Determinants of inspiratory muscle function in healthy children

Theodore Dassios \(^{a,b,*}\), Gabriel Dimitriou \(^b\)

\(^a\) Department of Child Health, King’s College Hospital, Denmark Hill, London, SE5 9RS, UK
\(^b\) Department of Paediatrics, University of Patras Medical School, Patras, Rio 26504, Greece

Received 8 April 2016; revised 24 May 2016; accepted 5 July 2016

Available online

Original Article

Background: Children are affected by disorders that impact on the respiratory muscles. Inspiratory muscle function can be assessed by the non-invasive Tension-Time Index of the inspiratory muscles (TTI\(_{\text{mus}}\)). Our objectives were to identify the determinants of TTI\(_{\text{mus}}\) in healthy children and to report normal values of TTI\(_{\text{mus}}\) in this population.

Methods: We measured weight, height, upper arm muscle area (UAMA), and TTI\(_{\text{mus}}\) in 96 children aged 6-18 years. The level and frequency of aerobic activity was assessed by questionnaire.

Results: TTI\(_{\text{mus}}\) was significantly lower in male subjects (0.095 ± 0.038, mean ± SD) compared to female subjects (0.126 ± 0.056) (\(p = 0.002\)). TTI\(_{\text{mus}}\) was significantly lower in regularly exercising (0.093 ± 0.040) compared to non-exercising subjects (0.130 ± 0.037), (\(p < 0.001\)). TTI\(_{\text{mus}}\) was significantly negatively related to age (\(r = -0.239, p = 0.019\)), weight (\(r = -0.214, p = 0.037\)), height (\(r = -0.355, p < 0.001\)), and UAMA (\(r = -0.222, p = 0.030\)). Multivariate logistic regression analysis revealed that height and aerobic exercise were significantly related to TTI\(_{\text{mus}}\) independently of age, weight, and UAMA. Predictive regression equation for TTI\(_{\text{mus}}\) in male subjects was: TTI\(_{\text{mus}}\) = 0.228 – 0.001 × height (cm), and in female subjects: TTI\(_{\text{mus}}\) = 0.320 – 0.001 × height (cm).

Conclusion: Gender, age, anthropometry, skeletal musculature, and aerobic exercise are significantly associated with indices of inspiratory muscle function in children. Normal values of TTI\(_{\text{mus}}\) in healthy children are reported.

© 2016 Production and hosting by Elsevier B.V. on behalf of Shanghai University of Sport. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Aerobic exercise; Children; Inspiratory muscle function; Maximal inspiratory pressure; Skeletal muscle function; Tension-Time Index of the inspiratory muscles

1. Introduction

Respiratory muscle impairment has been increasingly recognized as an independent pathophysiological contributor to disorders that affect the paediatric population. Children with Cystic Fibrosis (CF)\(^{3,4}\) and neuromuscular diseases\(^{5}\) are at increased risk of respiratory muscle fatigue. Obese individuals have impaired respiratory muscle function compared to controls due to increased mechanical loading of the respiratory muscles.\(^{3}\) Impaired respiratory muscle function has been identified as an independent predictor of extubation outcome in children.\(^{6}\) Furthermore anthropometry,\(^{7}\) genetic polymorphisms\(^{8}\) and aerobic exercise\(^{9,10}\) also contribute to respiratory muscle function in children.

Respiratory muscle strength can be non-invasively determined by the measurement of the maximal inspiratory pressure (P\(_{\text{Imax}}\)) and the maximal expiratory pressure (P\(_{\text{Emax}}\)).\(^{11}\) While P\(_{\text{Imax}}\) and P\(_{\text{Emax}}\) describe a snapshot of respiratory muscle performance at a specific time point, respiratory muscle function and the risk for muscle fatigue can be better assessed by indices that additionally describe the respiratory load which consists of the chest wall and lung elastic loads plus the resistive loads. Such an index is the non-invasive Tension-Time Index of the inspiratory muscles (TTI\(_{\text{mus}}\)).\(^{12}\) TTI\(_{\text{mus}}\) is a composite dimensionless index which incorporates measurements of pressure and time and describes the efficiency of the total work undertaken by the respiratory muscles.\(^{13}\) Higher values of TTI\(_{\text{mus}}\) are indicative of inefficient inspiratory muscle function and increased risk of inspiratory muscle fatigue and respiratory failure.\(^{12,13}\)

Clinical assessment of the relative risk of inspiratory muscle fatigue and respiratory failure in children may facilitate decisions aimed at instituting treatment modalities such as non-invasive ventilation and inspiratory muscle training or at implementing strategies for weaning from mechanical ventilation.
To our knowledge, studies reporting values of TTI_{max} in healthy children are scarce, while patient-derived data and data from ventilated subjects would be affected by distorted lung mechanics. In this study we describe patterns of change of TTI_{max} in healthy children and report the demographic and anthropometric parameters that contribute to alterations of inspiratory muscle function in this population.

2. Methods

2.1. Subjects

Ninety-six healthy children without respiratory problems who were able to perform reproducible maximal respiratory maneuvers were prospectively recruited. They were studied in the outpatients department of the University Hospital of Patras, Greece. Their age ranged between 6 and 18 years. The subjects were healthy children recruited from the community and siblings of children attending the outpatients department. Children with preexisting respiratory conditions such as asthma or CF, children with genetic disorders such as thalassemia and children that were unwell were excluded from the study. Children younger than 6 years of age were excluded as they could not reliably execute reproducible maneuvers requiring a maximal effort. Suitability of inclusion was assessed by questionnaire. All respiratory and nutrition measurements were performed by the same examiner (TD).

The study protocol was approved by the Research Ethics Committee of the University Hospital of Patras. Parents or legal guardians provided informed written consent prior to the study and children provided informed assent.

2.2. Measurements

2.2.1. Equipment

A pneumotachograph (Mercury F100L; GM Instruments, Kilwinning, UK) was used to record airway flow. This was connected to a differential pressure transducer (DP45, range $\pm 3.5 \text{ cm H}_2\text{O}$, Validyne Engineering, Northridge, CA, USA). A side port on the pneumotachograph, connected to a differential pressure transducer (DP45, range $\pm 225 \text{ cm H}_2\text{O}$) was used to measure airway pressure. The signals from the differential pressure transducers were amplified by a portable amplifier (Validyne CD 280; Validyne Engineering). The flow and pressure signals were recorded and displayed in real time on a portable computer (Dell GX620; Dell Inc., Round Rock, TX, USA) running a Labview application (NI, Austin, TX, USA). Analog to digital sampling was at 100 Hz (16-bit NI PCI-6036E, NI).

2.2.2. Measurement of the respiratory pressures

Respiration rate (RR), tidal volume (TV), airway pressure generated 0.1 s after an occlusion ($P_{0.1}$), P_{max}, P_{Emax}, inspiratory time (T_i) and total time of respiration (T_{tot}) were measured for each participating subject. Minute ventilation was calculated as the product of TV times the RR. $P_{0.1}$ was calculated as the airway pressure generated 100 ms after an occlusion while the subject was breathing quietly. A minimum of 4 airway occlusions were undertaken and the average $P_{0.1}$ value was estimated.11 A rubber mouthpiece (dead space 3.5 mL) was pressed tightly against the lips and the respiratory circuit was occluded at the end of expiration. Any leak around the mouthpiece was minimised. The occlusions were performed with a unidirectional valve (dead space 8 mL) connected to the mouthpiece. P_{max} was measured upon a maximal inspiratory effort from Residual Volume against an occluded airway and P_{Emax} was measured upon a maximal expiratory effort from Total Lung Capacity against an occluded airway.14 Five maximal reproducible respiratory efforts were undertaken and the maximum achieved value for P_{max} and P_{Emax} was recorded.14 A 1-2 mm leak in the respiratory line was allowed to avoid closure of the glottis.11 Only P_{max} and P_{Emax} waveforms with plateau pressure of minimum 1 s were accepted for subsequent analysis.11

2.2.3. Calculation of the TTI_{max}

The TTI_{max} was calculated as:

$$TTI_{max} = \left(\frac{P_{mean}}{P_{max}} \right) \times \left(\frac{T_i}{T_{tot}} \right),$$

where T_i is the inspiration time and T_{tot} is the total time for each breath, calculated from the airflow flow signal, P_{mean} was the mean airway pressure during inspiration (calculated from the formula $P_{mean} = 5 \times P_{0.1} \times T_i$) and P_{max} was the maximum inspiratory pressure.12

2.3. Nutritional parameters

Body weight and height were measured and the body mass index (BMI) Z-score was calculated.15 Since respiratory muscle function is strongly associated with indices of somatic muscularity,13 the upper arm muscle area (UAMA) was measured: mid-arm muscle circumference (MAMC) was measured midway between the olecranon process and the tip of the acromion with the right hand hanging relaxed.16 Triceps skinfold thickness (TST) was measured by a Harpenden Skinfold Caliper (Baty International, West Sussex, UK), halfway over the triceps muscle and with the skinfold parallel to the longitudinal axis of the humerus.16 UAMA was subsequently calculated from MAMC and TST.17

2.4. Exercise

The level of physical activity was evaluated with questionnaire. The exercise group was formed by subjects that engaged in moderate to vigorous aerobic activity for a minimum of 3 times per week, for 45 min each time over the past 3 months.10,18,19 Running, cycling, football, swimming, athletics, basketball, volleyball, martial arts, tennis, and gymnastics were accepted as moderate to vigorous physical activity.19 The control group consisted of subjects that did not take part in structured physical activity.

2.5. Statistics

Normality of distribution was assessed using the Shapiro-Wilk and Kolmogorov-Smirnoff tests. Differences between 2...
Inspiratory muscle function and exercise in children

groups were assessed for significance using the Student’s t test. Pearson correlation analysis was used to examine the univariate relation of $P_{0.1}$, P_{limax} and TTI$_{\text{mus}}$ to age, weight, height, BMI Z-score and UAMA. Multivariate logistic regression was performed to determine which variables contribute to alterations of TTI$_{\text{mus}}$. Regression equations for predictive values of TTI$_{\text{mus}}$ in males and females were calculated with the corresponding coefficient of determination (R^2) and standard error of the estimate. P values of <0.05 were accepted as significant. Multicollinearity among the independent variables in the regression analysis was assessed by calculation of the tolerance for the independent variables. A retrospective sample size justification was conducted to confirm that the number of participating subjects in the exercising and non-exercising groups were sufficient to detect differences in TTI$_{\text{mus}}$ at a level of significance of 0.01 with power of 95%. Statistical analysis was performed using IBM SPSS Software (Version 17.0; IBM Corporation, Chicago, IL, USA).

3. Results

All recruited subjects were able to complete the respiratory measurements and nutrition assessment. Power analysis was conducted to assess the sample size required to identify TTI$_{\text{mus}}$ differences between the groups of exercising versus non-exercising subjects. TTI$_{\text{mus}}$ standard deviation was set at 0.014.

The power analysis indicated that in order to detect an increase in TTI$_{\text{mus}}$ of 0.016 at a power of 95% and a level of statistical significance of 0.01, a sample size of at least 32 subjects was required for each group of subjects. Anthropometric, nutrition and respiratory function data in male and female subjects are presented in Table 1. P_{max} ($p = 0.043$) and P_{limax} ($p = 0.001$) were significantly higher in male subjects compared to female subjects. P_{limax}/P_{max} and TTI$_{\text{mus}}$ were significantly lower in male subjects compared to female subjects ($p = 0.001$ and $p = 0.002$, respectively). Values of P_{limax} and TTI$_{\text{mus}}$ in different age groups in males and females are presented in Table 2. Respiratory function data in exercising and non-exercising participants are presented in Table 3. P_{max} and P_{limax} were significantly higher in exercising compared to non-exercising subjects ($p = 0.002$ and $p = 0.015$, respectively). TTI$_{\text{mus}}$ was significantly lower in exercising compared to non-exercising subjects ($p < 0.001$).

$P_{0.1}$ was significantly negatively related to age ($r = -0.415$, $p < 0.001$), weight ($r = -0.245$, $p = 0.016$), height ($r = -0.386$, $p < 0.001$; Fig. 1A) and UAMA ($r = -0.222$, $p = 0.029$) but not significantly related to BMI Z-score. P_{limax} was significantly related to weight ($r = 0.221$, $p = 0.031$), height ($r = 0.320$, $p = 0.001$; Fig. 1B), and UAMA ($r = 0.201$, $p = 0.049$) but not significantly related to age and BMI Z-score. TTI$_{\text{mus}}$ was significantly negatively related to age ($r = -0.239$, $p = 0.019$), weight ($r = -0.214$, $p = 0.037$), height ($r = -0.355$, $p < 0.001$; Fig. 1C), and UAMA ($r = -0.222$, $p = 0.030$) but not significantly related to BMI Z-score. Multivariate logistic regression analysis revealed that height ($p = 0.004$) and aerobic exercise ($p = 0.002$) were significantly related to TTI$_{\text{mus}}$ independently of age, weight, and UAMA (Table 4).

Table 1

<table>
<thead>
<tr>
<th>Age (year)</th>
<th>Male (n = 48)</th>
<th>Female (n = 48)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 ± 3</td>
<td>12 ± 3</td>
<td>0.800</td>
<td></td>
</tr>
<tr>
<td>26 ± 54</td>
<td>26 ± 54</td>
<td>1.000*</td>
<td></td>
</tr>
<tr>
<td>158 ± 16</td>
<td>153 ± 14</td>
<td>0.105</td>
<td></td>
</tr>
<tr>
<td>53 ± 19</td>
<td>49 ± 13</td>
<td>0.149</td>
<td></td>
</tr>
<tr>
<td>0.66 ± 0.87</td>
<td>0.49 ± 0.88</td>
<td>0.347</td>
<td></td>
</tr>
<tr>
<td>14 ± 5</td>
<td>16 ± 5</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>24.9 ± 4.2</td>
<td>24.1 ± 2.9</td>
<td>0.276</td>
<td></td>
</tr>
<tr>
<td>3455 ± 1097</td>
<td>2918 ± 609</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>21 ± 5</td>
<td>20 ± 5</td>
<td>0.514</td>
<td></td>
</tr>
<tr>
<td>0.56 ± 0.23</td>
<td>0.61 ± 0.23</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>10.9 ± 4.3</td>
<td>13.2 ± 5.8</td>
<td>0.268</td>
<td></td>
</tr>
<tr>
<td>11.2 ± 3.9</td>
<td>12.0 ± 4.5</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>2.75 ± 1.11</td>
<td>3.15 ± 1.42</td>
<td>0.134</td>
<td></td>
</tr>
<tr>
<td>17.3 ± 6.0</td>
<td>20.9 ± 9.1</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>87 ± 27</td>
<td>76 ± 23</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>0.22 ± 0.09</td>
<td>0.29 ± 0.12</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>0.44 ± 0.02</td>
<td>0.44 ± 0.03</td>
<td>0.203</td>
<td></td>
</tr>
<tr>
<td>0.095 ± 0.038</td>
<td>0.126 ± 0.056</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>90 ± 27</td>
<td>75 ± 19</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>
| 27 ± 56 | 21 ± 44 | 0.683*

* χ^2.

Abbreviations: BMI Z-score = body mass index z-score; MAMC = mid arm muscle circumference; TV = triceps skinfold thickness; UAMA = upper arm muscle area; RR = respiratory rate; TV = tidal volume; TV/kg = tidal volume per kilogram of body weight; MV = minute ventilation; TV = inspiratory time; T = total time of respiration; $P_{\text{0.1}}$ = inspiratory pressure 100 msec after onset of inspiration; P_{limax} = inspiratory pressure; P_{max} = maximal inspiratory pressure; TTI$_{\text{mus}}$ = tension time index of the respiratory muscles; P_{max} = maximal expiratory pressure.

Predictive regression equations for TTI$_{\text{mus}}$ were:

Males: $\text{TTI}_{\text{mus}} = 0.228 - 0.001 \times \text{height (cm)}$

Coefficient of determination: $R^2 = 0.401$, standard error of estimation: 0.037.

Females: $\text{TTI}_{\text{mus}} = 0.320 - 0.001 \times \text{height (cm)}$

Coefficient of determination: $R^2 = 0.315$, standard error of estimation: 0.053.

4. Discussion

Our study demonstrated that inspiratory muscle function is enhanced in regularly-exercising children compared to non-exercising ones. We reported normal values of TTI$_{\text{mus}}$ in healthy children and that TTI$_{\text{mus}}$ values are negatively related to height, weight, age and muscular state. Furthermore we calculated predictive regression equations for TTI$_{\text{mus}}$ in male and female children.

TTI$_{\text{mus}}$ in our study attained comparable values to previously published data for non-ventilated children. Assessment of respiratory muscle function by means of TTI$_{\text{mus}}$ has demonstrated that measurement of TTI$_{\text{mus}}$ can accurately predict exhaustion outcome in ventilated children. Children with CF exhibit increased TTI$_{\text{mus}}$ values signaling compromised respiratory muscle function which is determined by a combination of increased load and decreased strength owing to airway obstruc-
Although it is perceived that the timing of the P_{values} mainly positively correlated with that decrease with age. P_{max} in children would be considerably affected by electrical noise from neighboring muscle groups while nostril occlusion for measurement of SNIP might be poorly tolerated in young children and SNIP values might vary substantially for anatomical reasons in children of different ethnic backgrounds.

Our study reported values of P_{0.1} that decrease with age. P_{0.1} is a reproducible index²² that was introduced to assess respiratory drive in children with chronic intrinsic loaded breathing.^{11,20} Although it is perceived that the timing of the P_{0.1} is such that it is independent of lung compliance and airway resistance, the age-related decrease of P_{0.1} in our study might reflect developmental changes which are consistent with the tendency of lung compliance to increase through childhood into early adult life.²⁷

In our study P_{max} increased with age: this probably reflects a consequence of the disease.

Children with neuromuscular disorders also attain higher TTI_{max} values mainly secondary to decreased respiratory muscle strength as a direct consequence of the disease.⁴ Obese individuals exhibit increased TTI_{max} values as a result of the excessive mechanical load imposed upon the respiratory muscles.⁵ Our study reinforced the range of values of TTI_{max} reported in previous studies and complemented the literature with novel previously unreported parameters that determine TTI_{max} such as state of skeletal muscularity and the effect of aerobic exercise on the respiratory muscles in healthy children. Given the reported impact of genetic polymorphisms on respiratory muscle function,⁸ this another strength of our study lies in that it is the first to report normal values of TTI_{max} in healthy southern European--predominantly Greek-children.

Male children exhibited lower values of TTI_{max} in our study compared to age-matched females. Male muscles are known to generate a higher maximum power output than female muscles: the mechanisms behind gender-related differences in skeletal muscle function are not known, but they are likely a consequence of different sex hormonal status.²¹

Respiratory muscle function in children can be affected by way of increased respiratory load, decreased muscle strength or a combination of both. Hence, TTI_{max} is an index ideally equipped to describe and assess this compromise. Furthermore, TTI_{max} is a global inspiratory muscles index which does not preferentially assess diaphragm function, while it is also non-invasive and simple to perform. Other methods have been utilised to assess respiratory muscle function such as diaphragmatic electromyography (EMG_{di})²² or sniff nasal inspiratory pressure (SNIP).²³ However, surface EMG_{di} in children would be considerably affected by electrical noise from neighboring muscle groups while nostril occlusion for measurement of SNIP might be poorly tolerated in young children and SNIP values might vary substantially for anatomical reasons in children of different ethnic backgrounds.²⁴

In our study P_{max} increased with age: this probably reflects a maturation process relating to increasing muscle mass and body growth.²⁸ Values of P_{max} have been previously reported in children.²¹ Our study reports similar values for maximal respiratory pressures with previously published data from healthy children.^{7,29,32} Both P_{max} and P_{mean} positively correlated with increasing age and anthropometric indices that describe muscular state, which given that respiratory muscles are skeletal muscles is a logical finding.

In terms of clinical significance, our data demonstrate that TTI_{max} in children is influenced by gender, anthropometry, indices of muscularity and aerobic exercise. Incorporating this information into clinical practice could enhance the use of TTI_{max} as an objective monitoring parameter of inspiratory muscle function in children and could assist in predicting respiratory muscle fatigue in conjunction with clinical and pulmonary function data. Early recognition of impending respiratory failure would allow for timely application of treatment modalities such as noninvasive ventilation, inspiratory muscle training and mechanical ventilation. The protective role of aerobic exercise in maintaining inspiratory muscle strength is reinforced by our results.

Assessment of inspiratory muscle function by the TTI_{max} might be restricted by some potential limitations: In calculating the TTI_{max}, P_{mean} is extrapolated from P_{0.1} over the entire Ti by a single power function of time, assuming that pressure increases linearly over Ti. In reality, this might overestimate the actual value of P_{mean}. Furthermore the critical fatigue isopleth for TTI_{max} has been established by Ramonatxo et al.¹² to correspond
to a specific fatigue threshold of the trans-diaphragmatic pressure-time index, but the TTI threshold itself has not been electromyographically determined in children. Finally, in clinical practice measurement of $P_{0.1}$ might be affected by the elevated time constant and the subsequent relatively delayed transmission of the pressure changes from the alveoli to the mouth in diseases characterized by airway obstruction such as CF.

We also acknowledge that although self-report data might be widely accepted, the validity of the study would have been enhanced if exercise journals approved by coaches or trainers were used. Furthermore, our population—however sufficient to describe physiological associations—was relatively modest in size in order to generate predictive equations and did not undergo lung function testing in order to confirm that no individuals with impaired pulmonary function were included. Further research in this area might clarify whether certain forms of aerobic exercise in children might be more beneficial for respiratory muscle function than others.

5. Conclusion

This study demonstrated that inspiratory muscle function in healthy children is determined by height and that aerobic exercise might enhance respiratory muscle strength. This knowledge is essential for assessing the respiratory muscles and for monitoring respiratory muscle dysfunction and disease progression in children.

Acknowledgment

The statistical guidance of Dr. Richard Parker of the Centre for Applied Medical Statistics, University of Cambridge, UK is gratefully acknowledged.

Authors’ contributions

TD contributed to study design, acquired and interpreted the data, and wrote the first draft of the manuscript. GD conceived the study, contributed to study design, data interpretation and critically appraised the manuscript. Both authors have read and approved the final manuscript and agree with the order of presentation of the authors.

Competing interests

Both authors declare that they have no conflict of interest with relation to this study.

Table 4

<table>
<thead>
<tr>
<th></th>
<th>Standardized coefficient (95%CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.124 (−0.003 to 0.007)</td>
<td>0.410</td>
</tr>
<tr>
<td>Weight</td>
<td>0.413 (0.000 to 0.003)</td>
<td>0.056</td>
</tr>
<tr>
<td>UAMA</td>
<td>−0.175 (0.000 to 0.000)</td>
<td>0.275</td>
</tr>
<tr>
<td>Aerobic exercise</td>
<td>−0.295 (−0.048 to −0.011)</td>
<td>0.002</td>
</tr>
<tr>
<td>Height</td>
<td>−0.606 (−0.003 to −0.001)</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidential confidence; UAMA = upper arm muscle area.
References

