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Abstract

Supported by the wide range of available medical data, cardiac biomechanical modeling has exhibited sig-
nificant potential to improve our understanding of heart function and to assist in patient diagnosis and
treatment. A critical step towards the development of accurate patient-specific models is the deployment
of boundary conditions capable of integrating data into the model to enhance model fidelity. This step is
often hindered by sparse or noisy data that, if applied directly, can introduce non-physiological forces and
artifacts into the model. To address these issues, in this paper we propose novel boundary conditions which
aim to balance the accurate use of data with physiological boundary forces and model outcomes through
the use of data-derived boundary energies. The introduced techniques employ Lagrange multipliers, penalty
methods and moment-based constraints to achieve robustness to data of varying quality and quantity. The
proposed methods are compared with commonly used boundary conditions over an idealized left ventricle as
well as over in vivo models, exhibiting significant improvement in model accuracy. The boundary conditions
are also employed in in vivo full-cycle models of healthy and diseased hearts, demonstrating the ability of
the proposed approaches to reproduce data-derived deformation and physiological boundary forces over a
varied range of cardiac function.

Keywords: Cardiac Mechanics; Patient-Specific Modeling; Patient-Specific Boundary conditions; Finite
Element Method; Medical Imaging

1. Introduction

Diagnostic medicine, medical imaging and novel therapies have rapidly improved patient outcomes across
a wide range of heart conditions. While this has led to substantial progress, challenges in understanding
(patho)physiology, improving patient diagnosis and therapy planning and designing the next generation of
devices remain. Cardiac biomechanics provides a powerful tool for evaluating and predicting the complex
behaviors of the heart and is increasingly playing an important role in translating physiologically based
models towards strategies for understanding and treating heart failure [9, 36, 61]. A critical step in this
effort is the ability to devise high fidelity computational biomechanical models that are capable of replicating
cardiac function on a patient-by-patient basis.

Bolstered by continual improvements in cardiac biorheology, medical imaging and computational tech-
niques, it is now possible to create high fidelity biophysical heart models [42, 50, 67, 22, 32, 20, 1]. Early
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studies in animal heart muscle [16, 24, 27] and more recent studies of human tissue [54] have enabled de-
velopment of constitutive laws characterizing the anisotropic material behavior of the myocardium. Moving
these excised tissue results into computational models was facilitated by descriptions of the laminar muscle
structure, first determined from anatomical dissections [43] and more recently by diffusion tensor imag-
ing [48, 57]. Utilizing biomechanical models in the human heart has been enabled by medical imaging,
capable of describing in vivo anatomy [62], detailed motion [63], blood flow [38] and even non-invasive es-
timates of pressure [6, 33, 17]. Exploitation of these patient data sources has been achieved through novel
advancements in data assimilation [8, 10, 50] and parameter estimation techniques [1, 70].

An important step toward translating biophysical heart models on a patient-by-patient basis is the
personalization of cardiac function based on available data. A key challenge in this effort is the determination
and handling of boundary conditions. Despite the importance of these conditions for correctly simulating the
biomechanics of the heart, these effects are often less well-studied. Typical imaging – such as CINE or tagged
MRI – can provide some guidance on motion [53, 52]; however, this characterization can be incomplete or
corrupted by noise. Use of this type of data also requires segmentation and image processing techniques
that, in themselves, can introduce inaccuracies. Exploiting this data to drive computational biomechanical
models in a manner which maintains model fidelity and minimizes modeling errors remains an open and
important challenge.

Here we propose to address this issue by augmenting the traditional elastic energy potential minimiza-
tion problem (commonly applied for cardiac biomechanics simulation) with a series of novel data-driven
boundary energy terms. In this paper we focus on the isolated left ventricle (LV) (see figure 1) – commonly
used in studies of cardiac biomechanics [7, 59, 68, 69]. While lacking connection to other cardiac cham-
bers, isolated LV models are often more straightforward to segment and characterize from medical imaging
data, particularly MRI and ECHO. In addition, the LV is often the focus of heart failure studies due to
the functional significance of its failure. Addressing boundary conditions on the LV, we develop tailored
energy terms for each boundary component, focusing on the use of data available from non-invasive medical
imaging. Through use of Lagrange multipliers, penalty variables and moment-based constraints, we devise
terms which balance the use of real data with the energy required to force data-derived motion onto the
computational model. These introduced techniques are then systematically compared with other common
boundary conditions, highlighting their influence on simulation results as well as the benefits of the proposed
approaches. Comparisons were carried out using an idealized LV mechanics model as well as patient-specific
LV mechanics models based on data from 3 patients with dilated cardiomyopathy (DCM) as well as 3 volun-
teers. Efficacy of the proposed approach is demonstrated through direct quantitative comparisons between
3D displacement fields extracted from medical imaging data and simulation results.

The remainder of this paper is outlined as follows. A brief review of the LV cardiac mechanics model
used is provided in section 2. A summary of the elastic energy potential minimization approach is then
presented in section 3, followed by a description of the novel boundary energy potentials. An overview of
the finite element implementation is subsequently provided in section 4, followed by a description of both
idealized and patient-specific models developed in this work (section 5). Sections 6-8 systematically assess
each boundary energy potential term and, where possible, compare with other common approaches. The
proposed model is then applied to three patient and three volunteer datasets, illustrating model accuracy
as well as the efficacy of the proposed approach (section 9). The paper concludes with a summary of the
results, key outcomes and future directions (section 10).

2. Cardiac mechanics

In this section we briefly outline the basic components for the LV cardiac mechanics model used in this
work. Under zero loading conditions, the muscular wall of the LV (or myocardium) is characterized by the
reference domain Ω0 ⊂ R3 (with reference coordinates X). The LV only model results from truncation of
the heart below the valves in a short axis plane (see figures 1 and 2). The boundary of Ω0 is subdivided into
three distinct surfaces: the base Γb0, the endocardium Γl0 and the epicardium Γe0. For each boundary, we use
N to denote the outward-facing normal vector. As we will track the motion of the base plane, we use N b

to denote the mean unit normal vector on Γb0 and define a local coordinate system with orthonormal basis

2
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vectors {N1,N2,N b} (see figure 2). As the heart deforms, we use lower case {n1,n2,nb} to denote the
deformed orientations. Throughout the cardiac cycle, at each time t ∈ (0, T ], T > 0, the deformed physical
domain is denoted by Ω(t) ⊂ R3 (with physical coordinates x) with boundaries Γk and respective normals
n. We assume that for every t ∈ (0, T ] the mapping between x and X is bijective.

In order to represent the highly anisotropic behavior given by the laminar structure of the myocardium,
we define fiber directions f0 over Ω0 (see figure 2). While new techniques provide the potential to gain
some insight into the structure of these fibers on a patient-by-patient basis [40, 57, 60], in the absence of
personalized data, we prescribe an idealized distribution. Briefly, a Laplacian problem was solved on the
domain Ω0 to make a harmonic extension of the endocardial to epicardial surface normal vectors (radial /
sheet direction). Subsequently, at each point, fibers were defined in the sheet direction plane. The fiber
vector was defined based on its angle about the sheet axis, with an angle of 0◦ indicating vectors oriented in
the circumferential clock-wise direction (when viewed from the base) and an angle of 90◦ indicating vectors
oriented in the long-axis direction. A linear distribution in angle was defined transmurally, with the angle
varying between 60◦ at the endocardium and −60◦ at the epicardium [55, 58] (see figure 2).

In modelling cardiac mechanics we seek to find the deformation u = x−X and the hydrostatic pressure
p on Ω0 × (0, T ]. As we outline in the subsequent section, these variables can be found by minimizing an
elastic energy potential. For this, we must model the internal energy within the tissue due to deformation
using a strain energy potential ψ. In this paper, we treat the myocardium as an incompressible, hyperelastic
material with the distortional strain energy ψ = ψp+ψa comprised of passive and active parts. In this work
we use the reduced Holzapfel-Ogden model [27] to describe the passive behavior of the myocardium using

ψp(Fu) =
a

2b

{
exp(b[IIF − 3])− 1

}
+

af
2bf

{
exp(bf [IIF ,f − 1]2)− 1

}
, (1)

which combines good model fidelity and parameter identifiability [25]. Here we have used some basic
kinematic quantities: IIF ,f = |Fuf0|2 and IIF = Fu : Fu denoting material invariants, Fu = ∇Xu + I
the deformation gradient tensor and Ju = det(Fu) its determinant. Here a, af , b and bf are material
parameters. a characterizes the bulk stiffness of the myocardium while af describes the stiffness in the
direction of fibers f0. Similarly, the parameters b and bf characterize the shape of the nonlinear response
in bulk and the fiber direction.

A simple length-dependent active constitutive law [1] is used in the model, where activation occurs along
the fibers, and a single patient-specific active tension α(t) is applied across the domain at any given time
t ∈ (0, T ]. The structure of the idealized fiber distribution results in a singularity arising in the apical region,
causing spurious pressure peaks. As the microstructure in the human heart is less ordered near the apex,
the active strain energy function is augmented with an isotropic term, and both components are scaled so
that the total energy is fiber-oriented in most of the domain and isotropic at the apex, i.e.

ψa(Fu,X, t) = α(t)

{
[1−D(X)]

∫ IIF ,f

0

g(ξ) dξ +D(X)
∫ IIF

0

g(ξ/3) dξ

}
, (2)

where
D(X) = exp

[
−(‖X−Xa‖/0.02Lla)2

]
, g(ξ) = tanh

(
2[
√
ξ − l0]

)
.

Here D(X) is a distance function taking the value 1 near the apex point Xa and rapidly decaying to zero
(with Lla being the long-axis length and the factor 0.02 set so that D(X) < 0.05 at a distance of ∼ 0.06Lla),
as illustrated in figure 3. g is a given activation function which provides length-dependent scaling of the
active strain energy, with l0 = 0.8 the lower bound for the myocyte compressive strain [30]. From the strain

3
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energy, we can derive the first Piola-Kirchhoff stress [5]

Pu =
∑

k∈{p,a}

(
∂ψk
∂ IIF

∂ IIF
∂Fu

+
∂ψk
∂ IIF ,f

∂ IIF ,f
∂Fu

)

= a exp(b[IIF − 3])Fu + 2af [IIF ,f − 1] exp(bf [IIF ,f − 1]2)Fuf0 ⊗ f0

+ α(t)D(X)g(IIF /3)Fu + α(t)[1−D(X)]g(IIF ,f )Fuf0 ⊗ f0. (3)

Finally, in order to introduce some of the data-driven boundary conditions in the next section, we use the
following notation: ud(t) represents the displacements extracted from the data, e.g. as discussed in section
5, and Vlv(t) represents the volume of the left-ventricular cavity Ωlv computed from ud(t).

3. Elastic energy potential and weak form equations

The mechanics of the heart can be solved by finding the critical point of the total potential energy
function Πt (at some time t ∈ (0, T ]), where the displacement and pressure state variables satisfy the saddle
point condition [5],

Πt(u(t), p(t)) = inf {sup {Πt(v, q), q ∈ P}, v ∈ U}. (4)

In this approach, the saddle point problem is used to solve a quasi-static system, whereby the displacement
and pressure are sought for each time point t ∈ [0, T ] throughout the cardiac cycle subject to varying
boundary conditions or activation states. U and P denote the suitable function spaces for displacement
and pressure variables, respectively, at each individual point in time (see Appendix A). The total potential
energy Πt = Πint

t + Πext
t is the sum of the internal (superscript int) and external (superscript ext) energy

terms, with the internal energy given by

Πint
t (v, q) =

∫

Ω0

ψ(F v,X, t) + q(Jv − 1) dX, (5)

where ψ(F v,X, t) = ψp(F v) + ψa(F v,X, t) is the strain energy potential defined in equations 1 and 2 and
the second term is used to enforce mass conservation. Within the LV, the external energy Πext

t can be
conveniently partitioned over the base Γb0, endocardial lumen Γl0, and epicardial Γe0 (see figure 2). A variety
of boundary conditions have been employed in models of the left ventricle, providing varying degrees of
accuracy and introducing additional forces to the problem (as will be presented below). To examine the
numerical and modeling implications of these conditions, in this paper we augment the problem in equation 4
by writing Πext

t as a sum of external boundary energies, i.e.

Πext
t (v,µ) =

∑

k∈{b,l,e}
Πk
t (v,µk). (6)

with µ denoting any additional variables {µk} – tractions or pressures – defined over each boundary domain
Γk0 , k ∈ {b, l, e}. The specifics of these variables depend on the employed boundary conditions and will be
introduced throughout the remainder of this section. We may re-write the saddle-point problem in equation 4
as,

Πt(u(t), p(t),λ(t)) = inf {sup {Πt(v, q,µ), (q,µ) ∈ P ×Λ}, v ∈ U} (7)

where the the total potential energy Πt = Πint
t + Πext

t is now a functional on U × P ×Λ, (u, p,λ) are the
state variables (e.g. unknown displacement, pressure and boundary tractions and/or pressures, respectively)
and (v, q,µ) ∈ U ×P ×Λ arbitrary functions within the selected search space. As the saddle point problem
is posed at each time point, in what follows we simplify the notation such that (u, p,λ) = (u(t), p(t),λ(t))
unless the context is ambiguous. The solution (u, p,λ) ∈ U×P×Λ is then the critical point of the functional
satisfying

D(u,p,λ)Πt(u, p,λ)[v, q,µ] = 0, ∀ (v, q,µ) ∈ U × P ×Λ, (8)

4
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with D(u,p,λ)Π denoting the sum of directional derivatives DuΠ, DpΠ and DλΠ [5]. Equation (8) results
in a weak form statement of the solid mechanics problem and can be split into directional derivatives of
internal and individual external boundary energy terms. With this approach in mind, we use At to denote
the directional derivative of the internal energy potential (or equivalently, the nonlinear weak form operator)
from equation 5, i.e.

At(u, p;v, q) = D(u,p)Πint
t (u, p)[v, q] =

∫

Ω0

(Pu + pJuF
−T
u ) : ∇Xv + q(Ju − 1) dX, (9)

with Pu denoting the first Piola-Kirchhoff stress given in equation 3, Fu the deformation gradient tensor,
and Ju its determinant (see section 2). Similarly, for a given external energy term Πk

t applied on the
boundary Γk0 we can introduce a form Akt to denote the directional derivative of the external boundary
term,

Akt (u,λk;v,µk) = D(u,λk)Πk
t (u,λk)[v,µk]. (10)

In this notation, the weak form problem can be written as: find (u, p,λ) ∈ U × P ×Λ such that,

At(u, p;v, q) +
∑

k∈{b,l,e}
Akt (u,λk;v,µk) = 0, ∀ (v, q,µ) ∈ U × P ×Λ. (11)

In the subsequent sections, we will present different formulations for basal, endocardial and epicardial
conditions as well as novel boundary energy potential terms proposed for patient-specific LV mechanics
modeling.

3.1. Base plane boundary conditions
In studies of LV mechanics, the ventricular domain is often truncated. This approach avoids complications

associated with modeling the basal tissue structure (that is dominated by fibroelastic connective tissue) and
basal anatomy which is often poorly resolved in standard magnetic resonance or echocardiographic clinical
imaging. Truncation of the myocardial geometry, however, introduces an artificial boundary, Γb0, over which
non-trivial boundary conditions are likely active.

A common approach in LV models is to impose some form of Dirichlet or mixed Dirichlet / zero-traction
conditions (see table 1). Assuming a known displacement ud is available – either observable from imaging
data or determinable by other means – many common conditions can be integrated using the boundary
energy potential term (equation 12) and its directional derivative (equation 13), i.e.

Πb
t(v,µb) :=

∫

Γb0

µb · (v − ud(t)) dX, (12)

Abt(u,λb;v,µb) :=
∫

Γb0

λb · v + µb · (u− ud(t)) dX. (13)

Typical conditions can be employed by careful selection of the space Λb (itself a subset of Λ from the
previous section) containing the Lagrange multiplier λb and test variable µb (also provided in table 1 and
discussed in Appendix A). For most conditions in table 1, the presence of a Lagrange multiplier variable
on the boundary introduces unnecessary added complexity to approaches where direct Dirichlet conditions
are imposed. However, use of a Lagrange multiplier constraint to enforce these conditions was done in order
to present the problem in the same manner and compare resultant boundary tractions.

Perhaps the most common condition using equations 12 and 13 is the fixed-base(0) condition, which
is straightforward to impose and popular if no other data is available. This condition is often applied to
idealized analysis or for model testing. However, this condition is strict, often yielding unphysiological
stresses and singularities in hydrostatic pressure. Moreover, in patient-specific simulations, this condition
neglects base plane motion which may introduce both long-axis and short-axis motion throughout the LV
model. Fixed-base(ud) condition using data derived boundary motion provides a viable alternative, but
success of this approach depends significantly on data quality.
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Avoiding unphysiological stress and pressure peaks associated with Dirichlet conditions is an alternative
technique employing springs to attach the base on the heart valves [37, 29]. Contrary to the fixed base
boundary condition, this technique enables a small degree of basal motion while avoiding strict enforcement
of the constraint. Nevertheless, the motion introduced into the model is still substantially smaller compared
to physiological motion observed in vivo.

In order to incorporate basal motion observed in vivo, Billet et al. proposed an image-based boundary
condition. In particular, the basal motion applied on the model was estimated from the images by introducing
an image force into the model dynamic equations [4, 14].

An alternative is to apply penalty techniques [3], enabling some violation of conditions if excessive energy
is required. This can be done using the relaxed-base condition [2, 1],

Πb
t(v,µb) :=

∫

Γb0

µb ·
(
v − ud −

1
2
Kb(t)µb

)
dX, (14)

Abt(u,λb;v,µb) :=
∫

Γb0

λb · v + µb · [u− ud(t)−Kb(t)λb] dX, (15)

where Kb is a penalty matrix, which can be chosen based on the accuracy of the data-derived motion ud.
We note that this formulation shares similarities with the employment of springs and Kb could be thought
analogously as a spring constant. However, in this case the reference position of the spring is adjusted
dynamically by the data itself, making it conceptually different from the typical spring model. In [2, 1], the
penalty matrix Kb(t) = ε

(
I − nb(t) ⊗ nb(t)

)
was used to ensure that displacements in the direction of nb

are equivalent (weakly), while short-axis displacements are relaxed by the parameter ε.
While this relaxation prevents some potential artifacts due to imprecise data or image processing, noise

in the base plane direction nb is still imposed weakly on the model. In addition, the formulation does not
ensure that some basic quantities are retained. Data averaged quantities, such as the mean position or the
mean affine transformation, tend to minimize the impact of data noise and artifacts and should, therefore,
be preserved. These quantities can be captured by considering the 0th and 1st moments of the data ud.
To this end, we define Mm,n[w] as the m,nth moment of a function w on the base Γb0. Specifically, we may
define local coordinates aligned with the base plane axes, e.g. ξi = (X −Xb) ·N i (see figure 2) where Xb

is the mean position of the base and N i the ith base vector (i = 1, 2). Using this, the m,nth moment is
defined as,

Mm,n[w] :=
∫

Γb0

ωm,n(X)w dX, ωm,n = ξm1 ξ
n
2 (16)

From equation 16, we see that the zero moment M0,0 provides mean quantities. For example, M0,0[X] = Xb

provides the mean position of the base and M0,0[ud] = u0 the mean displacement of the base plane. Hence,
requiring M0,0[u−ud] = 0 constrains the mean quantity of the model to match that of the data. Similarly,
constraining first order moments M1,0 and M0,1 ensures conditions of the optimal affine transformation are
preserved in the model. To see this, we can define the best affine transformation A as

A = min
M∈R3×2

1
2

∫

Γb0

|uM − ud|2 dX

where uM = M(ξ1, ξ2)T + u0 is an affine function on the plane. Taking the derivative with respect of
components of the generic matrix M , it can be shown that the optimal affine transformation must satisfy
the constraints ∫

Γb0

ξi(uA − ud) dX, i = 1, 2

or equivalently, that Mm[uA − ud] = 0 for m = (1, 0) and (0, 1). As these integrative quantities are less
subject to data errors, we propose that the zero and first moments of the base plane – M0,0, M1,0, M0,1 –
should be consistent between the data and model. To achieve this, we propose a moments + relaxed-base

6
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condition, i.e.

Πb
t(v, {µkb}) :=

∑

m

µmb ·Mm[v − ud(t)] +
∫

Γb0

µb ·
(
v − ud(t)−

1
2
Σµb

)
dX (17)

Abt(u, {λkb};v, {µk}) :=
∑

m

λmb ·Mm[v] +
∑

m

µmb ·Mm[u− ud(t)] +
∫

Γb0

λb · v + µb · [u− ud(t)−Σλb] dX

for m = {0, 0}, {1, 0}, {0, 1}. (18)

where {λkb} = {λ0,0
b ,λ1,0

b ,λ0,1
b ,λb} ∈ [R3]3 × γbU is a partitioning of the boundary traction into its 0th

order moments (λ0,0
b ), 1st order moments (λ1,0

b ,λ0,1
b ) and higher order effects (λb). Here, λ0,0

b ,λ1,0
b ,λ0,1

b

denote Lagrange multipliers constraining equality of the indicated moments between data and model and
λb denotes a penalty variable which can be used to constrain base plane motion toward the data. Similarly,
{µk} = {µ0

b ,µ
1,0
b ,µ0,1

b ,µb} ∈ [R3]3 × γbU . Relaxation is controlled by the matrix Σ, which we tune
asymmetrically in the long-axis and base plane due to inherent differences in the expected forces as well as
potential asymmetry in data accuracy, i.e.

Σ = εlaN b ⊗N b + εsa(I −N b ⊗N b), εla, εsa > 0.

In this formulation, only integrated quantities are imposed strictly – i.e. mean point and the best fit affine
map to the data – while more stringent conditions on base plane motion stemming from data may be relaxed
using εla and εsa to minimize the influence of potential artifacts to the mathematical model. By design, the
formulation ensures that λb satisfies,

M0,0[λb] = M1,0[λb] = M0,1[λb] = 0,

and that uniqueness is retained in the variables {λkb} (under suitable assumptions on the original model
problem). Briefly, this can be seen by examining Abt . Choosing all other test function to be zero and varying
{µ0

b ,µ
1,0
b ,µ0,1

b } individually, we see that these moments match between data and model. Hence, choosing
all other test function to be zero and selecting µb to be a vector with each component equal to 1, ξ1 or ξ2
we arrive at the above constraints on λb.

3.2. Endocardial boundary conditions
The endocardial surface of the LV is comprised of myocardial muscle, trabeculae and papillary muscles

that are interacting with intraventricular flows [23]. Typically, the complexity of cardiac anatomy is sim-
plified to consider only the myocardial muscle, neglecting the presence of trabeculae and papillary muscles
which serve support roles in contraction. The interaction of muscle and blood flow can yield complex hemo-
dynamics and momentum transfer. While in some disease cases, such as congenital heart disease [13] or valve
stenosis [28, 64], hemodynamic effects can play an important role, in many circumstances the mechanics of
the heart are principally dominated by hemodynamic pressure (with minimal influence of shear stress). It
has been shown both experimentally [19] and numerically [18] that momentum effects yield spatial variation
in the left ventricular fluid pressure. However, apart from early diastolic and systolic phases, these variations
in pressure are usually < 5% of the mean pressure, making spatial variability in pressure less significant in
predicting muscle behavior.

As a result, most LV mechanics models assume a constant intraventricular lumen pressure, Plv. This
pressure can be either derived from data, tuned through use of Windkessel models [31] or inferred at some
or all states through the heart cycle [6]. Integration of endocardial constraints can be employed through
multiple mechanisms (see table 2), perhaps the most common of which is through direct imposition of
pressure data by a surface traction tlv, i.e.

Πl
t(v) :=

∫

Γl0

tlv(t) · v dX (19)

Alt(u;v) := −Plv(t)
∫

Γl0

v · JuF−Tu N dX, (20)
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where tlv is considered given data in equation 19 and is subsequently related to the pressure (using Nanson’s
formula [5]) by tlv = −PlvJF−TN . This boundary constraint is commonly used in cardiac mechanical
models of both animals [68] and humans [70]. However, this approach requires a priori knowledge of the
intraventricular pressure throughout the cardiac cycle. While some non-invasive techniques are under devel-
opment [6, 41], measurement of intraventricular pressure is currently dependent on cardiac catheterization,
limiting the application of this model to patients who will undergo this invasive procedure. Additional
complexity occurs during isovolumetric phases of the cardiac cycle, where the changing activation of the
heart muscle leads to a variable increase or decrease in pressure, while the LV cavity volume, Vlv, remains
constant. These phases can be addressed by iteratively solving for the pressure yielding negligible volume
change [68].

An alternative approach is to instead impose the volume, Vlv, of the LV cavity directly. In this approach,
Vlv may be defined based on non-invasive imaging data taken throughout the cardiac cycle. This volume
driven approach can be achieved by changing Πl

t to denote the boundary energy required to achieve the
volume Vlv. It also provides a more straightforward approach for full cycle simulations by eliminating the
need to apply iterative approaches to manage isovolumetric phases of the heart cycle. Introducing a Lagrange
multiplier, λl(t) ∈ Λl = R, the energy constraint can be written as,

Πl
t(v, µl) := µl[V (v, t)− Vlv(t)], (21)

Alt(u, λl;v, µl) := −λl
∫

Γl0

v · JuF−Tu N dX + µl[V (u, t)− Vlv(t)], (22)

with the volume V (u, t) computed using the boundary integral over the truncated LV lumen,

V (u, t) =
1
3

(∫

Γl0

(u+ X) · ñl dX +
∫

Γlv,t
(ud(t) + X) · nb dx

)
. (23)

In equation 23 the second term gives the effective flux of volume due to motion of the top of the lumen
(denoted Γlv,t) and can be derived from the data. In equation 23 we assume that ñl (the area weighted
outward normal of the LV lumen domain Ωlv) is given, replacing ñl = −JuF−Tu N in equation 22 using
Nanson’s formula. Note, a change of variables is performed on λl to eliminate the additional factor 1/3.

Methods of volume prescription in equation 22 vary in the literature. One simplification is to assume
negligible base plane motion in equation 23, computing the model-derived volume V in equation 22 as,

VSV I(u, t) = −1
3

∫

Γl0

(u+ X) · JuF−Tu N dX. (24)

Here we note that this formulation requires re-orienting the heart so x ·nb = 0 on the base (e.g. translation
/ rotation so the base plane integral goes to zero). Another approach which avoids re-orienting the model
can be derived using the Spatial Conservation Law [15]. Noting that,

∂tV (u, t) = ∂t

∫

Ωlv

dx =
∫

Ωlv

∇ · ∂tu dx =
∫

Γl0

∂tu · ñ dX +
∫

Γlv,t
vb · nb dx, (25)

under assumptions of negligible base plane velocity vb, we can compare the rate of volume change with the
known increase / decrease in volumes by replacing [V (u)− Vlv] with [VV RI(u(t))− ∂tVlv(t)] in equation 22
and computing,

VV RI(u, t) = −
∫

Γl0

∂tu · JuF−Tu N dX (26)

Both VSV I and VV RI are valid when base plane motion is minimal but may introduce a potential bias when
motion is observed. However, this assumption can be easily compensated for by noting that the volume
formula in equation 23 is not unique, but instead exploits the divergence theorem. In general, we may
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compute the cavity volume based purely on the motion of the endocardial cavity boundary. In this case, we
seek a vector function g that satisfies,

V =
∫

Ωlv

∇ · g(x) dx =
∫

Γl0

g(x) · ñl dX. (27)

Assuming that the base plane maintains planarity throughout the cardiac cycle, we may select the simple
form g(x) = Ib(t)x, with Ib(t) = (1/2)(I − nb(t)⊗ nb(t)) Here, we observe

∫

Ωlv

∇ · g(x) dx =
1
2

(I − nb ⊗ nb) :
∫

Ωlv

∇x dx =
1
2
V (I − nb ⊗ nb) : I = V

Moreover, due to the assumed planarity and using Divergence theorem,
∫

Ωlv

∇ · g(x) dx =
∫

Γl0

g(X + u) · ñl dX +
∫

Γlv,t
g(x) · nb dx =

∫

Γl0

g(X + u) · ñl dX

where we note g(x) · nb = 0 for any x. Hence, we propose to compute the model derived volume in
equation 22 using

VV I(u, t) := −
∫

Γl0

Ib(t)(u+ X) · JuF−Tu N dX (28)

3.3. Epicardial boundary conditions
The epicardial constraint on the left ventricular myocardium is arguably the least well characterized.

Although some studies have introduced a fixed pericardial surface to constrain the epicardial motion [29, 37],
in most cases, the uncertainty concerning the forces applied on the epicardial wall has led to the external
energy on the epicardium being set to zero, i.e. Πe

t (v) = 0. Though the heart is surrounded by the fibrous
pericardial sac and is adjacent to the diaphram, ribcage and lungs, this assumption is based on the premise
that the boundary energies coming from the epicardium are negligible compared to the other boundary
energies present.

However, similar to the base of the LV, truncation is also introduced along the LV / RV junction (RV
denotes the right ventricle). This is likely to introduce non-negligible forces on the LV heart wall, owing to
both filling and contraction in the right ventricle. To account for this missing force, we propose the following
energy model on the epicardium,

Πe
t (v,µe) :=

∫

Γe0

Hµe ·
(
v − ud(t)−

εe
2
µe

)
dX (29)

Aet (u,λe;v,µe) :=
∫

Γe0

λe ·w + µe · [H(u− ud(t))− εeλe] dX (30)

where λe is an added penalty variable defined on the epicardial surface (and µe the corresponding test
function), εe > 0 is a relaxation parameter and H : Ω0 → [0, 1] is a scalar function labelling the RV /
LV junction (1) and epicardial / septal surfaces (0) as derived from images (see figure 3). In this case,
the epicardial boundary energy is introduced to account for the potential traction stemming from right
ventricular filling and contraction through the penalty variable λe ∈ γeU defined on the entire epicardium.
While forces are only required at the LV/RV junction, extension to the entirety of Γe0 is performed in order
to ease the need for developing complex boundary domains. For this reason, a change of variables λe = Hλe
is applied from Πe

t to Aet to ensure solvability of the penalty variable λe over the entire epicardial region.

4. Discretization and solution

To simulate the LV cardiac model, the time interval (0, T ] was discretized into time points {t1, . . . tN}
starting from end diastole and transitioning through the heart cycle. Patient-specific input data – e.g. ud,

9
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Vlv, nb – is interpolated from imaging sources to the n = 1, . . . N time steps. The reference domain Ω0 is
then split into tetrahedral or curvilinear hexahedral elements and displacement-pressure state variables are
interpolated using quadratic-linear Taylor-Hood elements (details on interpolations can be found in table 3
and meshes in table 4). Spaces Uh and Ph (discrete displacement and pressure spaces) are constructed in the
standard way, and required boundary tractions are constructed from the trace restricted to the appropriate
subset boundary (see Appendix A).

At each time point tn, we then look to find the displacement, pressure and boundary tractions / pressures
(uh, ph, {λh,k}) ∈ Uh × Ph ×Λh such that,

Atn(uh, ph;vh, qh) +
∑

k∈{b,l,e}
Aktn(uh,λh,k;vh,µh,k) = 0, ∀(vh, qh, {µh,k}) ∈ Uh × Ph ×Λh. (31)

Note that, for ease of notation, we omit the reference to the current timestep (e.g. uh = uh(tn) in equa-
tion 31). The final form depends on the selected boundary energies, hence we leave the actual defined
multipliers in equation 31 general. However, for the proposed patient-specific LV model, {Ab,Al,Ae} are
defined using equations 18, 22, 28, and 30. Here, {λh,k} = {λ0,0

b ,λ1,0
b ,λ0,1

b ,λb, λl,λe} denotes the group of
boundary multipliers and penalty variables introduced on boundaries of the model and the resultant space
Λh is defined as

Λh = [R3]3 × γbUh × R× γeUh

at each time step. In the usual way, the FEM discrete weak form problem in equation 31 can be equivalently
written as the root to the vector function R : RNT → RNT . Noting that, from table 3, the state variables,
boundary tractions and pressures can be written as a weighted sum WU , with

WU =




u
p

λ0,0
b

λ1,0
b

λ0,1
b

λb
λl
λe




, W =
[
Wu,W p,W b0,0

,W b1,0
,W b0,1

,W b,W l,W e
]
, U =




Uu

Up

U b
0,0

U b
1,0

U b
0,1

U b

U l

Ue




,

equation 31 can be written concisely as a function of the unknown weights U and V of the trial and test
function coefficients, i.e.

Atn(U, V ) := Atn(WuUu,W pUp;WuV u,W pV p) +
∑

k∈{b,l,e}
Aktn(WuUu,W kUk;WuV u,W kV k).

Here W k denotes a vector of all basis functions used for the k−variable (see table 3) and similarly Uk denotes
the corresponding weights. Hence, the solution U is a root of the residual vector function R given as,

R(U) = ∇VAtn(U, V ) = 0. (32)

The general solution procedure to solve equation 32 is outlined in algorithm 1. Briefly, we follow a
Shamanskii-Newton Raphson procedure introduced previously in [51] and used in [39]. Here, the Jacobian
matrix, K, and its inverse are initially computed and only recomputed when residual convergence slows.
This is controlled by the parameter γ ∈ (0, 1), which dictates the minimum relative decrease required in the
residual vector function (here γ = 0.75 was used). The Jacobian matrix itself is computed as K = ∇UR

10
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which, owing to the structure of boundary energy terms, can be written as,

K :=
[ A B

C D
]
, A := KV u,Uu ,

B :=
[
KV u,Up , Kb

V u,Ub
0,0 , Kb

V u,Ub
1,0 , Kb

V u,Ub
0,1 , Kb

V u,Ub , Kl
V u,U l , Ke

V u,Ue

]

C :=




KV p,Uu

Kb
V b

0,0
,Uu

Kb
V b

1,0
,Uu

Kb
V b

0,1
,Uu

Kb
V b,Uu

Kl
V l,Uu

Ke
V e,Uu




, D :=




0 · · · · · · · · · · · · · · · 0
...

. . .
...

...
. . .

...
... 0

...
... Kb

V b,Ub
...

... 0 0
0 · · · · · · · · · · · · 0 Ke

V e,Ue




with Kk
V β ,Uα denoting the sub block matrix corresponding to the derivative with respect to the indicated

variables, i.e.

Kk
V β ,Uα = ∇Uα∇V βAktn(U, V ),

[
Kk
V β ,Uα

]
ij

=
∂2Akt (U, V )

∂Uαi ∂V
β
j

(33)

and Aktn denoting the individual operators Aktn . All model components were implemented and solved in
CHeart – a multiphysics solver developed at King’s College London [35] and used in a number of cardiac
modeling projects [12, 11, 1, 34, 65].

Algorithm 1 Cardiac Mechanics Solve.

1: Given: reference state U0.
2: Compute K = ∇UR(U0), K−1.
3:

4: for (n = 1 : N) do
5: Set k = 0, Un,k = Un−1.
6: Compute R(Un,k), r = c‖R(Un,k)‖.
7:

8: while (r > TOL) do
9: Compute ∆U = −K−1R(Un,k).

10: Find r̃ = min
{
‖R(Un,k+1)‖, Un,k+1 = Un,k + α ∆U, α ∈ [0, 1]

}
.

11: if (r̃ > γ r or k > ITER) then
12: Compute K = ∇UR(Un,k+1), K−1.
13: Set r = r̃, k = k + 1.
14:

15: Set Un = Un,k.

5. Model Problems

5.1. Idealized LV model
The boundary conditions introduced in sections 3.1-3.3 were initially tested using in silico passive infla-

tion of an idealized LV. The LV was modelled as a thick-walled truncated ellipsoid of physiological cardiac
dimensions. A quadratic hexahedral mesh was used to solve the discretised problem with dimensions as

11



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

described in Table 4. Consistent physiological values of end-diastolic pressure and volume were used as
end-point for inflation depending on the formulation of the endocardial boundary conditions. The passive
parameter values were chosen to provide physiological pressure-volume response over diastole.

5.2. In vivo LV models
In order to verify the applicability of the method to in vivo data, six models were built using volun-

teer and patient MR images, following the workflow described in figure 4. Specifically, we processed three
datasets from healthy volunteers (V1-V3), and three datasets from patients (P1-P3) diagnosed with mod-
erate dilated cardiomyopathy (DCM). DCM is associated with LV remodelling, giving the chamber a more
spherical shape and higher volume. In addition, deterioration of LV function is observed in DCM. These
models provide a diverse set of geometries and modes of function for testing the boundary energy potential
terms introduced.

For each case the (non-invasively) acquired images included short-axis and long-axis 2-, 3- and 4-chamber
view CINE images, which were then used to create a combined segmentation of the truncated LV at end
diastole. An atlas-based meshing strategy [45] was employed for the construction of personalized tetrahedral
end-diastolic meshes. Basic mesh characteristics are given in Table 4. In addition, the LV / RV junction
region was defined through manual segmentation of end-diastolic short-axis CINE images. The segmentation
was used to provide the spatial field H in equation 29 on each personalized mesh. Mesh deformations
through the cardiac cycle were extracted from 3D tagged MRI using a non-rigid registration algorithm [53]
implemented in Image Registration Toolkit2.

All simulations used the end-systolic (corresponding to the lowest cavity volume) mesh configuration as
the reference state, as discussed in [1]. The volume curve for each case was computed from the data using
equation 23.

Patient-specific parameters for the constitutive laws were obtained following the estimation procedure
described in [1], based on the best match between the data and the model results. First, in passive parameter
estimation we minimized the relative total displacement error (over the whole LV and all diastolic frames):

Jp =

(∑N
n=m ‖u(tn)− ud(tn)‖2 dt
∑N
n=m ‖ud(tn)‖2 dt

)1/2

, (34)

with m and N denoting the end-systolic and end-diastolic time frames respectively. In order to obtain a
personalized active tension curve we also relied on patient-specific LV cavity pressure λl,d(t) through the
cycle, obtained from the normalised curve in [49], and scaled using the E/Ea estimate for the end-diastolic
pressure [41] and the peak systolic pressure value obtained non-invasively using the CENTRON device 3.
Accuracy of the CENTRON estimate compared to invasive central systolic pressure measures was reported to
have a standard deviation of 5.9mmHg [6], constituting an error below 10%. Investigating the impact on the
activation parameter α, we observed the maximum value of α changed ±10.3% when the peak CENTRON
estimate was modulated by ±10%.

At each time frame tn the value of the active tension α(tn) was computed as the minimizer of the
combined relative displacement and cavity pressure error functional:

Ja(tn) = 0.5
‖u(tn)− ud(tn)‖
‖ud(tn)‖ + 0.5

|λl(tn)− λl,d(tn)|
|λl,d(tn)| . (35)

In addition to providing the basis for model personalization, the error functionals Jp and Ja allow quantifi-
cation of the accuracy of the model results over the whole truncated LV.

For a detailed description of the acquired data, image processing pipeline and the specifics of the esti-
mation process, as well as the reasoning behind it we refer to previous work [25, 1].

2http://www.doc.ic.ac.uk/∼dr/software
3http://www.centrondiagnostics.com
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6. Analysis of base plane conditions

Truncation of the heart geometry near the base plane is often applied in the literature [27, 42, 32, 21].
As mentioned in section 3.1, this leads to an artificial surface over which some boundary condition must
be applied. To assess the common base plane conditions, outlined in table 1, an idealized heart model was
passively inflated to an end diastolic volume (EDV). Abt was selected based on the applied condition as
discussed in section 3.1. Inflation was driven by volume and no epicardial conditions were applied. For
comparison, data on the base was assumed ud = 0 except in comparisons with the fix-in-plane approach.

Figure 5 illustrates the applied base plane tractions and the applied endocardial pressure. Fixed-base(0)
required the highest average boundary tractions as well as larger endocardial inflation pressures to achieve
EDV, followed closely by fixed-endo-ring which has the highest individual values but lower average. Relaxed-
base conditions using (εla, εsa) = (10−6, 10−6) produced a reduction in forces and endocardial pressure.
This was also observed in the pure moments (εla, εsa) = (0, 0) and moments + relaxed-base (εla, εsa) =
(10−6, 10−6) conditions, which exhibited a reduced range of forces. Interestingly, the endocardial inflation
pressures increased partially, however, this can be explained by the increased freedom allowing more in-plane
dilation.

The fixed-in-plane condition produced the lowest forces and endocardial filling pressures, though still
producing a significant range in tractions due to the requirement of planarity. This was expected as the
condition does not restrict short-axis motion. Using the general dilation observed as a template for motion
(ud), moments + relaxed-base were further able to reduce the boundary energies and tighten the range of
observed forces. We note that this examination cannot confirm which models are more or less correct, as
each prescribes conditions using different assumptions. However, it does underscore the significance this
condition can have in assessing the mechanics of the heart. In particular, these boundary tractions directly
reflect the impact of these assumptions on tissue stresses, including fiber stress which is often a quantity of
interest in modeling studies.

To provide insight into base plane motion, tracking data ud extracted from the images was analyzed in
all of the in vivo cases (see figure 6). Significant motion was observed in the long-axis direction across both
patients and volunteers (E[Ula]± σ(Ula) = 10.14± 0.66mm). Motion was not only translatory. Stretch was
also significant in the plane in volunteers E[`/`0]±σ(`/`0) = 1.53±0.08 and in patients E[`/`0]±σ(`/`0) =
1.40 ± 0.04. These results indicate that non-trivial motion is present and must be integrated with the LV
mechanical model.

Based on the observed motion, fixed-base(u), relaxed-base and moments + relaxed-base all provide viable
approaches to encapsulate base plane motion into the model. As both relaxed-base and moments + relaxed-
base approach fixed-base(u) as (εla, εsa) → (0, 0), we focus our attention on comparing these two methods
for a range of (εla, εsa) parameters. Figure 5 presents relative error between model displacement and data
for the two approaches as well as measures of the total boundary traction for different parameter values.
In this case, the diastolic phase (inflating the heart from its end-systolic reference) for V1 was simulated
for varying penalty parameters. Abt was selected based on the applied condition as discussed in section 3.1.
Inflation was driven by volume and epicardial conditions were applied.

From figure 5, we observe that as (εla, εsa)→ (0, 0) the relative performance of relaxed-base and moments
+ relaxed-base approaches converge (relative error goes to 1), and the measure of tractions also converge.
We note that moments + relaxed-base always exhibits lower error and higher traction for a given penalty
parameter combination. While low penalty parameters reduce errors between model and data, this comes at
the expense of increased boundary traction, which grows by a factor of 3. Moreover, the spatial coherence of
the boundary traction is lost (see figure 7E), giving large (seemingly random) variations in the applied basal
traction – likely due to noise in the extracted motion field ud. Using more relaxed (high penalty) values,
extremely high errors are observed in the relaxed-base condition. These are largely due to εla, which must
be sufficiently low in this approach to avoid large error in the long-axis location of the base plane. This
issue is not observed in the moments + relaxed-base approach where average errors were always < 1.4mm.
Moments + relaxed-base thus enables a good match to the data without requiring low penalty parameter
values, providing greater robustness to noisy data as well as data that is potentially incomplete or sparse.

To better understand the behavior of the introduced moments + relaxed-base constraint, figure 7 shows
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the errors for different penalty values along with plots of the boundary traction magnitude for equal εla, εsa.
As mentioned, errors remain below 1.4mm for all parameters. Observing the trend as the penalty parameters
are reduced, we see both amplification and incoherence of the boundary traction. Additionally, maximal
traction forces for E-F exceed 50kPa and are significantly larger than those seen in A-D. For high penalty,
we note that the distribution of basal forces is minimal, while in C-D a general transmural trend becomes
dominant, which can be explained by the significant transmural variation in myocardial fiber structure.

Based on these results, (εla, εsa) can be used to balance displacement accuracy while maintaining plau-
sible tractions. We note that the values of (εla, εsa) are relative to the passive stiffness values, which in
this case are ∼ O(103). This raises interesting questions during the systolic phase, where stiffness increases
roughly by two orders of magnitude due to muscle contraction. As the truncation leads to a cut surface
through the myocardial muscle, forces across the surface are similarly likely to increase during the systolic
phase. Hence, we suggest that εla,sa ≈ 10−3/δ(t), with δ(t) = max{a, af , α(t)} giving the rough scaling of
the dominant myocardial stresses.

7. Accuracy of endocardial boundary conditions

The endocardial boundary conditions introduced in section 3.2 and summarized in table 2 were applied
and compared with respect to their accuracy on the in silico and in vivo model problems presented in section
5. The methods were compared over passive filling diastolic simulations, whereby the cavity volume of the
inflated ventricle was computed and the Lagrange multiplier λl provided the intraventricular pressure. The
accuracy of the simplified volume inflation (SVI, equation 24), volume rate inflation (VRI, equation 26)
and volume inflation (VI, equation 28) boundary conditions was assessed by comparing their volume and
pressure outcomes with the ground truth results of the commonly used pressure inflation (PI, equation 19)
approach.

The in silico tests were used to examine the assumption that the base motion has a negligible effect on
cavity volume calculation. Accordingly, passive inflation simulations were performed having a fixed base as
well as imposing a 5mm displacement of the basal plane along the long axis direction. In both cases, a zero
traction condition was enforced on the epicardial wall and the base displacement was enforced as a Dirichlet
condition.

In the case of the fixed base (figure 8) the three approaches behaved in a similar manner, producing
equivalent results to the ground truth PI simulation. In fact, the maximum percentage volume and pressure
error was less than 10−4% for the VI and SVI methods, while the maximum percentage error in volume
and pressure was around 0.1% and 1%, respectively, for the VRI approach. This increase in error in the
VRI approach resulted from the temporal discretization which, unlike the other methods, is an additional
source of error. In agreement with the definitions of the SVI and VRI approaches which are based on the
assumption of negligible basal motion, all methods exhibited consistent behavior over fixed-base inflation
simulations. These tests confirmed the equivalence of all approaches under minimal basal motion, allowing
their reliable usage for volume calculation in LV models with negligible base motion.

However, when simulations included basal motion the accuracy of the SVI and VRI deteriorated (figure 9).
Specifically, the error in volume increased to 1.3% and 3.7% for the SVI and VRI respectively. Interestingly,
the effect on pressure was even more pronounced, with errors of 10.3% and 33% for the SVI and VRI
boundary conditions respectively. Nevertheless, the accuracy of the VI approach was preserved, producing
errors smaller than 10−4% in both volume and pressure. The relatively small basal motion (5mm) imposed in
these tests was adequate to cause a substantial difference in accuracy between the methods. Considering that
this motion was modest compared to basal motion observed in vivo (table 6), the inaccuracies introduced
by the SVI and VRI in pressure and volume are likely to be amplified in vivo.

In order to assess the actual impact of these inaccuracies in vivo – where the basal motion is typically
not only more substantial but also non-axisymmetric as discussed in section 6 – the endocardial boundary
conditions were applied on a test using in vivo data from case V3 (section 5.2). Within these simulations
the prescribed volume was derived from tracked 3D tagged MRI data and the cavity pressure was assumed
to be known. In addition, the base motion was imposed through a relaxed constraint (Equation 14) and an
RV-epicardial boundary condition (Equation 29) was applied.
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Based on figure 10 the base motion has a significant effect on the LV volume computation, leading the SVI
and VRI boundary conditions – which consider this effect to be negligible – to introduce large volume errors
(maximum percentage error 7.2% and 12.2%, respectively). Inaccuracies in volumes were also propagated
in the intraventricular pressure, with errors of 50% and 93% for the SVI and VRI. It is worth noting the
amplification in both volume and pressure errors compared to the in silico tests, which likely resulted from
incorporating patient-specific geometry and motion as opposed to the idealized geometry and axisymmetric
motion in the in silico problem.

The in silico and in vivo tests performed highlight that the base motion has a significant effect on the
overall volume calculation, leading to marked volume errors when neglected. In addition, volume errors lead
to notable errors in cavity pressure and are also likely to introduce bias in other metrics including stiffness
estimates and wall stresses. Considering the substantial base motion (figure 6) observed in in vivo cases,
the VI approach should be taken to ensure accurate cavity volumes and physiological model outcomes.

8. Significance of epicardial boundary conditions

Left-ventricular mechanics models commonly consider an isolated LV, neglecting the effect of the RV on
myocardial motion and dynamics, as mentioned in section 3.3. However, preliminary in vivo tests which
assumed no epicardial tractions produced relative large displacement errors (figure 11). When compared
against CINE images, all in vivo models exhibited a tendency to shift away from the RV during diastolic
filling (representative example in figure 11). This consistency in model behavior and deviation from images
provided evidence of non-negligible forces acting on the epicardial wall. Although these forces are potentially
caused from multiple sources as discussed in section 3.3, the RV is likely producing a traction on the region
of attachment to the LV.

In order to account for the traction the RV is exerting on the LV / RV junction during diastole, the RV
epicardial boundary condition in equation 29 was employed in in vivo diastolic simulations. To assess the
significance of considering these forces, diastolic simulations were performed for all cases with and without
the RV epicardial boundary condition. Throughout these tests the LV was inflated to the end-diastolic
volume using the VI approach and base motion was applied using moments + relaxed-base approach.

Based on the notable reduction in relative displacement errors in figure 11 (the average error decreased
from approximately 48% to 25%) we can deduce the significant improvement in model accuracy when the RV
forces are considered. Direct comparisons of simulated results on CINE MRI images (figure 11) suggest that
the forces exerted on the LV / RV junction when employing the RV epicardial boundary condition restrict
the simulated deformation on a more anatomically accurate position in space, leading to the substantial
reduction in model error observed.

The proposed epicardial boundary condition is relatively easy to impose, not requiring additional data or
introducing further assumptions about the RV function or other organs, yet it is capable of reducing model
errors to approximately half of the original values.

9. Patient-specific full-cycle simulations using in vivo data

As a verification of the model’s utility applied to in vivo data, we simulated the full cardiac cycle for six
volunteer and patient cases. The boundary conditions were chosen so that a good combination of accuracy
in displacements and physiological pressures in the tissue was achieved. Specifically, the moments + relaxed-
base condition with (εla, εsa) = (10−6, 10−6) in the passive stage were applied on Γb0, the volume inflation
based on VV I was prescribed on Γl0, and the epicardial condition was used with εe = 5 · 10−6 in the passive
stage. The values of the relaxation parameters were scaled consistently with the active tension, as suggested
in section 6: εla = εsa = 10−3/δ(t) and εe = 5 · 10−3/δ(t), where δ(t) = max{103, α(t)}. The results were
obtained using the passive parameters and active tension curves presented in figure 12.

Mesh deformations over the full cycle are shown together with short-axis cine images for one of the
cases, V3, in figure 13. The values of the relative error functionals for all cases are given in table 6, with
diastolic metrics varying around 20− 30%, and systolic metrics around 10− 20%. In figure 14 we compare
the pressure-volume loops extracted from the data to those obtained from the simulations.
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In addition to qualitative assessment of the results, such as that provided by a specific cut plane in figure
11, the proposed approach allows a meaningful direct comparison between the data and the simulation
results over the whole of the truncated LV domain. The boundary conditions ensure that the motion of the
model is not simplified to the extent that it can no longer be related to patient data: e.g. the base plane does
not remain stationary and cut through the ventricle or the atrium, and the ventricle does not relax away
from the RV and outside the pericardium. The one-to-one comparison that we perform is not commonly
seen in modeling results, but its wider use would provide a quantitative measure of model accuracy which
can serve as basis for comparison between cases and inform model selection process.

An important feature of the proposed model is its robustness to the data. Figures 6 and 14 illustrate
some of the variability observed in vivo: even within the cohorts (healthy volunteers vs DCM patients) the
differences can be dramatic. These are often overlooked in idealized models, and some of the challenges
simply do not arise before multiple real cases are processed. As an example, subjects V2 and P1 do not
exhibit any rotation of the base between end systole and end diastole, but disallowing it in the model
would introduce a bias in simulation results for V3 and P2. The range of cavity volumes and cardiac
outputs (differences between end-diastolic and end-systolic volumes) as well as anatomical features such
as wall thickness and ventricle shape (which is significantly different in DCM compared to health) have a
strong effect on simulation results and performance, as well as the errors Ja and Jp. Our ability to produce
consistently operational models for all of these cases is an important step in taking modeling further towards
translation.

These results illustrate the capacity to develop high-fidelity computational models with dynamics that
closely follow the motion observed from medical images. The result is a diagnostic model, capable of
providing or inferring a link between observed motion and the kinetics active in a patients heart. Quantities
such as stiffness, active contraction and work – all of which have potential clinical significance – can be
quantified from such models. Another important scope is for prognostic models which not only characterize
what is, but provide an estimate of what will be. Specifically, prognostic models are desirable in the process
of therapy planning and device assessment. Beyond requiring a model with sufficient robustness to provide
some predictive insight, prognostic models have the added challenge of requiring appropriate boundary
conditions that can adapt to reflect the change in function observed in the heart. While acute changes
may be more closely related to observed motion characteristics, these may be inappropriate long-term. For
example, prescribing transient LV lumen volume may be inappropriate when considering therapy response.
Use of Windkessel models (for example in [32]) addresses this by allowing for adaptability in the predicted
volumetric transient. However, these predictions are often acute and may neglect cardiovascular regulatory
mechanisms necessary for gauging long-term response. Proper development and assessment of predictive
boundary conditions remains an important and only partially addressed challenge.

10. Conclusions

This work investigates the role of boundary conditions in personalised models of left-ventricular mechanics
and introduces new data-driven boundary energy terms. The proposed boundary conditions are devised so
that accuracy of simulation results as compared to the data is balanced with coherence in tractions on the
surfaces of the myocardium. The evaluation of the boundary conditions is performed using an idealized in
silico model as well as six in vivo models of healthy and diseased hearts. The use of data-derived motion
in prescribing base and epicardial conditions allows a significant improvement in model accuracy, while
relaxation needs to be applied to prevent the associated forces from becoming non-physiological. Endocardial
conditions are shown to be sensitive to the assumptions regarding base motion, which need to be considered
in the context of realistic cardiac behavior. In vivo, model fidelity is assessed via L2-norms of displacement
errors between simulation results and data from non-invasive imaging. Full-cycle simulations of the in vivo
cases that employ the model with the proposed boundary conditions show quantitative behavior observed
in the data, and account for non-trivial differences between cases due to anatomy, motion and function.
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Figure 1: (Left) Illustration of the biventricular heart and major inlet / outlet valves and (Right) the portion of the left ventricle
considered in LV model analysis. Abbreviations: AV=aortic valve, LV=left ventricle, MV=mitral valve, PV=pulmonary valve,
RV=right ventricle, TV=tricuspid valve.
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Figure 2: (Left) Illustration of the left ventricle domain (Ω0) and its constituent boundaries: base plane (Γb
0), endocardial (Γl

0),
and epicardial (Γe

0). {N1,N2,Nb} denotes the orthonormal coordinate frame for tracking the base plane motion. (Right)
Illustration of the fiber architecture in the left ventricle, showing streamlines in the fiber direction colored white (endocardial)
to dark red (epicardial) based on the transmural location.
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Figure 3: (Left) Illustration of the function H : Γe
0 → [0, 1] labelling the RV / LV junction on the epicardium and (Right) the

apex distance function D : Ω0 → [0, 1] used to scale the orthotropic vs. isotropic terms in the active strain .
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Figure 4: Workflow followed for the development of patient-specific models. CINE, 3D tagged MRI (TMRI), phase contrast
MRI (PCMRI) and CENTRON estimated pressure comprise the key sources of data used in the computational model. CINE
and TMRI images were registered enabling construction of the anatomical model and subsequent motion tracking. PCMRI
and TMRI were combined to estimate the E/Ea ratio and subsequently estimated end diastolic blood pressure. CENTRON
estimates were used to get peak systolic pressure, which was subsequently used to personalize the normalized end diastolic
pressure λl,d. Pressure estimates along with motion estimation (and motion derived volumes) were incorporated into the model
through the epicardial boundary condition (BC), moments + relaxed-base BC and endocardial volume BC. Parametrisation
was performed by minimising the difference between the model and data-derived displacements and cavity pressures, producing
the final patient-specific model.
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Base Plane Conditions
Name Eqn Ref Description

Fixed-base(0)
12,13

[59, 56]
Typically applied as u = 0 Dirichlet zero condition.
Assume ud = 0 and choose Λb = γbU .

Fixed-base(ud)
12,13

[70, 26]
Typically applied as u = ud Dirichlet condition.
Use data derived ud and choose Λb = γbU .

Fixed-in-plane‡
12,13

[32, 66]
Typically applied as Dirichlet zero condition on through-plane component.
Assume ud · nb = 0 and choose Λb = {� ∈ γbU | � · n1 = 0, � · n2 = 0}.

Fixed-endo-ring
12,13

[44]
Typically applied as Dirichlet zero condition on Γl

0 ∩ Γb
0. Assume ud = 0 on

Γl
0 ∩ Γb

0 and choose Λb = {� ∈ γbU | � = 0, on Γb
0\Γl

0}.
Springs - [37, 29]

The attachment of the base to the cardiac valves is modelled using linear
springs, which allow for small valve motion.

Relaxed-base 15 [2, 1] Use data derived ud and choose Λb = γbU .

Moments +
relaxed-base

18 - Use data derived ud and choose Λb = [R3]3 × γbU .

Table 1: Summary of some common and proposed base plane conditions for LV mechanics models. Table provides a selection
of references to models using these conditions, the typical manner in which the condition is integrated into the model, and
how this can be implemented through boundary energy terms. ‡Fixed-In-Plane requires additional conditions to eliminate
rotational modes. This is typically done by fixing opposing in-plane components on two nodes.
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Endocardial Conditions
Name Eqn Ref Description

Endo-pressure 19
[24, 31, 68,

37]

Typically applied using measured / literature / model derived −Plv

in the normal direction on Γl.
Iso-volumic phases controlled using iterative approach.

Endo-volume
21,22

[2, 46]

Applied using Λe = R and using data-derived Vlv .
Methods vary in how V (u) is computed:
SVI: V calculated using eqn 24
VI: V calculated using eqn 28

Endo-volume-
rate

26 [39, 26]
Applied using Λe = R and using data-derived ∂tVlv . VRI: V
calculated using eqn 26

Table 2: Summary of some common and proposed endocardial boundary conditions for LV mechanics models. Table provides a
selection of references to models using these conditions, the typical manner in which the condition is integrated into the model,
and how this can be implemented through boundary energy terms.
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Finite Element Implementation

Variable Interpolation Notation

uh = WuUu
Q2(HEX)

or
P2(TET)

Uu ∈ R3Nu

Wu : Ω0 → R3×3Nu

Wu = [ϕu
1 e1, ϕu

1 e2, . . . , ϕu
Nu

e3]

ph = W pUp
Q1(HEX)

or
P1(TET)

Up ∈ RNp

W p : Ω0 → R1×Np

W p = [ϕp
1, . . . , ϕ

p
Np

]

�k
h,b = W bUb,k

[R3]3, Q2(SQ)
or

[R3]3, P2(TRI)

Ub,k ∈ R3, Ub ∈ R3Nb

W b,k : Ω0 → R3, W b : Ω0 → R3×3Nb ,
W b,k = [Iωk], W b = [ϕb

1e1, ϕb
1e2, . . . , ϕb

Nb
e3].

(for k = {0, 0}, {1, 0}, {0, 1})

λh,l = W lU l R U l ∈ R
W l : Ω0 → 1

�h,e = W eUe
Q2(SQ)

or
P2(TRI)

Ue ∈ R3Ne

W e : Ω0 → R3×3Ne

W e = [ϕe
1e1, ϕe

1e2, . . . , ϕe
Ne

e3]

Table 3: Summary of finite element interpolations used for the LV mechanics model. Here, W denotes the basis matrix and
U the coefficient vector for each variable. Note that the total rank of the system, NT = 3Nu + Np + 3Nb + 3Ne + 9. Nu =no.
displacement nodes, Np =no. pressure nodes, Nb =no. base plane displacement nodes, Ne =no. epi displacement nodes.

24



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Idealized Mesh
NE E[h]± σ(h) (Nu; Np) Nb Ne
448 8.30± 2.31 (4, 185; 605) 289 465

Volunteer / Patient Meshes
NE E[h]± σ(h) (Nu; Np) Nb Ne

V1 17, 153 3.33± 0.53 (27, 589; 4, 048) 574 4, 852
V2 6, 787 3.88± 1.09 (12, 657; 2, 050) 451 3, 735
V3 7, 795 4.34± 0.34 (13, 499; 2, 088) 543 3, 372
P1 10, 740 3.90± 0.56 (18, 104; 2, 747) 487 3, 913
P2 17, 047 3.47± 0.53 (28, 012; 4, 173) 629 5, 487
P3 10, 731 3.45± 0.67 (19, 025; 2, 986) 632 4, 688

Table 4: Table of sizes for different computational meshes used for idealized and patient-specific meshes. NE =no. of elements,
Nu =no. of nodes for displacement, Np =no. of nodes for hydrostatic pressure, Nb =no. of nodes for basal penalty variable,
Ne =no. of nodes for the epicardial multiplier. E[h] and σ(h) denote mean and standard deviation of the mesh size h.
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basea

Moments
+

relaxed-
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relaxed-
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Figure 5: Boxplot of the base plane traction force magnitudes |�b,T | at node points for different base plane boundary conditions
showing the mean, standard deviation and outliers. Each simulation was inflated from reference volume to double the reference
volume, with the table below each boxplot providing the corresponding lv lumen pressure λl.

a(εla, εsa) = 10−6 using
displacements ud = 0 as data, b(εla, εsa) = 0 using no penalty variable, c(εla, εsa) = 10−6, and d(εla, εsa) = 10−6 using the
fixed-in-plane displacements as data ud.
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V1 V2 V3 P1 P2 P3
|θ| 1.45 0.00 5.15 0.00 5.56 2.1

∆A/A0 7.14 14.94 12.97 3.72 1.99 7.82
Ula 10.17 10.80 10.81 9.14 10.28 9.616
`/`0 1.54 1.44 1.6 1.37 1.38 1.44

Figure 6: Illustration of motion from ES to ED across patients / volunteers as well as quantitative measures of base plane

motion. |θ| is the angular rotation of the base plane, computed from the complex conjugate eigenvalues of F̃ = A+ I, where
A is the best fit affine transformation found by analyzing the moments {0, 0}, {1, 0}, {0, 1}. ∆A/A0 = |AED − AES |/AES

denotes the relative difference in area scaled by the reference. Ula = ud · nb denotes the displacement in the base normal

direction. `/`0 denotes the base plane stretch computed as the maximum eigenvalue of C̃ = F̃
T
F̃ .
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‖ur − ud‖0,Γ0
b
/‖umr − ud‖0,Γ0

b

εsa\εla 10−3 10−4 10−5 10−6 10−7 10−8

10−3 – – 3.45 1.57 1.52 1.52
10−4 – 13.06 3.43 1.50 1.45 1.45
10−5 18.51 11.90 3.73 1.28 1.19 1.18
10−6 23.27 17.22 6.22 1.54 1.05 1.04
10−7 26.90 20.56 8.12 2.65 1.22 1.02
10−8 26.77 20.61 8.19 2.73 1.61 1.09

‖λXb,T ‖0,Γb0 |Γ
b
0|−1/2

εsa, εla r mr
10−3 – 530
10−4 155 531
10−5 384 553
10−6 712 750
10−7 1,050 1,056
10−8 1,557 1,558

Table 5: (Left) L2(Γb
0) norm difference between simulation (ur) / experiment (ud) using relaxed-base conditions relative to

simulation (umr) / experiment (ud) difference using moments and relaxation conditions (for V1). Relative norms are provided
over a range of long-axis (εla) and short-axis (εsa) relaxation parameters. (Right) L2(Γb

0) norm of the total base boundary
traction (�r

b,T ) for relaxed (X=r) and moments and relaxed (X=mr) conditions for equal relaxation parameters.
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Figure 7: (Left) Quantification of mean base plane difference between simulation and data for V1 over a range of long-axis
(εla) and short-axis (εsa) relaxation parameters. (Right) Magnitude of the total boundary traction (�b,T ) for combinations
of relaxation parameters (A-F) marked in the box plot on the left. A variable magnitude was applied to illustrate boundary
tractions with (A-C, X=1), (D-E, X=2), (F, X=4).
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Figure 8: Comparison of the endocardial boundary conditions over diastolic filling model problem with a fixed base. (Left)
Pressure-volume plots of the pressure inflation (PI), simplified volume inflation (SVI), volume rate inflation (VRI), and volume
inflation (VI) simulations. Error between (Top right) volume and (Bottom right) pressure (λl) of the SVI, VRI, VI and ground
truth PI simulations over time.
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Figure 9: Comparison of the endocardial boundary conditions over diastolic filling model problem, with the base moving along
the long axis direction. (Left) Pressure-volume plots of the pressure inflation (PI), simplified volume inflation (SVI), volume
rate inflation (VRI), and volume inflation (VI) simulations. Error between (Top right) volume and (Bottom right) pressure
(λl) of the SVI, VRI, VI and ground truth PI simulations over time.
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Figure 10: Accuracy of endocardial boundary conditions in an in vivo test using data from V3. (Left) Pressure-volume plots of
the pressure inflation (PI), simplified volume inflation (SVI), volume rate inflation (VRI), and volume inflation (VI) simulations.
Error between (Top right) volume and (Bottom right) pressure (λl) of the SVI, VRI, VI and ground truth PI simulations over
time.
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Epicardial boundary conditions
V1 V2 V3 P1 P2 P3

Jp (%) w/o RV BC 33 50 51 62 55 36
Jp (%) w RV BC 22 29 23 33 26 18

Figure 11: (Top) Tracked (white mesh lines) and simulated end-diastolic state with (blue mesh volume) and without (red
mesh lines) an RV epicardial boundary condition (RV BC) for V3, in long-axis and short-axis views. (Bottom) Relative total
displacement error in diastole Jp for simulations with and without the RV BC.
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IM V1 V2 V3 P1 P2 P3
a, Pa 44 268 240 200 1057 1173 857
af , Pa 1744 2680 1715 1111 5872 2608 6593
α̂, kPa - 112 121 108 116 154 163
τ̂ , s - 0.22 0.19 0.20 0.28 0.24 0.28

=, s
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Figure 12: Patient-specific inputs for the idealized (IM) and the in vivo models, obtained from minimizing total relative errors
between the data and the model. (Left) Numeric values for passive and active parameters: a and af are the isotropic and the
fibre stiffnesses in the passive constitutive law, α̂ = maxt α(t) is the peak active tension, and τ̂ = arg maxα(t) ·HR/60 is the
normalised time in the cycle where this peak is achieved, HR being the heart rate in a given case. The remaining parameters
of the reduced Holzapfel-Ogden law b = bf = 5.0 were chosen to match empirical data on diastolic pressure-volume behavior
[25]. (Right) Full-cycle patient-specific active tension curves α(τ) linearly interpolated between the image frames available. All
cycles are normalised to 1s duration with τ = t ·HR/60.
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V1 V2 V3 P1 P2 P3
Jp, % 22 29 23 33 26 18

minsystole Ja(t), % 11 9 12 16 14 12
maxsystole Ja(t), % 19 17 19 21 18 13

Table 6: Relative total errors in diastole and systole for the in vivo models, illustrating the accuracy of the simulations as
compared to the deformations extracted from 3D tagged images and the pressures based on the scaled empirical curve [49].
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Figure 13: Illustration of simulated deformation over the cardiac cycle for V3. Mesh volume is coloured based on the magnitude
of the displacement error which is given in metres. The blue circle on the PV loop in each image corresponds to the presented
cardiac phase.
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Figure 14: (LV cavity) pressure-volume loops for the in vivo models illustrating model behavior over most of the duration of
the cardiac cycle. The data is represented by solid lines – the loops are not complete due to the fact that (prospectively ECG
triggered) 3D tagged images usually do not cover the whole cardiac cycle. The dashed lines connect the last and the first
available data points.
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[34] S. A. Lambert, S. P. Näsholm, D. Nordsletten, C. Michler, L. Juge, J.-M. Serfaty, L. Bilston, B. Guzina, S. Holm, R. Sinkus,
Bridging three orders of magnitude: multiple scattered waves sense fractal microscopic structures via dispersion, Physical
review letters 115 (9) (2015) 094301.

[35] J. Lee, A. Cookson, I. Roy, E. Kerfoot, L. Asner, G. Vigueras, T. Sochi, C. Michler, N. P. Smith, D. A. Nordsletten,
Multi-physics computational modeling in CHeart, SIAM Journal on Scientific Computing 38 (3) (2016) C150–C178.

[36] A. Lopez-Perez, R. Sebastian, J. M. Ferrero, Three-dimensional cardiac computational modelling: methods, features and
applications, Biomedical engineering online 14 (1) (2015) 35.

[37] S. Marchesseau, H. Delingette, M. Sermesant, N. Ayache, Fast Parameter Calibration of a Cardiac Electromechanical
Model from Medical Images based on the Unscented Transform, Biomechanics and Modeling in Mechanobiology (2012)
1–17.
URL https://hal.inria.fr/hal-00813847

[38] M. Markl, A. Frydrychowicz, S. Kozerke, M. Hope, O. Wieben, 4D flow MRI, Journal of Magnetic Resonance Imaging
36 (5) (2012) 1015–1036.

[39] M. McCormick, D. A. Nordsletten, D. Kay, N. P. Smith, Simulating left ventricular fluid-solid mechanics through the
cardiac cycle under LVAD support, Journal of Computational Physics 244 (2013) 80–96.

[40] A. Nagler, C. Bertoglio, M. Gee, W. Wall, Personalization of cardiac fiber orientations from image data using the unscented
Kalman filter, in: Functional Imaging and Modeling of the Heart, Springer, 2013, pp. 132–140.

[41] S. F. Nagueh, K. J. Middleton, H. A. Kopelen, W. A. Zoghbi, M. A. Quin, Doppler tissue imaging : A noninvasive
technique for evaluation of left ventricular relaxation and estimation of filling pressures, Journal of American College of
Cardiology 30 (6) (1997) 1527–1533.

[42] M. P. Nash, P. J. Hunter, Computational Mechanics of the Heart, Journal of Elasticity 61 (1–3) (2001) 113—-141.
[43] P. Nielsen, I. Le Grice, B. Smaill, P. Hunter, Mathematical model of geometry and fibrous structure of the heart, American

Journal of Physiology-Heart and Circulatory Physiology 260 (4) (1991) H1365–H1378.
[44] J. H. Omens, T. P. Usyk, Z. Li, A. D. McCulloch, Muscle LIM protein deficiency leads to alterations in passive ventricular

mechanics, American journal of physiology. Heart and circulatory physiology 282 (2002) H680–H687.
[45] D. Peressutti, W. Bai, T. Jackson, M. Sohal, A. Rinaldi, D. Rueckert, A. King, Prospective Identification of CRT Su-

per Responders Using a Motion Atlas and Random Projection Ensemble Learning, in: Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015, Springer, 2015, pp. 493–500.

[46] S. Pezzuto, D. Ambrosi, Active contraction of the cardiac ventricle and distortion of the microstructural architecture,
International journal for numerical methods in biomedical engineering 30 (12) (2014) 1578–1596.

[47] A. Quarteroni, A. Valli, Numerical approximation of partial differential equations, vol. 23, Springer Science & Business
Media, 2008.

[48] D. Rohmer, A. Sitek, G. T. Gullberg, Reconstruction and visualization of fiber and sheet structure with regularized tensor
diffusion MRI in the human heart, Lawrence Berkeley National Laboratory Publication. LBNL-60277.

[49] K. Russell, M. Eriksen, L. Aaberge, N. Wilhelmsen, H. Skulstad, E. W. Remme, K. H. Haugaa, A. Opdahl, J. G.
Fjeld, O. Gjesdal, T. Edvardsen, O. A. Smiseth, A novel clinical method for quantification of regional left ventricular
pressurestrain loop area: A non-invasive index of myocardial work, European Heart Journal 33 (6) (2012) 724–733.

[50] M. Sermesant, P. Moireau, O. Camara, J. Sainte-Marie, R. Andriantsimiavona, R. Cimrman, D. L. Hill, D. Chapelle,
R. Razavi, Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties,
Medical image analysis 10 (4) (2006) 642–656.

[51] V. Shamanskii, A modification of Newton’s method, Ukrainian Mathematical Journal 19 (1967) 118–122.
[52] W. Shi, M. Jantsch, P. Aljabar, L. Pizarro, W. Bai, H. Wang, D. O’Regan, X. Zhuang, D. Rueckert, Temporal sparse

free-form deformations, Medical Image Analysis 17 (7) (2013) 779–789.
[53] W. Shi, X. Zhuang, H. Wang, S. G. Duckett, D. V. N. Luong, C. Tobon-gomez, K. Tung, P. J. Edwards, K. S. Rhode,

R. S. Razavi, S. Ourselin, D. Rueckert, A comprehensive cardiac motion estimation framework using both untagged and
3-D tagged MR images based on nonrigid registration, IEEE Transactions on Medical Imaging 31 (6) (2012) 1263–1275.

39



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
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Appendix A. Function spaces for the cardiac mechanical system

In this section, we briefly outline the spaces used for describing the variables used in the energy potential
minimization as well as the FEM weak form. U and P denote the space of admissible displacement and
pressure solutions at any instant in time t ∈ [0, T ] ensuring the internal energy potential Πint

t : U × P → R
(at each point in time t ∈ [0, T ]) and its directional derivatives are bounded. Considering the internal energy
potential defined in equation 5, we see that

Πint
t (v, q) ≤ ‖ψ(F v, t)‖0,1 + ‖q‖0,2

(
‖Jv‖0,2 + |Ω|1/2

)
,

while the directional derivative w.r.to D(u,p) can be bounded by,

At(u, p;v, q) ≤
(
‖∇Fψ(Fu,X, t)‖0,2 + 3‖p‖0,2‖∇F Ju‖0,4

)
‖v‖1,4 +

(
‖Ju‖0,2 + |Ω|1/2

)
‖q‖0,2

Hence, we can write the general space of admissible solutions U and P (at each point in time t ∈ [0, T ]),

U =
{
v ∈W 1,4(Ω0)

∣∣∣ ψ ∈ L1(Ω0), ∇Fψ ∈ [L2(Ω0)]3×3, Jv ∈ L2(Ω0), ∇F Jv ∈ [L4(Ω0)]3×3
}

P = L2(Ω0)
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with W 1,4(Ω0) = [W 1,4(Ω0)]3 and Lp(Ω0) denoting the usual Sobolev and Banach spaces, respectively [47].
The final space U depends on the form of the strain energy function ψ, which is often nonlinearly dependent
on the deformation gradient (itself linearly dependent on the displacement gradient).

It remains only to verify that U is sufficient for the boundary terms and to identify the associated spaces
for our Lagrange multipliers and penalty variables. Considering the introduced boundary energy terms,
Lagrange multipliers in equations 18, 22, 30 are largely simple scalar or vectors which are constant over
their respective boundaries. We note that here we assume the area weighted normal ñ in equation 23 are
given data in L2(Γl0).

The exceptions occur with both λb and λe which provide more complex, spatially varying boundary
forces. In both of these cases, the boundary multipliers must be in L2(Γk0) restricted to their boundaries
(k = b or e) owing to the penalty formulations seen in equations 18 and 30. In this case,

Πb
t(v, {µb}) =

∑

m

µmb ·Mm[v − ud(t)] +
∫

Γb0

µb ·
(
v − ud −

1
2
Σµb

)
dX

≤
(∑

m

Cmb |µmb |+ ‖µb‖0,Γb0

)(
‖v‖0,Γb0 + ‖ud(t)‖0,Γb0

)
+ Cb‖µb‖20,Γb0

Πe
t (v,µe) =

∫

Γe0

Hµe ·
(
v − ud(t)−

εe
2
µe

)
dX

≤ ‖µe‖0,Γe0
(
‖v‖0,Γe0 + ‖ud(t)‖0,Γe0

)
+
εe
2
‖µe‖20,Γb0

with Cmb = |Mm[ωm]|1/2 (for m = {0, 0}, {1, 0}, {0, 1}) being the norm of different moment weights and
Cb = 1

2 max(εla, εsa) being half the maximum eigenvalue of the penalty matrix Σ. Owing to the Trace
theorem, boundedness of these boundary terms is ensured by the space U (which is more regular). A
similar inequality can be derived for Abt and Aet yielding the same restrictions on the smoothness of U .

For ease, in this paper we have assumed that the spaces of λb and λe are actually smoother. This is
sensible in the case of λb as the boundary is actually a cut through the myocardium itself. Similarly, the
epicardial boundary is also cut along the LV/RV junction though this can be modeled as discontinuous
moving from the junction to the septal boundary or epicardium. Here, however, we have assumed that as
smooth gradation in the traction is present. As a result, we take both variables from their respective trace
spaces, i.e.

γkU = {µk ∈ L2(Γk0)|µk = v on Γk0 , for some v ∈ U}.
Extending these spaces into the discrete setting of section 4, the finite element approximation spaces

Uh and P h are built in the usual way. Similarly, the trace spaces are designed by selecting representative
functions from the boundaries spaces of Uh.
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