LETTER

A GWAS meta-analysis suggests roles for xenobiotic metabolism and ion channel activity in the biology of stool frequency

Stool consistency and frequency patterns are complex traits that are often altered in GI disease, and recent studies published in *Gut* highlight the importance of stool frequency in relation to gut microbiota composition and the efficacy of pharmacological and dietary treatments in IBS.\(^1\)\(^-\)\(^3\)

Despite reported heritability in invertebrates\(^4\) and similar evidence from open-field defaecation models in rats,\(^5\) the genetics of stool frequency has not been explored in humans. We undertook a genome-wide association study (GWAS) in two well-characterised population-based cohorts with genotype and defaecation data available: LifeLines-Deep (LLD) from the Netherlands (N=1546; 58% females; mean age 44 years (range 18–86)) and PopCol (PC) from Sweden (N=284; 60% females; mean age 54 years (range 22–71)).\(^6\)\(^-\)\(^7\) The average number of bowel movements per day (BM/d) was extracted from daily records kept by both populations and did not differ between cohorts (LLD=1.39\(±\)0.64SD; PC=1.42\(±\)0.74SD). Available CytoChip+Immunochip (LLD) and HumanOmnExpressExome (PC) Illumina single-nucleotide polymorphism (SNP) genotype data were imputed using IMPUTE2 (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) with the Genome of the Netherlands (http://www.nlgenome.nl) as reference. SNPs were filtered on minor allele frequency >0.05 and Hardy–Weinberg equilibrium p>1E-04, samples were filtered on info score ≥0.8 and population outliers were excluded using principal component analysis. In total, high-quality genotype data for 5,390,800 common SNPs and BM/d information were obtained for 1022 LLD and 259 PC individuals.

![Manhattan plot of the results from the meta-analysis of LifeLines-Deep (LLD) and PopCol (PC) genome-wide association studies.](image)

Figure 1 Manhattan plot of the results from the meta-analysis of LifeLines-Deep (LLD) and PopCol (PC) genome-wide association studies. Single-nucleotide polymorphisms (SNPs) which are sorted according to their genomic positions are displayed on the X-axis, and the negative logarithm of the association p value for each SNP after meta-analysis is displayed on the Y-axis; each dot represents a SNP with a certain p value. The top-10 loci are indicated by numbers. Per locus, the statistics of the lead SNPs are shown, including the positions in the genome, the nearest genes and the genes in a 250 kb window around the lead SNPs. The effect of the assessed allele at each locus is indicated by beta; negative betas mean negative effect on the average number of bowel movements per day (BM/d) (decreased number of stool passes) and positive betas mean positive effect on the average number of BM/d (increased number of stool passes). Beta, direction of association; BP, base pair position; Chr, chromosome; SE, SE of the beta.
Genotype–BM/d association tests were performed in SNPTTEST (https://mathgen.stats.ox.ac.uk/genetics_software/snpttest/snpttest.html) using logistic regression under an additive model correcting for age and sex, followed by a fixed-effect model meta-analysis with META (https://mathgen.stats.ox.ac.uk/genetics_software/meta/meta.html). Summary statistics for the top-10 loci from the meta-analysis and the corresponding effect of associated alleles on the frequency (increased/decreased) of defeacation are given in figure 1.

Although none of these associations achieved genome-wide significance (possibly due to limited sample size), we found excellent functional candidates mapping to these regions. For instance, the second strongest signal included the ALDH1A1 gene, which belongs to the family of aldehyde dehydrogenases, and another member of this family (ALDH1A1L1) has been shown to affect human gut microbiota composition. Moreover, Gene Network coexpression analysis (http://www.genenetwork.nl/genenetwork/) indicated a role for ALDH1A1 in the cytochrome P450 metabolism of drugs and xenobiotics, and other genes in this pathway also map to top BM/d GWAS loci: the rs735320 signal comes from SNPs in the CYP3B1 gene, which belongs to the cytochrome P450 family; the rs4090286 locus contains CYB5R2 (cytochrome B5 reductase), which belongs to the cytochrome P450 pathway. The genetic defect in the voltage-gated channel SCN5A has been found in a subset of patients with IBS, and normal stool frequency was restored in a severely constipated SCN5A mutant carrier treated with mexiletine, a drug able to rescue SCN5A expression.

In conclusion, we report the first GWAS of stool frequency in two harmonised population-based cohorts from the Netherlands and Sweden and highlight plausible candidate genes and biological pathways. Although we are not aware of similar datasets in which our findings may be replicated, the growing interest in this research area warrants larger studies to reach unequivocal conclusions.

Soesma A Jankipersadsingh,1,2 Fatemeh Hadizadeh,3,4 Marc Jan Bonder,2 Ettje F Tigthelaar,2,5 Patrick Deelen,2,6 Jingyuan Fu,1,2 Anna Andreasson,7,28 Lars Agreus,7 Susanna Walter,7 Cisca Wijmenga,2,6 Soesma A Jankipersadsingh,1,2 Fatemeh Hadizadeh,3,4 Marc Jan Bonder,2 Ettje F Tigthelaar,2,5 Patrick Deelen,2,6 Jingyuan Fu,1,2 Anna Andreasson,7,28 Lars Agreus,7 Susanna Walter,7 Cisca Wijmenga,2,6 Soesma A Jankipersadsingh,1,2 Fatemeh Hadizadeh,3,4 Marc Jan Bonder,2 Ettje F Tigthelaar,2,5 Patrick Deelen,2,6 Jingyuan Fu,1,2 Anna Andreasson,7,28 Lars Agreus,7 Susanna Walter,7 Cisca Wijmenga,2,6

Table 1 Pathway analysis of GWAS meta-analysis results for the average number of BM/d

<table>
<thead>
<tr>
<th>Top associated GO term</th>
<th>P</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular component</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium channel complex</td>
<td>6E-07</td>
<td></td>
</tr>
<tr>
<td>Sarcolemma</td>
<td>2E-05</td>
<td></td>
</tr>
<tr>
<td>Voltage-gated sodium channel complex</td>
<td>2E-05</td>
<td></td>
</tr>
<tr>
<td>Ion channel complex</td>
<td>6E-05</td>
<td></td>
</tr>
<tr>
<td>Molecular function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage-gated sodium channel activity</td>
<td>2E-05</td>
<td></td>
</tr>
<tr>
<td>Peptidase regulator activity</td>
<td>3E-05</td>
<td></td>
</tr>
<tr>
<td>Substrate-specific channel activity</td>
<td>4E-05</td>
<td></td>
</tr>
<tr>
<td>Ion channel activity</td>
<td>4E-05</td>
<td></td>
</tr>
<tr>
<td>Passive transmembrane transporter activity</td>
<td>7E-05</td>
<td></td>
</tr>
<tr>
<td>Channel activity</td>
<td>7E-05</td>
<td></td>
</tr>
<tr>
<td>Endopeptidase inhibitor activity</td>
<td>8E-05</td>
<td></td>
</tr>
</tbody>
</table>

Only GO pathways with p<1E-04 are reported.
BM/d, bowel movements per day; GO, Gene Ontology; GWAS, genome-wide association study.

REFERENCES

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
McIntosh K, Reed DE, Schneider T, et al. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomized controlled trial. Gut Published Online First: 14 Mar 2016. doi:10.1136/gutjnl-2015-311339

A GWAS meta-analysis suggests roles for xenobiotic metabolism and ion channel activity in the biology of stool frequency

Soesma A Jankipersadsing, Fatemeh Hadizadeh, Marc Jan Bonder, Etjie F Tigchelaar, Patrick Deelen, Jingyuan Fu, Anna Andreasson, Lars Agreus, Susanna Walter, Cisca Wijmenga, Pirro Hysi, Mauro D'Amato and Alexandra Zhernakova

Gut published online July 29, 2016

Updated information and services can be found at: http://gut.bmj.com/content/early/2016/07/29/gutjnl-2016-312398

These include:

References
This article cites 6 articles, 1 of which you can access for free at: http://gut.bmj.com/content/early/2016/07/29/gutjnl-2016-312398#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Open access (282)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/