Accepted Manuscript

Acne and telomere length. A new spectrum between senescence and apoptosis pathways

PII: S0022-202X(16)32456-3
DOI: 10.1016/j.jid.2016.09.014
Reference: JID 536

To appear in: The Journal of Investigative Dermatology

Received Date: 23 March 2016
Revised Date: 30 August 2016
Accepted Date: 1 September 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Acne and telomere length. A new spectrum between senescence and apoptosis pathways.

Ribero S1,2*, Sanna M1*, Visconti A1, Navarini A3, Aviv A4, Glass D1, Spector TD1, Smith C3, Simpson M5, Barker J3, Mangino M1, Falchi M1# and Bataille V1,6#

1Department of Twin Research & Genetic Epidemiology, King’s College London, UK
2Department of Medical Sciences, Section of Dermatology, University of Turin, Italy
3St John’s Institute of Dermatology, Division of Genetics and Molecular Medicine, Kings College London, UK
4Center of Human Development and Aging, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
5Department of Medical Genetics, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, Kings College London, UK
6Department of Dermatology, West Herts NHS Trust, Herts, UK

* RS, SM contributed equally to this work
FM, BV share senior authorship

\textbf{Short title: Telomere length, p53 and acne susceptibility}

\textbf{Address for correspondence:}
Simone Ribero, MD, PhD
Department of Twin Research and Genetic Epidemiology, King’s College London
St Thomas’ campus, Westminster Bridge Road, London, SE1 7EH
e-mail: simone.ribero@unito.it
Tel: 01442-287467 Fax: 01442-287588

Acne is a multi-factorial disease with many factors thought to play a role including the skin microflora and nutrition as well as hormonal influences and stress (Suh and Kwon, 2015). Acne patients have increased sebum secretion, and both acne and activity of the sebaceous glands are under significant genetic control (Mourelatos et al., 2007; Bataille et al., 2002). Recent Genome Wide Association Studies (GWAS) have identified several
variants linked to acne susceptibility (Wang et al., 2015; He et al., 2014; Navarini et al., 2014; Zhang et al., 2014).

It has long been noticed by dermatologists that acne patients have reduced skin ageing, often observed many years after the acne has recovered. Signs of ageing, such as wrinkling and skin thinning appear later in acne patients compared to non-affected individuals. This was speculated to be due to increased sebum secretion during a lifetime but other factors are likely to be involved (Downing et al., 1986).

In this study, we investigated leucocyte telomere length (LTL) in subjects with acne compared to controls using data from the TwinsUK registry (http://www.twinsuk.ac.uk/). Telomeres are repeat TTAGGG sequences at the end of linear chromosomes guarding against loss of genetic material during cellular replication. Repeated cell cycles eventually lead to a critically shortened LTL signalling cellular senescence and triggering apoptosis. Hence, LTL has been shown to be predictive of biological ageing (Hewitt et al., 2012).

Volunteers in the TwinsUK cohort were not recruited on the basis of any specific trait or disease and have been shown to have diseases and lifestyle characteristics similar to the general population (Andrew et al., 2001). Guy’s and St Thomas’ Hospital NHS Trust Research Ethics Committee approved the study, and all twins provided informed written consent. For historical reasons the TwinsUK registry involves mainly females and males were therefore excluded from this study. The history of acne was self-reported during a nurse-administered questionnaire and the female twins were asked if they had ever suffered from acne and whether their acne was self treated, treated by a GP or by a dermatologist (Bataille et al., 2002). 293 out of 1,205 twin volunteers (24.3%) had experienced acne in their lifetime.

LTL was measured using Southern Blot and was available for all the subjects included in this study (Valdes et al., 2007; see Supplementary Material for details). Mean LTL in the 1,205 subjects was 7.08 kb (median=7.06 kb, range: [5.70-8.67] kb). Mean weight was 67 kg (median: 65 kg; range: [40-115] kg) and mean height was 162 cm (median: 162 cm; range: [144-182] cm). The mean age of the twins at the time of DNA extraction was 48±12 years.
Linear regression (see Supplementary Material for details) showed that acne cases had longer LTL (mean 7.17±0.64 kb) compared to controls (mean 6.92±0.02 kb) after adjustment for age, twin relatedness, weight and height (beta=0.11; se=0.05; p=0.01). Using score tests under a logistic regression model, we further investigated the association between acne and a set of SNPs previously reported to be associated with LTL in a sample of 1,893 cases of severe acne and 5,132 population controls from the UK Acne Genetic study (Codd et al., 2013; Mangino et al., 2015; Navarini et al., 2014). No LTL SNPs were significantly associated with acne after correction for multiple testing. However, rs3027234 in the CTS Telomere Maintenance Complex Component 1 gene (CTC1), was nominally significant (Supplementary Table 1). Finally, we performed a mixed effect logistic regression analysis in whole genome data from healthy skin samples comparing acne cases and controls. The expression data was measured in 705 female individuals from the TwinsUK registry (http://www.muther.ac.uk/) of whom 346 had data on acne history. We selected 195 controls twins who were perfectly age-matched to 39 twins with acne and gene expression data (see Supplementary Material for details). Only the ZNF420 gene (probe ILMN_1720431) was significantly associated with acne history at FDR 5%, showing a higher expression in controls (p=7.73x10^{-7}; Table 1 and Figure 1). Interestingly, ZNF420 is one of the 30% most expressed genes in skin.

This study investigates reduced skin ageing observed in acne by assessing telomere length in circulating white cells and gene expression in the skin. Acne cases showed longer telomeres after adjusting for age, height and twin relatedness suggesting that the delayed skin ageing may be due to reduced senescence. Only one SNP predicting LTL was found to be associated with acne at nominal significance. This SNP is located within the CTC1 gene which is a component of the CST complex and plays an important role in protecting telomeres against degradation (Sarek et al., 2015). The reduced expression of the gene ZNF420 in normal skin in acne cases which encodes the protein Apak (ATM and p53-associated KRAB-type zinc-finger protein) suggests that p53 is up-regulated in acne cases as the ZNF420 gene is a negative regulator of p53-mediated apoptosis.
Considering longer telomeres and the up-regulation of the p53 pathway in acne cases, it could be speculated that acne susceptibility may be linked to the biology of cancer. A recent study from the Nurses' Health study II, a large USA cohort involving more than 99,000 female nurses (Zhang et al., 2015) found an increased risk of cancer in acne cases (Zhang et al., 2015). Additionally, recent GWASs have reported significant associations between acne and genes involved in cancer susceptibility, including the MYC gene and genes linked to the TGFβ cell signalling pathway (Zhang et al., 2014; Navarini et al., 2014). Further work is needed to investigate the associations between cell senescence, acne, and cancer susceptibility but this work shed new light on this very common and often debilitating skin disease.

The authors state no conflict of interest

Acknowledgments. We wish to express our appreciation to all study participants of the TwinsUK. MS, AV, and MF wish to acknowledge S. Burbidge of the Imperial College High-Performance Computing service for their assistance.

FUNDING. TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union (EU), and the National Institute for Health Research (NIHR)- funded BioResource, Clinical Research Facility, and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. MF, VB and AV are supported by BSF grant n. 5044i.
REFERENCES
Andrew T, Hart DJ, Snieder H, de Lange M, Spector TD, MacGregor AJ. Are twins and
singletons comparable? A study of disease-related and lifestyle characteristics in adult
and environmental factors in the pathogenesis of acne: a twin study of acne in women.
Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL et al. Identification of
seven loci affecting mean telomere length and their association with disease. Nat
Genet. 2013;45:422-7
Downing DT, Wertz PW, Stewart ME. The role of sebum and epidermal lipids in the
Telomeres are favoured targets of a persistent DNA damage response in ageing and
Mangino M, Christiansen L, Stone R, Hunt SC, Horvath K, Eisenberg DT et al. DCAF4,
Mourelatos K, Eady EA, Cunliffe WJ, Clark SM, Cove JH. Temporal changes in sebum
excretion and propionibacterial colonization in preadolescent children with and without
Navarini AA, Simpson MA, Weale M, Knight J, Carlavan I, Reiniche P et al. Genome-
wide association study identifies three novel susceptibility loci for severe Acne vulgaris.
Nat Commun. 2014;5:4020
Sarek G, Marzec P, Margalef P, Boulton SJ. Molecular basis of telomere dysfunction in
Suh DH, Kwon HH. What’s new in the physiopathology of acne? Br J Dermatol. 2015

TABLES AND FIGURES

Table 1. Whole genome differential expression between acne cases and controls using a mixed linear model to control for intra-pair phenotypic correlation. The table reports the top 20 hits from the mixed effect logistic regression analysis. P values (P), Storey’s Q value (Q), effect sizes (Beta) and standard errors (SE) are reported. Only the ZNF420 gene remained significant after multiple testing at 5% false discovery rate (Q < 0.05).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Beta</th>
<th>SE</th>
<th>P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZNF420</td>
<td>-36.52</td>
<td>7.39</td>
<td>7.73x10^{-7}</td>
<td>0.02</td>
</tr>
<tr>
<td>KRTAP13-1</td>
<td>16.03</td>
<td>4.24</td>
<td>1.54x10^{-4}</td>
<td>0.85</td>
</tr>
<tr>
<td>TP53INP1</td>
<td>-4.11</td>
<td>1.24</td>
<td>9.01x10^{-4}</td>
<td>0.85</td>
</tr>
<tr>
<td>PTPN9</td>
<td>8.32</td>
<td>2.53</td>
<td>1.01x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>GOLGA4</td>
<td>-4.70</td>
<td>1.44</td>
<td>1.14x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>BCLAF1</td>
<td>-2.87</td>
<td>0.89</td>
<td>1.17x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>ZC3H10</td>
<td>4.88</td>
<td>1.51</td>
<td>1.23x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>VGLL1</td>
<td>-6.35</td>
<td>1.98</td>
<td>1.35x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>GOLGA5</td>
<td>-3.68</td>
<td>1.15</td>
<td>1.42x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>C20orf106</td>
<td>6.88</td>
<td>2.16</td>
<td>1.45x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>FAM3A</td>
<td>3.22</td>
<td>1.02</td>
<td>1.66x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>ALDH3A1</td>
<td>2.03</td>
<td>0.65</td>
<td>1.78x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>SUV420H1</td>
<td>-8.68</td>
<td>2.80</td>
<td>1.93x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>TNFAIP3</td>
<td>-2.91</td>
<td>0.95</td>
<td>2.10x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>PREB</td>
<td>4.27</td>
<td>1.39</td>
<td>2.18x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>HCFC1R1</td>
<td>2.74</td>
<td>0.90</td>
<td>2.22x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>ING1</td>
<td>-3.88</td>
<td>1.27</td>
<td>2.22x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>WDR17</td>
<td>-8.95</td>
<td>2.93</td>
<td>2.22x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>CXorf1</td>
<td>-7.07</td>
<td>2.31</td>
<td>2.22x10^{-3}</td>
<td>0.85</td>
</tr>
<tr>
<td>RAPH1</td>
<td>-2.96</td>
<td>0.97</td>
<td>2.37x10^{-3}</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Figure 1: Gene expression levels for ZNF420 (probe ILMN_1720431) in acne cases and controls. Gene expression levels are adjusted by age and twin relatedness and have been scaled between 0 and 1. Main plot: ZNF420 expression levels in controls (N=195) and cases (N=39). Inset plot: ZNF420 expression levels in moderate acne cases, which were treated only by the GP (N=31) and severe acne cases which were treated by a dermatologist (N=8). Reported p values are from logistic regression.