Citation for published version (APA):
Tandem duplications contribute to not one but two distinct phenotypes

Johnathan Watkins1,2,3, Andrew N Tutt2,3,4, Anita Grigoriadis1,2,3*

1 Cancer Bioinformatics, King’s College London, London, SE1 9RT, UK
2 Breast Cancer Now Research Unit, King’s College London, London, SE1 9RT, UK
3 Division of Cancer Studies, King’s Health Partners AHSC, Faculty of Life Sciences and Medicine, King’s College London, UK.
4 The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.

* Address correspondence to Dr Anita Grigoriadis: Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Hospital, London, SE1 9RT (UK), anita.grigoriadis@kcl.ac.uk, 02071881296
Menghi and co-workers report a metric to classify tumours into those with and without a tandem duplicator phenotype (TDP) using the frequency of tandem duplications (TDs) in 277 whole genome sequenced samples (1). Building on a previous method (2), the authors identified TDs from SNP array data, and found that the TDP was strongly associated with response to the DNA damaging chemotherapeutic, cisplatin. These findings supplement the growing recognition that genome-wide signatures of mutator phenotypes may prove to be important additions to the companion diagnostic repertoire (3, 4). Although the findings of this report are highly stimulating, accumulating evidence suggests that an elevated abundance of TDs features in not just one but two distinct phenotypes.

Two of the original studies on the TDP reported a mutual exclusion with BRCA1/2 inactivation (2, 5), which conflicts with the enrichment of BRCA1 loss among TDP cancers observed by Menghi and colleagues. Using TCGA breast cancer data (6), we established allele-specific copy number profiles using ASCAT (7) before calling TDP status as described previously (2) using two different size ranges for the TD-like features: (i) between 1Kbp and 2Mbp in accordance with the study by Menghi and associates; and (ii) between 2Mbp and 10Mbp. Five samples with BRCA1 inactivation exhibited the TDP when considering only shorter TDs (Fig. 1A); however, we found no instances of tumours with BRCA1 inactivation among 2–10Mbp TDP cancers (Fig. 1B). Furthermore, while 56% of the Menghi et al study’s TDP calls were shared with our 1Kbp–2Mbp TDP calls, only 10% of the Menghi et al study’s TDP calls agreed with our 2–10Mbp TDP calls (Fig. 1C). In addition, we found that while the 1Kbp–2Mbp TDP calls and the Menghi et al study’s TDP calls were enriched for triple-negative breast cancers (P<0.001, Fisher’s exact test), the 2Mbp–10 Mbp TDP calls were not (P=0.81, Fisher’s exact test). These findings support the notion that the study by Menghi and associates captures one particular TDP distinguishable from a second TDP by length and contrasting relationships with loss of BRCA1 function.

Our results are reinforced by two recent analyses. The first study extracted two TD-enriched rearrangement signatures from 560 whole breast cancer
Tandem duplications contribute to not one but two distinct phenotypes

genes (8). ‘Signature-1’ mostly comprised TDs between 1 and 10Mbp, whereas ‘signature-3’ mostly comprised TDs ≤100Kbp. Signature-3 was associated with BRCA1 disruption, signatures of homologous recombination deficiency (HRD), and was observed in ~15% of the cohort. By contrast, signature-1 was independent of BRCA1/2 disruptions, exhibited links with mutational signatures of both HRD and mismatch repair deficiency, and presented in ~8.5% of the cohort. The second study identified an ovarian and prostate cancer-linked TDP featuring TDs up to 10Mbp, mutual exclusion with BRCA1/2 inactivation and enrichment for inactivation of the CDK12 kinase (9).

In conclusion, we propose that there are actually two TDPs, with the study by Menghi and colleagues providing a comprehensive characterisation of the BRCA1 inactivation-linked TDP. The existence of two TDPs has important implications for the robust development of genomic instability-based biomarkers of drug response.
References

Figure legend

Fig. 1. Tandem duplication phenotypes in 940 TCGA breast cancers. (A and B) TDP status was determined using genomic segments between 1 Kbp and 2 Mbp (A), or 2 Mbp and 10 Mbp (B) followed by Gaussian mixture modelling of the ratio of TDs to non-TD segments (total number of segments minus double the number of TD segments as per (2)). Odds ratio and p-value represent Fisher’s exact test of BRCA1 mutation enrichment in the TDP subset of tumours. BRCA1 loss was defined as germline or somatic point mutation, or deletion. TDP tumours are coloured in red and non-TDP tumours in grey. All samples are denoted by a cross with the exception of tumours with BRCA1 loss, which are denoted by a square. (C) Bar plots illustrate the overlaps between the different TDP calling methods.
Figure 1

A. Size constraints: 1 Kbp – 2 Mbp

Test of BRCA1 enrichment

OR = 3.495

$P = 0.02454$

B. Size constraints: 2 Mbp – 10 Mbp

Test of BRCA1 enrichment

OR = 0

$P = 1$

C. Proportion of samples

Menghi et al.