An assessment of algorithms to estimate respiratory rate from the ECG and PPG signals

Peter H. Charlton 1,2,3, Timothy Bonnici 1,2,3, Lionel Tarassenko 2, David A. Clifton 2, Richard Beale 3, Peter J. Watkinson 4

1 King's College London; 2 University of Oxford; 3 Guy's and St Thomas' NHS Foundation Trust; 4 Oxford University Hospitals

1. Estimating respiratory rate (RR) from the ECG and PPG

The importance of RR
Respiratory rate (RR, number of breaths per minute) is an informative indicator of physiological state. RR is used for diagnosing diseases such as pneumonia. It also changes in the hours before rapid deteriorations such as cardiac arrests, giving early warning. However, it is usually measured by hand. ECG and PPG signals may provide an alternative approach ...

![ECG and PPG signals](Image)

2. Assessment of respiratory rate algorithms

RR algorithms
Algorithms to estimate RR from the ECG or PPG consist of three stages (see right). Several techniques — combinations of techniques — have been proposed. However, their performances have not been compared.

In this study we performed a comprehensive assessment of 314 algorithms. They were constructed by combining techniques from each of the three stages. Two examples are highlighted (see right).

3. Results

Algorithm performance
The best performance achieved when using the ECG was an error of 0.0 ± 4.7 breaths per min (bpm). This indicates a mean error of 0 bpm, and that 95% of the errors were less than 4.7 bpm. The best performance for the PPG was an error of 1.0 ± 6.2 bpm.

Both these results were achieved using algorithms which were novel combinations of techniques. Both algorithms fused RRs estimated simultaneously using each of the three types of respiratory modulator.

4. Relevance

Equipping future researchers
Both the algorithms and the benchmark dataset used in this study are publicly available at: http://peterhcharlton.github.io/RRest

These resources allow researchers to compare the performance of their own algorithms against those assessed in this study.

Accompanying Paper
Charlton P.H. and Bonnici T. et al. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram, Physiological Measurement, 2015, 2016, DOI: 10.1088/0967-3334/37/6/010