Biomimetics of the [FeFe]-hydrogenase enzyme: Identification of kinetically favoured apical-basal \([\text{Fe}_2\text{(CO)}_4(\mu-\text{H})\{\kappa^2-\text{Ph}_2\text{PC(Me}_2\text{PPh}_2\}(\mu\text{-pdt})]\)\(^+\) as a proton-reduction catalyst

Shishir Ghosh\(^a\), Ben E. Sanchez\(^a\), Idris Richards\(^a\), Mohammed N. Haque\(^a\), Katherine B. Holt\(^a\), Michael G. Richmond\(^{b*}\) and Graeme Hogarth\(^{c*}\)

\(^a\) Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.
\(^b\) Department of Chemistry, University of North Texas, 1155 Union Circle, Box 305070, Denton, Texas 76203, USA. Email: cobalt@unt.edu
\(^c\) Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK. Email: graeme.hogarth@kcl.ac.uk

ABSTRACT: Reaction of \([\text{Fe}_2\text{(CO)}_6(\mu\text{-pdt})]\) with the small bite-angle diphosphine 2,2\(^\prime\)-bis(diphenylphosphino)propane gave the chelated complex \([\text{Fe}_2\text{(CO)}_4\{\kappa^2-\text{Ph}_2\text{PC(Me}_2\text{PPh}_2\}(\mu\text{-pdt})]\). This exists in solution as a mixture of non-interconverting dibasal and apical-basal isomers which slowly rearrange to the bridged isomer, \([\text{Fe}_2\text{(CO)}_4\{\mu-\text{Ph}_2\text{PC(Me}_2\text{PPh}_2\}(\mu\text{-pdt})]\), upon heating. X-ray structures of the dibasal and bridged isomers reveal an increase of ca. 19\(^\circ\) in the PCP bond angle upon diphosphine movement from chelated to bridged positions. To probe the relative stability of these isomers, DFT calculations have been carried out and the bridged isomer is found to lie 3.8 and 1.3 kJ mol\(^{-1}\) lower in energy than the dibasal and apical-basal chelated isomers respectively. Protonation of the bridged isomer with HBF\(_4\)·Et\(_2\)O is slow and gives an unstable product. In contrast, both chelated isomers protonate rapidly and cleanly to initially yield apical-basal \([\text{Fe}_2\text{(CO)}_4(\mu-\text{H})\{\kappa^2-\text{Ph}_2\text{PC(Me}_2\text{PPh}_2\}(\mu\text{-pdt})]][\text{BF}_4]\), which rearranges slowly to the dibasal isomer. The latter has been crystallographically characterized, protonation resulting in only very minor metric changes with the iron-iron bond length and diphosphine coordination being essentially unchanged. Electrochemical studies have been carried out in MeCN, and for the chelated isomers separate redox features are seen for the dibasal and apical-basal isomers. The chelated isomers are proton reduction catalysts in acetonitrile in the presence of HBF\(_4\)·Et\(_2\)O. Proton reduction occurs at -1.58 V \(\text{via}\) the kinetically favoured apical-basal hydride cation. DFT calculations have been used to study the mechanism of formation of H\(_2\) and are consistent with competing CECE and CEECC mechanisms, the
branch point being the protonation or one-electron reduction of the 35-electron species \([\text{Fe}_2(\text{CO})_4(\mu-H)\{\kappa^2-\text{Ph}_2\text{PC(Me}_2\text{)PPh}_2\}](\mu-\text{pdt})]\).

Keywords: [FeFe]-hydrogenase, diphosphine, dithiolate, diiron, chelating, biomimetic, DFT

Introduction

The sustainable generation of hydrogen as an energy carrier in order to realise a fossil-free economy has prompted enormous interest in the chemistry of dithiolate-bridged diiron complexes as models of the H-cluster active site of [FeFe]-hydrogenases [1]. Prompted by theoretical studies by Tye, Hall and Daresbourg [2] suggesting that asymmetry of the diiron centre was a desirable feature of biomimetic models, we [3-6] and others [7-21] have prepared a range of chelated complexes of the type \([\text{Fe}_2(\text{CO})_4(\kappa^2\text{-diphosphine})(\mu\text{-dithiolate})]\) in which the diphosphine discriminates the two iron sites both sterically and electronically. In solution the chelated diphosphine exists in both dibasal (bb) and apical-basal (ab) forms and in some instances the bridged isomer, \([\text{Fe}_2(\text{CO})_4(\mu\text{-diphosphine})(\mu\text{-dithiolate})]\), is also accessible [3-6, 22-27]. Indeed, we have recently prepared and tested as proton reduction catalysts both bridged and chelated isomers of \([\text{Fe}_2(\text{CO})_4(\text{Ph}_2\text{PN(allyl)PPh}_2)](\mu\text{-pdt})\) (pdt = propanedithiolate), with the chelated isomer showing superior catalytic properties [6]. In light of these results, we have focused our continuing efforts towards functional biomimetics of the H-cluster active site on the preparation of new chelated complexes, \([\text{Fe}_2(\text{CO})_4(\kappa^2\text{-diphosphine})(\mu\text{-dithiolate})]\). In earlier work we showed that the small bite-angle diphosphine, bis(diphenylphosphino)methane (dppm), reacts with \([\text{Fe}_2(\text{CO})_6](\mu\text{-pdt})]\) (I) to initially afford \([\text{Fe}_2(\text{CO})_5(\kappa^1\text{-dppm})(\mu\text{-pdt})]\), which loses a further carbonyl upon heating to yield \([\text{Fe}_2(\text{CO})_4(\mu\text{-dppm})(\mu\text{-pdt})]\) [4]. On one occasion we also isolated small amounts of the chelated isomer, \([\text{Fe}_2(\text{CO})_4(\kappa^2\text{-dppm})(\mu\text{-pdt})]\), which we were able to crystallographically characterize [4], but we have since not been able to reproduce this result and thus cannot carry out an electrocatalytic study of this complex.

It is known that alkyl substitution of one or more of the backbone protons in dppm results in the formation of ligands that are both more basic and possess a smaller bite angle than dppm, thus favouring chelate formation [28-40]. Both of these features were appealing to us for the preparation of readily protonated \([\text{Fe}_2(\text{CO})_4(\kappa^2\text{-diphosphine})(\mu\text{-pdt})]\) complexes. While a number of backbone-functionalised dppm-derivatives have been reported, they are generally
prepared “on metal” from coordinated dppm upon deprotonation of a backbone proton, followed by quenching with electrophiles [30-33]. Such ligands are not easily prepared “off-metal” as they result from the nucleophilic substitution of dihaloalkanes, RCHX or R2CX, by the diphenylphosphide anion, Ph2P- . The latter is a poor nucleophile and both the steric and electronic changes to central carbon atom upon alkyl substitution make it less susceptible to nucleophilic attack. Two diphosphines that are accessible via this route are the methyl-substituted derivatives, 1,1′-bis(diphenylphosphino)ethane, Ph2PCH(Me)PPh2 [30] and 2,2′-bis(diphenylphosphino)propane, Ph2PC(Me2)PPh2 [30]. The former can be isolated in moderate yields and is relatively air-stable, while the latter is formed in lower yields and is oxygen sensitive, presumably reflecting its greater basicity. Both diphosphines are known to favour chelate complexes [30-40] and thus we have attempted to prepare hydrogenase biomimetics containing these ligands.

Herein we report the successful synthesis of [Fe2(CO)4{κ²-Ph2PC(Me2)PPh2}(μ-pdt)] and investigate its ability to act as a proton reduction catalyst. In solution it exits as a mixture of non-interconverting apical-basal and dibasal isomers that display different oxidation and reduction potentials, a situation that has not previously been reported to our knowledge. Protonation by HBF₄·Et₂O rapidly and cleanly affords the apical-basal hydride-cation [Fe2(CO)4(μ-H){κ²-Ph2PC(Me2)PPh2}(μ-pdt)][BF₄], which only slowly converts to the thermodynamically favourable dibasal isomer, and thus we propose that it is the kinetically favoured apical-basal complex which is the active proton reduction species. The experimental work presented throughout is supported and illuminated by DFT calculations that allow a detailed analysis of this system.

Results and discussion

Synthesis and structural characterization of [Fe2(CO)4{κ²-Ph2PC(Me2)PPh2}(μ-pdt)] (2)

In attempting to prepare a [FeFe]-hydrogenase biomimic of the type Fe2(CO)₄{κ²-PXP}(μ-pdt) (where PXP is a small-bite angle diphosphine ligand), we initially studied the reaction of [Fe2(CO)₆(μ-pdt)] (1) with 1,1′-bis(diphenylphosphino)ethane but the results of these efforts were largely disappointing (see ESI). We then turned our attention to 2,2′-bis(diphenylphosphino)propane and this proved to be far more successful. Thus, when
acetonitrile was added to a mixture of 1, Ph₂PC(Me₂)PPh₂ and Me₃NO.2H₂O in a 1:1:2.5 ratio, the initially orange solution darkened rapidly, becoming nearly black after 30 min. The mixture was heated at 70 °C for a further 4 h and after work-up afforded the target chelated complex [Fe₂(CO)₄{κ²-Ph₂PC(Me₂)PPh₂}(μ-pdt)] (2) in 63% yield as a mixture of dibasal (2bb) and apical-basal (2ab) isomers (Scheme 1). The IR spectrum revealed three terminal carbonyl stretching bands at 2018vs, 1949s and 1896m cm⁻¹ consistent with the formulation. In order to fully establish the nature of 2, an X-ray crystal study was performed, the results of which are displayed in Figure 1 and its caption.

Figure 1. Molecular structure of [Fe₂(CO)₄{κ²-Ph₂PC(Me₂)PPh₂}(μ-pdt)] (2bb) with selected bond lengths (Å) and angles (°): Fe(1)–Fe(2) 2.6062(6), Fe(1)–P(1) 2.2348(6), Fe(1)–P(2) 2.2273(6), Fe(1)–S(1) 2.2270(6), Fe(1)–S(2) 2.2370(5), Fe(2)–S(1) 2.2543(6), Fe(2)–S(2) 2.2706(6), Fe(1)–C(1) 1.747(2), P(1)–Fe(1)–Fe(2) 112.79(2), P(2)–Fe(1)–Fe(2) 108.42(2), C(1)–Fe(1)–Fe(2) 146.19(6), P(1)–Fe(1)–P(2) 74.53(2), P(1)–C(8)–P(2) 90.54(7)

The most interesting feature is the dibasal arrangement of the diphosphine (2bb in Scheme 1) with P(1) lying trans to S(1) and P(2) trans to S(2) [P(1)–Fe(1)–S(1) 163.23(2), P(2)–Fe(1)–S(2) 156.11(2)°], while the C(1) carbonyl occupies the apical site lying approximately trans to the metal-metal vector [C(1)–Fe(1)–Fe(2) 146.19(6)°]. The diphosphine subtends a bite angle of 74.53(2)°, which is identical to that of 74.55(4)° in the analogous dpdm-derivative [4], but some 3° greater than observed in related bis(diphenylphosphino)amine complexes [3,6]. The angle at the backbone carbon in 2 of 90.54(7)° is significantly smaller than that of 93.5(2)° in [Fe₂(CO)₄{κ²-dppm}(μ-pdt)] [4] as a result of the gem-dimethyl effect [28-29].
Isomer 2bb was also examined by DFT and the optimized structure, which is shown in Figure 2, is in agreement with the solid-state structure. Table 1 lists the nature charges and Wiberg indices computed for 2bb. The Fe₁ and Fe₂ atoms exhibit charges of -1.38 and -1.66, respectively, and the Wilberg bond indices (WBI) for the metal-metal bond is 0.44 being consistent with a formal Fe-Fe bond.

Figure 2. B3LYP-optimized structures for species 2bb, 2ab, 3, 4bb and transition states TS_ab_ab’ and TS_bb_ab
Scheme 1. Synthesis of [Fe₂(CO)₄{κ²-Ph₂PC(Me₂)PPh₂}(μ-pdt)] (2) as a mixture of dibasal (bb) and apical-basal (ab) isomers

Analysis of the 31P{1H} NMR spectrum of the reaction mixture after ca. 30 min showed a prominent pair of doublets at 7.6 and 37.2 ppm (J_{PP} 67.5 Hz), which we tentatively assign to intermediate Fe₂(CO)₅{κ¹-Ph₂PC(Me₂)PPh₂}(μ-pdt), this being supported by the observation of small absorptions at 2045 and 1981 cm$^{-1}$ in the IR spectrum. Thus, it seems that the reaction proceeds in an analogous manner to that observed for dppm [4]. A 31P{1H} NMR spectrum in CDCl₃ of the crude reaction mixture after 4 h also showed resonances for the chelated isomer, along with a small resonance at 86.9 ppm associated with the bridging isomer (vide infra) but this was formed in < 3 % yield.

Relationship between dibasal and apical-basal isomers

The solid-state structure for [Fe₂(CO)₄{κ²-Ph₂PC(Me₂)PPh₂}(μ-pdt)] is based on the dibasal isomer 2bb, and attempts to obtain single crystals of the apical-basal isomer (2ab) were unsuccessful. In solution dibasal (2bb) and apical-basal (2ab) isomers co-exist (Scheme 1) as revealed by the presence of two singlets in the 31P{1H} NMR spectrum at 52.4 and 77.2 ppm in CD₂Cl₂ (50.8 and 75.5 ppm in CDCl₃) in an approximate 2:1 ratio. The 31P{1H} NMR chemical shift was assigned to the isomers on the basis of previous work which established that the apical-basal isomer appears downfield of the dibasal isomer [6-11]. The 1H NMR spectrum is also more complicated than might at first be expected as both isomers have inequivalent methyl groups (all coupled to phosphorus) and either four (dibasal) or six (apical-basal) different protons on the dithiolate backbone. Such isomerism is common in complexes of this type [3-19] with the apical-basal isomer generally being preferred. For example in the dppp analogue of 2, namely [Fe₂(CO)₄{κ²-Ph₂P(CH₂)₂PPh₂}(μ-pdt)], the ratio of apical-basal to dibasal isomers is 12:1 [5], although we recently found that for the small bite-angle diphosphine complexes [Fe₂(CO)₄{κ²-Ph₂PN(R)PPh₂}(μ-pdt)] the dibasal isomer predominated in solution [6].
For the isomeric mixture based on 2, we have carried out DFT calculations which revealed that the apical-basal isomer 2ab is lower in energy by 1.3 kJ mol\(^{-1}\) than the dibasal form 2bb; on the basis of this energy difference we predict a \(K_{eq}\) of 1.6 which is opposite to the 2:1 ratio of 2bb:2ab found by \(^{31}\)P NMR spectroscopy. In solution at room temperature, a single phosphorus resonance is observed for both isomers. While a single \(^{31}\)P resonance for 2bb is consistent with the formulated structure having idealized \(C_s\) symmetry, the observation of a single phosphorus resonance for 2ab supports the rapid equilibration of the diphosphine ligand about the Fe(CO)P\(_2\) centre of 2ab (Scheme 2).

Scheme 2. Low-energy pathway for the interconversion of 2ab to 2ab’

DFT calculations confirm a low-energy path (43.9 kJ mol\(^{-1}\)) for the degenerate isomerization of 2ab to 2ab’ through a tripodal rotation at the Fe(CO)P\(_2\) centre. The optimized transition structure TS_{ab_ab’} exhibits a rotated orientation of migrating groups. The activation barrier is sufficiently low and precludes the observation of distinct apical and basal \(^{31}\)P resonances for this isomer. There is no evidence for the interconversion between 2ab/ab’ and 2bb as both sets of signals are sharp at room temperature and remain so upon heating to 90 °C and DFT calculations give a free energy of activation of 102.6 kJ mol\(^{-1}\) (Scheme 3), confirming that the two isomers do not interconvert under the conditions of electrochemical or protonation experiments (see later). The relatively large energy barrier for the isomerization involving 2ab/ab’ to 2bb may be traced to the transition structure TS_{bb_ab’} that requires the adoption of a rotated structure where one of the Ph\(_2\)P moieties is situated in an axial position opposite to the pdt ligand. This conformation is energetically unfavorable and places the axial Ph\(_2\)P moiety in close contact with the iron-iron bond and the adjacent Fe(CO)\(_3\) moiety. This phenomenon is not unlike that reported for the complexes [Fe\(_2\)(CO)\(_4\){\(\kappa^2\)-Ph\(_2\)PN(R)PPh\(_2\)}{\(\mu\)-pdt}] [6]. The DFT-optimized structures of the two transition states are depicted in Figure 2.
Scheme 3. High-energy pathway for the interconversion of 2ab to 2bb

Synthesis and structural characterization of $[\text{Fe}_2(\text{CO})_4\mu-\text{Ph}_2\text{PC}(Me_2$)$\text{PPh}_2)\{\mu-\text{pdt}\}]$ (3)

In recent work we showed that heating chelated complexes $[\text{Fe}_2(\text{CO})_4\{\kappa^2-\text{Ph}_2\text{PN(R)}\text{PPh}_2\}\{\mu-\text{pdt}\}]$ in toluene resulted in their slow (10-14 h) but clean conversion to the bridged isomers $[\text{Fe}_2(\text{CO})_4\{\mu-\text{Ph}_2\text{PN(R)}\text{PPh}_2\}\{\mu-\text{pdt}\}]$ [6]. After heating a toluene solution of 2 for 8 h it initially appeared that there was no change as shown by IR spectroscopy, but careful inspection of the $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum revealed the appearance of a small new singlet resonance at ca. 89 ppm. Subsequent heating for 30 h resulted in the growth of this resonance and concomitant decrease in intensity of those associated with 2. Work-up of the reaction mixture at this point led to the isolation of the bridged isomer $[\text{Fe}_2(\text{CO})_4\{\mu-\text{Ph}_2\text{PC}(Me_2$)$\text{PPh}_2\}\{\mu-\text{pdt}\}]$ (3) in 70% yield (Scheme 4). Characterization was straightforward, the IR spectrum being particularly informative, consisting of four absorptions at 1984m, 1952s, 1916m and 1895sh cm$^{-1}$ typical of a complex of the type $[\text{Fe}_2(\text{CO})_4\{\mu\text{-diphosphine})(\mu\text{-dithiolate})]$ [4-6,22-27], while the $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum in CD$_2$Cl$_2$ consisted only of a singlet at 89.0 ppm. In order to compare the structure of 3 with that of the chelated isomer, a single crystal X-ray diffraction experiment was carried out, the results of which are summarized in Figure 3 and its caption.

Scheme 4. Synthesis of $[\text{Fe}_2(\text{CO})_4\{\mu-\text{Ph}_2\text{PC}(Me_2$)$\text{PPh}_2\}\{\mu-\text{pdt}\}]$ (3)

Movement of the diphosphine from a chelated to a bridged disposition results in only very minor changes to the Fe$_2$S$_2$P$_2$ core of the molecule. Thus, iron-sulfur and iron-phosphorus bond lengths remain virtually unchanged, while the iron-iron bond length decreases by 0.08 Å (ca. 3%). The
biggest change between the two isomers is seen in the angles subtended at the backbone carbon of the 2,2'-bis(diphenylphosphino)propene ligand, for example the P(1)–C(8)–P(2) angle increases from 90.54(7)° in 2 to 107.7(1)° in 3; a change of around 20% and suggesting that this ligand is quite flexible. As far as we are aware there are only two other examples of crystallographically characterized complexes containing a bridging 2,2'-bis(diphenylphosphino)propene ligand [34,41]. Higgins and co-workers have reported heterobimetallic, [CpRu(μ-CO)2{μ-Ph2PC(Me2)PPh2}]RhCl2 [34], which has a P–C–P bond angle of 109.9(7)°, and we recently characterized [Os3(CO)10{μ-Ph2PC(Me2)PPh2}] with a P–C–P bond angle of 111.0(3)° [41].

Figure 3. Molecular structure of [Fe2(CO)4{μ-Ph2PC(Me2)PPh2}((μ-pdt))]·CH2Cl2 with selected bond lengths (Å): Fe(1)–Fe(2) 2.5179(6), Fe(1)–P(1) 2.2352(8), Fe(1)–P(2) 2.2518(8), Fe(1)–S(1) 2.2481(8), Fe(1)–S(2) 2.2508(8), Fe(2)–S(1) 2.2600(8), Fe(2)–S(2) 2.2517(8)

Formation of 3 upon heating the chelated isomers 2 shows that the former is thermodynamically preferred. This was a surprise to us and seems to go against the accepted chelating ability of 2,2'-bis(diphenylphosphino)propene [32-40]. DFT calculations reveal that 3 lies 3.9 and 1.3 kJ mol⁻¹ lower in energy than 2bb and 2ab respectively (Figure 2). Theoretical investigations showed that unsymmetrically substituted diiron-dithiolate complexes, [Fe2(CO)4L2(μ-dithiolate)], favour the so-called "rotated" geometry where a CO ligand asymmetrically bridges the iron-iron vector [1]. DFT analysis of CO substitution by PMe3 in related complexes, namely [Fe2(CO)4(κ²-dppv)(μ-dithiolate)] [dppv = 1,2-bis(diphenylphosphino)ethylene], showed that the rotation of
the Fe(CO)$_3$ group to form a bridging CO in the transition state is assisted by the electron-rich nature of the Fe(CO)(dppv) fragment [17]. With this in mind, a plausible route for the isomerization process is shown in Scheme 5. This involves migration of a carbonyl from one iron to another via a semi-bridging mode followed by rupture of an iron-phosphorus bond to generate the 32-electron complex, [Fe$_2$(CO)$_4$($κ^1$-Ph$_2$PC(Me$_2$)PPh$_2$)]($μ$-pdt)]. In the latter, once the coordinated diphenylphosphino moiety is in a basal site, then the second phosphine can bridge across to the other iron centre to afford 3. A similar route has been proposed for the electron-transfer-catalysed (ETC) isomerization of [Fe$_2$(CO)$_4$(κ2-dppe)]($μ$-pdt)] [9]. However, we cannot rule out the possibility of an iron-sulfur bond scission during CO migration, a process we previously proposed for related amino-diphosphine complexes [6]. Attempts to differentiate between these two processes both experimentally and by DFT calculation have been unsuccessful.

![Scheme 5. A proposed mechanism for the conversion of 2 to 3](image)

Scheme 5. A proposed mechanism for the conversion of 2 to 3

Synthesis and structural characterization of [Fe$_2$(CO)$_4$($μ$-H)]($κ^2$-Ph$_2$PC(Me$_2$)PPh$_2$)]($μ$-pdt)]$[BF_4]$ (4)

Many biomimetic models of the [FeFe]-hydrogenase enzyme bind a proton and this is a key step in the electrocatalytic proton reduction by model systems [42-49]. Thus, we assessed the proton binding ability of 2 and 3. Addition of HBF$_4$·Et$_2$O to a dichloromethane solution of 3 resulted only in the slow decomposition of the starting material in an analogous fashion to behaviour noted for [Fe$_2$(CO)$_4$(κ2-dppe)]($μ$-pdt)] [4]. In contrast, addition of HBF$_4$·Et$_2$O to [Fe$_2$(CO)$_4$($κ^2$-Ph$_2$PC(Me$_2$)PPh$_2$)]($μ$-pdt)] (2) resulted in the immediate and clean formation of apical-basal [Fe$_2$(CO)$_4$($μ$-H)]($κ^2$-Ph$_2$PC(Me$_2$)PPh$_2$)]($μ$-pdt)]$[BF_4]$ (4ab) which slowly converted (ca. 4 h) into the dibasal isomer [Fe$_2$(CO)$_4$($μ$-H)]($κ^2$-Ph$_2$PC(Me$_2$)PPh$_2$)]($μ$-pdt)]$[BF_4]$ (4bb) upon standing (Scheme 6). These transformations were easily followed by a combination of NMR and IR spectroscopies. Thus, upon initial addition of HBF$_4$·Et$_2$O a colour change from red-orange to
blue-green occurred and IR absorptions attributed to 2 were replaced by bands at 2093vs, 2044s and 1982br cm\(^{-1}\) associated with 4ab. Monitoring the same reaction by NMR spectroscopy (in CD\(_2\)Cl\(_2\)) showed the immediate loss of all signals associated with 2 and formation of a hydride at \(\delta = -15.50\) (dd, J 18.4, 4.4 Hz) in the \(^1H\) NMR spectrum and two doublets at 68.7 and 60.1 ppm (J \(_{PP}\) 62.0 Hz) in the \(^{31}P\{^1H\}\) NMR spectrum. Over time these signals diminished and were replaced by a triplet at \(\delta = -10.78\) (t, J 19.2 Hz) and a singlet at 55.8 ppm in the \(^1H\) and \(^{31}P\{^1H\}\) NMR spectrums, respectively, associated with 4bb. Similarly in the IR spectrum, adsorptions associated with 4ab gradually diminished and were replaced by those at 2097vs, 2048s, 2035s and 1964s cm\(^{-1}\) attributed to 4bb.

![Scheme 6](image)

Scheme 6. Reaction \([Fe_2(CO)_4\{\kappa^2-Ph_2PC(Me_2)PPh_2\}(\mu-pdt)\}\) (2) with HBF\(_4\)-Et\(_2\)O

Single crystals of 4bb were grown and the results of an X-ray diffraction study are summarized for the diiron cation in Figure 4 and its caption. It co-crystallizes with a disordered molecule of dichloromethane but there are no intermolecular interactions between either this or the BF\(_4^-\) anion and the diiron cation and consequently these will not be discussed further. The diiron units in 2bb and 4bb are remarkably similar, showing that protonation across the iron-iron vector does not significantly perturb the system; the iron-iron bond length of 2.602(1) Å in 4bb being within error the same as that seen in 2bb. Other bond lengths also do not vary significantly upon protonation, while the angles subtended by the bite-angle of the diphosphine of 74.04(4)° and also the angle subtended at the backbone carbon [P(1)–C(8)–P(2) 90.9(2)°] are almost the same as those found in 2bb. The largest metric changes between the two structures are the bond angles subtended by the basal carbonyl and phosphine groups to the iron-iron bond, all values being greater in 4bb as a result of the extra room required to accommodate the bridging hydride. For example, Fe(1)–Fe(2)–C(3) and Fe(1)–Fe(2)–C(4) bond angles of 119.3(2) and 110.7(2)° in 4bb are significantly expanded with respect to those of 106.64(6) and 108.14(6)° respectively in 2bb. A further noteworthy feature of both 2bb and 4bb is the orientation of the dithiolate backbone, the central methylene group being orientated towards the more bulky Fe(CO)(diphosphine) moiety. It is not clear why this should be the case and interestingly in
[Fe₂(CO)_₄(μ-H){κ²-Ph₂PN(allyl)PPh₂}(μ-pdt)][BF₄] it is orientated towards the Fe(CO)_₃ subunit [5]. It is noteworthy that in crystallographic structures of related diiron pdt complexes the backbone methylene units are often structurally disordered and as such the precise proton positions cannot be accurately located. In both 2bb and 4bb there is no evidence of any disorder and this has allowed all these protons to be located from Fourier difference maps and refined. The DFT calculated structure for 4bb (Figure 2) closely resembles the solid-state structure.

Figure 4. Molecular structure of the diiron cation in [Fe₂(CO)_₄(μ-H){κ²-Ph₂PC(Me₂)PPh₂}(μ-pdt)][BF₄].0.5CH₂Cl₂ (4bb).0.5CH₂Cl₂ with selected bond lengths (Å) and angles (°): Fe(1)–Fe(2) 2.602(1), Fe(1)–P(1) 2.226(1), Fe(1)–P(2) 2.254(1), Fe(1)–S(1) 2.251(1), Fe(1)–S(2) 2.251(1), Fe(2)–S(1) 2.269(1), Fe(2)–S(2) 2.273(1), Fe(1)–C(1) 1.756(4), P(1)–Fe(1)–Fe(2) 114.51(4), P(2)–Fe(1)–Fe(2) 119.55(4), C(1)–Fe(1)–Fe(2) 142.5(1), P(1)–Fe(1)–P(2) 74.04(4), P(1)–C(8)–P(2) 90.9(2)

The clean and rapid protonation of both 2ab and 2bb to give 4ab is somewhat surprising as the two isomers do not interconvert at room temperature. Further, the absence of 4bb immediately after protonation suggests that the reaction proceeds via a common unobserved intermediate that partitions to the apical-basal hydride 4ab under kinetically controlled conditions. The latter assertion was confirmed by DFT calculations, which reveal that 4bb is 17 kJ mol⁻¹ more stable than 4ab. In previous work with an analogue of 2, namely [Fe₂(CO)_₄{κ²-Ph₂P(CH₂)₃PPh₂}(μ-pdt)], a similar situation was observed i.e. the mixture of apical-basal and dibasal isomers (12:1) immediately converted to apical-basal [Fe₂(CO)_₄(μ-H){κ²-Ph₂P(CH₂)₃PPh₂}(μ-pdt)][BF₄] upon
The CV of 2 in MeCN at scan rate 0.1 V s⁻¹ is shown in Figure 5. Two quasi-reversible oxidation waves are seen at $E_{1/2} = -0.19$ V ($\Delta E = 110$ mV) and $E_{1/2} = 0.04$ V ($\Delta E = 80$ mV), the reversibility of which is maintained at all scan rates, together with a further irreversible oxidation at $E_p = 0.66$ V. In the cathodic domain, two overlapping reductive features are observed at $E_p = -2.16$ V and $E_p = -2.23$ V together with a third quasi-reversible reduction at $E_{1/2} = -2.45$ V ($\Delta E = 70$ mV). The two overlapping reduction peaks also show some reversibility at all scan rates, becoming more separated at higher scan rates (≥ 0.25 V/s) (Figure 6). After reduction, a series of small oxidative features are observed between −2.0 to −1.3 V and 0.23 V on the return scan, which are due to the oxidation of products formed upon first and second reductions (Figure S1). The plot of peak current (i_p) vs. square root of scan rate ($\sqrt{\nu}$) gives straight line for all primary oxidative and reductive processes, suggesting that all redox events of 2 are diffusion-controlled (Figure S2).
Schollhammer and Talarmin reported that diiron-dithiolate complexes containing a chelating dppe ligand undergo electron-transfer-catalysed isomerization upon one-electron reduction to form the symmetrical isomers in which the dppe bridges the iron-iron vector \[9\]. We did not see any evidence of such isomerization for 2. If 2 converted into 3 after reduction, then we would see peak(s) in the anodic region for 3 on the return scan, but we obtained identical CVs by sweeping the voltage in opposite directions (scanning anodic or cathodic region first) even in slower scan rates (Figure S3). This suggests that 2 is not converting into 3 after reduction at least on the voltammetric time-frame.
The voltammetry of the related \([\text{Fe}_2(\text{CO})_4\{\kappa^2-\text{Ph}_2\text{PN(allyl)}\text{PPh}_2\}](\mu\text{-pdt})]\) species showed a lack of reversibility of both oxidation and reduction processes in MeCN [6]. Additionally, the second oxidation peak for the complex occurred ca. 0.5 V more positive than the first oxidation, unlike the response noted for 2, where two overlapping, reversible oxidation peaks are observed. Likewise only one irreversible reduction peak was seen for \([\text{Fe}_2(\text{CO})_4\{\kappa^2-\text{Ph}_2\text{PN(allyl)}\text{PPh}_2\}](\mu\text{-pdt})]\), in contrast to the two closely spaced, reversible reduction peaks for 2. One interpretation for this observation is that the two oxidation and reduction peaks arise from separate one-electron oxidation and reduction of the two geometric isomers of 2, namely 2ab and 2bb. It is not possible to unambiguously assign individual oxidation and reduction waves to specific isomers although DFT calculations shed some light on these processes. Thus, the HOMO of the dibasal isomer 2bb is some 0.0067 Hartrees (0.18 eV, 17.6 kJ mol\(^{-1}\)) higher in energy than that in 2ab. Thus we suggest that the first oxidation is associated with electron loss from 2bb and the second oxidation wave attributed to 2ab. The energy difference between the two LUMOs is small and 2ab lies 0.0016 Hartrees (0.04 eV, 4.30 kJmol\(^{-1}\)) below the LUMO of 2bb thus accounting for the two reduction waves and suggesting that the reduction at less negative potential is associated with 2ab. The CV behavior recorded for 2 may result from overlap of the separate waves from both isomers. As far as we are aware, the separate and distinguishable oxidation and reduction waves for dibasal and apical-basal isomers have not previously been noted [6,9,14-16]. The reversibility of the responses suggests that both the mixed valence state complexes, Fe(II)-Fe(I) [\(\text{Fe}_2(\text{CO})_4\{\kappa^2-\text{Ph}_2\text{PC(Me}_2\text{)PPh}_2\}](\mu\text{-pdt})]^+ (2^*) and Fe(I)-Fe(0) [\(\text{Fe}_2(\text{CO})_4\{\kappa^2-\text{Ph}_2\text{PC(Me}_2\text{)PPh}_2\}](\mu\text{-pdt})] (2) are reasonably long-lived. The latter is especially important with respect to the electrocatalytic reduction of protons and is considered in detail in the next section.

For comparison we have also studied the CV of the thermodynamically favoured bridged isomer 3 in MeCN (Figure S4). Due to its low solubility in this solvent the sample was sonicated and heated for some time to aid dissolution. Consequently, the precise concentration used was not determined, but nevertheless the data provide a useful comparison with those for 2. The CV displays a reduction at \(E_p = -2.50\) V and an oxidation at \(E_p = 0.74\) V both of which show some reversibility at this scan rate (0.1 Vs\(^{-1}\)), however, neither improved when the scan rate was increased.
Proton reduction catalysed by 2

CVs of 2 recorded after addition of molar equivalents of HBF₄·Et₂O are shown in Figure 8, which show a positive shift of reduction potentials due to protonation of the initial complex. In light of the protonation studies discussed above, we conclude that under these conditions the major component of the electrochemical cell is apical-basal [Fe₂(CO)₄(μ-H)(κ²-Ph₂PC(Me₂)PPh₂)(μ-pdt)][BF₄] [4ab = Fe₂(H)⁺]. The first and second reduction waves now appear at \(E_p = -1.58 \) V and \(E_p = -1.88 \) V, followed by a series of reductive features at more negative potentials. The peak current of these reduction waves increases consistently with addition of each molar equivalent of acid characteristic of electrocatalytic proton reduction by 2 at these potentials.

Figure 7. CVs of [Fe₂(CO)₄(κ²-Ph₂PC(Me₂)PPh₂)(μ-pdt)] (2) in the absence of acid and in the presence of 1-7 and 9 molar equivalents of HBF₄·Et₂O (0.5 mM solution, in acetonitrile, supporting electrolyte [NBu₄][PF₆], scan rate 0.1 Vs⁻¹, glassy carbon electrode, potential vs Fe⁺/Fc⁻)

Two catalytic pathways have been probed by DFT as summarized in Scheme 7. All of the species involved in those catalytic cycles represent fully optimized ground-state minima (Figure 8). The cationic hydride Fe₂(H)⁺ is key to both cycles and its formation derives from the rapid protonation of 2. Since protonation studies show that there is no further proton addition to this species, we suggest that the next step is a one-electron reduction which takes place at
around −1.58 V (Figure S4) to afford the neutral 35-electron hydride $\text{Fe}_2(\text{H})$ [50]. At this point it is not clear whether a second protonation to give $\text{Fe}_2(\text{H}_2)^+$, or one-electron reduction to yield $\text{Fe}_2(\text{H})^-$ occurs. Certainly, the basicity of $\text{Fe}_2(\text{H})$ should be similar to that of 2ab and thus we expect this pathway to be favoured, and while reduction of $\text{Fe}_2(\text{H})$ occurs necessarily at a higher potential to that of 4ab the precise value is not known. DFT calculations show that the 35-electron cationic dihydrogen species $\text{Fe}_2(\text{H}_2)^+$ formed by protonation of the neutral hydride $\text{Fe}_2(\text{H})$ is able to release H_2 and gives the radical cation 2ab^{++}; reduction of the latter species regenerates 2.

![Figure 8. B3LYP-optimized structures for selected intermediates depicted in Scheme 7](image)

Table 1 lists the computed natural charges and Wiberg bond indices (WBI). Protonation of 2ab to give $\text{Fe}_2(\text{H})^+$ does not lead to a significant change in the natural charges for the Fe, P, and S atoms but does lead to an elongation of the Fe-Fe bond as revealed by a change in the Wiberg index from 0.46 to 0.30. This trend is consistent with a weakening of the Fe-Fe bond upon protonation. Reduction of $\text{Fe}_2(\text{H})^+$ to give $\text{Fe}_2(\text{H})$ is accompanied by a further diminution of the Fe-Fe bond based on the WBI of 0.16. The bridging hydride asymmetrically spans the Fe-Fe vector in the neutral radical given the Fe-H WBIs of 0.54 and 0.23. Here the former index, which contains the dppmMe$_2$-substituted iron centre, is ca. 2.3 times stronger than the Fe-H bond from the Fe(CO)$_3$ moiety. The formation of the molecular hydrogen complex $\text{Fe}_2(\text{H}_2)^+$
may be viewed as a formal protonation of the hydride ligand in $\text{Fe}_2(\text{H})$ and this is accompanied by a further elongation of the Fe-Fe bond, yielding a WBI of 0.07. The coordinated H$_2$ ligand in $\text{Fe}_2(\text{H}_2)^+$ exhibits a mean WBI of 0.29 for the two Fe-H bonds and an index of 0.59 for the H-H bond.

The second pathway propagates via reduction of the neutral hydride $\text{Fe}_2(\text{H})$ to form $\text{Fe}_2(\text{H})^+$, which reacts with an additional proton to generate the 36-electron dihydride $\text{Fe}_2(\text{H}_2)$. The formation of the anionic hydride greatly weakens the Fe-Fe bond (WBI = 0.06) and promotes the formation of a terminal hydride at the Fe(CO)P$_2$ moiety, whose Fe$_1$-H$_1$ WBI is 0.72 and significantly stronger than the Fe$_2$-H$_1$ index of 0.02. Protonation of $\text{Fe}_2(\text{H})^+$ next occurs at the Fe(CO)$_3$ centre to give the traditional dihydride species $\text{Fe}_2(\text{H}_2)$. The cleavage of the Fe-Fe bond in going from 2 to $\text{Fe}_2(\text{H})_2$ is a formal two-electron reduction process that is consistent Polyhedral Skeletal Electron Pair (PSEP) theory [51]. This species undergoes a third protonation to form $\text{Fe}_2(\text{H})(\text{H}_2)^+$, which releases H$_2$ and regenerates the cationic hydride $\text{Fe}_2(\text{H})^+$. The outcome of protonation of $\text{Fe}_2(\text{H})_2$ is akin to the step that furnishes $\text{Fe}_2(\text{H}_2)^+$, insomuch that the H$_2$ ligand is coordinated to the Fe(CO)P$_2$ centre. The terminal Fe$_2$-H$_2$ bond in $\text{Fe}_2(\text{H})(\text{H}_2)^+$ is considerably stronger (WBI = 0.73) as compared to the two Fe$_1$-H$_{1,3}$ bonds for the ligated H$_2$ ligand that exhibit a mean WBI of 0.30 for the Fe$_1$-H bonds. The WBI for the H$_1$-H$_3$ bond of H$_2$ is 0.59 and identical to that computed for molecular H$_2$ ligand in $\text{Fe}_2(\text{H}_2)^+$.

Finally, the DFT calculations also show that $\text{Fe}_2(\text{H}_2)^+$ can undergo reduction before release of H$_2$ to form the dihydride species $\text{Fe}_2(\text{H}_2)$. The reduction process promotes the formal cleavage of the Fe-Fe bond and activation of the coordinated H$_2$ molecule. One complication to these catalytic pathways is the possible formation of 4bb during the electrocatalysis. While we cannot completely rule this out, the relatively rapid scan speeds 0.1 V s$^{-1}$ utilised, as compared with the rate of conversion of 4ab to 4bb ($t_{1/2} ca.1h$), would suggest that the amount of 4bb is always small (less than 1%).
Scheme 7. DFT computed catalytic mechanism for the electrocatalytic proton reduction by [Fe$_2$(CO)$_4$\{κ2-Ph$_2$PC(Me$_2$)PPh$_2$\}(μ-pdt)] (2)

Conclusions

We have detailed the synthesis, structure, and thermal stability of the diphosphine-chelated isomers of [Fe$_2$(CO)$_4$\{κ2-Ph$_2$PC(Me$_2$)PPh$_2$\}(μ-pdt)] (2), together with catalytic studies carried out to assess its proton reduction ability. The X-ray structure shows that 2 adopts the dibasal configuration in the solid state, while both dibasal and apical-basal isomers are found to exist in solution in an approximate 2:1 ratio. The apical-basal isomer 2ab lies 1.3 kJmol$^{-1}$ lower in energy than the dibasal form 2bb, and they do not interconvert in solution at room temperature.
for which an activation barrier of 102.6 \text{kJ mol}^{-1} has been computed. Complex 2 very slowly converts into the bridged isomer 3 upon heating and this provides support that the latter isomer is thermodynamically favoured. DFT calculations show that 3 lies 3.8 and 1.3 \text{kJ mol}^{-1} lower in energy than 2\text{bb} and 2\text{ab}, respectively.

Complex 2 undergoes rapid protonation by HBF\textsubscript{4}\cdot\text{Et}_2\text{O} to afford initially the apical-basal hydride \([\text{Fe}_2(\text{CO})_4(\mu-H)(\kappa^2-\text{Ph}_2\text{PC(\text{Me}_2}\text{PPh}_2})(\mu\text{-pdt})][\text{BF}_4]\) (4\text{ab}), which then slowly transforms into the dibasal isomer \([\text{Fe}_2(\text{CO})_4(\mu-H)(\kappa^2-\text{Ph}_2\text{PC(\text{Me}_2}\text{PPh}_2})(\mu\text{-pdt})][\text{BF}_4]\) (4\text{bb}) upon standing. In contrast the bridged isomer 3 protonates only slowly and the product is unstable, thus ruling it out as a viable proton reduction catalyst. In both chelated hydrides 4\text{ab} and 4\text{bb}, the hydride spans the iron-iron bond but protonation is believed to proceed via a fleeting terminal hydride species, namely \([\text{HFe}_2(\text{CO})_4(\kappa^2-\text{Ph}_2\text{PC(\text{Me}_2}\text{PPh}_2})(\mu\text{-pdt})][\text{BF}_4]\) (4\text{tH}). The CV of 2 in MeCN shows separate redox features for both apical-basal and dibasal isomers leading to common intermediates, while that of the bridged isomer displays single oxidative and reductive features. To our knowledge, 2 is the first phosphine-substituted diiron chelate that shows separate redox features for the dibasal and apical-basal isomers. Electrocatalytic studies carried out with 2 in presence of HBF\textsubscript{4}\cdot\text{Et}_2\text{O} show that it catalyzes proton reduction following a chemically initiated CE route. An important finding is that it is the kinetic isomer 4\text{ab} is active in the catalytic cycle. DFT methods were applied to probe this mechanism and two interconnected catalytic pathways, namely CECE and CEECC, have been computed to be operative for the catalytic production of H\textsubscript{2}. This work thus provides further justification for the development of chelated complexes of the type \([\text{Fe}_2(\text{CO})_4(\kappa^2\text{-diphosphine})(\mu\text{-dithiolate})]\) as viable proton reduction catalysts.

Experimental section

General methods and materials

All reactions were carried out using standard Schlenk-line techniques under N\textsubscript{2} and reaction solvents were purified on alumina columns. Work-up was carried out in air using standard bench reagents. The diphosphines Ph\textsubscript{2}PCH(Me)PPh\textsubscript{2} and Ph\textsubscript{2}PC(Me\textsubscript{2})PPh\textsubscript{2} [30] and \([\text{Fe}_2(\text{CO})_6(\mu\text{-pdt})]\) (1) [52] were prepared by literature procedures. NMR spectra were recorded on a Bruker AMX400 spectrometer and referenced internally to the residual solvent peak (1H) or externally to P(OMe)_3 (31P). Infrared spectra were recorded on a Nicolet 205 FT-
IR spectrometer in a solution cell fitted with calcium fluoride plates, subtraction of the solvent absorptions being achieved by computation. All IR spectra were recorded in CH$_2$Cl$_2$ unless otherwise noted. Fast atom bombardment mass spectra were recorded on a VG ZAB-SE high resolution mass spectrometer and elemental analyses were performed in-house at UCL.

Synthesis of [Fe$_2$(CO)$_4$(κ^2-Ph$_2$PC(Me$_2$)PPh$_2$)](μ-pdt)] (2)

A mixture of 1 (0.20 g, 0.52 mmol), Ph$_2$PC(Me$_2$)PPh$_2$ (0.21 g, 0.52 mmol) and Me$_3$NO·2H$_2$O (0.15 g, 0.14 mmol) were dissolved in MeCN (ca. 35 mL). The orange solution darkened rapidly and became black. After stirring for 4 h the solvent was removed under reduced pressure to give a dark red residue. This was washed with hexane (ca. 3 x 5 ml) in order to remove any unreacted 1 and diphosphine and the red residue was dried. This was extracted with diethyl ether (ca. 20 mL) and cooled to –10 °C to afford 2 (0.24 g, 63%) as a brick red powder. Crystals suitable for X-ray diffraction analysis were grown upon slow diffusion of hexanes into a concentrated CH$_2$Cl$_2$ solution containing 2. IR ν(CO): 2018 vs, 1949 s, 1896 m cm$^{-1}$. 31P{1H} NMR (CDCl$_3$): δ 75.5 (s), 50.8 (s); (CD$_2$Cl$_2$) 77.2 (s, 2ab), 52.4 (s, 2bb) ppm. 1H NMR (CD$_2$Cl$_2$): δ 7.87 – 7.23 (m, 20H, Ph, 2ab + 2bb), 3.16 (d, J 6.3, 1H, CH$_2$, 2ab), 2.42 (m, 4H, CH$_2$, 2bb), 2.15 (brm, 5H, CH$_2$, 2ab), 1.94 (br m, 2H, CH$_2$, 2bb), 1.85 (t, J 12.2, 3H, Me, 2bb), 1.82 (t, J 10.7, 3H, Me, 2ab), 1.38 (t, J 10.8, 3H, Me, 2ab), 1.34 (t, J 16.8, 3H, Me, 2bb). Elemental analysis calc. for Fe$_2$S$_2$P$_2$O$_4$C$_{34}$H$_{32}$ (found): C 54.99 (55.08), H 4.31 (4.57).

Crystallographic data for 2bb: red block, dimensions 0.36 × 0.16 × 0.13 mm3, triclinic, space group P1bar, $a = 10.625(2)$, $b = 11.308(2)$, $c = 15.007(3)$ Å, $\alpha = 86.626(3)$, $\beta = 81.950(3)$, $\gamma = 65.000(3)^\circ$, $V = 1618.0(5)$ Å3, $Z = 2$, F(000) 764, $d_{calc} = 1.524$ g cm$^{-3}$, $\mu = 1.163$ mm$^{-1}$. 13806 reflections were collected, 7330 unique [R(int) = 0.0271]. At convergence, $R_1 = 0.0306$, $wR_2 = 0.0788$ [I > 2.0σ(I)] and $R_1 = 0.0337$, $wR_2 = 0.0804$ (all data), for 525 parameters.

Synthesis of [Fe$_2$(CO)$_4$(μ-Ph$_2$PC(Me$_2$)PPh$_2$)](μ-pdt)] (3)

A toluene solution (80 ml) of 2 (0.05 g, 0.67 mmol) was heated at reflux for approximately 30 h. After cooling to room temperature volatiles were removed on a rotary evaporator giving an oily red solid. This was washed with hexane (ca. 3 x 5 mL) to give a dry orange solid. The
crude material was dissolved in a minimum amount of CH₂Cl₂ and layered with hexanes to afford large red crystals of 3 (0.035 g, 70%). IR ν(CO): 1984m, 1952s, 1916m, 1895sh cm⁻¹. ³¹P{¹H} NMR (CDCl₃): δ 86.9 (s); (CD₂Cl₂) 89.0 (s) ppm. ¹H NMR (CDCl₃): δ 8.02 – 6.79 (m, 20H, Ph), 2.13 (br, 4H, CH₂), 1.86 (br, 2H, CH₂), 1.65 (t, J 12.7, 3H, Me), 0.86 (m, 3H, Me). Elemental analysis calc. for Fe₂S₂P₂O₄C₃₄H₃₂.CH₂Cl₂ (found): C 48.92 (48.66), H 4.20 (4.14)%. At convergence, R₁ = 0.0492, wR₂ = 0.1369 [I > 2.0σ(I)] and R₁ = 0.0545, wR₂ = 0.1414 (all data), for 421 parameters.

Synthesis of [Fe₂(CO)]₄[µ-Ph₂PC(Me)₂PPh₂](µ-pdt)]/[BF₄]⁻ (4)

To a CH₂Cl₂ (5 mL) of 2 (0.10 g, 0.13 mmol) was added a few drops of HBF₄·Et₂O. The mixture was swirled and the red-brown solution first turned blue, then purple and finally back to brown. The solution was stirred for 4 h and volatiles removed under vacuum to give a deep red oily solid. This was washed with a very small amount of Et₂O and layered with hexanes to afford large red crystals of 4bb. Data for 4bb: IR ν(CO): 2097vs, 2048s, 2035s, 1964s cm⁻¹. ³¹P{¹H} NMR (CD₂Cl₂): δ 55.8 (s) ppm. ¹H NMR (CD₂Cl₂): δ 7.90 – 7.32 (m, 20H, Ph), 3.09 (br, 2H, CH₂), 2.58 (br, 4H, CH₂), 2.19 (t, J 13.4, 3H, Me), 1.46 (t, J 17.1, 3H, Me), –10.78 (t, J 19.2, 1H, µ-H). Elemental analysis calc. for Fe₂S₂P₂O₄C₃₄H₃₂B₁F₄·0.5CH₂Cl₂ (found): C 47.55 (47.86), H 3.79 (3.86). Data for 4ab: IR ν(CO)(CH₂Cl₂): 2093vs, 2044s, 1982br cm⁻¹. ³¹P{¹H} NMR (CD₂Cl₂): δ 68.7 (d, J 62.0), 60.1 (d, J 62.0) ppm. ¹H NMR (CD₂Cl₂): δ –15.50 (dd, J 18.4, 4.4, µ-H). Crystallographic data for 4bb·0.5CH₂Cl₂: red block, dimensions 0.16 × 0.14 × 0.13 mm³, orthorhombic, space group Pbca, a = 11.273(3), b = 19.387(5), c = 33.773(8) Å, α = 90, β = 90, γ = 90°, V = 7381(3) Å³, Z = 8, F(000) 3544, d_calc = 1.567 g cm⁻³, μ = 1.116 mm⁻¹. 59991 reflections were collected, 8946 unique [R(int) = 0.0704]. At convergence, R₁ = 0.0712, wR₂ = 0.1712 [I > 2.0σ(I)] and R₁ = 0.0877, wR₂ = 0.1791 (all data), for 460 parameters. The structure was solved using the Patterson method.
X-ray structure determinations

Single crystals of 2bb, 3·CH₂Cl₂, and 4·0.5CH₂Cl₂ were mounted on glass fibres and all geometric and intensity data were taken from these samples using a Bruker SMART APEX CCD diffractometer using graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å) at 150 ± 2 K. Data collection, indexing and initial cell refinements were all done using SMART [53] software. Data reduction were carried out with SAINT PLUS [54] and absorption corrections applied using the programme SADABS [55]. Structures were solved by direct methods or Patterson methods and developed using alternating cycles of least-squares refinement and difference-Fourier synthesis. All non-hydrogen atoms were refined anisotropically. Hydrogens were placed in calculated positions (riding model). Structure solution used SHELXTL PLUS V6.10 program package [56]. Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre, 1053582 for 2bb, 1053616 for 3 and 1053615 for 4bb. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1 EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.ac.uk).

Electrochemical studies

Electrochemistry was carried out in deoxygenated acetonitrile solutions with 0.1 M TBAPF₆ as the supporting electrolyte. The working electrode was a 3 mm diameter glassy carbon electrode that was polished with 0.3 μm alumina slurry prior to each scan. The counter electrode was a Pt wire and the quasi-reference electrode was a silver wire. All CVs were referenced to the Fc/Fc⁺ redox couple. An Autolab potentiostat (EcoChemie, Netherlands) was used for all electrochemical measurements. Catalysis studies were carried out by adding measured equivalents of HBF₄·Et₂O (Sigma-Aldrich).

Density functional theory (DFT) calculations

All calculations were performed with the hybrid DFT functional B3LYP, as implemented by the Gaussian 09 program package [57]. This functional utilizes the Becke three-parameter exchange functional (B3) [58], combined with the correlation functional of Lee, Yang and Parr (LYP) [59]. The iron atoms were described by Stuttgart–Dresden effective core potential (ecp) and SDD basis set, while the 6-31+G(d') basis set was employed for the remaining
atoms. All computed species were established as intermediates or minima based on zero imaginary frequencies (positive eigenvalues). The computed frequencies were used to make zero-point and thermal corrections to the electronic energies; the reported energies are quoted in kJ mol\(^{-1}\) relative to the specified standard. The natural charges and Wiberg bond indices were computed using Weinhold’s natural bond orbital (NBO) program. [60,61]. The geometry-optimized structures have been drawn with the JIMP2 molecular visualization and manipulation program [62,63].

Acknowledgements

We thank the Commonwealth Scholarship Commission for the award of a Commonwealth Scholarship to SG. MGR thanks the Robert A. Welch Foundation (grant B-1093) for financial support and acknowledges computational resources through UNT’s High Performance Computing Services and CASCaM. Prof. Michael B. Hall (TAMU) is thanked for providing us a copy of his JIMP2 program, which was used to prepare the geometry-optimized structures reported here, and Dr. David A. Hrovat (CASCam) is also thanked for help with the optimization of the radical cation 2ab\(^+\). GH acknowledges The Royal Society of Chemistry for an International Authors Award which allowed him to visit the University of North Texas and prepare this manuscript.

References

63 J. Manson, C. E. Webster, M. B. Hall, Texas A&M University, College Station, TX, 2006, http://www.chem.tamu.edu/jimp2/index.html.
Table 1. Selected natural charges and Wiberg bond indices for the different Fe$_2$(μ-pdt)(diphosphine) compounds:

<table>
<thead>
<tr>
<th>Atomic Charge</th>
<th>2bb</th>
<th>2ab</th>
<th>3</th>
<th>2ab$^+$</th>
<th>4bb</th>
<th>Fe$_2$(H)$^+$</th>
<th>Fe$_2$(H)</th>
<th>Fe$_2$(H)$^-$</th>
<th>Fe$_2$(H)$_2$</th>
<th>Fe$_2$(H)(H)$_2$</th>
<th>Fe$_2$(H)$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_1$</td>
<td>-1.38</td>
<td>-1.33</td>
<td>-1.57</td>
<td>-0.60</td>
<td>-1.46</td>
<td>-1.39</td>
<td>-1.49</td>
<td>-1.63</td>
<td>-1.52</td>
<td>-1.29</td>
<td>-1.36</td>
</tr>
<tr>
<td>Fe$_2$</td>
<td>-1.66</td>
<td>-1.65</td>
<td>-1.57</td>
<td>-1.36</td>
<td>-1.69</td>
<td>-1.69</td>
<td>-1.52</td>
<td>-1.53</td>
<td>-1.83</td>
<td>-1.77</td>
<td>-1.30</td>
</tr>
<tr>
<td>P$_1$</td>
<td>1.31</td>
<td>1.28</td>
<td>1.37</td>
<td>1.15</td>
<td>1.37</td>
<td>1.32</td>
<td>1.32</td>
<td>1.35</td>
<td>1.35</td>
<td>1.32</td>
<td>1.33</td>
</tr>
<tr>
<td>P$_2$</td>
<td>1.33</td>
<td>1.32</td>
<td>1.34</td>
<td>1.14</td>
<td>1.34</td>
<td>1.36</td>
<td>1.25</td>
<td>1.23</td>
<td>1.22</td>
<td>1.31</td>
<td>1.35</td>
</tr>
<tr>
<td>S$_1$</td>
<td>0.34</td>
<td>0.29</td>
<td>0.39</td>
<td>0.24</td>
<td>0.39</td>
<td>0.36</td>
<td>0.23</td>
<td>0.18</td>
<td>0.25</td>
<td>0.27</td>
<td>0.23</td>
</tr>
<tr>
<td>S$_2$</td>
<td>0.35</td>
<td>0.30</td>
<td>0.32</td>
<td>0.26</td>
<td>0.38</td>
<td>0.36</td>
<td>0.24</td>
<td>0.16</td>
<td>0.29</td>
<td>0.29</td>
<td>0.24</td>
</tr>
<tr>
<td>H$_1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.20</td>
<td>0.14</td>
<td>0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>H$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.22</td>
<td>0.13</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Con’t.

<table>
<thead>
<tr>
<th>Wiberg index</th>
<th>2bb</th>
<th>2ab</th>
<th>3</th>
<th>2ab⁺</th>
<th>4bb</th>
<th>Fe₂(H)⁺</th>
<th>Fe₂(H)</th>
<th>Fe₂(H)⁻</th>
<th>Fe₂(H)₂</th>
<th>Fe₂(H)(H₂)⁺</th>
<th>Fe₂(H₂)⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-Fe</td>
<td>0.44</td>
<td>0.46</td>
<td>0.47</td>
<td>0.20</td>
<td>0.29</td>
<td>0.30</td>
<td>0.16</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>Fe-P₁</td>
<td>0.75</td>
<td>0.74</td>
<td>0.77</td>
<td>0.60</td>
<td>0.78</td>
<td>0.77</td>
<td>0.77</td>
<td>0.79</td>
<td>0.79</td>
<td>0.79</td>
<td>0.78</td>
</tr>
<tr>
<td>Fe-P₂</td>
<td>0.75</td>
<td>0.77</td>
<td>0.77</td>
<td>0.57</td>
<td>0.78</td>
<td>0.79</td>
<td>0.66</td>
<td>0.64</td>
<td>0.66</td>
<td>0.77</td>
<td>0.79</td>
</tr>
<tr>
<td>Fe₁-S₁</td>
<td>0.80</td>
<td>0.76</td>
<td>0.78</td>
<td>0.72</td>
<td>0.77</td>
<td>0.75</td>
<td>0.69</td>
<td>0.70</td>
<td>0.66</td>
<td>0.73</td>
<td>0.74</td>
</tr>
<tr>
<td>Fe₂-S₁</td>
<td>0.75</td>
<td>0.74</td>
<td>0.79</td>
<td>0.72</td>
<td>0.78</td>
<td>0.79</td>
<td>0.69</td>
<td>0.66</td>
<td>0.74</td>
<td>0.75</td>
<td>0.70</td>
</tr>
<tr>
<td>Fe₁-S₂</td>
<td>0.81</td>
<td>0.77</td>
<td>0.76</td>
<td>0.68</td>
<td>0.77</td>
<td>0.74</td>
<td>0.71</td>
<td>0.74</td>
<td>0.70</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>Fe₂-S₂</td>
<td>0.73</td>
<td>0.73</td>
<td>0.76</td>
<td>0.74</td>
<td>0.79</td>
<td>0.78</td>
<td>0.67</td>
<td>0.56</td>
<td>0.74</td>
<td>0.74</td>
<td>0.70</td>
</tr>
<tr>
<td>Fe₁-H₁</td>
<td>0.34</td>
<td>0.35</td>
<td>0.54</td>
<td>0.72</td>
<td>0.75</td>
<td>0.30</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂-H₁</td>
<td>0.46</td>
<td>0.45</td>
<td>0.23</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂-H₂</td>
<td>0.69</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₁-H₃</td>
<td>0.29</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₁-H₃</td>
<td>0.59</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Atom orientation and numbering scheme for the Fe₂ compounds depicted above. Only selected atoms are shown.