Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations

Monica L. Castro Acosta, Leanne Smith, Rosalind J. Miller, Danielle I. McCarthy, Jonathan A. Farrimond, Wendy L. Hall

PII: S0955-2863(16)30106-1
Reference: JNB 7637

To appear in: The Journal of Nutritional Biochemistry

Received date: 25 May 2016
Accepted date: 12 September 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations.

Monica L. Castro Acosta#*, Leanne Smith#, Rosalind J. Millerb, Danielle I. McCarthyc, Jonathan A. Farrimondc, Wendy L. Hall*a*

*a Diabetes & Nutritional Sciences Division, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK

b GlaxoSmithKline Services Unlimited, GSK House, 980 Great West Road, Middlesex, TW8 9GS, UK

c Suntory Beverage and Food Europe Ltd, 2 Longwalk Road, Stockley Park, Uxbridge UB11 1BA, UK

* Address correspondence to Dr W.L. Hall, Diabetes & Nutritional Sciences Division, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; Email: wendy.hall@kcl.ac.uk; Telephone: +44 (0) 20 7848 4197.

MLCA and LS are joint lead authors.

Short running head: Blackcurrant polyphenols and postprandial glycemia.

Supported by a joint research grant (reference 101118) from the Technology Strategy Board and the Biotechnology and Biological Sciences Research Council, and co-funded by GSK, later to become Lucozade Ribena Suntory Ltd.

KEYWORDS: Randomized controlled trial, Clinical trial, Postprandial glycemia, Incretins, Insulin, Glucose, Anthocyanins, Polyphenols, Berries, Healthy volunteers
Author disclosures. WLH, LS and MLCA declare that they have no conflict of interest. JAF is currently an employee of Suntory Beverage and Food Europe Ltd. DIMcc was previously employed by Lucozade Ribena Suntory Ltd. DIMcC, RJM and JAF were previously employed by GlaxoSmithKline Unlimited.

Abbreviations used: AOB, Area over baseline; Cmax, Maximum concentration; CON, Control treatment; DVP-SI, Digital volume pulse stiffness index; DVP-RI, Digital volume pulse reflection index; GIP, Glucose-dependent insulinotropic polypeptide; GLP-1, Glucagon-like peptide-1; H-BE, High dose of blackcurrant extract; L-BE, Low dose of blackcurrant extract; M-BE, Medium dose off blackcurrant extract; NEFA, Non-esterified fatty acids; TAG, Triacylglycerol; Tmax, Time of maximum concentration.

Names for PubMed indexing: Smith, Castro Acosta, Miller, McCarthy, Farrimond & Hall.

Word count: 6996. 4 figures. 3 tables.
ABSTRACT

Blackcurrants are rich in polyphenolic glycosides called anthocyanins, which may inhibit postprandial glycemia. The aim was to determine the dose-dependent effects of blackcurrant extract on postprandial glycemia. Men and postmenopausal women (14 M, 9 W, mean age 46 y, SD 14) were enrolled into a randomized, double-blind, crossover trial. Low sugar fruit drinks containing blackcurrant extract providing 150 mg (L-BE), 300 mg (M-BE) and 600 mg (H-BE) total anthocyanins or no blackcurrant extract (CON) were administered immediately before a high-carbohydrate meal. Plasma glucose, insulin, and incretins (GIP and GLP-1) were measured 0-120 min, and plasma 8-isoprostane $F_{2\alpha}$ together with arterial stiffness by digital volume pulse (DVP) were measured at 0 and 120 min. Early plasma glucose response was significantly reduced following H-BE (n = 22), relative to CON, with a mean difference (95% CI) in area over baseline (AOB) 0-30 min of -0.34 mmol/L.h (-0.56, -0.11, $P < 0.005$); there were no differences between the intermediate doses and placebo. Plasma insulin concentrations (AOB 0-30 min) were similarly reduced. Plasma GIP concentrations (AOB 0-120 min) were significantly reduced following H-BE, with a mean difference of -46.6 ng/L.h (-66.7,-26.5, $P <0.0001$) compared to CON. Plasma GLP-1 concentrations were reduced following H-BE at 90 min. There were no effects on 8-isoprostane $F_{2\alpha}$, or vascular function. Consumption of blackcurrant extract in amounts roughly equivalent to 100 g blackcurrants reduced postprandial glycemia, insulinemia, and incretin secretion, which suggests that inclusion of blackcurrant polyphenols in foods may provide cardio-metabolic health benefits. This trial was registered at clinicaltrials.gov as NCT01706653.
1. Introduction

Evidence is emerging that fruit polyphenols may have wide ranging beneficial effects on vascular and metabolic health [1]. Among the long list of potential fruit bioactives are the anthocyanins: polyphenolic glycosides belonging to the flavonoid family that vividly pigment berries and other plant foods. The aglycones of anthocyanins, anthocyanidins, include delphinidin, petunidin, cyanidin, malvidin, pelargonidin and peonidin. Glycosylation can involve glucose, galactose, rhamnose and arabinose or various combinations of these sugars. There may also be acylation with \(p\)-coumaric, ferulic, caffeic, sinapic, malonic, acetic or \(p\)-hydroxybenzoic acids. Blackcurrants are particularly rich in delphinidin-3-rutinoside, cyanidin-3-rutinoside, delphinidin-3-glucoside and cyanidin-3-glucoside, as well as condensed tannins (proanthocyanidins), oligomeric and polymeric chains of flavan-3-ols [2].

Since dietary anthocyanins are derived from a relatively narrow range of specific foods, average intakes are difficult to establish from short-term food records. Mean estimates from food frequency questionnaires are 12.5 to 15.2 mg/d (IQR: 4.6-19.3 mg/d) in US middle-aged and older men and women, mainly from strawberry and blueberry consumption [3], and 17.7 mg/d (IQR: 8.4-23.6 mg/d) in UK women, mainly from grapes, pears, wine, strawberries and raspberries [4]. Epidemiological studies have reported that higher intakes of anthocyanins are associated with a reduced risk of hypertension and arterial stiffness [3, 4], and lower markers of systemic inflammation and insulin resistance [5]. In support of a beneficial effect of habitual anthocyanin intake on insulin resistance, higher intakes of berries (4 d food records) at baseline were associated with a reduced risk of type 2 diabetes at follow up (mean 19.3 y) in a Finnish prospective cohort of middle-aged and older men [6].

Ingestion of berry anthocyanins may have rapid effects on blood glucose levels by delaying carbohydrate digestion and inhibiting the rate of glucose absorption across the intestine [7, 8, 9,
10, 11, 12, 13], although proanthocyanidins are likely to be responsible for inhibition of α-amylase [13]. Randomized controlled trials suggest that consuming whole berries may help control blood glucose concentrations [14, 15, 16, 17, 18], but the active component is not yet clear.

The present study set out to test the hypothesis that drinks containing an anthocyanin-rich blackcurrant extract would decrease postprandial peak glucose concentrations following a carbohydrate meal in a dose-dependent fashion, compared with a matched placebo drink. Secondary outcomes included plasma insulin, GIP and GLP-1 response. Reducing postprandial glycemia may reduce markers of oxidative stress and endothelial function [19, 20]; therefore changes in indices of vascular function and plasma 8-isoprostane \(F_{2\alpha} \) concentrations were also evaluated.

2. Subjects and methods

2.1 Subjects

Ethical approval for the study was obtained from King’s College London research ethics committee (reference BDM/11/12-88), and written informed consent was given by participants. The trial was carried out in accordance with the Declaration of Helsinki of 1975 as revised in 1983, and registered at ClinicalTrials.gov (NCT01706653). The aim was to recruit 22 subjects, allowing for 4 drop-outs to complete 18 subjects, which would enable detection of a 1.6 mmol/L difference in glucose incremental Cmax, assuming 80% power (estimated from Torronen et al. [17] treatment group SD of 1.3 to 1.5 mmol/L for Cmax, rho=0.1), using a paired t-test with an alpha 0.017 (allowing for 3-waycomparisons). Social networking website advertisements and a circular email within King’s College London were used for recruitment, which was initiated in August 2012. A participant information sheet was provided to volunteers who expressed interest. Participants, recruited from King’s College London and from the general public in the
London area, attended the Metabolic Research Unit at the Diabetes & Nutritional Sciences Division, King’s College London in a fasting state for a screening appointment which included the measurement of height, weight, waist circumference, % body fat (by bioelectrical impedance using the Tanita™ Body Composition Analyser), seated blood pressure, liver function tests, glucose, lipid profile and haematology. A small remuneration was given for participation in the study. Inclusion criteria were: healthy men aged 20-60 y and postmenopausal women aged 45-60 y, BMI 18-35 kg/m², able to understand the information sheet and willing to comply with study protocol, and able to give written informed consent. Women aged 45 y or older who reported not having had a period for 12 months or longer were defined as postmenopausal. Exclusion criteria were as follows: phenylketonuria; allergy, hypersensitivity or intolerance to any foods/food ingredients; participation in another clinical trial; those with full blood counts and liver function tests outside of the normal range; current smokers or those who gave up smoking within the last 6 months; reported medical history of cardiovascular disease, cancer, liver, kidney or bowel disease; fasting glucose ≥7.1 mmol/L or uncontrolled type 2 diabetes; presence of gastrointestinal disorder or use of drug which is likely to alter gastrointestinal motility or nutrient absorption; history of substance abuse or alcoholism; unwilling to restrict consumption of specified high polyphenol foods for 24 h before the study; weight change of >3 kg in preceding 2 months; body mass index <18 and >35 kg/m²; fasting blood cholesterol ≥7.5 mmol/L; fasting TAG ≥5 mmol/L; blood pressure ≥160/100 mmHg; current use of medications that may interfere with the study such as alpha-glucosidase inhibitors (e.g. acarbose), insulin-sensitising drugs (e.g. metformin, thiazolidinediones), sulfonylureas, and lipid-lowering drugs; current use of nutritional supplements that may interfere with the study such as higher dose vitamins/minerals (>200% RNI), B vitamins, Vitamin C, calcium, copper, chromium, iodine, iron, magnesium, manganese, phosphorus, potassium and zinc.

2.2 Study design
A randomized, double-blind, crossover design was used to compare 4 test drinks, with study visits scheduled at least 1 week apart. Each test drink consisted of a “no added sugar” fruit drink with increasing doses of blackcurrant extract added to it, providing 90 kJ, <0.1 g protein, <5 g carbohydrate, and 0.4 g fat. The blackcurrant extract (BerryPharma® by Iprona AG, Lana, Italy) contained 5775 mg total polyphenols per 100 ml extract (2822 mg total anthocyanins per 100 ml), analysed by RSSL The Lord Zuckerman Research Centre (Reading, UK); see Table 1. The drinks were formulated by Döhler (Milton Keynes, UK) and GlaxoSmithKline Nutritional Healthcare R&D (Coleford, UK), later to become Lucozade Ribena Suntory (Uxbridge, UK), and standardised to contain 600 mg anthocyanins (H-BE), 300 mg anthocyanins (M-BE) or 150 mg anthocyanins (L-BE). The placebo drink did not have any blackcurrant extract added to it (CON), but M-BE, L-BE and CON were adjusted with added tannins to ensure blinding by making sure each of the drinks had equivalent astringency/bitterness in taste. This meant that CON also contained tannin polyphenols. The standardized high carbohydrate meals consumed on each study visit consisted of 100 g thick sliced white bread (Hovis, London, UK) with 32 g Hartley’s smooth apricot jam (Hain Daniels Group, Leeds, UK), both high carbohydrate foods which are low in phenolics (<6 mg/100g fresh weight) [2], to provide 1127 kJ energy, 62 g carbohydrate, 39 g starch, 23 g sucrose. The total carbohydrate intake including the test drink was 67 g. The randomization schedule was generated by independent contracted parties within GlaxoSmithKline Nutritional Healthcare, and allocation to treatment sequence was carried out once a participant was determined to be eligible and had agreed to take part in the study according to the schedule of randomly generated treatment sequences. Allocation of treatment at each visit was blinded from the investigators, laboratory technicians, statisticians and the study participants.

The participants consumed each of the 4 test drinks delivered in opaque bottles and consumed with a straw within 2 minutes, in random order, after baseline measurements/blood samples
were taken. The mixed carbohydrate meal was consumed immediately after consumption of the drink, within 5 min. Each test meal protocol (Figure 1) was separated by at least 1 week.

On the day preceding each test meal, participants were told not to participate in strenuous exercise and to avoid alcohol, caffeine, oily fish, high polyphenol foods (from a list provided) and foods high in fat. They were provided with a standardized low-fat meal (containing <10 g fat) as their evening meal, which they were required to consume before 20.00 h and then to avoid eating or drinking anything except for water until the study visit (a 12 h fast). Participants attended the Metabolic Research Unit between 08.00 and 10.30 h the next day. They were asked to empty their bladder, be weighed, and then rest in a supine position in a temperature controlled, quiet, dim room for 10 min before blood pressure and digital volume pulse (DVP) measurements were taken. A cannula was inserted into the forearm antecubital vein, and blood was collected for baseline analysis (in duplicate at -15 and -10 min for glucose). Following consumption of the test meal, further venous blood samples were collected 10, 20, 30, 45, 60, 75, 90 and 120 minutes after the test drink/meal for plasma glucose, insulin, NEFA, GIP, GLP-1 and TAG analysis and at 120 min only for 8-isoprostane F₂₆α analysis. Blood pressure/vascular measurements were made within ten minutes after the final blood sample had been taken at 120 min. Participants had access to water to sip as required over the 2 h period. Adverse events were recorded at all study visits where necessary by asking the following question during each visit, including any follow-up visits or telephone calls and documenting the reply: “Have you felt unwell, experienced any symptoms or taken any medication today or since the last session?”.

2.3 Methods

Blood samples for plasma GIP and GLP-1 analysis were collected into EDTA tubes (Becton Dickinson, UK) and centrifuged at 1300 x g for 15 min at 4 °C and plasma was stored at -80 °C.
until analysis. EDTA tubes for GLP-1 analysis had 10 µl per ml blood dipeptidyl peptidase IV inhibitor added (Millipore, MO, USA). GIP and GLP-1 were determined by ELISA kits (Millipore Corporation, MA, USA). Further blood samples were collected into fluoride oxalate tubes for glucose analysis and SST™ II tubes for TAG, insulin and NEFA analysis; plasma and serum were stored frozen at -40 °C until analysis (Becton Dickinson, UK). Enzymatic assays were used to determine concentrations of NEFA, glucose and TAG (TAG and glucose: Instrumentation Laboratory, cat.no. 0018255640 and cat.no. 00018250740, Warrington, Cheshire, UK; NEFA C: Wako Chemicals GmbH, cat.no. 999-75406, Neuss, Germany) on an ILAB-650 analyser (Instrumentation Laboratory, Warrington, UK). Blood for 8-isoprostane-F₂α analysis was drawn into chilled citrated tubes (Becton Dickinson, UK) and chilled fresh indomethacin (cyclooxygenase inhibitor) was immediately added (final concentration 15 µmol/L). The sample was kept on ice 30 min prior to centrifugation at 2400 × g for 15 min. BHT was added (final concentration 20 µmol/L) and the samples were frozen in liquid N₂ and stored at -80°C until analysis of 8-isoprostane F₂α by GC/MS as previously described [21].

Blood pressure was measured according to British Hypertension Society guidelines using an automated upper arm blood pressure monitor, the Omron 705IT (Omron Healthcare Europe B.V.). DVP was obtained by photoplethysmography (PulseTrace, Micro Medical Ltd., Kent, UK) and used to calculate stiffness index (DVP-SI, m/s) and reflection index (DVP-RI, %).

2.4 Statistical analyses

Mean values for plasma glucose concentrations were calculated from duplicate measurements made at baseline (-15 and -10 min) before statistical analysis. A linear mixed effects model was used to analyse incremental Cmax and AOB using PROC MIXED in SAS software (Marlow, UK). Main effects of drink and drink x time interactions for the change from baseline at each time point were calculated by linear mixed effects modelling using SPSS Statistics version 21
(IBM, UK). The models included subject as a factor (a random effect), fixed factors were drink (and time and drink x time interaction where appropriate) and period. Baseline values, and two baseline terms were included as covariates: (i) subject-level baseline; the number of valid responses calculated as the mean baseline across all periods within a subject, and (ii) the period-level baseline minus the subject-level baseline. P-values were adjusted using Dunnett’s procedure for the comparison against a control (reference) product, either using SAS for incremental Cmax and AOB, or using 2-way repeated measures ANOVA in GraphPad Prism version 6.00 for Windows (GraphPad software, CA, USA) for drink and drink x time effects (since SPSS does not provide Dunnett’s multiple testing adjustment in the linear mixed model facility with repeated measures). The assumption of normality and homogeneity of variance was investigated. Violation of these assumptions were overcome where appropriate using natural logarithmic transformation. Tmax data was analysed by Friedman’s non-parametric test using GraphPad Prism.

3. Results

Thirty volunteers who met the initial eligibility criteria following a telephone questionnaire attended screening sessions at King’s College London, of whom 4 did not meet inclusion criteria. Of the 26 eligible participants, 22 were randomized to treatment and completed the study. All completing subjects were fully compliant with the study protocol. Details are shown on the consort diagram (Figure 2). The characteristics of those who completed the study are shown in Table 2. There were 3 treatment emergent adverse events: one was considered treatment-related (discoloured feces following CON) and the others (following H-BE) were related to cannulation site discomfort. No adverse events were considered serious.

3.1 Glucose, insulin and incretins
The postprandial changes in plasma glucose after the test drinks and standard carbohydrate meals are shown in **Figure 3A**. An overall drink effect for the change from baseline of \((\text{Ln})\text{glucose}\) concentrations 0-120 min \((P<0.05)\) was observed, with no statistically significant drink x time interaction for postprandial glucose response \((P=0.16)\). As figure 3A illustrates, H-BE inhibited glucose concentrations during the initial 30 min of the postprandial period (AOB 0-30 min mean difference H-BE vs CON (95% CI) -0.34 mmol/L.h (-0.56, -0.11, \(P<0.005\)); AOB 0-120 min were not significantly different between meals. Post hoc pairwise comparisons showed there were significantly lower glucose concentrations following H-BE compared to CON at 10-30 min post-drink (figure 3A), and there was a statistically significant increase in glucose following H-BE at 75 min relative to CON (mean difference in change from baseline values was 0.72 mmol/L (0.18, 1.25; \(P<0.01\)). Cmax (adjusted for baseline) was not significantly different between meals. Tmax was slightly greater following H-BE (mean at 55 min, 95% CI 48, 62) compared to M-BE, L-BE and CON (means were 46 min, 39, 62; 49 min, 42, 57; 48 min, 36, 60, respectively) but this did not reach statistical significance \((P=0.06)\).

There was a statistically significant drink effect \((P<0.001)\) and drink x time interaction \((P<0.05)\) for \((\text{Ln})\text{insulin}\) 0-120 min, and a drink x time interaction \((P<0.05)\) for the change from baseline in \((\text{Ln})\text{insulin}\) 0-120 min. Post hoc analysis showed similar temporal drink differences to glucose (**Figure 3B**), with significantly lower insulin concentrations initially, following H-BE compared to CON, at 10, 20 and 30 min, and higher concentrations at 75 and 90 min (figure 3B). The mean difference in AOB 0-30 min between H-BE and CON (95% CI) was -8.77 mU/L.h; -13.86, -3.68, \(P<0.005\). There were no differences in Cmax, Tmax and AOB 0-120 min for insulin.

Plasma GIP changes from baseline concentration were significantly reduced during the whole postprandial measurement period following H-BE anthocyanins compared to CON, with a significant decrease in Cmax (mean difference -64.4 ng/L; -95,5, -33.4; \(P<0.0005\)) and AOB 0-120 min \((P<0.0001)\), and highly statistically significant drink effect \((P<0.0001)\) and drink x time
interaction ($P<0.005$) on (Ln)GIP 0-120 min and change from baseline of (Ln)GIP 0-120 min (drink effect $P<0.0001$). Post hoc pairwise comparisons with Dunnett’s adjustment for multiple comparisons showing consistently reduced plasma GIP concentrations at all timepoints following H-BE up until 90 min (Figure 4A).

Plasma GLP-1 concentrations were also reduced by H-BE (Figure 4B), with a statistically significant drink effect on changes from baseline of (Ln)GLP-1 ($P<0.0005$), but no significant drink x time interaction. Post hoc pairwise comparisons showed reduced plasma GLP-1 concentrations relative to baseline following H-BE compared to CON and L-BE anthocyanins at 90 min (figure 4B). There were no differences in Cmax, Tmax and AOB 0-120 min for GLP-1.

3.2 Lipids

Plasma TAG concentrations ((Ln)TAG up to 120 min) were significantly different according to drink but this was due to a significant difference at baseline ($P<0.005$) and the changes from baseline (Ln)TAG did not differ (Supplementary Figure 1A). There was no effect of drink on plasma NEFA concentrations (Supplementary Figure 1B).

3.3 Isoprostanes and vascular function

(Ln)8-isoprostane $F_{2\alpha}$ concentrations, blood pressure, DVP-SI and DVP-RI changes from baseline were not significantly different between drinks (Table 3).

4. Discussion

This study aimed to investigate whether blackcurrant anthocyanin-rich fruit drinks could inhibit the rise in blood glucose concentrations following a high-carbohydrate meal in a healthy population. The highest dose of blackcurrant anthocyanins inhibited the rate of the increase in
plasma glucose and insulin concentrations in the first 30 min, had an inhibitory effect on plasma
GIP concentrations up to 90 min post-meal and reduced plasma GLP-1 concentrations at ~90
min, but the lower doses had no significant inhibitory effects. This delaying effect on
postprandial glycemia may, if experienced habitually over many years, reduce risk of developing
insulin resistance and eventually type 2 diabetes [22]. H-BE was equivalent to approximately
100 g fresh raw blackcurrants [2], which could conceivably be consumed without discomfort at
one sitting. Furthermore, there tended to be a rebound effect on plasma glucose and insulin
concentrations in the later time-points, with the highest dose being associated with higher
concentrations at 75-90 min, as observed previously with whole berry purée and nectar [15, 16].
This did not translate to the same pattern in the incretin levels, which consistently showed
reduced concentrations following the highest dose compared to placebo throughout the 120 min
postprandial period. No changes in secondary outcome variables related to lipids, vascular
function or oxidative stress were observed.

These data are in agreement with previous reports that whole berry meals or berry nectars
(juices) rich in anthocyanins, including those derived from blackcurrants, inhibited plasma
glucose and insulin concentrations in the first 30 min following consumption [14, 15, 16, 17, 23].
Furthermore, these results provide novel data showing that a liquid blackcurrant extract (devoid
of fibre and low in other confounding nutrients) not only lowers glucose and insulin
concentrations, but also inhibits incretin secretion. The observation that GLP-1 secretion may
be inhibited in the latter half of the postprandial period is in contrast to a previous study of a
mixed berry meal consumed with sucrose which showed that plasma GLP-1 concentrations
were slightly increased in the first hour following consumption of the meal [16], which might
reflect differences in study design such as the solid state of the carbohydrate load, and mixed
sucrose and starch composition of the present test meal.
The difference in carbohydrate type and physical state of the test meal might also explain why a previous study observed a return to baseline of insulin concentrations following their reference meal (sucrose and water) [15], whereas plasma insulin concentrations remained elevated following our control and blackcurrant extract test meals (drink, followed by bread and apricot jam). Consequently, the insulin-mediated suppression of circulating NEFA concentrations was not different in the current study, in contrast to the previous study which observed an inhibition of the upwards return to baseline in plasma NEFA concentrations around 90-120 min following blackcurrant puree and blackcurrant juice, in line with higher insulin concentrations at these times points in comparison to the reference meal [15].

Inhibition of intestinal glucose transporters (e.g. SGLT1, GLUT2) and inhibition of digestive enzymes are the primary proposed mechanisms by which blackcurrant polyphenols might act on glycaemic response [10, 24, 25], although delayed gastric emptying cannot be ruled out. Polyphenolic components of blackcurrant extract such as proanthocyanidins may reduce pancreatic \(\alpha \)-amylase activity in the duodenum by binding to the protein [13]. Additional inhibition of carbohydrate digestion may occur by interaction of anthocyanins and other blackcurrant polyphenols with intestinal brush border \(\alpha \)-glucosidases, resulting in reduced maltase and sucrase activities [8]. Since our control drink and lower dose intervention drinks also contained added tannins in order to match the bitter taste of H-BE, there is likely to have been inhibition of \(\alpha \)-amylase across all test drinks. Thus, differences observed here are possibly related to anthocyanin content. Anthocyanins can also be transported into the intestinal cell using the SGLT1 transporter, and competition for this route following an anthocyanin-rich meal may inhibit rates of glucose absorption, in a similar way to phlorizin (a dihydrochalcone in apple that inhibits SGLT1-mediated glucose uptake) [26, 27].
The strong inhibition of plasma GIP concentrations throughout the postprandial period suggests that secretory regulation of this incretin is highly sensitive to glucose absorption rates. SGLT1 has been shown to be coexpressed with GLP-1 and GIP in individual enteroendocrine cells of murine jejunal crypts, and studies in \textit{Sglt1}^{-/-} mice have shown the essential role of SGLT1 as a glucose sensor for GIP and GLP-1 secretion [28], although GLUT2 may also be an important regulator of incretin response [29]. Our human data showing inhibition of carbohydrate-induced incretin secretion following consumption of blackcurrant polyphenols mirror previous reports of phlorizin sensitivity of glucose-induced SGLT1-mediated incretin release [30].

The suppression of plasma GLP-1 concentrations by the top dose of blackcurrant extract paradoxically coincided with the time point where plasma insulin concentrations were increased relative to placebo, at 90 min post-drink. Polyphenol-induced delayed digestive processing of the starch/sucrose test meal is likely to have resulted in partially digested dextrins and disaccharides possibly shifting further down the small intestine. This may have increased the proportion of glucose that was absorbed later (75-90 min) relative to control accounting for the crossover in glucose and insulin profiles, in agreement with glycaemic/insulinaemic profiles observed previously [15, 16, 17]. GLP-1 is released from L cells in the distal intestine within minutes of nutrient ingestion via neuroendocrine signalling, but inhibition by blackcurrant extract occurred around the time that the meal contents would be reaching the part of the jejunum where the secretory cells are located suggesting a direct inhibition of glucose transport in this part of the gut by the blackcurrant polyphenols.

No acute differences in blood pressure, arterial stiffness or pulse wave reflection index as measured by DVP were observed between drinks, consistent with previous vascular observations following single meals [31, 32]. This does not exclude the possibility that there might be an effect of blackcurrant polyphenols on vascular function. Anthocyanins rapidly appear in the circulation1-2 h after consumption at very low concentrations (1-150 nmol/L for
intakes of 3-1200 mg) [33, 34], and are equally rapidly cleared, so are unlikely to have a
significant impact on vascular function early in the postprandial period [35], although
blackcurrant phenolic acids that peak around 2 h post-ingestion might be associated with some
improvement in endothelial function [31]. However, colonic metabolites, conjugated phenolic
acids, would be expected to appear in the circulation 4-12 h post-ingestion, and may also be
bioactive in this respect [33]. Acute episodes of high blood glucose cause endothelial
dysfunction in animal models and healthy volunteers in clinical trials, with hyperglycemia-
induced oxidative stress as the most likely mediator [19, 36]. However, the different profiles of
postprandial glycemia observed here were not associated with any significant differences in a
sensitive marker of lipid peroxidation, 8-isoprostane $F_2\alpha$.

The strengths of this study include the rigorous adherence to double-blinding until final
statistical analysis was complete, randomization and allocation concealment being conducted at
a remote site by an independent party, and the control drink was fully matched to the
intervention drinks for taste, appearance, and nutrient composition. The study was carried out in
a broad cross-section of healthy men and postmenopausal women, although premenopausal
women were excluded to avoid confounding effects of reproductive hormones [37]. Limitations
of the study include the fact that the difficulty in finding a bitter/astringent taste additive that is
not a potentially bioactive compound meant that tannins were added to placebo and lower
doses of blackcurrant extract drinks for taste-blinding. Although we observed significant
inhibition of glycemia, insulinemia and incretin secretion, the true size of the effect may have
been much larger if the requirement for blinding had not necessitated addition of tannins. Serum
concentrations of anthocyanins and their metabolites were not measured in this study since the
primary aim was to investigate effects on postprandial glycaemia, mainly determined by
polyphenol interactions with digestive enzymes and intestinal glucose transporters within the
lumen of the gastrointestinal tract. However, interpretation of some of the secondary outcome
variables (vascular function and blood pressure) would have been aided by data on circulating blackcurrant polyphenol derivatives.

In conclusion, anthocyanin-rich blackcurrant extract, providing a similar quantity of polyphenols to that found in 5 heaped tablespoons of blackcurrants, delayed the appearance of glucose in the blood and inhibited the secretion of insulin and incretins. Although blackcurrants are likely to be consumed only sporadically in the general population, other berries contain different profiles of anthocyanins. Regular consumption of any combination of these as main meals or with snack foods may help lower postprandial glycemia which may reduce the vascular burden of glucose-induced oxidative stress and endothelial dysfunction [19, 20] involved in the progression of atherosclerosis. This evidence supports current dietary advice that a predominantly plant-based diet may help prevent CVD and T2D, and suggests one of many routes by which cardio-metabolic protection can occur.

Acknowledgements

WLH, RJM and DIMcC devised the study. LS and MLCA conducted the research. JAF coordinated statistical data analysis. WLH wrote the manuscript, which was edited and approved by all authors. WLH had primary responsibility for final content. We thank Tracy Dew (King’s College Hospital), and Robert Gray (King’s College London) for their assistance with sample processing and analysis during the study, David Shaw (GSK) for statistical analysis of the data, and also Najmeh Kamali for assistance on screening and study days.
References

12 Manzano S, Williamson G. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Molecular nutrition & food research 2010;54:1773-80.

Table 1 Energy, nutrient and polyphenol composition of the test drinks.

<table>
<thead>
<tr>
<th></th>
<th>Per 200 ml</th>
<th>H-BE</th>
<th>M-BE</th>
<th>L-BE</th>
<th>CON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy and nutrients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy, kJ</td>
<td></td>
<td>92</td>
<td>90</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>Carbohydrate, g</td>
<td></td>
<td>4.6</td>
<td>4.5</td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Glucose, g</td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Fructose, g</td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sucrose/Lactose/Maltose, g</td>
<td></td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Starch, g</td>
<td></td>
<td>4.0</td>
<td>4.0</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Fat, g</td>
<td></td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Protein, g</td>
<td></td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Total dietary fibre (AOAC), g</td>
<td></td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>Vitamin C, mg</td>
<td></td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
</tr>
<tr>
<td>Vitamin E, mg</td>
<td></td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>Sodium, mg</td>
<td></td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>Potassium, mg</td>
<td></td>
<td>15.7</td>
<td>7.8</td>
<td>3.9</td>
<td><3</td>
</tr>
<tr>
<td>Magnesium, mg</td>
<td></td>
<td>2.3</td>
<td>1.1</td>
<td>0.6</td>
<td><0.4</td>
</tr>
<tr>
<td>Calcium, mg</td>
<td></td>
<td>6.5</td>
<td>3.3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>Phosphorus, mg</td>
<td></td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>Zinc, mg</td>
<td></td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.3</td>
</tr>
</tbody>
</table>

Polyphenols

<p>| | | | | | |
| | | | | | |
| Total phenolics, mg1,2 | | 1596 | 810 | 460 | 207 |
| Total anthocyanins, mg1 | | 599 | 322 | 131 | 46 |
| Delphinidin-3-rutinoside, mg3 | | 260 | 140 | 57 | 20 |</p>
<table>
<thead>
<tr>
<th>Anthocyanin</th>
<th>H-BE</th>
<th>M-BE</th>
<th>L-BE</th>
<th>CON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanidin-3-rutinoside, mg³</td>
<td>209</td>
<td>113</td>
<td>46</td>
<td>16</td>
</tr>
<tr>
<td>Delphinidin-3-glucoside, mg³</td>
<td>76</td>
<td>41</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>Cyanidin-3-glucoside, mg³</td>
<td>33</td>
<td>18</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

H-BE: high blackcurrant extract; M-BE: medium blackcurrant extract; L-BE: low blackcurrant extract; CON: no blackcurrant extract.

1 Total phenolic and anthocyanin content estimated from direct analysis of drinks by Folin-Ciocalteau method and HPLC respectively.

2 Tannins added as an ingredient (H-BE 0 mg, M-BE 60 mg, L-BE 90 mg, CON 150 mg per 200 ml drink) to render drinks equivalent in bitter/astringent taste for blinding purposes.

3 Estimated from HPLC analysis of raw extract, not direct analysis of the drinks.
Table 2 Characteristics of healthy subjects who completed the study (n=22)a.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>45.4 (13.7)</td>
<td></td>
</tr>
<tr>
<td>Sex, male to female ratio</td>
<td>13:9</td>
<td></td>
</tr>
<tr>
<td>Body Mass Index, kg/m2</td>
<td>25.5 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg</td>
<td>122.7 (14.1)</td>
<td></td>
</tr>
<tr>
<td>Diastolic blood pressure, mmHg</td>
<td>77.2 (10.8)</td>
<td></td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>88.3 (9.6)</td>
<td>89.2 (13.9)</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Fat, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>18.1 (6.2)</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>35.1 (8.2)</td>
<td></td>
</tr>
<tr>
<td>Fasting plasma glucose, mmol/L</td>
<td>5.4 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Fasting plasma triacylglycerol, mmol/L</td>
<td>1.2 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Fasting plasma total cholesterol, mmol/L</td>
<td>4.9 (1.0)</td>
<td></td>
</tr>
<tr>
<td>Fasting plasma LDL cholesterol, mmol/L</td>
<td>2.8 (0.8)</td>
<td></td>
</tr>
<tr>
<td>Fasting plasma HDL cholesterol, mmol/L</td>
<td>1.5 (0.4)</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>1.3 (0.4)</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>1.7 (0.3)</td>
<td></td>
</tr>
</tbody>
</table>

aValues are means (SD).
Table 3: Effects of blackcurrant extract and placebo test drinks on digital volume pulse (DVP), systolic and diastolic blood pressure (SBP and DBP) and plasma 8-isoprostane F$_{2\alpha}$ in healthy men and postmenopausal women.1

<table>
<thead>
<tr>
<th></th>
<th>CON</th>
<th>L-BE</th>
<th>M-BE</th>
<th>H-BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVP-RI, %</td>
<td>Baseline</td>
<td>74.4 (69.5, 79.2)</td>
<td>70.4 (64.8, 76.1)</td>
<td>72.9 (67.1, 78.6)</td>
</tr>
<tr>
<td></td>
<td>Δ 120 min</td>
<td>-0.57 (-5.35, 4.21)</td>
<td>3.80 (-0.93, 8.54)</td>
<td>0.15 (-4.26, 4.56)</td>
</tr>
<tr>
<td>DVP-SI, m/s</td>
<td>Baseline</td>
<td>8.57 (7.75, 9.40)</td>
<td>8.50 (7.63, 9.37)</td>
<td>8.44 (7.64, 9.25)</td>
</tr>
<tr>
<td></td>
<td>Δ 120 min</td>
<td>-0.75 (-1.44, -0.05)</td>
<td>-0.23 (-1.05, 0.59)</td>
<td>-0.57 (-1.21, 0.07)</td>
</tr>
<tr>
<td>SBP, mmHg</td>
<td>Baseline</td>
<td>120.8 (116.1, 125.2)</td>
<td>120.9 (115.6, 126.0)</td>
<td>120.7 (116.0, 125.5)</td>
</tr>
<tr>
<td></td>
<td>Δ 120 min</td>
<td>-4.5 (-8.8, -0.1)</td>
<td>-1.0 (-6.8, 4.9)</td>
<td>-5.2 (-8.9, -1.5)</td>
</tr>
<tr>
<td>DBP, mmHg</td>
<td>Baseline</td>
<td>74.6 (71.2, 78.1)</td>
<td>75.3 (71.7, 78.9)</td>
<td>74.5 (71.3, 77.8)</td>
</tr>
<tr>
<td></td>
<td>Δ 120 min</td>
<td>-0.6 (-4.3, 3.2)</td>
<td>1.7 (-2.0, 5.4)</td>
<td>-1.1 (-3.6, 1.3)</td>
</tr>
<tr>
<td>Plasma 8-isoprostane</td>
<td>Baseline</td>
<td>86.4 (68.8, 108.4)3</td>
<td>123.7 (96.6, 158.3)3</td>
<td>100.5 (80.8, 125.1)</td>
</tr>
<tr>
<td></td>
<td>Δ 120 min</td>
<td>1.13 (1.01, 1.27)</td>
<td>0.94 (0.81, 1.09)</td>
<td>1.02 (0.91, 1.14)</td>
</tr>
</tbody>
</table>

H-BE: high blackcurrant extract (600 mg anthocyanins); M-BE: medium blackcurrant extract (300 mg anthocyanins); L-BE: low blackcurrant extract (150 mg anthocyanins); CON: placebo (0 mg anthocyanins). No significant differences were observed between drinks.
Values are mean baseline values and changes from baseline measured 120 min after the test drink and mixed carbohydrate meal, (95% CI), n=22.

Values are geometric mean baseline values and log ratios of changes from baseline measured 120 min after the test drink and mixed carbohydrate meal, (95% CI), n=22.

n=20 due to sample loss.
Fig. 1 Study visit protocol

Fig. 2 Consort diagram

Figure 3 Postprandial plasma glucose and insulin concentrations

Mean (±SEM) plasma glucose (A) and insulin (B) concentrations following ingestion of 4 low sugar fruit drinks 2 minutes before consuming a mixed carbohydrate meal, in randomized order: H-BE: high blackcurrant extract; M-BE: medium blackcurrant extract; L-BE: low blackcurrant extract; CON: placebo. N = 22. All data were natural log transformed before mixed model analysis. For glucose $P < 0.001$ for an overall drink effect on changes from baseline, and for insulin, $P < 0.001$ for a drink effect and $P < 0.001$ for a drink x time interaction on raw values and changes from baseline. **A**: post hoc analysis of time-point differences in change from baseline in glucose compared to CON with Dunnett’s adjustment: $^aP < 0.05$ for the difference between H-BE and CON and M-BE and CON; $^bP < 0.005$ for the difference between H-BE and CON; $^cP < 0.01$ for the difference between H-BE and CON. **B**: post hoc analysis of time-point differences in change from baseline in insulin with Dunnett’s adjustment: $^aP < 0.005$ for the difference between H-BE and CON; $^bP < 0.01$ for the difference between H-BE and CON; $^cP < 0.05$ for the difference between H-BE and CON.
Figure 4 Postprandial plasma GIP and GLP-1 concentrations

Mean (±SEM) plasma GIP (A) and GLP-1 (B) concentrations following ingestion of 4 low sugar fruit drinks 2 minutes before consuming a mixed carbohydrate meal, in randomized order: H-BE: high blackcurrant extract (GIP n=17; GLP-1 n=20); M-BE: medium blackcurrant extract (GIP n=20; GLP-1 n=22); L-BE: low blackcurrant extract (GIP n=20; GLP-1 n=21); CON: placebo (GIP n=19; GLP-1 n=22). All data were natural log transformed before mixed model analysis.

For GIP, there was an overall drink effect on raw values ($P < 0.0001$) and changes from baseline ($P < 0.0001$), and a drink x time interaction on raw values ($P < 0.005$), and for GLP-1 there was an overall drink effect on raw values and changes from baseline ($P < 0.001$). A: post hoc analysis of time-point differences in change from baseline in GIP with Dunnett’s adjustment: $^aP < 0.0001$ for the difference between H-BE and CON, and $^bP < 0.001$ for the difference between L-BE and CON; $^cP < 0.0005$ for the difference between H-BE and CON; $^dP < 0.005$ for the difference between H-BE and L-BE and H-BE and M-BE; $^eP < 0.05$ for the difference between H-BE and CON; and $^fP < 0.0005$ for the difference between H-BE and CON. B: post hoc analysis of time-point differences in change from baseline in GLP-1 with Dunnett’s adjustment: $^aP < 0.05$ for the difference between H-BE and CON.
Figure 1 Study visit protocol
Figure 2 Consort diagram.

- Recruitment started
 - Requested information (n=107)
 - Lost at recruitment stage (n=45)
 - No reply after providing information (n=45)
 - Excluded (n=52)
 - Not meeting inclusion criteria (n=50)
 - Declined to participate (n=2)
- Assessed for eligibility (n=62)
- Consent and attended screening visit (n=30)
 - Excluded (n=4)
 - Not meeting inclusion criteria (n=4)
- Met inclusion criteria and contacted to participate in study (n=26)
 - Subjects withdrew before randomization (n=4)
 - Compliance problem (n=3)
 - Other (n=1)
- Randomized to treatment order (n=22)
- Completed 4 x study days (n=22)