propria, whereas NPR-A was barely detected in ASM and absent on the surface of goblet cells [8]. NPR-A transcripts were also detected on BEAS-2B cells, an immortalized human bronchial epithelial cell line that has been widely used to study the effect of BNP on human bronchi and ASM [8, 56, 57].
Neither the passive sensitization of human bronchi, an *ex vivo* model that closely mimics important characteristics of BHR in asthmatic patients [8, 56, 58-60], did not modify the NPR-A gene expression [8], nor the stimulation with methacholine or histamine altered the NPR-A levels [8]. NPR-A transcripts were increased after BNP treatment in both non-sensitized and passively sensitized bronchi, whereas the selective antagonism of M₂ muscarinic receptors by methoctramine prevented the receptor over-expression, suggesting that antagonizing M₂ muscarinic receptors may act as a negative feedback loop in the NPR-A transcriptional pathway [8].

6. NPR-A activation and airways: past and recent knowledge

NPR-A is expressed in the airways of several animal species [9-11] and administration of exogenous ANP induced relaxation of ASM of rats, guinea pigs and cows *in vitro* [61-63]. Unfortunately, only a few studies have investigated the ability of ANP to induce relaxation of human ASM *in vitro*, and the limited data available in the literature have proposed conflicting conclusions, with some studies documenting weak relaxation [64] and others showing no significant relaxant effect [65]. In any case, ANP seemed to have a protective effect on propranolol-induced bronchoconstriction in allergic guinea pigs *in vivo* [66]. ANP reduce airway resistance in normal subjects [67]. Further studies have demonstrated that ANP may induce bronchodilation and prevent bronchial hyperresponsiveness (BHR) in asthmatic patients when given intravenously or by inhalation, and have also demonstrated the ability of ANP to modify the bronchoconstriction in response to inhaled histamine or nebulized water in man [68-74].
Studies carried out in laboratory animals have also demonstrated that BNP may relax tracheal smooth muscle \textit{in vitro} and prevent ovalbumin-induced bronchoconstriction and microvascular leakage \textit{in vivo} [75, 76]. Nevertheless, until some years ago specific research on the ability of BNP to relax human ASM were still lacking in the literature. However, it has been documented that the administration of nesiritide, a human recombinant BNP, induces bronchodilation in patients with asthma and that PL-3994, a novel NPR-A agonist resistant to neutral endopeptidase, relaxes the tone of human precision-cut lung slices (PCLS) pre-contracted with carbachol [77, 78]. Combined, these evidences (Table 1) would suggest that the activation of NPR-A might modulate bronchial tone in patients suffering from chronic obstructive pulmonary disorders.

7. Influence of BNP on the contractile tone of human ASM: current knowledge

BNP was ineffective at relaxing medium isolated human bronchi pre-contracted with carbachol, and produced a weak relaxant response of passively sensitized airways pre-contracted with histamine (≃60% vs. maximal relaxation induced by papaverine) [58]. This modest effectiveness of BNP may be correlated with the absence of NPR-A at the level of ASM. Moreover, the modest effect of BNP on isolated human bronchi [58] is in contrast with the ability of nesiritide to produce considerable bronchodilation in patients with asthma [78]. This discrepancy may be explained by the fact that BNP probably does not act as a direct bronchodilator on ASM [56]. It has also
been suggested that the ability of BNP to improve lung function \textit{in vivo} may be related to other effects, such as the reduction of airway microvascular leakage and plasma exudation into the airway [79, 80].

The bronchodilator effect of BNP has also been investigated in human small airways by using PCLS preparations and it has been compared with the effect elicited by PL-3994 [77]. In contrast to what has been observed in human isolated human bronchi [58], BNP was able to induce a relaxant response of bronchioles pre-contracted with carbachol ($\approx 50\%$ vs. maximal relaxation induced by salbutamol) [77]. Furthermore, although PL-3994 induced a potent and concentration-dependent relaxation of PCLS preparations, its effectiveness was modest ($\approx 30\%$ vs. maximal relaxation induced by salbutamol) and was less effective when compared with BNP [77].

Further studies have investigated why BNP appears to be more effective as a bronchoprotective agent than as a direct bronchodilator. Thus, recent studies have demonstrated that BNP shifts rightward the contraction-response curve induced by histamine in passively sensitized bronchi (potency reduced by ≈ 1 logarithms) and inhibits the contractile tone induced by carbachol in non-sensitized airway (maximal effect reduced by $\approx 70\%$), compared with BNP-untreated bronchi [8]. Intriguingly, in these experimental settings [8] the removal of epithelial cells from the bronchial lumen completely abolished the relaxant effects of BNP, suggesting that epithelium integrity is crucial for the modulatory role of BNP on the tone of human ASM.
Although in vitro studies carried out by using human isolated airways are useful to investigate the effect of drugs on airway tone, this experimental approach has certain limitations. For example, one cannot rule out the potential influence of cell types other than ASM in regulating bronchial tone.

Indeed, in an attempt to identify the downstream mechanisms regarding the BNP-mediated relaxation of human ASM, the functional evidence obtained from in vitro experiments with isolated human bronchi have been supplemented by other types of in vitro laboratory studies using BEAS-2B cells and cultured human ASM cells [56]. Whilst BNP was unable to modulate per se the contractile response of asthmatic ASM cells, incubation with the supernatant from BEAS-2B cells pre-treated with BNP was effective in inhibiting the contractile response to histamine, reducing the contractile potency more than 1.5 logarithms [56]. Furthermore, the indirect relaxant effect of BNP in asthmatic ASM cells was comparable with that elicited by salbutamol [56].

The pharmacological characterization of BNP in modulating the human ASM contractility is reported in Table 2.

The relative activation of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP), a trimeric enzyme with a catalytic subunit called myosin phosphatase target subunit 1 (MYPT1) regulates ASM tone. The phosphorylation of MYPT1 makes MLCP inactive, resulting in a sustained myogenic tone [81]. Recently, it has been demonstrated that ASM cells, collected from asthmatic donors and incubated with the medium of BEAS-2B cells pre-treated with BNP, over-expressed the gene and protein levels of unphosphorylated and active form of MYPT1, whereas the phosphorylated
and inactive pMYPT1Thr696 form was inhibited [56]. These findings provide an important piece of information concerning the functional antagonistic effect of BNP to protect against stimulation of ASM cells with histamine [8].

Since asthmatic ASM cells may directly alter their microenvironment by producing extracellular matrix proteins, pro-inflammatory mediators and adhesion receptors [82], further studies have been performed in human asthmatic ASM to elucidate the molecular and intracellular gene pathways involved in response to BNP challenge. Interestingly, although BNP indirectly modulated the activation of myosin light chain (MLC) by inhibiting the MLC phosphorylation (MLC-P) and the consequent interaction with actin, recent results have demonstrated that the BNP-induced relaxation of ASM did not depend upon immediate changes of expression of alpha-smooth muscle actin isoform (α-SMA). In fact, both immunofluorescence and western blotting analysis documented an analogous distribution and expression of α-SMA in asthmatic ASM cells incubated with the supernatant of BEAS-2B cells treated with BNP, compared with untreated cells [57]. On the other hand, the supernatant of BNP-treated BEAS-2B cells induced a rapid down-regulation of both calcium homeostasis-associated and epidermal growth factor receptor (EGFR) gene levels in asthmatic ASM cells [57].

8. The mechanism of action of BNP in human bronchi: from teleological activity to paradoxical effect

The prevalent localization of NPR-A at the level of respiratory epithelium, and the absence of this receptor on ASM, suggests that the bronchoprotective role
elicited by BNP in both medium and small airways is indirect and potentially mediated by some autocrine mechanism. In addition, the results concerning the influence of BNP on the contractile tone of human ASM suggest that this NP may have a noteworthy teleological effect at the level of human respiratory system. Nevertheless, the specific mechanisms of action and the intimate pathways modulated by BNP via the activation of epithelial NPR-A have been only recently elucidated.

As in the case of epithelium removal, the selective antagonism of M_2 muscarinic receptor by methoctramine and the selective inhibition of inducible nitric oxide synthase (iNOS) by aminoguanidine completely abolished the bronchoprotective effect of BNP in human isolated bronchi and asthmatic ASM cells [8, 56]. BNP indirectly enhanced the gene transcripts and the protein expression of iNOS in epithelium-intact bronchi and asthmatic ASM cells, but not in epithelium-denuded airways and human bronchial epithelial cells [8, 56]. In addition, inhibiting the vesicular release of endogenous acetylcholine from bronchial epithelial cells by quinine, an organic cation transporters (OCT) inhibitor [83, 84], also reduced the bronchoprotective effect of BNP in a concentration dependent manner [8].

These evidences indicated that the integrity of bronchial epithelial cells, the activation of M_2 muscarinic receptor and the activity of iNOS synthase are necessary conditions to allow the BNP-mediated effect on lung function.

Further experiments demonstrated that BNP enhances the acetylcholine release from both epithelium-intact bronchi and BEAS-2B cells, but not from epithelium-denuded airways [8]. Therefore, we supposed that the acetylcholine itself, released from the respiratory non-neural cholinergic
system, might play a crucial role in the pathway that links the activation of epithelial NPR-A by BNP and the ASM relaxant response.

This hypothesis has been confirmed by results obtained from experiments carried out by stimulating isolated bronchi and asthmatic ASM cells with very low concentrations of exogenous acetylcholine, in order to mimic the endogenous release of acetylcholine from non-neural cells [83, 84]. Paradoxically, we have evidenced that acetylcholine administered at pico-nanomolar concentrations induced a modest but significant relaxation of both human isolated bronchi (≈30% vs. maximal relaxation induced by papaverine) and asthmatic ASM cells (≈20% vs. maximal relaxation induced by papaverine) pre-contracted by histamine whereas, as expected, at higher concentrations acetylcholine induced contractile response [83, 84]. Moreover, very low concentrations of acetylcholine enhanced the NO levels in both epithelium-intact and epithelium-denuded bronchi, an effect that was abolished by methoctramine and aminoguanidine [8]. The direct exposure of asthmatic ASM cells and BEAS-2B cells to BNP did not modulate the NO levels [8, 56], whereas the supernatant of BEAS-2B cells treated with BNP significantly increased the NO levels of asthmatic ASM cells, an effect that, also in this case, was abolished by methoctramine and aminoguanidine [56].

9. BNP: clinical considerations

BNP and NT-proBNP are fast and sensitive biomarkers for diagnosing heart failure. In patients with COPD, the plasma concentrations of both BNP and NT-proBNP increase proportionally to the severity of right ventricular diastolic
dysfunction. For this reason we strongly suggest the addition of routine BNP testing in patients with a history of COPD increases the detection of newly diagnosed or previously unrecognized heart failure. Furthermore, BNP testing could represent advance in the management of patients with AECOPD because potentially it allows treatment monitoring. Interestingly, BNP levels can fall not only when patients are treated with diuretics, inotropes, and vasopressors. We documented that β2-agonists are able to induce a rapid reduction in BNP levels in patients admitted to emergency department for AECOPD [85]. It is not easy to explain why β2-agonists decrease BNP levels. The most plausible hypothesis is that they are able to influence the pulmonary hemodynamics. Alternatively, we can suggest that β2-agonists are able to cause an attenuation of air trapping, leading to a reduction of intrathoracic pressure, including pressure on the whole heart, and, consequently, to an improvement of right ventricular overload and left ventricular diastolic dysfunction.

The big issue is that, in our opinion, BNP is not only a biomarker. The BNP Consensus Panel 2004 already highlighted that the rapidly evolving spectrum of therapeutic benefit and the emerging realm of additional therapeutic potential positions BNP as an increasingly important treatment option in the management of a growing number of cardiovascular conditions [86]. Our findings, which support a teleological role for elevated BNP concentrations, at least in patients with COPD in whom BNP might be part of a response aimed at mitigating the effects of the disease [87], suggest that this concept can also be applied to patients with COPD, in which BNP might be part of a response aimed at mitigating the effects of the disease.
In order to test this hypothesis it would be of interest to evaluate the effect of BNP administration in patients with COPD. Nesiritide is the recombinant form of human BNP and has been tested in patients with acute heart failure and it is approved for the treatment of acute decompensated congestive heart failure although its use is not associated with a change in mortality or rehospitalizations. To date nesiritide has never been tested in patients with COPD in whom it may have, based on the above-mentioned assumptions, a beneficial effect on airway responsiveness.

10. Conclusions

The findings of recent studies carried out by our research group [8, 56-58] have permitted to clarify the pathway leading to the bronchorelaxant effect induced by BNP (Figure 1).

BNP binds to NPR-A expressed at the level of airway epithelium with consequent vesicular release of very low concentrations of acetylcholine from bronchial epithelial cells, such as ciliated cells and neuroendocrine cells [8, 83, 84]. Although there is less acetylcholine released from the airway epithelium compared with that from neurons [83, 84], it seems to be sufficient to activate prevalently postsynaptic M$_2$ muscarinic receptors localized on the surface of surrounding ASM cells. The stimulation of M$_2$ muscarinic receptor modulates the gene and protein expression of iNOS, that increases the NO levels in ASM and activates the NO/cGMP signaling. The NO/cGMP signaling is a proved pathway involved in the relaxation of ASM, which results in bronchodilation [88]. In fact the NO-mediated relaxation of ASM is controlled
by the activation of a soluble pool of GC that enhances the cGMP levels [56].
Thus, bronchial epithelium regulates the BNP-induced relaxant activity by an
autocrine loop inducing the activation of the NO/cGMP pathway at the level of
ASM. The NO/cGMP signaling stimulates specific protein kinases that, in turn,
activate a number of targets such as MYPT1 [56]. MYPT1 fine tunes the
MLCP activity with consequents ASM relaxation. In addition, the NO/cGMP
pathway activated by BNP may prevent the BHR through a rapid modulation
of calcium homeostasis and EGFR signaling in ASM, leading to the inhibition
of MLCK activity [57, 89].
Concluding, the integrity of airway epithelium and its cooperation with ASM is
crucial for the bronchorelaxant activity of BNP, suggesting for a teleological
influence of this NP against the BHR and airway obstruction in asthma and
COPD.

11. Expert opinion

BNP may represent an alternative therapeutic option for the treatment of
chronic obstructive pulmonary disorders. The pharmacological rationale for
administering BNP in asthmatic patients has been proved from bench to
bedside [8, 56, 57, 78]. Furthermore, it has been suggested that BNP may
also modulate the bronchial tone in COPD [8], since this NP prevented the
cholinergic tone in human isolated airways.

The bronchorelaxant activity of BNP is mediated by the interaction with the
NPR-A localized at the level of bronchial epithelial cells. Therefore, the
administration of BNP via inhalation is required to deliver this NP topically on
the airway epithelium. The inhalant administration of BNP should reduce the risk of hypotension, the main potential cardiovascular adverse event related with the systemic activation of NPR-A [56]. Epithelium integrity is an essential condition for the effectiveness of BNP but, unfortunately, it has been widely documented that asthmatic patients can present epithelium abnormalities and destruction at all levels of the airways [90, 91]. In addition, also COPD is associated with bronchial epithelial changes [92] that may potentially affect the BNP activity. These peculiarities suggest that BNP may have a role as a bronchodilator agent prevalently in stable and controlled patients, and that should be administered in combination with further bronchodilators in order to optimize the therapeutic approach [93].

The density of vagal innervation is greatest in proximal airways and diminishes peripherally, being almost insignificant or absent at the level of bronchioles, at the least in human airways [94, 95]. BNP modulates the human bronchial tone independently from the interaction with the parasympathetic system, thus it may have a relevant influence as a bronchodilator agent at the level of small airways. Nevertheless, the relatively high molecular weight of BNP (3.7 kDa) [96], compared with that of the bronchodilators that are currently used in the clinical practice (overall <0.4 kDa) [97], might imply technological difficulties in developing specific devices that are able to deliver this NP up to small airways.

In any case, BNP has the noteworthy characteristic to stimulate a physiologic autocrine loop at the level of bronchial wall, leading to bronchorelaxation and protection against BHR, representing a potential emerging drug for chronic obstructive pulmonary disorders [98]. Moreover, we cannot exclude potential
synergistic interaction of BNP when administered by inhalation in combination with low doses of further bronchodilators characterized by different mechanisms of action, such as long-acting β₂ agonists (LABAs) and long-acting muscarinic receptor antagonists (LAMAs). Finally, this combination approach may be of benefit in the treatment of chronic obstructive airway disorders by optimizing bronchodilation and preventing potential adverse events [60, 93, 99-103].

Conflict of interest

The authors report no relationships that could be construed as a conflict of interest.
References

[30] H.K. Gaggin, Q.A. Truong, S.U. Rehman, A.A. Mohammed, A. Bhardwaj, K.A. Parks, et al., Characterization and prediction of natriuretic peptide "nonresponse" during heart failure management: results from the ProBNP Outpatient Tailored Chronic Heart Failure (PROTECT) and the NT-proBNP-Assisted Treatment to Lessen Serial Cardiac Readmissions and Death (BATTLESCARRED) study, Congest. Heart Fail. 19 (2013) 135-142.

[58] M.G. Matera, L. Calzetta, V. Parascandolo, G. Curradi, P. Rogliani, M. Cazzola, Relaxant effect of brain natriuretic peptide in nonsensitized and

Figure legend

Figure 1. Autocrine loop and mechanism of action of BNP inducing human airways relaxation. BNP activates NPR-A expressed at the level of airway epithelium, with consequent vesicular release of very low concentrations of acetylcholine. Picomolar concentrations of acetylcholine activate prevalently postsynaptic M₂ muscarinic receptors localized on surrounding ASM cells. The M₂ muscarinic receptor stimulation modulates the iNOS activity, which in turn increases the NO levels and activates the intracellular NO/cGMP signaling. This pathway stimulates specific protein kinases that activate MYPT1 and MLCP, with consequent increase of MLC and ASM relaxation. The NO/cGMP pathway activated by BNP also prevents ASM contractility through a rapid modulation of calcium homeostasis, leading to the inhibition of MLCK activity and reduction of MLC-P. ACh: acetylcholine; ASM: airway smooth muscle; BNP: brain natriuretic peptide; Ca**: calcium; cGMP: cyclic guanosine monophosphate; iNOS: inducible nitric oxide synthase; MLC: myosin light chain; MLC-P: myosin light chain phosphorylation; MLCK: myosin light chain kinase; MLCP: myosin light chain phosphatase; MYPT1: myosin phosphatase target subunit 1; NO: nitric oxide; NPR-A: natriuretic peptide receptor A; pMYPT1: inactive (phosphorylated) myosin phosphatase target subunit 1.
Fig. 1
Tables

Table 1. Influence of NPR-A activation on airways.

<table>
<thead>
<tr>
<th>Study</th>
<th>NPR-A agonist</th>
<th>Specie</th>
<th>Experimental setting</th>
<th>Functional effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fernandes et al., 1992 [61]</td>
<td>ANP</td>
<td>Guinea pig</td>
<td>In vitro</td>
<td>Relaxation of tracheal smooth muscle</td>
</tr>
<tr>
<td>Candenas et al., 1991 [65]</td>
<td>ANP</td>
<td>Guinea pig</td>
<td>In vitro</td>
<td>Relaxation of tracheal smooth muscle</td>
</tr>
<tr>
<td>O'Donnell et al., 1985 [62]</td>
<td>ANP</td>
<td>Rat</td>
<td>In vitro</td>
<td>Relaxation of tracheal smooth muscle</td>
</tr>
<tr>
<td>Ishii et al., 1989 [63]</td>
<td>ANP</td>
<td>Bovine</td>
<td>In vitro</td>
<td>Relaxation of tracheal smooth muscle</td>
</tr>
<tr>
<td>Angus et al., 1994 [64]</td>
<td>ANP</td>
<td>Bovine</td>
<td>In vitro</td>
<td>Weak relaxation of bronchial smooth muscle</td>
</tr>
<tr>
<td>Mizuguchi et al., 2000 [66]</td>
<td>ANP</td>
<td>Guinea pig</td>
<td>In vivo</td>
<td>Protection against propranolol-induced bronchoconstriction after allergic reaction</td>
</tr>
<tr>
<td>Candenas et al., 1991 [65]</td>
<td>ANP</td>
<td>Human</td>
<td>In vitro</td>
<td>No relaxation of bronchial smooth muscle</td>
</tr>
<tr>
<td>Angus et al., 1994 [64]</td>
<td>ANP</td>
<td>Human</td>
<td>In vitro</td>
<td>Weak relaxation of bronchial smooth muscle</td>
</tr>
<tr>
<td>Hulks et al., 1989 [71]</td>
<td>ANP</td>
<td>Human</td>
<td>In vivo</td>
<td>Bronchodilator response in asthmatic patients</td>
</tr>
<tr>
<td>Chanez et al., 1990 [72]</td>
<td>ANP</td>
<td>Human</td>
<td>In vivo</td>
<td>Bronchodilator response in asthmatic patients</td>
</tr>
<tr>
<td>Hulks et al., 1990 [67]</td>
<td>ANP</td>
<td>Human</td>
<td>In vivo</td>
<td>Reduction of airway resistance in normal subjects</td>
</tr>
<tr>
<td>Hulks et al., 1991 [73]</td>
<td>ANP</td>
<td>Human</td>
<td>In vivo</td>
<td>Reduction of bronchial reactivity to inhaled histamine in asthmatic patients</td>
</tr>
<tr>
<td>McAlpine et al., 1992 [74]</td>
<td>ANP</td>
<td>Human</td>
<td>In vivo</td>
<td>Reduction of bronchial reactivity to ultrasonically nebulized distilled water in asthmatic patients</td>
</tr>
<tr>
<td>Angus et al., 1993 [69]</td>
<td>ANP</td>
<td>Human</td>
<td>In vivo</td>
<td>Bronchodilator response in asthmatic patients</td>
</tr>
<tr>
<td>Angus et al., 1995 [70]</td>
<td>ANP</td>
<td>Human</td>
<td>In vivo</td>
<td>Reduction of bronchial reactivity to inhaled histamine</td>
</tr>
<tr>
<td>Takagi et al., 1993 [76]</td>
<td>BNP</td>
<td>Guinea pig</td>
<td>In vitro</td>
<td>Relaxation of tracheal smooth muscle</td>
</tr>
<tr>
<td>Ohbayashi et al., 1998 [75]</td>
<td>BNP</td>
<td>Guinea pig</td>
<td>In vivo</td>
<td>Prevention of ovalbumin-induced bronchoconstriction and microvascular leakage</td>
</tr>
<tr>
<td>Akerman et al., 2006 [78]</td>
<td>Nesiritide</td>
<td>Human</td>
<td>In vivo</td>
<td>Bronchodilation in patients with asthma</td>
</tr>
<tr>
<td>Edelson et al., 2012 [77]</td>
<td>PL-3994</td>
<td>Guinea pig</td>
<td>In vivo</td>
<td>Reduction in pulmonary inflation pressure</td>
</tr>
<tr>
<td>Edelson et al., 2012 [77]</td>
<td>PL-3994</td>
<td>Human</td>
<td>In vitro</td>
<td>Relaxation of bronchial smooth muscle</td>
</tr>
</tbody>
</table>
Table 2. Pharmacological characterization of BNP on the human airways contractility.

<table>
<thead>
<tr>
<th>Study</th>
<th>Specimen</th>
<th>Experimental setting</th>
<th>Ex vivo COPD models (cholinergic stimulus)</th>
<th>In vitro / ex vivo asthma models (histaminergic stimulus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matera et al., 2009 [58]</td>
<td>Medium bronchi</td>
<td>Effect on pre-contracted airways</td>
<td>Delta E_{max} (% cholinergic tone)</td>
<td>Delta potency (pEC_{50})</td>
</tr>
<tr>
<td>Matera et al., 2011 [8]</td>
<td>Medium bronchi</td>
<td>Effect on CRC to contractile agonists</td>
<td>-71%</td>
<td>-1.5</td>
</tr>
<tr>
<td>Edelson et al., 2012 [77]</td>
<td>Bronchioles</td>
<td>Effect on pre-contracted airways</td>
<td>-50%</td>
<td>NC</td>
</tr>
<tr>
<td>Calzetta et al., 2014 [56]</td>
<td>ASM cells</td>
<td>Effect on CRC to contractile agonists</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Calzetta et al., 2014 [56]</td>
<td>ASM cells</td>
<td>Effect on pre-contracted ASM cells</td>
<td>NA</td>
<td>-50%</td>
</tr>
</tbody>
</table>

ASM: airway smooth muscle
CRC: concentration response curve
E_{max}: maximal effect
NA: data not available
NC: data not calculable
pEC_{50}: negative logarithm of concentrations inducing 50% E_{max}
Highlights

- BNP and NT-proBNP are fast and sensitive biomarkers for diagnosing heart failure
- BNP testing in COPD patients increases the detection of chronic heart failure by about 20%
- BNP and NT-proBNP levels may be elevated in patients with COPD without a history of heart failure
- *Ex vivo* studies documented a BNP bronchorelaxant and bronchoprotective effect in human airways
- BNP induces a physiologic autocrine loop at the level of bronchial wall and is a potential drug for COPD