Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on King’s Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher’s definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher’s website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 21. Nov. 2018
LETTER

A GWAS meta-analysis suggests roles for xenobiotic metabolism and ion channel activity in the biology of stool frequency

Stool consistency and frequency patterns are complex traits that are often altered in GI disease, and recent studies published in Gut highlight the importance of stool frequency in relation to gut microbiota composition and the efficacy of pharmacological and dietary treatments in IBS. 1–3

Despite reported heritability in invertebrates 4 and similar evidence from open-field defaecation models in rats, 5 the genetics of stool frequency has not been explored in humans. We undertook a genome-wide association study (GWAS) in two well-characterised population-based cohorts with genotype and defaecation data available: LifeLines-Deep (LLD) from the Netherlands (N=1546; 58% females; mean age 44 years (range 18–86)) and PopCol (PC) from Sweden (N=284; 60% females; mean age 54 years (range 22–71)). 6, 7 The average number of bowel movements per day (BM/d) was extracted from daily records kept by both populations and did not differ between cohorts (LLD=1.39 ± 0.64SD; PC=1.42±0.74SD). Available CytoChip+Immunochip (LLD) and HumanOmniExpressExome (PC) Illumina single-nucleotide polymorphism (SNP) genotype data were imputed using IMPUTE2 (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) with the Genome of the Netherlands (http://www.nlgenome.nl) as reference. SNPs were filtered on minor allele frequency >0.05 and Hardy–Weinberg equilibrium p>1E-04, samples were filtered on infoscore ≥0.8 and population outliers were excluded using principal component analysis. In total, high-quality genotype data for 5 390 800 common SNPs and BM/d information were obtained for 1022 LLD and 259 PC individuals.

Figure 1 Manhattan plot of the results from the meta-analysis of LifeLines-Deep (LLD) and PopCol (PC) genome-wide association studies. Single-nucleotide polymorphisms (SNPs) which are sorted according to their genomic positions are displayed on the X-axis, and the negative logarithm of the association p value for each SNP after meta-analysis is displayed on the Y-axis; each dot represents a SNP with a certain p value. The top-10 loci are indicated by numbers. Per locus, the statistics of the lead SNPs are shown, including the positions in the genome, the nearest genes and the genes in a 250 kb window around the lead SNPs. The effect of the assessed allele at each locus is indicated by beta; negative betas mean negative effect on the average number of bowel movements per day (BM/d) (decreased number of stool passes) and positive betas mean positive effect on the average number of BM/d (increased number of stool passes). Beta, direction of association; BP, base pair position; Chr, chromosome; SE, SE of the beta.
Genotype–BM/d association tests were performed in SNPTTEST (https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html) using logistic regression under an additive model correcting for age and sex, followed by a fixed-effect model meta-analysis with META (https://mathgen.stats.ox.ac.uk/genetics_software/meta/meta.html). Summary statistics for the top-10 loci from the meta-analysis and the corresponding effect of associated alleles as the most enriched pathways in Gene Ontology (GO) terms for cellular component and molecular function, respectively (table 1). This is remarkable, since genetic defects in the voltage-gated channel SCN5A have been found in a subset of patients with IBS, and normal stool frequency was restored in a severely constipated SCN5A mutant carrier treated with mexiletine, a drug able to rescue SCN5A expression.9

In conclusion, we report the first GWAS of stool frequency in two harmonised population-based cohorts from the Netherlands and Sweden and highlight plausible candidate genes and biological pathways. Although we are not aware of similar datasets in which our findings may be replicated, the growing interest in this research area warrants larger studies to reach unequivocal conclusions.

Soesma A Jankipersadsing1,2 Fatemeh Hadizadeh3,4 Marc Jan Bonder2 Ettje F Tigchelaar2,5 Patrick Deelen2,6 Fatemeh Hadizadeh3,4 Marc Jan Bonder2 Ettje F Tigchelaar2,5 Patrick Deelen2,6

1Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
2Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
3Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
4School of Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran
5Department of Food and Nutrition, Wageningen, The Netherlands
6University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
7Division of Family Medicine, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
8Stress Research Institute, Stockholm University, Stockholm, Sweden
9Division of Gastroenterology, King’s College London, St Thomas’ Hospital Campus, London, UK

ACKNOWLEDGEMENTS

The authors thank Jackie Senior for editing the text.

Funding

This work was funded by grants from the Top Institute Food and Nutrition, Wageningen, to CW (GH001), the Netherlands Organization for Scientific Research to JF (NWO-VIDI 864.13.013) and the Swedish Research Council (VR) to MD A. AZ holds a Rosalind Franklin fellowship (University of Groningen).

Competing interests None declared.

Patient consent Obtained.

Ethics approval The LifeLines-DEEP study was approved by the ethics committee of the University Medical Center Groningen, the Netherlands (document no. METC UMCG LDEEP: M12.113965). The PopCol study was approved by Karolinska Institute’s ethics committee, Stockholm, Sweden (dnr 394/01). All participants signed an informed consent form prior to study enrolment.

Provenance and peer review Not commissioned; internally peer reviewed.
3 McIntosh K, Reed DE, Schneider T, et al. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomized controlled trial. Gut Published Online First: 14 Mar 2016. doi:10.1136/gutjnl-2015-311339


A GWAS meta-analysis suggests roles for xenobiotic metabolism and ion channel activity in the biology of stool frequency

Soesma A Jankipersadsing, Fatemeh Hadizadeh, Marc Jan Bonder, Etijke F Tigchelaar, Patrick Deelen, Jingyuan Fu, Anna Andreasson, Lars Agreus, Susanna Walter, Cisca Wijmenga, Pirro Hysi, Mauro D'Amato and Alexandra Zhernakova

Gut published online July 29, 2016

Updated information and services can be found at: http://gut.bmj.com/content/early/2016/07/29/gutjnl-2016-312398

These include:

References This article cites 6 articles, 1 of which you can access for free at: http://gut.bmj.com/content/early/2016/07/29/gutjnl-2016-312398#BIBL

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections Articles on similar topics can be found in the following collections

Open access (282)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/