Meox2 is necessary for axial and appendicular tendon development

Acharya, Nikita Amit

Awarding institution:
King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.

END USER LICENCE AGREEMENT

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to:

• Share: to copy, distribute and transmit the work

Under the following conditions:

• Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work).
• Non Commercial: You may not use this work for commercial purposes.
• No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above.

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Meox2 is necessary for axial and appendicular tendon development

by

Nikita Amit Acharya

Thesis for the degree of Doctor of Philosophy

March 2016
ABSTRACT

The development of complex musculoskeletal system requires essential interaction between muscles, bone, cartilage, soft connective tissue which includes tendons and ligaments and innervation of muscle by motor neurons. Tendon is a fibrous connective tissue that connects bone to muscle and bone to bone. Axial tendon progenitors arise from the synetome in somites while limb tendons arise from lateral plate mesoderm. *Scleraxis*, a bHLH transcription factor is expressed in tendon cells.

Meox2 has been shown to express in the limb mesoderm. In this study, we found that *Meox2* is also necessary for the normal development of tendons and soft connective tissue. *Meox2* neonatal mice had brittle, pale and thin tendons. Histological analysis showed mispatterned tendon tissue and reduced tendon mass. Using the *Scleraxis-GFP* reporter transgene, we found decreased expression of GFP in *Meox2* in postnatal limb and tail tendons. In situ analysis of *Scx* RNA expression in *Meox2* embryos confirmed the earliest tendon defects occurred at E12.5, preceding the defects observed in the *Scx* mice.

To elucidate the mechanism, Meox2+ cells were analysed by antibody staining and compared with ScxGFP+ cells from E12.5-14.5. At E12.5, when tendon cells organise between prospective muscle and bone in the developing limb and trunk, we found Meox2 expression adjacent to (limbs) or overlapping (somites) but not co-expressed with Scx-GFP. During tendon cell condensation and differentiation at E13.5, Meox2+ cells were found in the connective tissue of the autopod and in non-overlapping expression with Scx-GFP+ cells in the zeugopod. However, at E14.5, the stage when the initial formation of mature tendons is complete, Meox2+ cells were found in Scx-GFP+ autopod tendons, whereas in the zeugopod Meox2+ cells remained non-overlapping with Scx-GFP+ cells revealing tendon diversity in the limb autopod and zeugopod. Analysis of a Meox2-nLacZ knock-in allele showed LacZ+ cells in tendons and connective tissue at E13.5, indicating that although these cells do not express endogenous Meox2 at that stage they are derived from Meox2-expressing
progenitors that have contributed to the tendon lineage. We also found reduction of LacZ+ cells in the limb soft connective tissue and tendons at E15.5.

TGFβ signalling plays an essential role in the formation of muscle connective tissues and a severe tendon phenotype in TGFβ2/3 knockouts first manifest at E12.5 which coincides with the earliest tendon defect in Meox2 mutants. Dynamic expression of TGFβ2 in the majority of musculoskeletal tissues and, its involvement in the recruitment of tendon cells led us to hypothesise that the defect in Meox2 mutants may be due to the down regulation of TGFβ2 signalling. Surprisingly, TGFβ2 RNA expression in Meox2−/− at E12.5 showed increased levels in the inter-limb somites and the expression domains were markedly expanded in zeugopod. Additionally, the overexpression of TGFβ2 in vitro showed differential expression of Meox2.

Collectively, these data provide a model on the biphasic necessity of Meox2 wherein it acts extrinsically during tendon induction and organisation while intrinsically during tendon maturation.
ACKNOWLEDGEMENTS

Gratitude is the memory of the heart. I have several reasons to be grateful to Dr. Baljinder Mankoo for which I could thank him all my life but it still wouldn’t be enough. Yet I make this humble attempt at expressing my heartfelt gratitude to him for unfailingly supporting and patiently guiding me through every step of my journey.

I am also very thankful to Dr. Yin Biao-Sun and Dr. Elizabeth Ehler for sharing me with many thoughtful inputs. I am immensely thankful to Prof. Simon Hughes, Prof. Peter Zammit, Prof. Malcom Logan and all the members of Mankoo, Hughes, Zammit and Logan labs for making this an enjoyable learning experience and their gift of memories. Merci Dr. Nicolas Figeac for always lending me an ear and encouraging me at the lowest of times.

I am grateful to my friends Sweta, Dr. Emily, Dr. Fernanda, Roksana, Marta, Dee, Georgia, for showing me the rope when I am in doubt, showing their kindness and being so generous with their time. I am grateful for their friendship. A special thank you to my lovely sisters, Veronica for always being there and supporting me.

Having been blessed with in-laws, who are as dear as my own parents, I feel extremely lucky. Saying thanks to them and my parents would be too little for all the inexhaustible love, support and encouragement that they have given me! Thank you to Kamaxi, Nitesh and Shyamoli for their extreme support towards me.

My success would simply have not been possible without my dearest husband Amit. Thank you very much for always being there when I needed you and for believing in my dreams. Last but not the least, my inspiration, my son Kevin whom I love dearly. Thank you, thank you, thank you to both of you for coming in my life!
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>4</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>5</td>
</tr>
<tr>
<td>List of Figures</td>
<td>9</td>
</tr>
<tr>
<td>List of Tables</td>
<td>12</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>13</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>14</td>
</tr>
<tr>
<td>1.1 Connective tissue- a component of muscle connective tissue</td>
<td>15</td>
</tr>
<tr>
<td>1.2 Tendon-a dense connective tissue</td>
<td>16</td>
</tr>
<tr>
<td>1.2.1 Tendon structure</td>
<td>17</td>
</tr>
<tr>
<td>1.2.2 Composition of tendons</td>
<td>20</td>
</tr>
<tr>
<td>1.2.3 Embryonic morphogenesis of tendons</td>
<td>22</td>
</tr>
<tr>
<td>1.2.4 Inductive cues for axial vs. limb tendon cells</td>
<td>24</td>
</tr>
<tr>
<td>1.2.5 Organisation and differentiation of tendon cells</td>
<td>31</td>
</tr>
<tr>
<td>1.2.6 Tendon growth and maturation</td>
<td>33</td>
</tr>
<tr>
<td>1.3 Myotendinous junction (MTJ)</td>
<td>37</td>
</tr>
<tr>
<td>1.4 Enthesis: Tendon-bone attachment</td>
<td>38</td>
</tr>
<tr>
<td>1.5 Postnatal arrangement of limb tendons</td>
<td>41</td>
</tr>
<tr>
<td>1.6 Muscle connective tissue (MCT)</td>
<td>44</td>
</tr>
<tr>
<td>1.7 Myogenesis in the mouse embryos</td>
<td>47</td>
</tr>
<tr>
<td>1.8 Meox2 transcription factor</td>
<td>49</td>
</tr>
<tr>
<td>1.8.1 Meox2 in limb myogenesis</td>
<td>49</td>
</tr>
<tr>
<td>1.8.2 Meox2 and TGFβ signalling pathway</td>
<td>52</td>
</tr>
<tr>
<td>1.9 Rationale</td>
<td>52</td>
</tr>
<tr>
<td>1.10 Thesis hypothesis</td>
<td>53</td>
</tr>
<tr>
<td>1.11 Project objectives</td>
<td>54</td>
</tr>
<tr>
<td>Chapter 2: Materials and Methods</td>
<td>55</td>
</tr>
<tr>
<td>2.1 Transgenic mice, mating and harvesting embryos</td>
<td>56</td>
</tr>
<tr>
<td>2.1.1 Meox2^{−/−} mice</td>
<td>56</td>
</tr>
<tr>
<td>2.1.2 Meox2^{nLacZ} mice</td>
<td>56</td>
</tr>
<tr>
<td>2.1.3 ScleraxisGFP mice</td>
<td>56</td>
</tr>
<tr>
<td>2.1.4 Spotch^{2H} mice</td>
<td>57</td>
</tr>
</tbody>
</table>
2.1.5 Timed mating and staging embryos……………………………………………….57

2.2 Genotyping of transgenic mice ..58
 2.2.1 Genomic DNA purification ..58
 2.2.2 PCR for genotyping tail and embryos ..58

2.3 Generation of template cDNA for RNA synthesis ...60
 2.3.1 Preparation of cDNA ..60
 2.3.2 Bacterial transformation of plasmid DNA ..60
 2.3.3 Purification of plasmid DNA by zippy method ..60
 2.3.4 Analysis of purified plasmid DNA ...61
 2.3.5 Restriction enzyme digestion of plasmid DNA ..61
 2.3.6 Purification of linearized cDNA ...61
 2.3.7 DIG labelled RNA probe synthesis ..62

2.4 Whole mount in situ hybridization ...63
 2.4.1 Embryo collection ..63
 2.4.2 Pre-treatment and hybridization ...63
 2.4.3 Post-hybridization washes ..63
 2.4.4 Post-antibody washing ...64
 2.4.5 Colour development ..64
 2.4.6 Imaging ...64

2.5 In situ hybridization on cryosections ...65
 2.5.1 Embryo collection and cryosectioning ...65
 2.5.2 Tissue prehybridization and hybridization ...65
 2.5.3 Post-hybridization washes ...66
 2.5.4 Post-antibody washing and colour development ..66
 2.5.5 Imaging ...66

2.6 β-galactosidase activity ..66
 2.6.1 Embryo processing ..66
 2.6.2 Cryosectioning ...67
 2.6.3 X-gal and S-gal staining ..67

2.7 Haematoxylin and Eosin staining ...67

2.8 General Immunofluorescence ...68

2.9 Meox2 Immunofluorescence ...68
 2.9.1 Embryo processing ..69
 2.9.2 Cryosectioning ...69
2.9.3 Meox2 antibody staining..69
2.9.4 Immunodetection..69

2.10 In vitro analysis..71
2.10.1 C3H10T1/2 cell culture...71
2.10.2 Cell splitting..71
2.10.3 Cell plating for in vitro analysis...72
2.10.4 RNA purification by Trizol method...72
2.10.5 Preparation of cDNA...73
2.10.6 Semi-quantitative PCR...73
2.10.7 Solutions..75

Chapter 3: Phenotypic analysis of tendons in Meox2 mutant neonates...81
3.1 Introduction...82
3.2 Aims...83
3.3 Results..84
3.3.1 Reduced ScxGFP from forelimb tendon in Meox2 null neonates..84
3.3.2 Reduced ScxGFP signal from the hindlimb tendons.....................85
3.3.3 Disruption of axial and tail tendons...86
3.3.4 Severe forelimb autopod tendon defects..86
3.3.5 Defective forelimb zeugopod tendons..88
3.3.6 Irregular fascia in the proximal forelimb zeugopod.......................89
3.3.7 Defective hindlimb autopod tendons..90
3.3.8 Disrupted Achilles tendons and fascia in the zeugopod of hindlimb.90
3.3.9 Intercostal muscles are normal in Meox1−/− neonates...................91
3.4 Discussion..92
3.5 Conclusion..100

Chapter 4: Embryonic tendon defects in the absence of Meox2...........116
4.1 Introduction..117
4.2 Aims...118
4.3 Results..119
4.3.1 Normal tendon cell induction at E11.5..119
4.3.2 Failure of initial alignment of tendon cells in forelimb at E12.0.....119
4.3.3 Loss of forelimb tendon progenitors at E12.5...............................120
4.3.4 Loss of hindlimb tendon progenitors at E12.5..............................121
4.3.5 Axial tendon progenitors are disrupted in Meox2−/− at E12.5………122
4.3.6 Modularity in tendon phenotype due to Meox2 mutation at E13.5..123
4.3.7 Defects in tendon cell differentiation in Meox2−/−……………………124
4.3.8 Loss of ScxGFP expression in somites at E13.5…………………..124
4.3.9 Failure of forelimb flexor tendon differentiation in Meox2−/− embryos at E14.5……………………………………………………………………125
4.3.10 Defective zeugopod tendon cell differentiation in Meox2−/− embryos at E14.5……………………………………………………………………126
4.3.11 Disrupted intercostal muscle/tendon unit at E14.5…………………127
4.3.12 Loss of muscle progenitors reflects the zeugopod tendon defects at E12.5……………………………………………………………………128
4.3.13 Normal chondrogenesis in Meox2−/− at E12.5…………………..129
4.4 Discussion……………………………………………………………………130
4.5 Conclusion…………………………………………………………………139

Chapter 5: Cellular and Molecular mechanisms of Meox2 function in tendon development…………………………………………………………153
5.1 Introduction……………………………………………………………………154
5.2 Aims……………………………………………………………………………156
5.3 Results…………………………………………………………………………157
 5.3.1 Impairment of cellular proliferation in Meox2−/− embryos at E12.5…157
 5.3.2 Normal apoptosis in Meox2−/− embryos at E12.5…………………..158
 5.3.3 Meox2 expression in non-tenogenic cells at E12.5…………………158
 5.3.4 Non-overlapping expression of Meox2+ and Scx+ cells in the limb tendons at E12.5……………………………………………………………………159
 5.3.5 Expression pattern of Meox2 in the forelimb at E13.5………………160
 5.3.6 Characterisation of Meox2 expression in the autopod at E13.5……161
 5.3.7 Distinct expression profiles for Meox2+ and ScxGFP+ in the zeugopod and stylopod at E13.5…………………………………………………………161
 5.3.8 Meox2 is expressed in the digit tendons at E14.5…………………..162
 5.3.9 Meox2 expression in the zeugopod and stylopod at E14.5………..163
 5.3.10 Meox2 derived cells contributes to tendons and muscle connective tissue………………………………………………………………………..163
 5.3.11 Disrupted muscle connective tissue in Meox2nLacZ/nLacZ foetus at E16.5………………………………………………………………………..165
5.3.12 Interlimb somites displays atypical expression of TGFβ2 in Meox2−/− embryos at E12.5……………………………………………………………………………………..166
5.3.13 Increased TGFβ2 expression in the zeugopod in Meox2−/− embryos at E12.5……………………………………………………………………………………..166
5.3.14 Meox2 exhibits variable levels in response to ectopic TGFβ2 protein……………………………………………………………………………………..167
5.4 Discussion……………………………………………………………………………………..168
5.5 Conclusion……………………………………………………………………………………..178
Chapter 6: General discussion……………………………………………………………………..194
6.1 Final discussion……………………………………………………………………………………..195
6.2 Future prospective……………………………………………………………………………………..208
6.3 Final conclusion……………………………………………………………………………………..210
List of References……………………………………………………………………………………..211

List of figures

Chapter 1
Figure 1.1: Illustration of the limb musculoskeletal system…………………………………16
Figure 1.2: Illustration of the tendon position and organisation………………………………18
Figure 1.3: Diagram of the mouse limb tendon development…………………………………21
Figure 1.4: Illustration of axial tendon development in mouse………………………………24
Figure 1.5: Molecular regulators involved in axial tendon development…………………26
Figure 1.6: Schematic of vertebrate tendon morphogenesis in the limbs…………………27
Figure 1.7: Molecular regulators involved in limb tendon development…………………29
Figure 1.8 Whole-mount ISH for Scx on E12.5………………………………………………30
Figure 1.9 ScxGFP expression detected by in situ hybridization…………………………31
Figure 1.10 Schematic of myotendinous junction……………………………………………34
Figure 1.11: Illustration of the major flexor and extensor tendons in the forearm……………………………………………………………………………………………42
Figure 1.12: Schematic of regulation of MCT and muscle fibres by Tbx4/Tbx5……………………………………………………………………………………………46
Figure 1.13: Whole mount in situ hybridisation of Meox2 on E10.5 mouse forelimb bud………………………………………………………………………………………51
Chapter 2
Figure 2.1. Schematic of Meox2 transgenic lines and corresponding PCR primers.79
Figure 2.2 Optimization of Meox2 antibody staining.80

Chapter 3
Fig 3.2.1 Decreased ScxGFP expression from the forelimb tendons in Meox2 null neonates.107
Fig 3.3.2 Absence of major hindlimb tendons in Meox2 null neonates.108
Fig 3.3.3 Axial and tail tendons showed diminished ScxGFP expression in the absence of Meox2 at neonatal stage.109
Fig 3.3.4 Forelimb autopod of Meox2-/- neonates showed tendon deformities.110
Fig 3.3.5 Reduction of zeugopod tendon mass in Meox2-/- postnatal mice.111
Fig 3.3.6 Irregular fascia in the forelimb zeugopod of Meox2 mutants.112
Fig 3.3.7 Hindlimb autopod showed severe tendon defects.113
Fig 3.3.8 Abnormal zeugopod tendon mass and defective fascia in the hindlimb.114
Fig 3.3.9 Normal intercoastal muscle in the Meox2 null neonates.115

Chapter 4
Fig 4.3.1 Normal tendon induction in the absence of Meox2 at embryonic day (E) 11.5.140
Fig 4.3.2 Aberrant Scleraxis expression restricted for only forelimb tendon precursor cells at E12.0.141
Fig 4.3.3 Disordered organization of tendon progenitors in the absence of Meox2 at E12.5.142
Fig 4.3.4 Depleted Scx levels in the hindlimbs of Meox2-/- at E 12.5.143
Fig 4.3.5 Disordered axial tendon progenitors in the absence of Meox2 at embryonic day (E) 12.5.144
Fig 4.3.6 ScxGFP expression at E13.5 remained unaffected in autopod but reduced in zeugopod of Meox2 mutant mice.145
Fig 4.3.7 Endogenous Scx expression at E13.5 showed disrupted expression patterns in both autopod and zeugopod.146
Fig 4.3.8 Decreased ScxGFP expression in tendon precursors of somite at E13.5 ... 147
Fig 4.3.9 Disruption of autopod tendons at E14.5 in Meox2 mutant mice 148
Fig 4.3.10 Loss of zeugopod tendons at E14.5 in Meox2+/−;ScxGFP 149
Fig 4.3.11 Disrupted intercostal muscle-tendon unit at E14.5 150
Fig 4.3.12 Disrupted zeugopod tendon progenitor cells in Spd embryos at E12.5 ... 151
Fig 4.3.13 Normal cartilage development in the absence of Meox2 at embryonic day (E) 12.5 ... 152

Chapter 5
Fig 5.3.1 Failure of cell proliferation in Meox2−/− embryos at E12.5 180
Fig 5.3.2 Normal apoptosis in Meox2−/− embryos at E12.5 181
Fig 5.3.3 Majority of Meox2+ cells are distributed in the sclerotome 182
Fig 5.3.4 Meox2 protein is not expressed in Scx+ domains in the limbs at E12.5 ... 183
Fig 5.3.5 Expression analysis of Meox2 and Scx in the forelimbs at E13.5 184
Fig 5.3.6 Meox2 expressing cells surround the condensed tendon bundles in the autopod at E13.5 ... 185
Fig 5.3.7 Non-overlapping expression of Meox2+ and ScxGFP+ in the zeugopod and stylopod at E13.5 ... 186
Fig 5.3.8 Distinct expression of Meox2 in distal and proximal autopod tendon compartment at E14.5 ... 187
Fig 5.3.9 Meox2+ cells are not expressed in ScxGFP+ tendon cells of zeugopod at E14.5 ... 188
Fig 5.3.10 Fate-mapping of Meox2+ cells during embryonic stages 189
Fig 5.3.11 Meox2+ derived cells are present in tendons and muscle connective tissue at E16.5 ... 190
Fig 5.3.12 Interlimb somites showed increase in TGF\textbeta\textsubscript{2} transcripts in Meox2−/− at E 12.5 ... 191
Fig 5.3.13 Increased TGF\textbeta\textsubscript{2} expression restricted for only zeugopod and not autopod in Meox2−/− at E 12.5 ... 192
Fig 5.3.14 Biphasic interaction between Meox2 and TGF\textbeta\textsubscript{2} signalling in cell culture ... 193
Chapter 6
Figure 6.1: Diagrammatic summary of research findings in limb tendon development

List of tables
Table 1.2 List of molecular regulators involved in the development of tendons
Table 2.1: Primer sequence used for genotyping
Table 2.2: DIG-labelled cRNA probe synthesis from cDNA 3’UTR
Table 2.3: List of primary antibodies
Table 2.4: List of secondary antibodies
Table 3.1: Summary of the defects in forelimb tendon in \textit{Meox2}-/- animal
Table 3.2: Summary of the defects in hindlimb tendons in the \textit{Meox2}-/- animal
Table 3.3: Summary of the flexor tendon phenotype in the various mouse models
Table 3.4: Summary of the extensor tendon phenotype in the various mouse models (Huang et al., 2015)
Table 3.5 Nomenclature of tendons in \textit{Meox2}+/+ and \textit{Meox2}-/- neonates and embryos
Abbreviations

bHLH basic helix-loop-helix
BMP Bone morphogenetic protein
ECM Extracellular matrix
Egr Early growth response
ERK Extracellular signal- regulated kinases
Ets E26 transformation specific
FGF Fibroblast growth factor
Hox Homeotic gene
KI KI-N or Meox2^{nLacZ} mouse line
KO Meox2^{−/−} (original knockout) mouse line
MAPK Mitogen-activated protein kinase
MCP Metacarpophalangeal joints
MCT Muscle connective tissue
MRF Myogenic regulatory factors
MTJ Myotendinous junction
No Notochord
NT Neural tube
Pax Paired box genes
Sox SRY related HMG-box
Tbx T-box transciption factor
Tcf T-cell factor
TGF Transforming growth factor
TPC Tendon progenitor cells
Chapter 1

Introduction
1.1 Connective tissue- a component of musculoskeletal system

The musculoskeletal system serves as a tool that provides all vertebrates locomotion, movements and maintaining body positions. The accumulated knowledge based upon molecular characterization showed that the functional musculoskeletal system has diverse group of tissues. It includes muscle, bones, dense connective tissue (tendons and ligaments) and loose connective tissue (muscle connective tissue and fascia). The innervations of nerves then takes place to receive neuronal signals and vascularization by blood vessels that provide nutrients and signal to the growing tissues takes place. In order to understand this multicomponent system, it is necessary to comprehend basic development, which includes specification, differentiation and maturation of these diverse cell groups. In addition, it is also important to understand how these different tissues undergo coordinated morphogenesis by extrinsically influencing molecular machinery and thereby achieve an integrated functional system.

Furthermore, the musculoskeletal system acts as a great model of studying embryonic morphogenesis because it is composed of easily identifiable tissue types, which allow studying histology and patterning development. The development of a functioning musculoskeletal system is dependent on intricate signaling pathways along with the extrinsic and intrinsic gene regulation activity. During development these tissue must interact with high fidelity to give rise to a function musculoskeletal system (Figure 1.1). To date, much work has been focused on the muscle and bone development. However, several emerging studies provided insights on embryonic genesis of connective tissues and their spatial and temporal relationship with other tissues in musculoskeletal system.
Figure 1.1: Illustration of the limb musculoskeletal system. The embryonic development of this system depends on the molecular signals from muscles (red), bone (grey), muscle connective tissue (purple), tendon (green) and nerve innervations (yellow). R, radius; U, ulna; H, humerus

1.2 Tendons- a dense connective tissue

Tendons are dense, fibrous connective tissues and are embedded in extracellular matrix (ECM). Tendon connects muscle to skeletal elements, and via these connecting attachments, it then passively transfer force generated by muscle thereby contributing to the overall integrity of the musculoskeletal system (Birk et al., 1989). The precise attachment site ensure that the bones are connected to the appropriate muscles by their respective tendons, and that the integrity of the joints is held together by the ligaments, while the individual muscle bundles are embedded within the loose connective tissue i.e. muscle connective tissue (MCT). Therefore, the tissues in direct contact with the final muscle are the tendons that are classified under dense connective tissue.

The mutual interactions between cells during embryonic development from somites lead to the formation of complex tissue, an example of which is the musculoskeletal system. Somites are the segmental blocks of mesoderm
present dorsally in the embryo and lie next to the neural tube and notochord. During the development, a naïve somite buds off as a columnar epithelial ball surrounding a central mesenchymal cavity from the presomitic mesoderm (PSM). The secreted signal from surrounding tissues results in epithelio-mesenchyme transition of the ventral part of somite. This event establishes the polarity in the somite along the dorsoventral and mediolateral axes. As a result, the somite derivatives are further subdivided into epaxial and hypaxial domains and these domains forms two separate compartments: sclerotome from the ventral mesenchyme and the dermomyotome from a dorsal epithelial layer. These distinct compartments in somites ultimately form muscles and dermis from dermomyotome, cartilage from sclerotome and tendons from syndetome, respectively (Brent et al., 2003; Kardon, 1998; Schweitzer et al., 2001; Tozer and Duprez, 2005). The dorso-medial dermomyotome expresses Myf5 and these cells contribute to the underlying epaxial myotome, where the cells start to express MyoD, this region gives rise to the axial muscles. The ventro-lateral region of the dermomyotome forms hypaxial myotome that also expresses MyoD. This region forms intercostal and abdominal wall muscles. Finally, the central region of the dermomyotome develops into dermatome and forms dermis in the skin of neck, back, lateral and ventral surfaces of the trunk. Additionally cells from the central dermomyotome provide progenitors of future satellite cells – skeletal muscle stem cells. The ventro-lateral dermomyotome also gives rise to precursors of limb and extrinsic tongue muscles. Delamination, migration, proliferation, and differentiation occur in response to the cues available from the adjacent mesoderm. The delamination and migration of myoblasts are dependent on c-met, a tyrosine kinase receptor and its ligand SF/HGF expressed by limb mesoderm (Dietrich et al., 1999). In the absence of c-met or HGF, limbs muscles are absent (Bladt et al., 1995; Schmidt et al., 1995). Moreover, transcription of c-met is dependent on Pax3 and in mutant mouse embryos that lack functional Pax3 gene, myoblasts fail to delaminate from hypaxial dermomyotome and thus show a limb muscle phenotype (Borycki et al., 1999; Daston et al., 1996). Interestingly, epaxial myogenesis remained unaffected in Pax3−/− mutants (Borycki et al., 1999). Furthermore, another transcription factor, Lbx1 is important for the migration but not delamination (Schafer and Braun, 1999). In Lbx1−/− mutant mice, the dorsal
limb muscle precursors followed their destined path whereas ventral limb myoblasts were disorientated (Brohmann et al., 2000; Gross et al., 2000; Schafer and Braun, 1999). Once delaminated, these cells express the receptors CXCR4 and EphA4 and respond to SDF1, the CXCR4 ligand, expressed in the limb mesoderm (Hunger et al., 2012; Vasyutina et al., 2005). Thereby, these regulators provide a defined path for the arrival of limb muscle precursors inside the limb mesoderm. In the absence of CXCR4 or SDF1, there is a reduction of Lbx1+ muscle progenitor cells in the dorsal distal limb domain (Vasyutina et al., 2005). Finally, the migrated myoblasts in the limb then undergo differentiation and specification into dorsal and ventral muscle masses. Muscle patterning in the limb bud is perturbed in the absence of Meox2 and loss of function in mice showed normal migration of muscle progenitors but impaired muscle patterning and specification in the limb (Mankoo et al., 1999).

Understanding normal mechanism of tendon development is important in order to generate functional and self-renewing tendon tissue. An optimal level of elasticity along with high mechanical strength and good flexibility makes tendon, unique connective tissues that have relatively few blood vessels and functions at low metabolic rate. Tendon injuries are common and affect a substantial portion of recreational and professional athletes and those in many occupations involving repetitive work (Brukner and Connell, 2016). This can be reasoned due to the classification of tendons amongst the heaviest loaded tissue type in the body (Harrison et al., 2010). Injuries in tendon clinically represent a serious and still unresolved problem since damaged tendon tissue heals very slowly and no surgical treatment can restore damaged tendon tissues to its normal structure integrity and mechanical strength (Sakabe and Sakai, 2011). Although events in the tendon healing are identical to most connective tissue, however, it occurs at a slower rate in tendon due to density of the tissue and hypocellularity. The total volume occupied by cells in tendon is only 5%. Tendinopathy, is characterised by activity related pain, focal tendon tenderness and decreased strength and movement of affected area. The acute traumatic flexor tendon injuries accounts for 25% of work related injuries and 75% of Achilles tendon injuries are reported in the individuals participating in sports (Raikin et al., 2013).
1.2.1 Tendon structure

The structure of tendons can be divided into six major compartments (Figure 1.2). The smallest component of a tendon is a collagen fibril, which is made up of longitudinally arranged chains of tropocollagen. A collagen fibril is a group of interconnected collagen strands that are bound together and are secreted by fibroblasts. One-step up in the tendon structure is the collagen fibre. The collagen fibre is a group of collagen fibrils bound in a sheath of endotenon (a substance that helps to stabilize and binds the fibrils). Fibre bundles represent the next level in the tendon. Fibre bundles are a group of collagen fibres bound together in a sheath of endotenon. A secondary fibre bundle is a group of fibre bundles bound together in a sheath of endotenon. A fascicle is the second largest component of tendon structure. Moreover, the group of secondary fibre bundles are bound together by endotenon. The endotenon that surrounds the fascicles is crimped in areas that may come under high stress. The tendon itself is the largest structure and is composed of a group of fascicles that are bound together by an interior sheath of endotenon and an exterior sheath of connective tissue called epitenon.
Figure 1.2: Illustration of the tendon position and organisation. Identical structural formats can be seen in either flexor tendon of hand or foot Achilles tendon. Tenocytes (tendon cell type) produce and secrete trihelical tropocollagen proteins that form collagen bundles and are arranged in cross-striated parallel fibrils. These collagen fibrils are enveloped by endotenon, which in turn surrounded by an exterior sheath called epitenon.

1.2.2 Composition of tendon

Water is predominant component at 55-70% in tendons. The collagen proteins, predominantly type I and small amounts of type III and V (Silver et al., 2003) comprises 70-80% of the dry weight. In addition, elastin, proteoglycans,
glycosaminoglycans and glycoproteins (e.g. fibronectin, thrombospondin) are also present. Collagen protein, an essential building block of musculoskeletal system can be found in both fibril and non-fibril forms. Type I collagen molecule is rod-like with little flexibility and high mechanical strength (Engel, 1997). Moreover, all of the fibril forming collagens self-assembles into cross-striated fibrils with a characteristic 67 nm repeat. They all share a triple helical region that is roughly 1000 amino acid residues long with a length of about 300nm (Reviewed by Silver et al., 2003). These collagens are synthesized within cells in a precursor form termed procollagen that has amino and carboxy-terminal non-helical ends that are about 15 and 10 nm long, respectively.

The cellular elements within tendons are known as tenocytes, which are type of fibroblasts, that synthesis, and secrete the collagen and all components of the extracellular matrix (ECM). These fibroblasts are termed “tenoblasts” when still immature. They are spindle-shaped. As they age, tenoblasts become elongated and transform into “tenocytes.” Together, tenocytes account for 90–95% of the cellular elements of tendons. The remaining 5–10% consists of chondrocytes at the bone attachment and insertion sites, synovial cells of the tendon sheath and vascular cells, including capillary endothelial cells and smooth muscle cells of arterioles (Reviewed by Hoffmann and Gross, 2007). Nonetheless, most of the mentioned molecules are not specific to tendons and virtually occurs throughout most ECM, and hence not considered as specific markers for tendon differentiation. However, there are extensive researches on the molecular architectural of tendon and its composition but not much in known about how this tissue is patterned and coordinated during development. Identification of early events in the tendon formation became possible with the gene, which encodes for a basic helix-loop-helix transcription factor Scleraxis (Scx). It is a distinctive marker of tendon cells since it is expressed by both tendon progenitor cells (TPC) and mature differentiated tenocytes (Schweitzer et al., 2001). Recently stem cells have been discovered in tendon that show similar properties to tenoblast cells and are therefore specified but undifferentiated tendon progenitor cells. Tendon stem/progenitor cells (TSPCs) were isolated from adult tendons, and the stem cell niche of TSPCs is defined by the ECM of
tendons (Bi et al., 2007). These cells showed the characteristics of stem cells and also expressed combination of tendon cell markers, namely, Scx, TNMD, COMP and tenascin. TSPCs differ in their differentiation potential, morphology, proliferation and marker expression from tenocytes (Zhang and Wang, 2010); and TSPCs proliferate and increase collagen production in response to anabolic exercise, in a manner parallel to that shown by muscle stem cells (Zhang et al., 2010). In fact, Zhang et al. confirmed that these TSPCs express the known stem cell markers such as Oct-4, SSEA-4 and nucleostemin. The primary role of adult stem cells is to maintain homeostasis and repair of tissues, this function has yet to be demonstrated for TSPCs.

1.2.3 Embryonic morphogenesis of tendons

Comprehensive work has identified mechanisms, which regulates all stages of embryonic genesis of tendons. Still there are only few molecular factors shown to be crucial for tendon development when compared to those found in the genesis of muscles and skeleton. The tendon morphogenesis is a well-organised process. During the 10th day of mouse development, tendon specific cells labelled by Scx gene, begin to induce in the limb mesoderm and in syndetome of somites. The cranial tendons are specified from neural crest cells (Schweitzer et al., 2010) Both compartments give rise to different group of tendons found in the appendicle and axial structure. These so-called “tendon progenitor cells” (TPC’s) that are specified to express tendon specific gene, Scx, exhibit three distinctive stages during the course of morphogenesis namely, (a) induction (E10.5-11.5), (b) alignment and organisation (E12.5), (c) maturation and differentiation (E13.5 onwards) as shown in figure 1.3 for limb tendon development.
Figure 1.3: Diagram of the mouse limb tendon development. Induction of initial Scx-expressing tendon precursors occurs within the limb mesenchyme between E10.5-E11.5. During organisation and alignment of tendon progenitor cells between E12.0-E12.5, the cells are positioned at the presumptive functional site and a second wave of the recruitment of tendon cells occurs. Moreover, the intrinsic and extrinsic regulators are maintaining the tenoblastic identity. Eventually, from E13.5 onwards, mature tendons are formed due to combined activity of the extrinsic signals from the adjacent muscle and cartilage cells. In addition, Scx intrinsically favours the aggregation and differentiation of tendon cells to form the mature distinct tendon.

From the neonatal stage, the tendon tissues lose their ability to differentiate, instead, synthesize and secrete extra-cellular matrix (ECM) proteins that acts as scaffolding proteins for collagen fibril assembly. Moreover, an increase in collagen fibril diameter and changes in the morphology of fibroblast cells occur (Diamant et al., 1972).

The cellular dynamics and interactions of musculoskeletal components that regulate tendon development differ in the axial skeleton versus limb, and between autopod versus zeugopod. For example, the specification of TPC are autonomous in the limb mesoderm, however, for the proper organisation and maturation, signals from myogenic cell are crucial (Huang et al., 2015a; Kardon, 1998). In contrast, Scx-positive tendon cells in the somites are induced under the influence of FGF signalling emanating from adjacent myotome. A more
elaborated description on axial versus limb tendon development stages is discussed in the next section.

1.2.4 Inductive cues for axial versus limb tendon progenitor cells

Earlier chick-quail grafting orthotopic and heterotrophic transplantations showed that the non-myogenic components of the intricate musculoskeletal system of the limb, such as bones, cartilage, tendons, ligaments and connective tissue, are created de novo and are derived from the lateral plate or somatopleural limb mesenchyme (Wachtler et al., 1981). Radio-destruction of the somitic mesoderm showed that the absence of a given muscle results in the absence of corresponding tendons (Chevallier et al., 1977), providing the first evidence of a developmental relationships between these two distinct precursor populations. However, most of the subsequent analyses of tendon development concentrated on the distal autopod tendons. In a similar experiment, Kieny and Chevallier (1977) showed that despite the induced absence of flexor and extensor muscles, differentiation of the distal manus tendons still occurred. Although they were transient structures, it demonstrates an early autonomy of the tendons from the muscles. A requirement for subsequent interactions between the two tissues from maintenance and further development of the tendons was observed.

An axial tendon connects the muscles that are located near the spinal column to the vertebrae. As a result, this complex tissue helps in the stability of the spine and transfers force generated by muscles to the axial skeleton and assists in the extension, rotation, and flexion of the trunk. The progenitors for the axial tendons arise from the somites, unlike limb tendon progenitors that are derived from limb mesenchyme (Brent et al., 2003). However, current advances on proper steps in the trunk tendon development is limited due to the multiple complexities associated with the interaction between diverse tissues in the somites and their interdependence on each other (Schweitzer et al., 2010).
Trunk tendons: The axial tendon progenitors originate from syndetome that is a fourth compartment in somite and is located at the junction between two neighbouring myotomes and the sclerotome (Fig 1.4). Despite differences in the origin of muscle, cartilage, and tendon in somite compartments, their development is coordinated and interdependent. The bHLH transcription factor, Scx is an exclusive marker for both tendon progenitor cells and mature tenocytes. The double in situ hybridisation on mouse embryo at E10.5 for a myogenic marker MyoD and a tendon marker Scx revealed that indeed Scx-expressing cells are located in syndetome which is next to the myotome (Brent et al., 2003). Same study also showed that in the quail-chick chimera system the tendon progenitors are expressed between the myotome and sclerotome. In this experimental approach, the grafting of sclerotome from quail to chick resulted in the formation of sclerotome cells and Scx-expressing tendon precursors from the grafted quail. On the other hand, the surgical implantation of quail dermomyotome into the chick formed only dermomyotome and myotome but not Scx-expressing syndetome.
Figure 1.4: Illustration of axial tendon development in mouse A depiction of the longitudinal trunk sections from the somite showing sclerotome (Pax1+), myotome (MyoD+), syndetome (Scx+) and neural tube (NT). The whole mount in Scx in situ hybridisation is shown for the stages E12.0 (tendon organisation) and E13.5 (tendon condensation). The black line shows the level of longitudinal sections from the embryos. Myotome signals induce Scx+ at anterior region of sclerotome that is known as syndetome from E12.0. Mature condensed tendons are then acting as connectors of the vertebrae and muscle cells from E13.5 onwards.

Myotomal fibroblast growth factors (FGFs) play a critical role in the induction of *Scleraxis* expressing tendon progenitors. FGF4 and FGF6 in mouse embryo while FGF4 and FGF8 in chick embryo have been shown to induce *Scleraxis* (Brent et al., 2005; Brent and Tabin, 2004; Tozer and Duprez, 2005). Brent and her colleagues further demonstrated the role of FGF signalling in Scx induction in 2003, where the expression of Scx was lost due to inhibition of FGF signalling in trunk culture of mouse embryo. FGFs activate Ets transcription factors, *Pea3* and *Erm*, which regulates directly or indirectly Scx transcription (Brent and Tabin, 2004) (Fig. 1.5). Another study also suggests that expression of Scx is also stimulated by FGF signalling via the mitogen activated ERK and MAPK kinase activity (Brent and Tabin, 2004; Smith et al., 2005). In chick embryos, the antibodies against active phosphorylated MAPK/ERK1 and MAPK/ERK2 detected active MAPK/ERK throughout dermomyotome, dorsal sclerotome, myotome and strong expression seen in adjacent sclerotome where Scx is expressed (Brent and Tabin, 2004).

In addition, the early development of tendons in somites is coordinated and interdependent on surrounding tissue i.e. muscle and cartilage. The muscle precursor region of somite is essential for tendon development since in MyoD and Myf5 double mutant mice where no muscles are formed, the Scx expression in the somite was completely abolished in syndetome (Brent et al., 2005). In the same study, it was revealed that in Sox5−/−; Sox6−/− mutant embryos the loss of chondrocyte differentiation results in an expanded Scx+ tendon progenitor cells.
Figure 1.5: Model of genes involved in axial tendon development- Myotomal signal FGF8 activates Scx via Pea2 and Erm to induce tendon precursor cells in syndetome. Both Scx and Mkx can promote tendon differentiation factors e.g. tenomodulin (Tnmd). Pax1 and Sox5, which are sclerotomal factors, inhibit Scx expression and promote development of cartilage in sclerotome. Myotome in pink, syndetome in green and sclerotome in brown. NT, neural tube; No, notochord.

Limb tendons: Limb tendons originate from lateral plate mesoderm. Once induced, the tendon progenitors are reorganised in the sub-ectodermal regions of ventral and dorsal areas of the limb (Schweitzer et al., 2001). Ectodermal signals have been shown to be involved in tendon progenitor induction for limb tendon precurssors. Removal of dorsal limb ectoderm in chick embryos results in loss of Scleraxis induction in limb mesenchyme (Schweitzer et al., 2001). The obvious signals from ectoderm are FGFs but to date no definitive evidence are available to show the involvement of FGF signalling in limb tendon development. Absence of Fgf8 in proximal regions of limb makes it unlikely that it regulates induction of Scx in proximal mesenchyme of limbs (Schweitzer et
The induction of Scleraxis was found also in the absence of muscle cell, which expresses Fgf4 (Edom-Vovard et al., 2002). However, in muscleless wings in chick embryos, Scx expression was eventually lost demonstrating muscle-dependent phase of tendon development. Hence, the molecular factor that leads to Scleraxis induction in limbs remains to be investigated. Furthermore, chondrogenesis was favoured in the absence of FGF signalling (Schweitzer et al., 2001).

Bone morphogenetic proteins (BMP) have negative influence on appendicular tendon development. The facilitation of chondrogenesis over tendon morphogenesis by BMP2 in developing limbs was shown in chick embryos (Edom-Vovard and Duprez, 2004; Edom-Vovard et al., 2002; Schweitzer et al., 2001). The application of endogenous BMP signalling inhibitor, Noggin upregulates Scleraxis expression in limb bud.

Interestingly, the dynamics of limb tendon development and patterning in contrast to axial tendons is independent of muscle and cartilage. As seen in Fig. 1.6, cartilage cell condensation is in the centre and in contrast to the somite (Fig. 1.5) where the tendon and muscle progenitors are well compartmented, both cell types are mixed together in the dorsal and ventral regions of limb buds.
Figure 1.6: Schematic of vertebrate tendon morphogenesis in the limbs. (A) Induction of initial Scx-expressing tendon precursors occurs under influence of Wnt signalling. (B) Organisation of tendon progenitors depends on TGFβ signalling which recruits a second wave of tendon cells and maintains tenoblastic identity. (C) Scx favours aggregation and differentiation of tendon progenitors to form mature distinct tendon occurs by E13.5. The positive and negative regulators are highlighted at the bottom of the stages of limb depiction.

Unlike axial tendons, which require myotome signals, Scx expressing tendon cells are clearly detected in muscle-less limbs of Myf5/MyoD mutant mice (Edom-Vovard et al., 2002; Kardon, 1998; Murchison et al., 2007; Schweitzer et al., 2001). In chick embryos, Scleraxis expression was seen in limbs even after the surgical removal of developing muscles (Edom-Vovard and Duprez, 2004; Schweitzer et al., 2001). Moreover, normal Scx expression was also found in Splotch embryos that have a defect in Pax3 gene and failure in the migration of limb muscle progenitors from somite (Huang et al., 2015b). Altogether, these studies suggest that limb tendon induction does not require signals from myogenic cell population. However, for the continuous expression of Scleraxis signals from muscles is essential. It was discovered that in continued absence of myogenic cells, Scx expression was not maintained in chick embryos (Edom-Vovard et al., 2002). This clarified the role of muscles in limb tendon development where the initial establishment of Scx is independent on myogenic cells but they are essential at subsequent stages (Edom-Vovard et al., 2002; Kardon, 1998).

Recently, it was shown that the expression of transcription factor Pea3, a known effector molecule of FGF signalling is expressed by tendon cells at the site where myotendinous junction is present. When analysed in Pax3 mutant mice limbs, there was complete loss of Pea3 expression at E12.5 from defined tendon cells present at the close proximity to muscle cells (Eloy-Trinquet et al., 2009). This study has now further enhanced our understanding of muscle-dependent phase of tendon formation.
Based on the known molecular regulators for limb tendon development, a model is shown in Figure 1.7. Altogether, several sources of evidence are now available which show there are significant differences in limb tendon development when compared to axial tendons. Furthermore, in same study it was found that TGFβ signalling also helps in recruiting the additional Scleraxis expressing tendon progenitors at the site of condensation and might be involved in interaction between tendon precursors, adjacent muscle, and cartilage. Furthermore, the limb mesenchyme acts as a host for multipotent cells that can give rise to cartilage cells and connective tissues, which can be grouped into two categories, i.e. dense connective tissue (tendons and ligaments) and loose connective tissue (muscle connective tissue).

Recently, the modularity in the limb tendon development was established (Huang et al., 2015b). While the induction and proliferation of autopod tendons requires cues from cartilage, the zeugopod tendon development is dependent on muscle cells.

Figure1.7: Illustration of limb tendon induction and organisation. Induction of Scx expression in the limbs takes place in response to FGF and Wnt signalling. BMP signalling has negative effect on Scx while TGFβs promote tendon development by maintaining and recruitment of tendon precursor cells at the site of condensation. Other unknown positive regulator from muscle cells and MCT’s extrinsically regulates Scx whereas Sox9 from cartilage cells restricts Scx expression domains. Other transcription factors Mohawk (Mkx), Egr1 and Egr2 are required for tendon maturation.
Other important factors in regulation of tendon development in limbs include the transforming growth factor β (TGFβ) superfamily. The application of TGFβ2-containing beads to mouse limbs in organ culture showed induction of Scleraxis at stages from E10.5 to E13.5 (Pryce et al., 2009). Additionally, surgical grafting of TGFβ2-loaded beads in somites of E10.5 embryos caused robust induction of Scx. In the absence of TGFβ signalling i.e. in Tgfβ2−/−; Tgfβ3−/− mutant mice and TgfβRII mutant where deletion of the receptor blocked all TGFβ signalling, the initial induction of Scx remains unaffected but is subsequently lost, suggesting additional regulators are involved in induction of Scleraxis. In TGFβ2/3 double mutant mice, all limb tendon progenitors were lost at E12.5 (Fig.1.8). It was also found in cross sections, all long tendons of tail were missing but the intrinsic muscles and tendons persisted in Tgfβ2−/−; Tgfβ3−/− mutant mice when observed at E15.5 (Pryce et al., 2009). Interestingly, this double ligand mutant of TGFβ displayed modularity in limb tendon phenotype whereby in E14.5 embryos, the digit tendons appeared normal but zeugopod tendons were abnormal. Moreover, the authors also detected TGFβ2 expression in differentiating cartilage and muscle cells that could explain severity of phenotype in zeugopod than autopod.

The same study also showed a role for TGFβ signalling in regulation of Scx in vitro. The mesenchymal-like cell line C3H10T1/2 expresses Scx at moderate level. By semi-quantitative RT-PCR it was observed that the mRNA level of Scx was significantly up regulated when TGFβ2 was added in the medium.
Figure 1.8 Whole-mount ISH for Scx on E12.5 The endogenous expression of Scx in the whole embryos and dorsal and ventral forelimbs in wild-type (D,G,J), Tgfb2^{−/−} (E,H,K) and Tgfb2^{−/−} and Tgfb3^{−/−} embryos showed a severe phenotype in Tgfb2^{−/−} and complete loss in compound mutants (Adapted from Pryce et al., 2009).

1.2.5 Organisation and differentiation of tendon cells

Murchison and his colleagues in 2007 provided the first evidence for the pivotal role of Scleraxis in tenocyte differentiation from E13.5 onwards. In Scx mutant mice, movement of paws was highly restricted and tail movement was completely lost. In addition, the long force-transmitting tendons and intermuscular tendons were the severely affected. However, the distribution of ScxGFP–positive cells in short range anchoring tendons such as intercostal tendon layer and ligaments were not affected in the mutant mice. The earliest defects were observed at E13.5 suggesting failure of condensation and aggregation of the tenocytes. This has been observed by loosely organised mesenchyme of tendon progenitors in the forelimbs (Fig. 1.9).

Moreover, flexor tendons were affected more in the absence of Scx than extensor tendons. Further analysis showed no significant changes in the apoptosis or cell proliferation events in the mutants. Additionally, the matrix organisation was significantly disrupted in the absence of Scx and it was also
shown that Scx directly regulates the expression of Col1a1 and Tenomodulin at tendon differentiation stages. In the absence of Scx function, by E18.5, the cellular components (tenocytes) of mature tendons were affected along with disorganised tendon sheath.

Figure 1.9 ScxGFP detected by in situ hybridization in wild type (I) and Scx^{−/−} (L) forelimbs at E13.5. The tendon phenotype was first detected at E13.5 in mutant mice. (J,M) Sections through wild-type (J) and Scx^{−/−} (M) forelimbs at E13.5 at a proximal metacarpal level (level 4 in A) (Adapted from Murchison et al., 2007).

Furthermore, Scx positively regulates the type I collagen through the tendon-specific element 2 of the procollagen, type1, alpha 1 (Col1a1) promoter (Lejard et al., 2007). Other genes shown to be positively regulated by Scx are tenomodulin and collagen XIV (Espira et al., 2009; Shukunami et al., 2006). Tenomodulin (Tnmd) is another important factor in tendon differentiation. It is type II transmembrane glycoprotein and is expressed by tendons and ligaments (Shukunami et al., 2001). A decrease in tenocyte proliferation and density was seen in targeted Tnmd mice. TNMD is required for maintaining proper network of collagen proteins in tendon.

Recently, it was discovered that another atypical homeobox gene Mohawk (Mkx) is expressed by tendon progenitors. It plays a critical role in tendon maturation (Anderson et al., 2006; Ito et al., 2010). Mohawk^{−/−} mice show hypoplastic tendons at postnatal stages and reduction in type I collagen.
Interestingly, in *Mkx* null mice the tendon cell numbers remain unaffected even though there is a reduction in tendon mass.

Moreover, early growth response transcription factors *EGR1* and *EGR2* are now shown to increase collagen expression during vertebrate tendon differentiation (Lejard et al., 2011). In chick limbs, FGF4 signals positively regulate *Egr* gene expression. This was shown by bead experiments where ectopic *Egr1* and *Egr2* transcripts could be detected after FGF4 bead implantation in dorsal chick wings. Moreover, *Egr* gene can induce tendon markers *Scx*, and the tendon collagen *Col1a1*. *Egr1* and *Egr2* double mutant mice at embryonic stage (E) 18.5 displayed decreased level of *Col1a1* transcripts and reduced collagen fibrils in embryonic tendons. When analysed by performing ChIP, the regulation of *Col1a1* by *Egr1* and *Egr2* were found by binding of *Egr1* to proximal 3.2kb segment, which also contains two tendon specific elements TSE1 and TSE2. These elements were shown to be essential for binding of *Scx* to regulate *Col1a1* expression (Lejard et al., 2007). In addition, the expression levels of the two DNA-binding factors, *Scx* and *Mkx* were also reduced in *Egr1^{−/−}* mutant mice. *Fibin2* is a recently discovered tendon marker strongly expressed in mature tendons (Liu et al., 2010). The expression analyses of *Fibin 2* have shown a strong expression in the syndetome and continue to express throughout the development in tendon cells. Thus, it can be considered as an additional marker for tendon specific cells for future investigations.

1.2.6 Tendon growth and maturation

The morphological events of tendon differentiation, growth, and maturation occur from E14.5 onwards until birth. During this phase, the correct connections between muscle-tendon (also called as myotendinous junctions) and tendon-bone attachment takes place. For this proper connections, ECM proteins acts as “glue” to join both cell types via integrin receptors found on cell membranes and are associated with cytoskeletal actin filaments present inside myocytes and tenocytes (Docheva et al., 2014; Mayer et al., 1997; Pan et al., 2013; Welser et al., 2009). The next segment in this chapter will discuss the several
ECM factors, which are coupled in spatio-temporal manner to mediate the force transmission at the myotendinous junction.

Moreover, tendon differentiation, maturation, and growth require muscle only in the zeugopod. For instance, in Splotch mouse embryos with a defect in migration of myogenic cells due to mutation of the Pax3 locus showed down regulation of Scx and Tnc in zeugopod (Bonnin et al., 2005; Eloy-Trinquet et al., 2009; Huang et al., 2015b). The modularity in tendon development at this stage led to complete degeneration of differentiated tendons in the zeugopod segment (Kardon, 1998; Schweitzer et al., 2001). Recently, Huang and co-workers (2015) showed that in Splotch embryos, the autopod tendons are not only induced and differentiated but also survived throughout embryogenesis. Similar observations were also reported in chick embryos (Kardon, 1998). Therefore, we have now conclusive evidence that maintenance of zeugopod tendons requires physical interactions with muscles, and mechanical load applied by muscles also plays a pivotal role in overall growth and maturation of zeugopod tendons.

The tendons in digit segments are established in the regions where no muscle cells are normally found. The essential muscle-dependent signal for the tendon differentiation is replaced by cartilage-derived cues (Huang et al., 2015b). In Sox9^{Prx1Cre} embryos, which contain the conditional deletion of Sox9 gene from limb mesenchyme showed loss of Scx expression in the autopod at E13.5 whereas in Gli3^{−/−} embryos, tendons were found in all the extra digits. Gli3 is an important regulator of the digit formation and mutation of this gene in Gli3^{−/−} embryos caused development of an extra digit (Vortkamp et al., 1992). Collectively, the tendon differentiation and maturation is dependent on skeletal condensation in the autopod whereas in zeugopod, myogenic cells help in the tenocyte differentiation.
1.3 Myotendinous junction

The transmission of force generated by muscles into skeletal elements takes place at myotendinous junctions (MTJ). Electron microscope analysis revealed that the establishment of MTJ occurs when cytoskeletal proteins of muscle cells and tendon ECM interact (Tidball, 1994; Tidball and Lin, 1989). These ECM proteins (e.g. collagens, laminins, thrombospondins) are accumulated between interacting myoblasts and fibroblasts (Figure 1.10) (Kuhl et al., 1986; Sanderson et al., 1996).

Figure 1.10 Schematic of myotendinous junction The extracellular matrices of muscle fibres (in red) and tendon cells (in green) interact at a sparse layer of ECM called myotendinous junction (MTJ). Distinguish molecular markers of muscle and tendon ECM are shown in red and green, respectively. Muscle ECM is composed of laminin trimers and fibronectin whereas tendon ECM contains collagen trimers and thrombospondin proteins.

While studies have shown that ECM proteins may enhance proliferation and growth of myogenic tissue (Lan et al., 2005; Langen et al., 2003; Stern et al.,
2009), they also modulate tendon maturation stage during development. The study that generate Scx-/- mutant mice, showed the disruption of tendon ECM at later stages of tendon morphogenesis (Murchison et al., 2007). The same study has further shown a severe down regulation of the expression of structural collagen proteins, Col1a1, Col1a2, Col3a1 and Col14a1 in Scx-/- mutant mice. Moreover, Scx is a direct regulator of Col1a1 and Col1a2 transcription (Espi\textit{a et al.}, 2009; Lejard et al., 2007).

Likewise, Mkx also promotes expression of Col1a1 and Col1a2 and thus Scx and Mkx act as transcriptional activators of these collagen genes. Interestingly, in Mkx-/- that exhibit normal embryonic tendon formation, later showed a thinner collagen fibrils and reduction of fibromodulin (Fmod), decorin (Dcn), tenomodulin (Tnmd) (Ito et al., 2010; Liu et al., 2010). Moreover, the evidence suggests that the influence of Scx and Mkx on ECM proteins occurs via Smad mediated TGF\textbeta signaling (Berthet et al., 2013; Hosokawa et al., 2010). Specifically, Berthet et al (2013) reported that the loss of Smad3 function resulted in reduction of Scx, Tnc, Mkx and matrix proteins such as Col1a1, Col1a2. Moreover, the authors showed that Smad3 physically interacting with Scx and Mkx. Furthermore, in Wnt1-Cre;Tgf\textbeta2 flox/flox mice in which the derivatives of cranial neural crest cells were marked by Wnt1-Cre and Tgf\textbeta2 conditional inactivation in these migratory cells was established by using Tgf\textbeta2flox/+ mice (Hosokawa et al., 2010). This conditional inactivation of Tgf\textbeta2 resulted in loss of Scx expression from the tendons of tongue muscles that are derived from neural crest cells. Moreover, tongue explant assay demonstrated Scx induction in response to TGF\textbeta2 soaked bead. Therefore, it was concluded that TGF\textbeta signalling regulates Scx expression and controls cranial neural crest derived cells.

Extensive research been carried out to understand the development of MTJ. Upon completion of muscle differentiation, ECM proteins direct myofibres to the attachment sites in MTJ (Kjaer, 2004). This site than undergoes maturation and imparts mechanical forces to maintain the function of mature tendon cells (Schwartz et al., 2013). The MTJ develops in two stages and with respect to tendon cell requirement; the stages are classified as tendon independent and
tendon dependent stages. First, induced tenoblasts secrete fibrillar ECM components near the periphery of migrated myoblasts. The integrins on muscle cell membranes recognize signals emanating from tenocytes e.g. Thrombospondin (Tsp), laminins (Lama) (Gotwals et al., 1994; Martin-Bermudo, 2000; Subramanian et al., 2007). Additionally, muscle cells secrete Tigrin that interacts with integrin receptors present on its surface membrane (Bokal and Brown, 2002; Fogerty et al., 1994).

Second, fusion of myoblast results in the formation of myotubes, which are then followed by extensive scaffolding of ECM proteins that produce basement membrane. There are a diverse set of extracellular proteins present in the basement membrane that includes laminins, perlecan, collagen IV, nidogen (Yao et al., 1996; Koch et al., 1999; Fox et al., 1991; Mayer et al., 1995; Hudson et al., 1993; Kuhn, 1994; Kruegel and Miosge, 2010). Last, a mechanical cross talk takes place between muscle and tendon cells. For the efficient delivery of mechanical load, the various groups of proteins are necessary at this stage. These are divided into three sub-groups: (a) collagen proteins secreted by tenocytes (Col1a1, Col1a2, Col2a1 and Col3a1); (b) proteins that can form scaffolds (e.g. Lama2, Comp, Tsp4) and (c) cross-linking proteins (e.g. Col6a1, Col12a1, decorin, Fmod, lumican, biglycan, alpha-dystroglycan and beta-dystroglycan). These altogether help in reducing frictions between fibers of ECM and disseminate the force appropriately (Wang et al., 2012; Dunkman et al., 2013). Interestingly, various studies have shown that misexpression of the gene coding for the cross-linking proteins produced an adverse outcome on tendon structure (Chakravarti, 2002; Corsi et al., 2002; Zhang et al., 2006). On a bigger scale, the ECM is critical for MTJ organization and plays a pivotal role by providing structural support and function.

1.4 Enthesis: Tendon-bone attachment

An enthesis is the site on the other end of a tendon where it attaches to the bone or cartilage. Starting at the tendon side, the first zone exhibits tendon
properties, including aligned type I collagen fibers and the proteoglycan decorin. The second zone comprises fibrocartilage that contains type II collagen, with only small amounts of type I collagen. The ECM of zone 2 contains, in addition, type III collagen, aggrecan and decorin. Next, zone 3 contains mineralized fibrocartilage that includes type II and type X collagens as well as aggrecan. Finally, zone 4 is bony and composed mostly of mineralized type I collagen (Reviewed by Schweitzer et al., 2010). Emerging studies have shown a close relationship between Scx expressing tenocytes and Sox9 positive chondrocytes in formation of enthesis (Soeda et al., 2010; Sugimoto et al., 2013a; Sugimoto et al., 2013b). Interestingly, Scx-/- mice lack entheses and its function was shown to be necessary for bone ridge initiation (Blitz et al., 2013; Murchison et al., 2007). Moreover, BMP signalling and TGFβ superfamily play key role in chondrocyte development (Blitz et al., 2009; Yoon et al., 2006).

Collectively, the summary of factors involved in the tendon development and the effects due to loss-of-function mutation in mice and humans are summarized in the following table:
<table>
<thead>
<tr>
<th>Gene</th>
<th>Mouse</th>
<th>Chick</th>
<th>Zebrafish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcription factors
1. Scleraxis (Scx)</td>
<td>Scx null mice
• First tendon phenotype at E13.5
• Severe disruption of force-transmitting tendons but no defects in ligament and short-range anchoring tendons
• Disorganised tendon matrix
• Decrease of Tnmd, Col14a1, Col1a1 from E16.5</td>
<td>Overexpression in chick hindlimbs caused upregulation of Tnmd</td>
<td></td>
</tr>
<tr>
<td>2. Mohawk (Mkx)</td>
<td>Mkx null mice
• First tendon phenotype at E16.5
• Decrease of Tnmd, Col1a1, Col1a2, Tnmd, Fmod, Dcn from E16.5</td>
<td></td>
<td>Mkx morphants Myotendinous and muscle defects</td>
</tr>
<tr>
<td>3. Early growth response 1 (Egr1)</td>
<td>Egr null mice
• First tendon phenotype at E18.5
• Decrease in Scx, Tnmd, collagen levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Sex determining region Y-box 9 (Sox9)</td>
<td>Sox9<sup>fl</sup>, Prx1<sup>Cre</sup> Complete loss of Scx expression in autopod but not in zeugopod from E12.5 onwards.</td>
<td>Overexpression in chick embryos caused upregulation of Scx, Tnmd and collagen levels</td>
<td></td>
</tr>
<tr>
<td>Signalling pathways</td>
<td>Msx2<sup>Cre+/Wls<sup>c/c</sup></td>
<td>TGFβ1 overexpression up regulate Scx expression in E6 chick digits</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1. Wnt</td>
<td>Complete loss of Scx expression in autopod but not in zeugopod at E12.5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. TGFβ2 TGFβ3</td>
<td>TGFβ2/TGFβ3 double mutant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Complete loss of tendons from E12.5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TGFβ2 ectopic expression in mouse limbs and in vitro 10T1/2 cells upregulated Scx expression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. GDF8/myostatin</td>
<td>Msx2 null mice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Postnatal tendon phenotype.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Abnormal mechanical properties and decrease in Scx, Mkx, collagen (Col1a2), Tnmd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. GDF5</td>
<td>Gdf5 null mice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Limb shortening, joint dislocation and abnormal tendons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Smad3</td>
<td>Smad3 null mice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Postnatal tendon phenotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Decrease in Tnmd, Col1a1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. BMP4</td>
<td>Bmp4<sup>fl/fl</sup>;Prx1-Cre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enthesis formation inhibited.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Defective bone ridge formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smad2/3 pathway inhibition resulted in decrease in Scx expression</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overexpression of BMP in E4 chick limbs led to decrease in Scx expression</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FGF4/8 gain-of-function in somites and limbs led to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. FGF4 FGF8</td>
<td>Ectopic expression of FGF4 caused upregulation of Scx expression</td>
<td>upregulation of Scx, Tnc, Pea3, Spry2, Mkp3 expression</td>
<td></td>
</tr>
<tr>
<td>8. MAPK</td>
<td>Inhibition of MAPK pathways result in loss of Scx expression</td>
<td>Inhibition of ERK MAPK pathway result in loss of Scx, Pea3 expression</td>
<td></td>
</tr>
<tr>
<td>Transmembrane proteins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenomodulin</td>
<td>Inhibition of ERK MAPK pathway result in increase in Scx expression</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transmembrane proteins

Tenomodulin

Tnmd null mice

- Loss of tenocyte proliferation and reduced tendon density
- Postnatal defects in collagen fibrils
- Defect in tendon stem cell proliferation
<table>
<thead>
<tr>
<th>Extracellular matrix protein (ECM)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Type I collagen (Col1a1, Col1a2)</td>
<td>Col1a1 null mice</td>
<td>Postnatal decrease in collagen fibril diameter</td>
</tr>
<tr>
<td>2. Biglycan</td>
<td>Disordered collagen fibril</td>
<td></td>
</tr>
<tr>
<td>3. Comp</td>
<td>Short limb dwarfism and onset of osteoarthritis</td>
<td></td>
</tr>
<tr>
<td>4. Decorin</td>
<td>Irregular collagen fibril</td>
<td></td>
</tr>
<tr>
<td>5. Fibromodulin</td>
<td>Abnormal collagen fibrillogenesis in tendons</td>
<td></td>
</tr>
</tbody>
</table>
1.5 Post-natal arrangement of limb tendons

The post-natal stage of tendon maturation involves assembly of monomeric units of collagen and fusion of collagen fibrils for fibril growth (Zhang et al., 2005). The unsheathing of the cell layers to form epitenon and paratenon takes place at birth (Benjamin and Ralphs, 1997, 1998; Birk et al., 1989). The organisation of major forelimb tendons at postembryonic stage was determined by Pryce and co-worker in 2007 using a ScxGFP transgene. The robust formation of the appropriate flexor and extensor tendon trajectories along the proximal-distal axis of the forelimb has been determined and the precise assemblage in the forelimb into a functional musculoskeletal system is achieved using ScxGFP (Watson et al., 2009). A major flexor tendon, the flexor digitorum profundus (FDP), trails down from the individual FDP muscle in the forearm as an elongated entity and reaches the carpal tunnel near the wrist and then splits into individual units on the palmar side of the phalanges (Figure 1.11). Within phalanx, each FDP tendon subunits insert into the distal interphalangeal joint, thereby, assisting in the movement of each fingers.

Moreover, inside the fingers, another superficial tendon is present above the FDP, known as, the flexor digitorum superficialis (FDS). At the interphalangeal joints of the digits, FDP tendons become volar whereas FDS tendon units are present at the bottom. In the mid-part of the forearm, FDS tendons are present as four bundles that split into two segments enclosing each FDP tendon cluster. Inside the wrist, each FDS tendons along with FDP travels through the carpal tunnel and reach the prospective FDS muscles that extends distally towards its origin sites inside the elbow.
Figure 1.11: An illustration of the major flexor and extensor tendons in the forearm. Green represents ScxGFP expressing tendon cells of flexor digitorum profundus tendon (FDP); pink is tendon cells of flexor digitorium sublimis tendon (FDS); lumbrical muscles are shown in red; ligaments are shown in blue; ECRB, extensor carpi radialis brevis; EPL, extensor pollicis longus; EDC, extensor digitorum communis; EDM, extensor digiti minimi

In addition, the flexing of MCP joints are then achieved by interosseous and lumbrical muscles. Interosseous muscles arise from their metacarpal bone and present on both sides of the bone. On the other hand, lumbrical muscles reside within the palm and originate from FDP tendon, which is in contrast to the most muscles that originate from skeletal elements. Lumbricals pass through dorsally and laterally around each digit (Figure 1.11). The movement of thumb and little digit are due to the superficial thenar and hypothenar muscles. The thenar muscles are located at the base of thumb and produce a bulge. While, hypothenar muscles are muscular protrusions on the medial side of the palm, at the base of little finger. Lastly, transverse carpal ligament, a fibrous band acts as a roof of the carpal tunnel.
Furthermore, a prominent extensor tendon, the extensor digitorum communis (EDC) is position on the dorsal side of the forearm and is the key tendon on the backside of the palm. As individual bands, each EDC tendon subunits fans out from the digits and passes through the compartment formed by the extensor retinaculum and radius, after which they reach the origins at the lateral epicondyle of the humerus. Additionally, extensor digiti minimi after crossing over the wrist splits into two separate tendons called digiti quarti and digiti quinti. The extensor carpi ulnaris are located on the proximal side of the little finger near the meta-carpophalangeal joints and thereby helps in the extension of the little finger (Figure 1.11).

While a thorough knowledge is available on the forelimb tendon development, however, little is known about the hindlimb and axial tendon development. For instance, only recently the precise development and assemblage of flexor digitorum brevis (FDB) muscle-tendon unit inside the foot was established (Huang et al., 2013). Their study showed that in the hindlimb, three muscles gives rise to the FDB tendons at the metatarsophalangeal joint that then covers the flexor digitorum longus (FDL) tendon and eventually intercalate into the interphalangeal joint of the toes. Thereby, authors concluded a serial homology between the structure and formation of the FDS tendon in the forelimb with that of FDB tendons in the hindlimb.

Another prominent tendon in the foot is the Achilles tendon and is considered as the strongest and thickest tendon among all hindlimb tendon groups. The Achilles tendons has musculotendinous portion at the proximal side and insert into the bone on the distal end (Del Buono et al., 2013). However, the information available for the foot tendon development is still considered as generic and therefore, further research is required to dissect out the precise developmental pathways of hindlimb tendons.

Evidence has shown that FDS and FDB tendons share similar anatomical features based upon their positions the limbs, the only difference pertain in tendon patterning events (Huang et al., 2013). FDS tendon extends from distal
to proximal axis in the forelimb, and then translocation occurs into the zeugopod where they finally reside. No further studies has been conducted to provide genetic model for FDB tendon formation and at this point, we still lack the knowledge of FDB tendon formation in Scx^{−/−} mutant mice.

1.6 Muscle connective tissue

Vertebrate muscle fibers are surrounded by muscle connective tissue (MCT) that is made up of fibroblasts and produce ECM. The studies have shown a pivotal role of MCT to partake in the muscle patterning and regulate their growth, type specification and differentiation (Chevallier and Kieny, 1982; Chevallier et al., 1977; Hasson et al., 2010; Kardon et al., 2003; Mathew et al., 2011; Stern et al., 2009; Swinehart et al., 2013; Wachtler et al., 1981). This is supported by the fact that muscle progenitors do not have a pre-determined fate as determined by quail-to-chick grafting where quail-derived muscle cells were able to develop in the chick limb-bud, suggesting that they receive environmental cues for muscle patterning which might implicate signals from the surrounding connective tissue (Chevallier et al., 1977). In this experimental strategy, the heterotopic transplantations in which the somite from chick wing level was replaced by quail neck level somite. There was a deep penetration of cells from the quail graft into the distal limb level of chick and the proper limb muscle fiber was formed. Interestingly, this is very different from Drosophila, where the information pertaining muscle cell fate is intrinsic (see Abmayr and Pavlath, 2012).

Various molecular factors that are widely expressed by connective tissue have shown to regulate the events of muscle patterning. One such example is the protein Tcf4, from the TCF/LEF family (Kardon et al., 2003). Tcf4 is expressed in the lateral plate-derived limb mesoderm and tendons, and is a marker for muscle connective tissue important in generating a template for muscle
patterning (Kardon et al., 2003). Tcf4 acts downstream of the "canonical" β-catenin-dependent Wnt signaling pathway, determined to up regulate the myogenic commitment markers Myf5 when Myf5 activation was observed in mice embryos overexpressing an activated form of β-catenin (Borello et al., 2006; Daugherty and Gottardi, 2007; Kardon et al., 2003). Tcf4f mutants show reduced limb mobility and muscle mispattering suggesting that Tcf4 expression generates a template for forming limb muscles. Tcf4 expression is maintained in the tissues that eventually form the endomysium, perimysium and epimysium surrounding the muscle fibres. Tcf4 also regulates myofibre type maturation and switch from foetal to adult muscles as evidenced by Tcf4 deletion or MCT ablation. This can be considered as first evidence of a cell autonomous and non-autonomous regulation of myosin heavy chain towards the end of neonatal stage and continue in the adults. BMP2 and BMP4 have been shown to repress Tcf4 expression showing that these three signalling molecules are important for the positioning of the premuscular masses. However, at some regions Scx that serve as a tendon marker (Schweitzer et al., 2001) also accompanied Tcf4 expressions (Kardon et al., 2003).

T box transcription factors Tbx4 and Tbx5 are expressed in the forelimb- and hindlimb-generating regions respectively at the time of limb bud formation (Ahn et al., 2002; Chapman et al., 1996; Rallis et al., 2003). They are expressed in the limb mesenchyme post limb bud formation until late development (Hasson et al., 2010; Rallis et al., 2003). As development progresses, Tbx5 expression becomes restricted to a subpopulation of MCT, some skeletal elements and tendons. Tbx4 and Tbx5 knockouts show limb muscle and tendon mispatterning, myogenic differentiation and fusion proceeds, but the muscles demonstrate abnormal size, shape, splitting and localization; in Tbx5-only deletions, there is disorganized MCT and limb tendon patterning, with abnormal Scx expression. The muscle mis-patterning is accompanied by the reduced expression of N-cadherin and β-catenin as shown in figure 1.12 (Brand-Saberi et al., 1996; Hasson et al., 2010; Theveneau and Mayor, 2012).
Figure 1.12: A schematic representation of regulation of MCT and muscle fibres by Tbx4/Tbx5. In the MCT (orange) of normal limbs, Tbx4/Tbx5 expression regulates the activity of N-cadherin and b-catenin in cell autonomous fashion as shown in G. In contrast, the deletion of Tbx4 or Tbx5 resulted in loss of N-cadherin and b-catenin due to which a mispatterning of the associated muscles and disruption of MCT occurred. (Adapted from Hasson et al., 2010)

However, Tbx4 and Tbx5 do not act upon the Tcf4-dependent β-catenin-mediated Wnt signalling as no changes in Tcf4 transcripts and protein were detected and β-catenin deletion results in a decrease in N-Cadherin expression in a Wnt-independent manner and implies that Tbx4 and Tbx5 function via a parallel Wnt-independent β-catenin pathway (Hasson et al., 2010).

More recently, Hox11 expression was also found in the MCT of developing zeugopod of the forelimb (Swinehart et al., 2013). Despite the co-expression of Hox11 and Tcf4 in MCT, still Hox11 loss-of-function mutation resulted in normal Tcf4 expressions in the forelimb zeugopod. Interestingly, the regional loss of Hox11 gene from MCT led to disrupted muscle patterning that was restricted only to zeugopod segment. Hence, it emphasises the diversity found within the muscle connective tissue and further investigation will reveal the mechanisms controlling regional development of this tissues within the musculoskeletal system.
1.7 Myogenesis in the mouse embryo

Mice embryonic myogenesis occurs in two stages. In primary myogenesis, primary myofibres result from the fusion of embryonic myoblasts (see Biressi et al., 2007). Secondary myogenesis follows with the fusion of fetal myoblasts, which develop from related progenitors and differ in proliferation and fusion capabilities, to form secondary myofibres in close proximity to primary myofibres (Duxson et al., 1989; Hutcheson et al., 2009). Differential expression in myofibres of myosin heavy chain isoforms for fast- and slow-contracting muscle takes place during secondary myogenesis (see Abmayr and Pavlath, 2012). In later development, satellite cells take their place between the basal lamina and myofibre cell membrane (Lepper and Fan, 2010).

Sine oculis-related homeobox factors Six1 and Six4 sit on the apex of the regulatory network driving myogenic differentiation, regulating early specification by targeting genes such as Pax3 and basic helix-loop-helix (bHLH) genes such as MyoD, MRF4 and myogenin (Grifone et al., 2005). Paired-homeobox transcription factors Pax3 and Pax7 are influential for the undifferentiated state of precursor cells, Pax3 being expressed in long-range migrating cells essential for limb development (Tremblay et al., 1998). Key myogenic regulatory factors (MRFs) that mediate myogenesis via DNA binding are Myf5, MyoD, myogenin and MRF4 (see Massari and Murre, 2000). MyoD and Myf-5, commit myoblast traits into progenitor cells and have been observed to be individually redundant but cooperatively essential for myogenic determination (Braun et al., 1992). Myogenin and MRF4 are downstream MRFs that control terminal differentiation; myogenin is essential for the expression of myotube-specific genes such as myosin heavy-chain and MRF4 (Hasty et al., 1993).

Initiation of migration of precursors is fundamentally controlled by the c-Met receptor and its ligand hepatocyte growth factor/scatter factor (HGF/SF) (Brand-Saberi et al., 1996). Finally, different signalling mechanisms such as Wnt...
signalling and Notch signalling, accompanied by the molecular activities of factors such as Sonic hedgehog and bone morphogenic proteins, also play a part in the self-renewal or differentiation of progenitor cells involved in muscle development (see Bentzinger et al., 2012).

Myogenic differentiation

Following successful invasion of migratory precursor cells into the limb bud dorsal and ventral premuscular masses are formed. These premuscular masses subdivide in a proximal to distal gradient and each muscle mass eventually splits to individual muscles.

The premuscular masses consist of two layers. The superficial layer of proliferating muscle precursor cells express Pax3 and myf5 and the second deeper layer of differentiating myoblasts expressing MyoD and muscle proteins (Patel, Christ & Stockdale 2002). Quail premuscular masses grafted into chick limb buds show chick muscle patterning and because quail and chick patterning is different this suggests that muscle patterning is specified by somatopleural mesoderm of the limb bud and is not prespecified in the migratory cells from the dermomyotome (Grim, Wachtler 1991). FGFs, IGF-1, BMPs and follistatin have shown increased muscle size brought on by increased rate of proliferation suggesting their role in inducing proliferation. For example, using mouse model, the hypertrophy of muscle mass was observed when IGF-1 was overexpressed using a muscle-specific promoter (Musaro et al., 2001). Moreover, when injections of FGF2 were introduced into the anterior tibial muscles, it resulted in the increase in muscle weight (Iwata et al., 2006). Notch and SF/HGF have been implicated in the inhibition of muscle differentiation. Noggin, an antagonist of BMP signalling, reduces muscle mass (Amthor et al. 2002, Barton-Davis et al. 1998, Hannon et al. 1996). The MRF genes, MyoD, Myf5, Myogenin and MRF4 are essential for the determination and differentiation of the myoblasts because they encode bHLH transcription factors. Evidence includes overexpression of MyoD and Myf5 converting different cell types to the
myogenic fate. Previously, it was shown that the complete loss of function of MyoD and Myf5 resulted in the lack of skeletal muscle cells (Rudnicki 1993). However, using a range of Myf5 mutant alleles, Kassar-Duchossoy and colleagues (Kassar-Duchossoy et al. 2004) showed that the skeletal muscle cells were only affected in the absence of MyoD and Myf5 when the expression of Mrf4 gene was compromised. They generated a series of three allelic Myf5 knockout mice i.e. Myf5^{nLacZ}, Myf5^{GF-P} and Myf5^{loxP}. The Myf5^{nLacZ} allele has an insertion of lacZ into the exon 1 that disrupts Mrf4 expression. The Myf5^{GF-P} contain targeted insertion of GFP into exon 1 which resulted in the deletion of bHLH domain of Myf5. The Myf5^{loxP} mutant had a loxP site inserted into exon 1 that deleted bHLH domain and lacked amino-terminal domain required for transactivation. Both Myf5^{GF-P} and Myf5^{loxP} mutants showed normal Mrf4 expression. Myf5^{nLacZ}; MyoD double mutants showed the same phenotype as those described by Rudnicki et al.(1993) , namely a lack of skeletal muscle development. When the Myf5^{GF-P} and Myf5^{loxP} alleles were crossed with MyoD mutants, Mrf4 expression was undisturbed and embryonic myogenesis occurred normally; however, these muscles are degenerated during the foetal stage of development and the mutant mice born without the skeletal muscles. Therefore, the phenotype of the original Myf5;MyoD (Rudnicki 1993) and the Myf5^{nLacZ}; MyoD double mutants (Kassar-Duchossoy et al., 2004)- was effectively a triple null of Myf5:Mrf4:MyoD where mutation of Myf5 affected the expression of the neighbouring Mrf4 gene in cis. Hence, it was concluded that Myf5 and Mrf4 both function upstream of MyoD to drive the embryonic multipotent cells into myogenic lineages (Kassar-Duchossoy et al., 2004).

Primary muscle fibres are formed by the fusion of myoblasts expressing MyoD. These fibres traversing the muscle anlage from tendon to tendon allow secondary fibre insertion near sites of innervation. The secondary fibres increase rapidly in number and nucleation and eventually separate from the primary fibres (Duxson, Sheard 1995). Fusion of the myoblasts requires N-CAM, N-cadherin and M-cadherin molecules (Arnold, Braun 1999).
1.8 Meox2 transcription factor

1.8.1 Meox2 in limb myogenesis

The Meox genes, Meox1 and Meox2 (also known as Mox1 and Mox2), are members of a homeobox gene subfamily first characterised in the early mouse embryo during somitogenesis. They play distinctive role in somite regionalisation, patterning, and differentiation due to the differential localisation and characteristic expression in the somites and paraxial mesoderm during vertebrate development (Mankoo et al., 1999). The chromosomal localisation revealed that Meox2 is not linked to any of the Hox clusters. The expression of Meox2 was first detected around 8th day after gestation and after half a day it is known to express throughout the entire epithelium of the somite. Meox1 and Meox2 showed highly overlapping patterns of transcript expression in the early epithelial somite, and Meox1 was also expressed in the pre-somitic mesoderm posterior to the earliest somite. Following differentiation of the somites, Meox2 expression appeared to be localised in the sclerotome labelling sclerotome derived cells, e.g. vertebral precursors from E10.5 onwards and Meox1 in both the sclerotome and dermomyotome (Candia et al., 1992). However, Meox2 protein levels detectable by immunostaining are only found in differentiated somites up to E11.5 and in the limb bud thereafter (but not Meox1) (Candia and Wright, 1996). These studies provided initial clues into their respective roles during skeletomuscular development. Conversely, during limb bud development, Meox2 is expressed in the cells residing in the limb mesoderm (Figure. 1.12) along with the migrating myoblast that arrive into limb territory from lateral edge of the dermomyotome (Mankoo et al., 1999). This was further established by the expression of Meox2 in limb mesoderm at E10.5 in Splotch embryos that lacks muscle cells in the limb due to point mutation in Pax3 gene.

Previous work described that Meox2 transcription factor is essential for the regulation of myogenic commitment and differentiation (Mankoo et al., 1999).
Indeed, mice homozygous for a null mutation of Meox2 exhibit obvious defects in limb musculature, characterised by overall decrease of muscle mass and absence of specific muscles but have normal skeletal morphologies, highlighting the role of Meox2 in controlling limb muscle development (Mankoo et al., 1999). Moreover, Meox2−/− mutant embryos at E10.5 show downregulation of genes Pax3 and Myf5, although MyoD expression was normal and collectively expressed by migrating muscle precursors from somites into the limb mesoderm. This finding places Meox2 upstream of Pax3 and Myf5 in the genetic hierarchy regulating limb muscle development. Recently, it was shown that Meox2 directly binds to 145-bp core element in the Myf5 limb enhancer and thereby modulate the expression of Myf5 during myogenesis (Daubas et al., 2015).

On the other hand, mice homozygous for a null mutation of Meox1 show abnormality in the axial skeleton, especially at the cranio-cervical joints, but have normal muscle development (Skuntz et al., 2009). Meox1 mutants also show altered expression of Bapx1, Uncx and Tbx18, genes important for maintenance of somite polarity (Skuntz et al., 2009), supporting a previous in vitro finding that Meox1 directly activates Bapx1 expression in the sclerotome by binding to a homeobox-binding domain in Bapx1’s promoter (Rodrigo et al., 2004).

While studies involving Meox1 or Meox2 homozygote mutants alone highlight their non-redundant roles in skeletal and muscular development, respectively, Meox1;Meox2 double homozygous mutants display phenotypes characteristic of defective somitogenesis and patterning, lacking both normal axial skeleton and skeletal muscles (Mankoo et al., 2003). These double mutants exhibit loss of Pax1 and Twist expression in the paraxial mesoderm as well as severe downregulation of Pax9 expression. Pax1 and Pax9 are important for axial skeleton development while Twist is known to be involved in myogenic and chondrogenic differentiation (Mankoo et al., 2003). Putting it all together, these findings show that while Meox1 can compensate for loss of Meox2 in the sclerotome (but not in the myotome) and vice versa in differentiated somites,
both *Meox* genes are crucial upstream players in the genetic regulatory network that controls somite development.

Figure 1.12: Whole mount Meox2 in situ hybridisation on E10.5 mouse forelimb bud

Image showing *Meox2* mRNA expression in E10.5 mouse control (k) and Splotch homozygous (l) embryos. Arrows show *Meox2* expression in the distal domain of control and mutant embryos i.e. in limb mesoderm. Arrowhead shows *Meox2* mRNA expression in proximal domain i.e. in migrated myogenic cells (Adapted from Mankoo et al., 1999).

Further analysis of Meox2 expression analysis in the *Splotch* embryos that have Pax3 mutation, which resulted in the absence of muscle revealed that Meox2 expression from the proximal limb is lost, but the distal domain from the limb mesoderm remained unaffected (Mankoo et al., 1999). The aforementioned *Meox2* is a potential candidate for MCT regulation of limb formation. While its mechanism, which was determined to be essential for limb muscle development, may be restricted within myoblasts and mediated via *Pax3* and *Myf5*, it could also have a role in the MCT where its expression may affect connective tissue development and can be speculated to have a downstream effect on the surrounding muscle (Mankoo et al., 1999).
1.8.2 Meox2 transcription factor and TGFβ signalling

The Meox2 transcription factor is a direct target of transforming growth factor β1 (TGFβ1) in epithelial cell growth (Valcourt et al., 2007). Interestingly, regulation by TGFβ1 is in biphasic manner where initial weak repression is then followed by strong robust induction of Meox2 mRNA expression in normal mammary epithelial NMuMG cells and in normal immortalized HaCaT keratinocytes. Moreover, the regulation of Meox2 expression by TGFβ is via Smad proteins. In HaCaT cells, when dominant negative mutants of Smad3 and Smad4 were used to block endogenous Smad signalling, the expression of Meox2 was completely abrogated even after stimulation with TGF-β1. Collectively, Meox2 is involved in epithelial cell biology under the control of the morphogenetic cytokine TGF-β and Meox2 play critical role along with Smad proteins to execute TGFβ’s role in inhibition of epithelial cell growth.

Interestingly, Meox2 has been shown to counteract the effects of TGFβ1 in adventitial fibroblasts by up regulating p15, p16 and p21 (Zhang et al., 2008). These results suggest Meox2 may act as a direct target to provide negative feedback regulation of TGFβ1 signalling.
1.9 Rationale

Ablation of Meox2 by targeted gene disruption in mice gives rise to a hypotrophic phenotype in the musculature of the limbs of neonates; the morphogenesis of these mutant limbs is further complicated by abnormal patterning of specific muscles, revealed by aberrant and failure of cleavage and invasion of tendon space by ectopic muscle. These muscle defects are embryonic in origin and in the absence of Meox, the earliest stages of myogenic differentiation are affected in the limb. Meox2 is expressed both in migratory muscle precursors delaminating into the limb bud, and more distally in the somatopleural limb mesoderm in the first stage of the forelimb bud development at E10.5.

As described in the previous sections, growing evidence shown the influence of tendons and muscle connective tissue on the series of the events involved in muscle patterning of the limb during development. Indeed the expression of Meox2 in limb mesoderm that hosts the progenitors for tendons and MCT indicate that Meox2 plays a role in differentiation of these tissues and thereby influence the various aspects of myogenic differentiation. Little is known about the implication of Meox2 mutation on limb mesenchyme derivatives. Preliminary observations showed thinner and extremely fragile limb and tail tendons in the Meox2\(-/-\) mutant animals and hence it opened up doorways to investigate Meox2 functions during tendon morphogenesis.

1.10 Thesis hypothesis

We hypothesized that Meox2 is necessary for normal axial and appendicular tendon development. Furthermore, we postulated that the role of Meox2 could be intrinsic or extrinsic to regulate tendon progenitors. Finally, as TGFβ2 signals are important for tendon progenitor cells, we proposed an interaction between Meox2 and TGFβ2 during tendon development.
1.11 Project objectives

Therefore, this thesis has three research objectives:

1. To characterise the phenotype in Meox2 mutant neonates in axial and appendicular tendons, using haematoxylin and eosin staining and ScxGFP expression analysis.

2. To identify whether the tendon defects are foetal or embryonic, and determine when the tendon phenotype first manifests, by Scx whole mount in situ hybridisation at E11.5-13.5 and ScxGFP expression analysis at E14.5.

3. To determine whether Meox2 has an intrinsic or extrinsic role in tendon progenitors, and to elucidate the molecular mechanisms by which Meox2 fulfils this role. For this, Meox2 expression was compared to Scx expression in limb and axial tendons. Additionally, Meox2 derived cells were traced using Meox2-nLacZ reporter.
Chapter 2

Materials and Methods
All animal work in the thesis was carried out in accordance with the Animals (Scientific Procedures) Act 1986; project license PPL70/7341.

2.1 TRANSGENIC MICE, MATINGS AND HARVESTING EMBRYOS

2.1.1 MEOX2\(^{KO}\) (\(-/-\)) MICE

The knockout for the Meox2 locus was described by Mankoo et al., (1999). The same transgenic line was maintained on a mixed129/SV and C57/BL6 background and was used in this study. The generation of mutant mice was by targeted disruption of the Meox2 transcription and translation initiation sites, the first exon and part of the first intron, with PGK-neo-polyA cassette (fig 2.1). The Meox2 heterozygous animals i.e. Meox2\(^{+/-}\) were used as controls.

2.1.2 MEOX2\(^{nLacZ}\) MICE

Generation of the Meox2\(^{nLacZ}\) allele was achieved by knockin of \(nLacZ\) into the exon1 whereas most of the 3' end of exon1 remained intact in \(nLacZ\) locus. The Meox2\(^{nLacZ}\) mice were generated by removing the \(loxP\) flanked PGK-neo cassette from the original Meox2\(^{nLacZ-neo}\) line generated on a 129/SV and C57/BL6 background and was produced by Dr. Mankoo. This was achieved by crossing the original Meox2\(^{nLacZ-neo}\) females with Protamine-Cre males. The latter mice express this recombinase transgene in the male germline, and homologous recombination to excise the PGK-neo cassette occurs upon fertilization (O’Gorman et al., 1997). The resulting recombinant mice have the \(nLacZ\) insert followed by an adjacent \(loxP\) site, disrupting exon 1 and resulting in the same null phenotype as the original Meox2\(^{+/-}\) mice (fig 2.1). Therefore, the Meox2\(^{nLacZ}\) allele employed throughout this thesis corresponds to the recombinant allele without the neo cassette; the Meox2\(^{nLacZ-neo}\) mice were not used.
2.1.3 **SCLERAXIS-GFP MICE**

Scx is a unique marker expressed by tendon cells throughout tendon development (Brent et al., 2003; Schweitzer et al., 2001). The ScleraxisGFP (ScxGFP) transgenic mice were provided by Dr. Ronen Schweitzer (Oregon Health and Science University). The ScxGFP mice have GFP expression under the control of regulatory elements of Scx gene. After initiation sequence ATG for Scx gene, the open reading frame of GFP was cloned into the first exon of Scx gene and thereby removing most but not all of the first exon (Pryce et al., 2007). The retention of exon 2 in Scx gene locus along with first exon of splice donor sequence led to replicate an endogenous expression of Scx transcript. Because this transgene recapitulates endogenous Scx expression, all tendons appear green under fluorescence microscope. They were maintained by crossing with Meox2^{KO} and Meox2^{nLacZ} lines.

2.1.3 **SPLOTCH^{2H} MICE**

The splotch-delayed mice (Splotch^{2H}) mice were a gift from Prof. Andy Copp (Institute of Child Health), and this had been previously described in the literature (Franz et al., 1993). The genetic background of this line was unknown, and they were maintained by crossing with Meox2^{KO} line. The Splotch^{2H} mice have mutations in the Pax3 gene and interfere with the limb muscle development. The homozygous splotch-delayed mice have spina bifida and are thus phenotypically distinguishable from heterozygous controls at embryonic stages.

2.1.5 **TIMED MATINGS AND STAGING EMBRYOS**

Mice were mated and vaginal plugs were monitored for five days. Noon on the day of vaginal plug observation was taken as 0.5 embryonic day of development. A neck dislocation method and carbon dioxide inhalation was used as per Home Office guidelines to cull pregnant females. All embryos were
staged according to The Atlas of Mouse Development (Kaufman, London 1992). For all experiments, at least three sets of embryos were used to produce the final results. Counting of the somites from the tail to the hindlimb and by comparing limb and head shape and size.

2.2 GENOTYPING OF TRANSGENIC MICE

2.2.1 GENOMIC DNA PURIFICATION

Tail clips of 0.2-0.4 cm were obtained from mice between 2 and 4 weeks of age and portions of yolk sac of embryos for genotyping. The amount of Tail Buffer added was 250 µl for tail and 500 µl for yolk sac. 5 µl proteinase K (20 mg/ml) was used for tails and yolk sac. Samples were then incubated at 50°C overnight. Pellets of undigested hair from tails were obtained by centrifuging at 13000 rpm for 10 minutes. The supernatant was transferred into the fresh microfuge tubes and precipitated with an equal volume of isopropanol by mixing and then centrifuging for 10 minutes. The DNA pellet was washed with 200 µl 70% ethanol and spun for 3 minutes. The DNA pellet was air dried for 30 minutes and redissolved in 50 µl TE. DNA was then stored at -20°C.

2.2.2 PCR FOR GENOTYPING TAIL AND EMBRYO

PCR reaction was done in a 30 µl sample volume consisting of 10X Hotstar buffer (Qiagen), 25 mM MgCl₂, 10 mM dNTPs, 6 µl of Q buffer, 1 unit of Hotstar polymerase, 100 ng/µl forward and reverse primer and 1 µl of extracted genomic DNA. The programme for Techne genius thermal cycle used was 94°C 5 minutes, 3 cycles of 94°C, 58°C 60 seconds and 72°C 60 seconds, followed by 35 cycles of 94°C 60 seconds, 51°C 60 seconds and 72°C 60 seconds and lastly, one cycle for 5 minutes at 72°C. The PCR products were analysed by 1.3% agarose gel electrophoresis/TAE and the absence or presence of a particular Meox2 allele in each individual samples was determined using a UV transilluminator.
MEOX2 ALLELES PCR PRIMERS (See figure 2.1 for relative locations of the primers).

Table 2.1: Primer sequence used for genotyping

<table>
<thead>
<tr>
<th>Primer number</th>
<th>Primer name</th>
<th>Sequence</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 612(Meox2<sup>WT</sup>)</td>
<td>Forward primer</td>
<td>5’GGCTCTGCAAAGCAACTGGCACC3’</td>
<td>255bp</td>
</tr>
<tr>
<td>2 1046(Meox2<sup>WT</sup>)</td>
<td>Reverse primer</td>
<td>5’CAGAGCGAGGAAAGGCTAGCAGC3’</td>
<td>255bp</td>
</tr>
<tr>
<td>3 86(Meox2<sup>KO</sup>)</td>
<td>Forward primer</td>
<td>5’CTAAAGCGCATGCTCCAGACTGCCTTG3’</td>
<td>400bp</td>
</tr>
<tr>
<td>4 592(Meox2<sup>KO</sup>)</td>
<td>Reverse primer</td>
<td>5’CCCAGTGCCTCTGATGCCTTTAGG3’</td>
<td>400bp</td>
</tr>
<tr>
<td>5 618(Meox2<sup>Ki-N</sup>)</td>
<td>Forward primer</td>
<td>5’GAAGGCACATGGCTGAATATCG3’</td>
<td>600bp</td>
</tr>
<tr>
<td>6 613(Meox2<sup>Ki-N</sup>)</td>
<td>Reverse primer</td>
<td>5’GCTGTCGCTTTCCTTTTGGCTGCCAC3’</td>
<td>600bp</td>
</tr>
</tbody>
</table>
2.3 GENERATION OF TEMPLATE cDNA FOR RNA SYNTHESIS

2.3.1 PREPARATION OF cDNA

Meox2 full-length cDNA was generated by B. Mankoo. Scleraxis was a gift from R. Schweitzer; Sox9 was a gift from P. Koopman and Tgfβ2 was an IMAGE clone (ID 4009682) obtained from Invitrogen.

2.3.2 BACTERIAL TRANSFORMATION OF PLASMID DNA

In order to obtain large amounts of cDNA for the synthesis of RNA probes, 50 µl of chemically competent E.coli DH10B (Invitrogen) cells were transformed with 10 ng plasmid DNA diluted in 20 µl of water. The cells were incubated on ice for 10-30 minutes. A heat shock was applied by transferring the cells directly to a 42°C heat block for 2 minutes. Cells were briefly incubated on ice and supplemented with 1 ml LB medium, without selection. The transformed cells were incubated at 37°C for 1 hour then plated onto LB-agar containing 100 ng/µl ampicillin to isolate ampicillin resistant single transformed colonies after overnight culture at 37°C.

2.3.3. PURIFICATION OF PLASMID DNA BY ZIPPY METHOD

Single bacterial clones were picked from the plates and grown in 5 ml cultures of LB medium containing 100 ng/µl ampicillin overnight in a shaking incubator at 37°C. Next day, cultures were spun in a centrifuge for 10 minutes at 4000 rpm. The bacterial cell pellet was then resuspended in 0.7 ml of zippy buffer and 50 µl of 10 mg/ml lysozyme and transferred to microcentrifuge tubes. The tubes were heated at 90-120 sec at 95°C in preheated heating block and then centrifuged for 10 minutes at maximum speed. A wooden toothpick was used to remove the gelatinous precipitate and to the remaining supernatant, an equal volume of 0.7 ml isopropanol was added. After vigorous shaking, DNA in pellet was obtained after centrifugation for 10 minutes. A DNA pellet was washed with
70% ethanol and centrifuged again for 3 minutes. Finally, DNA pellets were air-dried for 20 min at room temperature and then resuspended in 50 µl of TE and 3 µl of 100 ng/µl heat-treated RNase A. DNA was then stored at -20°C.

2.3.4 ANALYSIS OF PURIFIED PLASMID DNA.

The production of correct DNA was verified by restriction digestions cleaving the individual insert from the vector, and analysed by 1.2% gel electrophoresis. The sizes of the fragments were determined using the λ DNA/BstEII fragments as a ladder (New England Biolabs). DNA concentration was estimated qualitatively by comparison with individual determined concentrations of ladder fragments and quantitatively by nanodrop spectrophotometer.

2.3.5 RESTRICTION ENZYME DIGESTION OF PLASMID DNA

All plasmid DNA were linearized to enable anti-sense RNA transcription from the promoter situated at the 3’ end of all cDNAs. 20 µg of template cDNA was digested in a total volume of 200 µl with appropriate restriction enzymes, as summarised in table 2.2 and verified by 1% gel electrophoresis.

2.3.6. PURIFICATION OF LINEARISED cDNA

200 µl of linearized plasmid was purified by phenol-chloroform extraction. 120 µl of phenol-chloroform was added, and the tube was then mixed and centrifuged at 13000 rpm for 3 minutes; the DNA in aqueous phase was transferred to a fresh centrifuge tube and 120 µl of chloroform was added. This was mixed and centrifuged for 5 minutes. To this supernatant, 10% volume of 3M sodium acetate and 100% ethanol (2.5x DNA volume) were added. The tube was incubated at -20°C for an hour and then centrifuged for 20 minutes to precipitate the DNA. The DNA pellet was washed with 70% ethanol, centrifuged for 3 minutes. The pellet was air dried and re-suspended in 20 µl of RNase-free water. Final concentration and purity of linearized template cDNA was determined by nanodrop spectrophotometer.
2.3.7 DIG LABELLED RNA PROBE SYNTHESIS

Labelling reaction: RNA synthesis reaction of 20 µl final volume comprised of 1µL of 1 µg/µl of linearized plasmid DNA in autoclaved ELGA water, 2 µl of 10X DIG-RNA labelling mix, 2 µl of RNA polymerase (Table 2.2) and 0.5 µl of RNase inhibitor (RNasin Roche). The reaction was incubated at 37°C for 2 hours and RNA synthesis was confirmed by analysis of 1 µl of reaction on 1% TAE agarose gel. Plasmid DNA was digested by adding 1 µl DNase1 (RNase free, Roche) was added and incubated for 1 hour at 37°C. The activity of DNase1 was stopped by adding 1 µl of 0.5M EDTA.

Purification of RNA: To the above labelling reaction 2.5 µl 4M LiCl and 75 µl prechilled 100% ethanol were added and mixed. The samples were incubated at -80°C for 30 min and centrifuged 13000 rpm for 20 minutes at 4°C. RNA pellets were washed with using 50 µl chilled 70% ethanol. After air-drying for 20 min, riboprobes were dissolved in 50 µl sterile RNase-free water and stored at -80°C. Riboprobes were analysed using 1 µl on agarose-gel and concentration was determined using nanodrop spectrophotometer.

Table 2.2: DIG-labelled cRNA probe synthesis from cDNA 3'UTR

<table>
<thead>
<tr>
<th>cDNA</th>
<th>Restriction enzyme</th>
<th>RNA polymerase (Roche)</th>
<th>RNA product length</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEOX2</td>
<td>XbaI</td>
<td>T3</td>
<td>1400 nt</td>
</tr>
<tr>
<td>SCLERAXIS</td>
<td>SalI</td>
<td>T3</td>
<td>900 nt</td>
</tr>
<tr>
<td>TGF-β2</td>
<td>EcoRI</td>
<td>T7</td>
<td>1200 nt</td>
</tr>
<tr>
<td>SOX9</td>
<td>HindIII</td>
<td>T7</td>
<td>1400 nt</td>
</tr>
</tbody>
</table>
2.4 WHOLE MOUNT **IN SITU HYBRIDIZATION**

2.4.1 EMBRYO COLLECTION

Embryos of the required stage were collected as described in section 2.1.5 and fixed overnight in 4% paraformaldehyde at 4°C. Washing with ice cold PBST for 5 minutes was carried out. Fixed embryos were then de-hydrated with gentle rocking in ascending concentration of methanol/PBST (25%, 50%, 75% and 100%) at room temperature until embryos sink at the bottom and finally stored in 100% methanol at -20°C.

2.4.2 PRE-TREATMENTS AND HYBRIDISATION

Rehydration of embryo was performed on a rocker in 75%, 50% and 25% methanol/PBST mixture at room temperature and they were bleached with 6% \(\text{H}_2\text{O}_2 \) in PBT for 60 minutes. Proteinase K (10 µg/ml) made up in PBST was added for 50 minutes. The proteinase K activity was then stopped by adding 2 mg/ml glycine in PBST for 10 minutes. The bleached and porous embryos were washed twice in PBST for 5 minutes and post fixed for 20 minutes in 4% paraformaldehyde and 0.1% glutaraldehyde. Embryos were then rinsed with 1:1 PBST/hybridisation mixture and then with 1ml pre-warmed hybridisation mix. The tubes were then incubated horizontally in 1ml pre-warmed hybridisation mix for 1 hour at 70°C. 0.2 µg/ml of DIG-labelled RNA probe in pre-warmed hybridisation mix was added to the tubes and incubated horizontally overnight on a rocker at 70°C.
2.4.3 POST-HYBRIDISATION WASHES

After 15 hours of incubation, embryos were washed twice with pre-warmed hybridisation mix for 30 min each at 70°C followed by 1:1 hybridisation mix/TBST for 20 minutes. Embryos were then rinsed and washed twice with TBST at room temperature. The tubes were then rinsed twice with MABT. Afterwards, embryos were pre-incubated with MABT plus 10% filtered heat-treated sheep serum for an hour. Subsequently, a 1/2000 dilution of anti-DIG antibody (Roche) in MABT plus 10% filtered heat-treated sheep serum was added and tubes were incubated at 4°C overnight on a rocker.

2.4.4 POST-ANTIBODY WASHING

Next day, embryos were washed three times with MABT and then six times for 1 hour each with 2 ml MABT on a rocker. Tubes were incubated at room temperature overnight in MABT on a rocker.

2.4.5 COLOUR DEVELOPMENT

On Day 4, embryos were washed twice for 10 min with NTMT, and then incubated with 1.5 ml NTMT and 200µl NBT/BCIP mix (Roche) until colour developed to the desired extent. The colour reaction was then stopped by washing three times with PBT.

2.4.6 IMAGING

Images were taken with the digital camera (Leica) on the Leica MZ125 dissecting microscope and Openlab software and processed using Adobe Photoshop CS5.1.
2.5 IN SITU HYBRIDIZATION ON CRYOSECTIONS

All the reagents used in this method were pre-treated with 0.1% diethylpyrocarbonate (DEPC) overnight at room temperature followed by autoclaving.

2.5.1 EMBRYO COLLECTION AND CRYOSECTIONING

Fresh collected embryos were fixed in 4% paraformaldehyde at 4°C for 2 hour. Embryos were then washed in ice-cold PBS and incubated overnight in 5% sucrose/PBS at 4°C with gentle rocking. Next day, 15% sucrose/PBS was added for 2 hours at 4°C and then embryos were transferred to 30% sucrose/PBS for 2 hours at at 4°C. The embedding of embryos was done in OCT (Sakura) on dry ice at the appropriate orientation and they were stored at -80°C. Transverse sections of 20 µm were obtained using the Leica CM1950 cryostat on the day of hybridization. The sections were collected on poly-lysine coated slides and air-dried for 3 hours at room temperature. GFP positive tissue sections were dried in the dark.

2.5.2 TISSUE PREHYBRIDIZATION AND HYBRIDIZATION

Slides were rinsed twice with PBST for 15 minutes. Also it was important to keep tissues wet all the time and therefore not allowed to dry out. Tissue sections were then washed with DEPC-treated 1:1 PBT/Hybridization mix (used in the section 2.4.2). The slides were then prehybridized in the hybridization mix for 1 hour at 65°C in a moist atmosphere using 65°C Wash Buffer to maintain humidity. Then, DIG-labelled RNA probe (0.1 µg/ml; 500 µl per slide) was added onto sections and slides were covered with RNase-free coverslip (Invitrogen, Catalog no. 10625983). Sections were left overnight at 65°C in a humidified chamber using 65°C Wash buffer.
2.5.3 POST-HYBRIDIZATION WASHES

The following day the slides were dipped into 65°C Wash Buffer for the removal of the cover slips. Sections were then rinsed once and washed twice for 30 minutes at 65°C with Wash Buffer. The slides were rinsed twice with MABT for 5 minutes followed by incubation of the slides in MABT and 10% filtered heat-treated sheep serum for 1 hour at room temperature. Subsequently, 200 µl of 1/2000 dilution of anti-DIG antibody (Roche) in MABT plus 10% filtered heat-treated sheep serum was added and slides were kept at 4°C overnight in a humidified chamber using MABT.

2.5.4 POST-ANTIBODY WASHING AND COLOUR DEVELOPMENT

Slides were briefly rinsed three times and then washed six times for 5 minutes each with 2 ml MABT at room temperature. Sections were then washed twice for 10 minutes each with NTMT. The colour development on the sections was obtained by incubating with 1.5 ml NTMT and 200 µl NBT/BCIP mix (Roche) until the desired extent. The colour reaction was then stopped by washing three times with PBT. The slides were finally mounted with propyl gallate mounting medium containing DAPI (10 mg/ml).

2.5.6 IMAGING

Images were taken using the digital camera (Leica) on a Zeiss Axiovert 200M fluorescence microscope and processed by Adobe Photoshop CS5.1.

2.6 β-GALACTOSIDASE ANALYSIS

2.6.1 EMBRYO PROCESSING

The collection of appropriate staged embryos was done in ice-cold PBS followed by fixation in 4% paraformaldehyde at 4°C for 2 hours. Embryos were then washed in ice-cold PBS and incubated overnight in ice-cold 5%
sucrose/PBS. Next day, 15% sucrose/PBS was added for 2 hours at 4°C and then embryos were transferred to 30% sucrose/PBS for 2 hours at 4°C. The embedding of embryos was done in OCT on dry ice at the required orientation and they were stored at -80°C.

2.6.2 CRYOSECTIONING

Transverse sections of 20 µm were obtained using the Leica cryostat on the day of staining. The sections were collected on poly-lysine coated slides and were air-dried for 3 hours at room temperature. GFP positive tissue sections were dried in the dark.

2.6.3 X-GAL and S-GAL STAINING

Air dried slides of cryosections were washed thrice with LacZ wash buffer without X-gal or S-gal for 15 minutes at room temperature. LacZ staining solution was added for 20 minutes. Slides were then washed in PBS for 5 minutes and then submerged in LacZ staining solution containing 0.5ml of 40mg/ml X-gal (dissolved in dimethyl formamide) (Thermofischer) or 0.1mg/ml S-gal (6-chloro-3-indolyl- β-D-galactopyranoside, Apollo Labs) overnight at 37°C. Subsequently, sections were washed in PBS and rinsed in water for 5 minutes. S-gal, a β-gal substrate produces pink-colour precipitate when hydrolysed by β-galactosidase and was preferred, as S-gal precipitates do not quench DAPI unlike X-gal that gives blue colour precipitate and therefore interferes with the DAPI signal.

2.7 HAEMATOXYLIN AND EOSIN STAINING

Tissue histology at post-natal stages was studied using haematoxylin and eosin staining. Air-dried cryosections (section 2.6.2) were stained for 3 minutes with haematoxylin stain and then rinsed with distilled water. In order to lessen the background colour, slides were washed in tap water for 5 minutes. Destaining was then performed using an acid rinse (2% glacial acetic acid in distilled water)
by fast dipping for 8-12 times. The slides were rinsed with tap water and then with distilled water for 2 minutes. After that, eosin staining was performed on the same slides. Eosin stain (0.1% eosin in 95% ethanol) was added for 30 seconds. The slides were then dehydrated in 95% ethanol and 100% ethanol for 3 minutes each. Subsequently, slides were air dried for 30 minutes. Finally, the slides were mounted with propyl gallate mounting medium containing DAPI (10 mg/ml).

2.8 GENERAL IMMUNOFLUORESCENCE

20 µm cryosections were processed as mentioned in 2.6.2. The cryosections were rinsed thrice in PBS at room temperature followed by blocking with PBST and 10% goat serum for 2 hours. The primary antibody diluted in 5% goat serum/PBST was then applied on sections and incubated overnight at 4°C in an atmosphere humidified with PBS. Next day, the sections were washed thrice for 5 minutes in PBST. Secondary antibody diluted in 5% goat serum/PBST was then added onto the sections for 2 hours at room temperature. The slides were then rinsed thrice for 5 min in PBST. The slides were then mounted with propyl gallate mounting medium containing DAPI and examined with a Zeiss Axiovert 200M fluorescence microscope. Adobe Photoshop CS5.1 was used for image processing. The above described immunofluorescence method was used for all antibodies except the listed Meox2 antibodies (discussed in next section). Primary and secondary antibody details are tabulated in Table 2.3 and Table 2.4.

2.9 MEOX2 IMMUNOFLUORESCENCE

The optimisation of Meox2 antibody protocol was required for this project, as the general immunofluorescence method described did not produced any signal for this antibody.
2.9.1 EMBRYO PROCESSING

Mouse embryos of E12.5-E14.5 were fixed in ice-cold solution 1 containing 0.2% paraformaldehyde overnight at 4°C. On day 2, the embryos were washed twice in cold PBS then incubated in solution 1 without 0.2% paraformaldehyde overnight at 4°C. After 24 hours, the embryos were washed in cold PBS and incubated in solution 2 overnight at 4°C. Finally, on day 4, the embryos were rotated in solution 3 for 1 hour at 37°C, followed by embedding in OCT with appropriate orientation and stored at -80°C.

2.9.2 CRYOSECTIONING

As described in section 2.6.2.

2.9.3 Meox2 ANTIBODY STAINING

The sections were fixed in pre-cooled 100% methanol at -20°C for 5 minutes. The slides were then rinsed twice with PBSX for 5 minutes. The permeabilization was then performed using PBSX for 20 minutes. The sections were then blocked in PBSX plus 10% sheep serum for 1 hour. Meox2 antibody (table 2.3) diluted in PBSX and 10% sheep serum was added onto the sections for overnight incubation at 4°C in moist atmosphere using PBS. Next day, the sections were washed at least 5 times for 5 minutes with PBSX at room temperature. Secondary antibody diluted in PBSX plus 10% sheep serum was added for 2 hours at room temperature. After washing with PBSX for 5 minutes, slides were air-dried and were finally mounted with propyl gallate mounting medium containing DAPI.

2.9.4 IMMUNODETECTION

The stained sections were documented using a Zeiss Axiovert 200M fluorescence microscope and a Zeiss LSM Exciter confocal microscope. (S Hughes lab). Adobe Photoshop CS5.1 was used for image processing as shown in Fig 2.2.
Table 2.3: Primary antibodies

<table>
<thead>
<tr>
<th>Name</th>
<th>Supplier</th>
<th>Catalogue no.</th>
<th>Species</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Meox2</td>
<td>GenWay</td>
<td>Custom-made</td>
<td>Rabbit</td>
<td>1:100</td>
</tr>
<tr>
<td>Anti-Myosin heavy chain</td>
<td>Upstate (Millipore)</td>
<td>A4.1025</td>
<td>Mouse</td>
<td>1:100</td>
</tr>
<tr>
<td>Anti-Caspase 3</td>
<td>BD Biosciences</td>
<td>559565</td>
<td>Rabbit</td>
<td>1:300</td>
</tr>
<tr>
<td>Anti-GFP</td>
<td>Abcam</td>
<td>ab13970</td>
<td>Chicken</td>
<td>1:2000</td>
</tr>
<tr>
<td>Anti-Ki67</td>
<td>Abcam</td>
<td>ab15580</td>
<td>Rabbit</td>
<td>1:200</td>
</tr>
<tr>
<td>Rabbit pre-immune IgG</td>
<td>GenWay</td>
<td>Custom-made</td>
<td>Rabbit</td>
<td>1:100</td>
</tr>
</tbody>
</table>

Table 2.4: Secondary antibodies

<table>
<thead>
<tr>
<th>Name</th>
<th>Supplier</th>
<th>Catalogue no.</th>
<th>Species</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cy2 conjugated Anti-chicken IgG</td>
<td>Jackson Immuno Research</td>
<td>703-225-155</td>
<td>Donkey</td>
<td>1:500</td>
</tr>
<tr>
<td>DyLight 488 conjugated Anti-rabbit</td>
<td>Jackson Immuno Research</td>
<td>111-485-003</td>
<td>Goat</td>
<td>1:500</td>
</tr>
<tr>
<td>DyLight 594 conjugated Anti-rabbit</td>
<td>Bethyl Laboratories</td>
<td>A120-601D4-1</td>
<td>Goat</td>
<td>1:500</td>
</tr>
<tr>
<td>DyLight 550 conjugated Anti-mouse</td>
<td>Bethyl Laboratories</td>
<td>A90-231D3</td>
<td>Goat</td>
<td>1:500</td>
</tr>
</tbody>
</table>
2.10 IN VITRO ANALYSIS

2.10.1 C3HT10\(^{1/2}\) CULTURE

A murine cell line considered to represent a mesenchymal progenitor state C3HT10\(^{1/2}\) was used in this project (Pinney and Emerson, 1989). The stock was kindly provided by Hughes lab and was stored in liquid nitrogen. The cells were stored in liquid nitrogen and in freezing media containing 10% FCS, 1% PS, herewith, referred as growth medium (DMEM+FCS+PS) with 10% dimethylsulfoxide, DMSO. The cryovial containing the cells was thawed quickly and the cells transferred to 5 ml of growth medium in a 15 ml conical falcon tube. This was then centrifuged for 5 min at 1000 rpm. The supernatant was removed and the cell pellet was resuspended in 1 ml growth medium. The cells were then re-plated as indicated by the storage instructions. Routinely, C3HT10\(^{1/2}\) cells were frozen in aliquots equivalent to 1/6\(^{th}\) of a T75 flask and replated onto a T75 flask.

2.10.2 CELL SPLITTING

When necessary (>80% confluency for C3HT10\(^{1/2}\) cells) the cells were split by first removing the medium and washing the cells twice with sterile PBS. The cells were detached from the bottom of the flask using 2 ml of 1x Trypsin-EDTA, incubated for 3-5 minutes. Cells were further dislodged by hitting hard on the sides of the flask and checked under a microscope for roundness. 2 ml of sterile PBS was added and used to detach the cells from plastic and dispersed into a single cell suspension. 8 ml DMEM+FCS+PS was added to quench the Trypsin-EDTA and the cell suspension was transferred to a 15 ml sterile Falcon tube. Cells were pelleted by centrifuging for 5 minutes at 1000 rpm and the supernatant was discarded. The cell pellet was then resuspended in a fresh growth medium and plated as described in next section.
2.10.3 CELL PLATING FOR IN VITRO ANALYSIS

C3H10T1/2 were seeded in a 24-well plate at a cell density of 1×10^5 cells/well in growth medium. After 24 hours, the medium was supplemented with a freshly thawed aliquot of 20 ng/ml TGFβ2 (Peprotech, Catalog no. 100-35B) or 25 ng/ml FGF4 (Peprotech, Catalog no. 100-31) and 1 ng/µl BSA. The cells were incubated for 1 hour, 4 hours, 8 hours and 24 hours. Subsequently, cell lysates were collected after each time point and processed for RNA purifications.

2.10.4 RNA PURIFICATION BY TRIZOL METHOD

After the desired time point, cells were washed with PBS and 0.25 ml of Trizol reagent was added to obtain cell lysates. The adherent cells were collected by using a cell scraper (BD Falcon) and transferred into the sterile eppendorf tubes. 0.25 ml chloroform was added and 15 sec of vigorous shaking was performed. The tubes were then incubated at room temperature for 3 minutes and spun at 13000 rpm for 15 minutes at 4°C. RNA in supernatant was collected in an eppendorf tube and 0.125 ml isopropanol was added. The mixture was incubated for 10 minutes at room temperature. The tubes were spun at 13000 rpm for 15 minutes at 4°C. The RNA pellets were washed with 1 ml of 70% ethanol and mixed properly. After centrifugation for 5 minutes at 4°C, RNA pellets were collected and air dried for 15-20 minutes. Finally, RNA was dissolved in 50 µl of RNase-free water and the concentration was measured at 260 nm using Nanodrop spectrophotometer and stored at -80°C.
2.10.5 PREPARATION OF cDNA

Reverse transcription of purified RNA was performed as per the manufacturer’s standard protocol using the QuantiTect Reverse Transcription kit (Qiagen). Briefly, the template RNA and Quantiscript reverse transcriptase was thawed on ice. The gDNA wipeout buffer, Quantiscript reverse transcription buffer, reverse transcription primer-mix were thawed at room temperature. The genomic DNA elimination reaction was then prepared in an eppendorf using 2 µl gDNA wipe out buffer, 1 µg of template RNA and then the volume of the mixture was levelled for 14 µl using RNase free water. The tubes were incubated for 2 minutes at 42°C and then placed on ice immediately. Following this, the reverse transcriptase master mix on ice was prepared. In a fresh eppendorf tube, 14 µl of genomic DNA elimination reaction was added along with 1 µl of Quantiscript reverse transcriptase, 4 µl of 5X Quantiscript reverse transcription buffer and 1 µl reverse transcription primer-mix was added. The tubes were mixed properly and incubated at 42°C for 15 minutes. The tubes were then incubated at 95°C for 3 minutes to inactivate Quantiscript reverse transcriptase. Finally, 1 µl sample was added for semi-quantitative PCR reaction and rest of the sample was stored at -80°C.

2.10.6 SEMI-QUANTITATIVE PCR

The PCR reaction was done in 30 µl sample volume consisting of 10XHotstar buffer (Qiagen), 25 mM MgCl₂, 10 mM dNTPs, 6 µl of Q buffer, 1 unit of Hotstar polymerase, 5 µM forward and reverse primer and 1 µl of cDNA. The programme for thermal cycle used was 95°C for 5 minutes, 3 cycles of 94°C for 50 seconds, 60.2 °C for 30 seconds and 72°C 40 seconds, followed by 35 cycles of 94°C 50 seconds, 57°C 30 seconds and 72°C for 40 seconds and, lastly, one cycle for 5 minutes at 72°C. The PCR products were analysed on 0.8% agarose gel electrophoresis.
PCR primers were:

a) Scleraxis forward 5’CTTCCACAGCGTGTGCGGC3’
b) Scleraxis reverse 5’AGCGTGCTCTTGGGGACCTGCGCT3’
c) Meox2 forward 5’GCGACAGCTCAGATCCAGAG3’
d) Meox2 reverse 5’CCAGTTCTTTCCTCGGCGAC3’
SOLUTIONS

Unless otherwise stated, all solutions were made with autoclaved MilliQ double distilled H2O.

CaCl\(_2\) 1M 14.7 g CaCl\(_2\).2H\(_2\)O in 100 ml of H\(_2\)O.

Deoxynucleotide triphosphates (dNTPs) 10mM 2.5 mM each of dDNTP, dCTP, dGTP, and dTTP (Omega). Stored at 20°C.

DEPC-H\(_2\)O MilliQ water treated overnight with 0.1% (v/v) diethyl dicarbonate (diethylpyrocarbonate) then autoclaved.

EDTA stock 500mM EDTA, adjusted to pH 8.0 with NaOH.

Freezing media DMEM (Dulbecco’s Modifies Eagle Medium) and glutamax (Invitrogen), Stored at 4°C.

FGF4 recombinant protein (25 µg/ml) 5 µg dissolved in 200 µl 1 mg/ml BSA. 20 µl Aliquots stored at -20°C.

Growth medium DMEM+FCS+PS i.e. DMEM containing 10%FCS and 1%PenStrep. Prepared under sterile hood. Stored at 4°C.

Hybridization mixture 50% formamide, 1.3X SSC pH 5, 5mM EDTA, 50 µg/ml Yeast RNA, 0.2% Tween-20, 1% SDS, 100 µg/ml Heparin in water. Stored at -20°C.

LB 85mM NaCl, 0.5% (w/v) yeast extract, 1% (w/v) bacto-tryptone. Autoclaved and stored at 4°C.

LB+AMP LB supplemented with 1x ampicillin.

LB-agar LB supplemented with 1.5% (w/v) agar. Cast into 10 cm petriplates. Stored at 4°C.

LB-agar+AMP LB-agar supplemented with 1x ampicillin. Stored inverted at 4°C.
LacZ wash buffer PBS, 0.02% Nonidet P-40

LacZ stain PBS, 0.02% Nonidet P-40, 2mM MgCl₂, 0.01% Sodium deoxycholate, 40mg potassium-ferrocyanide, 30mg potassium-ferricyanide.

MABT 100mM Maleic acid, 150mM NaCl pH7.5, 1% Tween-20

Na₂HPO₄ 0.2M 28.4 g Na₂HPO₄ in 1000 ml of ddH₂O.

NaH₂PO₄ 0.2M.H₂O 27.6 g NaH₂PO₄.H₂O in 1000 ml of ddH₂O.

NBT stock 50mg/ml NBT in 70% (v/v) DMF. Stored at -20°C.

NTMT 100mM Tris-HCl pH9.0, 100mM NaCl, 50mM MgCl₂, 0.1% (v/v) Tween-20 in sterile water.

Optimal Cutting Temperature (OCT) Sakura, Catalog no.4583.

10x HotStar PCR Buffer Proprietary formula (Qiagen).

PBS (5x) 137mM NaCl, 2.7mMKCl, 10mM Na₂HPO₄, 1.76mM KH₂PO₄, pH 7.4. Prepared with 5 tablets (Oxoid) per 100ml MilliQ H₂O and autoclaved.

PBST 1xPBS with 0.1% (v/v) Tween-20.

PBSX 1xPBS plus 0.1% (v/v) Triton X-100

Phosphate buffer stock solution 0.24M, pH 7.2 6.4 gm NaH₂PO₄.H₂O + 27 gm Na₂HPO₄ in 1000ml ddH₂O. Autoclaved.

Propyl gallate mounting medium 2.5 g (Sigma P3130) dissolved in 35 ml glycerol overnight at room temperature on a roller and 1 µl of DAPI was added next day. Aliquots stored at -20°C.

Paraformaldehyde (4%PFA) 4 gm PFA powder (stored at 4°C) in 1x PBS.

Poly-lysine coated slides (Thermo-scientific, Catalog no.J2800AMNZ)

QuantiTect Reverse Transcription kit (Catalog no. 205310 Qiagen)
Sodium Saline Citrate (SSC, 20X) 3 M NaCl, 0.3 M Na citrate, pH 5. Autoclaved.

Solution 1 (Meox2 antibody staining) 8 gm Sucrose, 0.12mM of 1M CaCl$_2$, 0.2M Na$_2$HPO$_4$, 0.2M NaH$_2$PO$_4$.H$_2$O. Adjusted the pH 7.4 and aliquotes stored at -20°C.

Solution 2 (Meox2 antibody staining) 0.12M phosphate buffer pH 7.2/15% sucrose. Aliquots stored at -20°C.

Solution 3(Meox2 antibody staining) 0.12M phosphate buffer/15% sucrose/7.5% gelatin. Dissolved at 37°C and aliquotes stored at -20°C.

TAE 40mM Tris-HCl pH 8.0, 20mM acetic acid, 1mM EDTA.

Tail Buffer 100mM Tris-HCl pH 8.0, 5mM EDTA, 200mM NaCl, 0.2%SDS.

10x TBS 1.37M NaCl, 27mM KCl, 0.25M Tris-HCl pH 7.5. Autoclaved.

TBST 1xTBS with 1% (v/v) Tween-20. Freshly made from 10x TBS on the day of requirement.

Tris-EDTA buffer (TE) 10mM Tris-HCl, 1mM EDTA. Prepared at pH 7.5 and pH 8.0.

Tris stock 1M Trizma-HCl at pHs of 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5 in ddH$_2$O . Autoclaved and stored at RT.

Triton buffer 0.25% Triton 100, 10mM Tris pH 8.0, 10mM EDTA, 0.5mM EGTA.

2.5% Trypsin-EDTA (10x) 146.55mM NaCl, 1.05mM Trypsin (Invitrogen).

TGFβ2 recombinant protein (20 µg/ml) 1 µg dissolved in 50 µl 1 mg/ml BSA. Aliquots stored at -20°C.

Wash buffer 50% formamide, 1X SSC pH 5 and 0.1% Tween 20 used at 65°C.

Zippy buffer 8 % sucrose, 0.5% Triton X-100, 0.5 M EDTA, 1M Tris pH 8.0 in autoclaved distilled water. Autoclaved.
All restriction endonucleases were obtained from New England Biolabs. Majority of the chemicals were obtained from Sigma-Aldrich unless otherwise stated. Integrated DNA Technologies synthesized all oligonucleotides. Solutions were stored at room temperature (RT) unless otherwise stated. Where applicable, reagents have been named in accordance with the naming conventions of the International Union of Pure and Applied Chemistry (IUPAC).
Meox2 Wildtype and Meox2 KO alleles

Meox2 Wildtype and Meox2 KI-N alleles

Figure 2.1. Schematic of the Meox2 transgenic lines and corresponding PCR primers
Figure 2.2 Optimization of the Meox2 antibody staining: The transverse cryosection of the limb was immunostained with rabbit pre-immune IgG as a control (A and B) whereas Meox2 antibody was added to the equivalent limb section (C and D). The sections were observed under a Zeiss Axiovert 200M fluorescence microscope. Scale bar= 100 µm.
Chapter 3

Phenotypic analysis of the tendons in Meox2 mutant mice
3.1 Introduction

The requirement of *Meox2* during limb muscle patterning has been reported before. Muscle abnormalities included overall reduction in skeletal muscle mass of the limb and mutant animals displayed normal axial and appendicular skeleton (Mankoo et al., 1999). *Meox2*−/− embryos at E10.5 show down regulation of genes previously known to be expressed in myogenic precursors that eventually populate the limb mesenchyme *Pax3* and *Myf5*, although *MyoD* expression was normal (Mankoo et al., 1999). This finding places *Meox2* upstream of *Pax3* and *Myf5* in the genetic hierarchy regulating limb muscle development. Interestingly, during the limb bud development, distal *Meox2* expression was found to be normal in *Splotch*2H embryos in which all limb muscles are lost due to a point mutation in the *Pax3* gene resulting in the failure in migration of muscle progenitor cells into the limb buds. It was suggested that the *Meox2* expressing cells from the limb mesenchyme might cause the muscle patterning defects in *Meox2*−/− animals.

Several studies have shown that the interactions between muscle and tendon tissues are mandatory for their patterning and development (Chevallier et al., 1977; Kardon, 1998). The initial stages of tendon and muscle progenitor cells induction are autonomous; however, the patterning, growth and maintenance of both tissues require the local extrinsic cues within the limb bud. For instance, in the chick, when the tendons were surgically altered in the limb, the migration of muscle cells were found normal and likewise, tendon precursors were originated in the muscle-less limbs (Kardon, 1998). However, in the absence of myotendinous interactions, muscles and tendon cells failed to develop and hence, degeneration of both tissue occurred. This observation found similar results with a classical quail-chick chimera study (Chevallier et al., 1977) that demonstrated the requirement of external cues for muscle development in the limbs.
The interdependency of both tissues during embryogenesis led us to hypothesize that the muscle defects in $Meox2^{-/-}$ could be the result of loss of $Meox2$ expression in the limb tendons. The bone and cartilage were normal in these mutants suggesting normal cartilage development, however, tendons were thinner, fragile and hypoplastic. Thus, we characterised the tendon tissue defects in $Meox2^{-/-}$ neonates.

3.2 Aims

Our aim was to describe the tendon distribution along the proximal-distal axis of the forearm in the heterozygous animal and homozygous neonates and this analysis was carried out using $ScxGFP$ transgene to identify tendon fibres. Tendon histology was performed on transverse sections of paraffin-embedded limbs that were obtained from a control and mutant new born animals and counterstained with Haematoxylin and eosin stain. Due to the complexity of the stylopod segment of the limb, the focus of this analysis has been restricted to the autopod and zeugopod. Tendon nomenclature is tabulated in Table 1 and the limb tendon atlas used here was in accordance with Watson et al., 2009.
3.3 Results

3.3.1 REDUCED SCXGFP IN TENDON CELLS IN MEOX2 NULL MUTANTS

The ScxGFP transgenic reporter was shown to recapitulate the endogenous Scx expression domains in the tendon cells (Pryce et al., 2007). Thus, to visualize whole tendons, the ScxGFP transgene was used to compare tendons in controls and mutants. Mice heterozygous for the Meox2 mutation (Meox2+/−) and crossed to the ScxGFP transgene displayed no tendon abnormalities (Fig. 3.3.1A,C). When intercrossed, the homozygous mutant animals (Meox2−/−; ScxGFP) were born with the expected Mendelian transmission rate of these alleles. Newborn Meox2−/−; ScxGFP litters showed severe limb tendon defects and extremely thin tendon trajectories were evident. In forelimbs of the mutants, the GFP expression was dramatically reduced from the extensor digitorium communis (EDC) on the dorsal side but only partially reduced on the ventral side (T3, Fig. 3.3.1B,C). Interestingly, EDC tendon was completely missing at the wrist level on the ventral side that could probably explain the abnormal extension and abduction of the wrist and paw in the absence of Meox2. Additionally, other extensor tendons i.e. carpi radialis longus and carpi radialis brevis remained completely invisible (T7 and T8, Fig. 3.3.1B,C). Moreover, only the trails of the extensor digiti quarti/quinti tendons were present in the mutants (T9a and T9b, Fig. 3.3.1A,B,C,D). In addition, extensor pollicis (T5) and extensor carpi ulnaris tendon (T6) were detectable but thin and reduced in the size. In conclusion, the various levels of complexity in tendon defects could be responsible for the locked dorsal flexur in the forelimb.

Together, the ScxGFP expression in Meox2 mutants demonstrated the major structural defects in the forelimb tendons whereby flexor tendons were more
affected than extensor tendons and hence the degree of severity in the tendon phenotype was concluded.

3.3.2 REDUCED SCXGFP SIGNAL FROM THE HINDLimb TENDONS

The hindlimb tendons undergo similar tissue development and patterning compare to the forelimbs (Popesko et al., 2003). The serial homology between forelimb and hindlimb tendon tissue was recently uncovered and it was shown that the FDS tendon development in forelimb and the flexor digitorium brevis (FDB) tendons were developmentally delayed compared to the other tendon groups (Huang et al., 2013). Therefore, the absence of the FDS tendon from the forelimb in Meox2 mutants prompted us to investigate FDB tendons. For this, hindlimb tendons were once again visualised using the ScxGFP marker. As predicted in the mutants, the FDB tendon was completely disrupted on the dorsal side as observed by loss of ScxGFP (Fig. 3.3.2A,B).

In control hindlimbs, the Achilles tendon, one of the major tendons of the hindlimb, exhibited bright ScxGFP fluorescence both dorsally and ventrally. However, the mutant mice exhibited greatly diminished GFP fluorescence from Achilles tendon and revealed that it was thinner (Fig. 3.3.2A,B,C and D). In fact, to acquire the images for comparing control and mutant tendons, we had to increase the exposure by four times for the mutant limbs. Additionally, the extensor digitorium longus (EDL) tendon was also completely missing (Fig. 3.3.2A,B,C and D).

Therefore, hindlimb tendons also showed reduced ScxGFP expression in the absence of Meox2 suggesting an overall requirement of Meox2 in the limb tendon development.
3.3.3 DISRUPTION OF AXIAL AND TAIL TENDONS

Tendons progenitor cells of the epaxial and hypaxial muscles are derived from the syndetome that are found in between two adjacent somites. Therefore, ScxGFP fluorescence was used to visualize tendons of axial musculature in this study.

The distinctive structure of epaxial tendon in a skinned Meox2 heterozygous animal showed normal ScxGFP expression and fine long fibres of tendons were evident. However, the mutant counterparts displayed severe disruption of GFP fluorescence from trunk tendon cells (Fig. 3.3.3A and B, white arrows). Moreover, the loss of ScxGFP expression indicated intercostal tendons were completely lost (Fig. 3.3.3A and B, red arrowheads). Despite sharing a common origin with tendons of axial musculature in syndetome, the dramatic loss of tail tendons was evident in the absence of Meox2 gene while the control littermates showed complete dorsal and ventral sides of long tail tendons (Fig. 3.3.6C and D). In contrast, annulus fibrosus ligament in the tail was recognised (Fig. 3.3.6C) and remained unaffected in the mutant tails (Fig. 3.3.6D).

In summary, the limb tendons as well as axial tendons at postnatal stage were had severe abnormalities in ScxGFP expression. Since, ScxGFP faithfully replicates the endogenous Scx expression from tendon cells; our data indicate defects in tendon development in Meox2−/− animals. The intercostal and tail tendons were completely lost. Meox2 mutants did not exhibit any change in the cartilage and ligaments. This suggests a role of Meox2 in tendon development independent of cartilage condensation both in the limbs and in trunk.

3.3.4 SEVERE FORELIMB AUTOPOD TENDON DEFECTS

Although ScxGFP is a useful tool to visualize whole tendon, still it fails to impart the important information associated with the morphology of the tendon tissue.
Therefore, we decided to analyse the tendon structure using haematoxylin and eosin staining of the forelimb sections at P0. The evaluation of morphology was carried out in the distal autopod (digit tendons) and proximal autopod (metacarpal tendons), which has revealed significant tendon differences between controls and mutants tendon tissues (Fig. 3.3.4A'-D'). The FDS tendon was completely lost in the Meox2 mutants along the proximal-distal axis of the forearm (T2 in Fig. 3.3.4A,A',B,B'). In contrast, only a remnant of the FDP was found (T1 in Fig. 3.3.4A,A',B,B'). The primary extensor tendon, EDC remained unaffected in the absence of Meox2 (T3 in Fig. 3.3.4A,A',B,B'). Moreover, the proximal segment of the paw showed a more profound tendon phenotype in the Meox2 mutants. The reduced mass of the other extensor tendons was also found, namely, extensor carpi radialis longus and extensor carpi radialis brevis (T7 and T8 in Fig. 3.3.4C,C',D,D'). Another two groups of extensor tendons, namely, extensor digiti quarti/quinti were reduced in size (T9a and T9b Fig 3.3.4B,B',C,C').

Furthermore, the flexor carpi radialis tendon was present as loose extensions in contrast to the compact round bundle in the heterozygous controls (T10Fig. 3.3.4C,C'). Notably, the fusion of interosseous muscle and lumbricals muscle occurred in the absence of Meox2 (Fig.3.3.4B,B', blue arrowheads, blue arrows). There was also a significant disruption of the superficial paw muscles i.e. thenar muscles and hypothenar muscles (Fig.3.3.4D,D', yellow arrowheads, yellow arrows). However, the collateral ligament metacarpophalangeal joint (MCP) and transverse carpal ligament were unaffected in the mutants (Fig.3.3.4A,A',D,D', pink arrowheads).

Collectively, it is apparent from the autopod histology that in Meox2−/− animals, flexor digitorum superficialis (FDS) tendon in the forelimb was lost and other tendons that were present showed abnormal histology. In addition, the muscles were disorganised but the bone and ligaments were normal.
3.3.5 DEFECTIVE FORELIMB ZEUGOPOD TENDONS

Depiction of the major zeugopod tendons in the histological examination along the proximo-distal axis revealed significant differences in the heterozygous control and homozygous mutant forearm (Fig.3.3.5A-D and A'-D'). The forelimb bones, radius and ulna remained unaffected in the zeugopod. The FDS tendon (T2 Fig.3.3.5A-D and A'-D') was not present throughout the zeugopod in mutants indicating complete failure of the FDS tendon morphogenesis in the absence of Meox2. Furthermore, only the remnants of FDP tendon mass was present in the mutants (T1 in Fig.3.3.5A-D and A'-D'). In controls, a major extensor tendon, EDC crosses over the entire length of the zeugopod as four tendon bundles and they travel along with another tendon called extensor indicis proprius (T3, T4 in Fig.3.3.5A-D) within a common sheath. Conversely, in Meox2−/− forelimb zeugopod, the fusion of EDC tendon bundles was evident throughout the sets of the sections and a considerable loss of extensor indicis proprius was observed (T3, T4 Fig.3.3.5A'-D'). We found the abnormal muscle fibres replacing the regions of EDC and indicis proprius tendon tissues in the mutant sections (Fig.3.3.5C,C',D,D'). The majority of the other extensor tendons, namely, carpi ulnaris (T6) and pollicis (T5) were also small and disorganised. Furthermore, significant reduction in the tendons mass and fusion of two separate but closely associated extensor tendons i.e. carpi radialis longus and carpi radialis brevis (T7 and T8 in Fig.3.3.5A-D and A'-D') was clearly observed. While, the extensor digiti quarti/ quinti remained as two separate tendon bundles in the control, in the mutants both tendons were fused into one small tissue mass (T9a and T9b in Fig.3.3.5A-D and A'-D'). Interestingly, the dislocation of palmaris longus tendon was found in the mutants (T12 Fig.3.3.5C, C', D and D'). For instance, in controls palmaris longus tendon was located between flexor carpi radialis and flexor carpi ulnaris (T10, T12, T11 Fig.3.3.5C,D). While the equivalent mutant zeugopod section showed presence of a small palmaris longus tendon tissue at a different location (T10, T12 Fig.3.3.5C',D'). Noticeably, the flexor carpi radialis tendon showed loosely organised tendon fibres in the mutants in contrast to the tight compaction found in controls (T10 Fig.3.3.5A-D and A'-D'). Finally, flexor carpi
ulnaris (T11) which is adjacent to the palmaris longus (T12) in controls was missing in the absence of Meox2 in (Fig.3.3.5A-D and A’-D’).

In conclusion, the tendon phenotype in zeugopod was more dramatic than autopod with almost all tendon groups (flexors and extensors) severely affected. This suggests that Meox2 contribute to the normal zeugopod tendon formation and or maintenance of tendon cells during embryonic genesis of tendons.

3.3.6 IRREGULAR FASCIA IN THE PROXIMAL FORELIMB ZEUGOPOD

Fascia is a form of the connective tissues that are derived from undifferentiated mesenchymal cells. They form a layer of fibrous tissue which envelopes and separates different muscle groups (Benjamin and Ralphs, 1998). The fascia in the proximal sections of the forelimb zeugopod in heterozygous controls and homozygous mutants showed multiple differences. The well-defined separation of individual muscle groups into the compartments by fascia was evident in the controls, whereas, the intermixing of abnormal muscles resulted and the defective fascia in the mutants was observed (Fig.3.3.6A-C’). For example, the fascia of FDP tendon was present as thick sheets separating FDP and FDS muscles in the controls (Fig.3.3.6A,B,C, black arrowhead). On the contrary, the fascia in the mutants were severely redundant resulting in intermingling of loosely organised muscle fibres (Fig.3.3.6A’, B’ and C’). In Meox2 mutants, tendon tissues were replaced by abnormal muscle fibres (Fig.3.3.6A, A’). The individuated tendon bundles of EDC was present in controls whereas only residues were found in the mutants (T3 Fig.3.3.6A, B, A’,B’). Other extensor tendons i.e. pollicis, carpi radialis longus and carpi radialis brevis (T5, T7 and T8 in Fig.3.3.6A, B, A’ and B’) were abnormal and more compact in the more proximal zeugopod.

Therefore, it can be proposed that Meox2 is required for the proper formation of fascia. At post-natal stage, more proximally, the failure of fascia development in
the absence of *Meox2* could be responsible for the muscle and tendon abnormality.

3.3.7 DEFECTIVE HINDLIMB AUTOPOD TENDONS

To understand the tendon defects inside the hindlimb autopod, we obtained the serial cross sections from the paw region and counter stained for studying tissue histology of major hindlimb tendons. We found major morphological modifications of the hindlimb tendons in the absence of *Meox2* similar to those in the forelimbs. In controls, the cup-like structure of FDB tissue surrounding another tendon group called flexor digitorium longus (FDL) was present (T14 and T18 in Fig. 3.3.7A,C,E). Conversely, the disappearance of a major flexor tendon known as flexor digitorium brevis (FDB) due to *Meox2* mutation was obvious (T14 in Fig. 3.3.7 A-F). In addition to the complete loss of FDB, there was reduction in the FDL tendon mass due to the *Meox2* mutation (T18 Fig.3.3.7B,D,F). Another flexor tendon known as flexor hallucis longus was highly reduced in size compared to the controls neonates (Fig.3.3.7A-F, black arrowhead). Interestingly, the extensor digitorium longus (EDL) tendon remained unaffected in the mutants (Fig.3.3.7A-F black arrows). Moreover, the lumbrical muscle defects in the hindlimb showed defective muscle patterning similar to that in the forelimb (Fig.3.3.7A-F yellow arrowheads).

Taken together, it is evident that *Meox2* mutant animals show remarkable degrees of abnormalities in limb tendons. The *ScxGFP* and histology data demonstrated the complete loss FDB tendon tissue and suggesting an important requirement of *Meox2* in the normal patterning and growth.

3.3.8 DISRUPTED ACHILLES TENDON AND FASCIA IN THE ZEUGOPOD OF HINDLIMB

The histological analysis further confirmed the tendon defects in the zeugopod segment of the hindlimb. A sharp decrease in the size of Achilles tendon was identified in the mutant that corresponds to the highly reduced *ScxGFP*
fluorescence from this tendon cells (T13 in Fig. 3.3.8 A,B). Moreover, only a fragment of flexor digitorium longus was found in the mutants in comparison to the thick tendon mass in controls (T18 in Fig. 3.3.8 A,B). The extensor hallucis longus tendon was also found to be severely reduced in size (T17 in Fig. 3.3.8 A,B). In addition, defects in the fascia were evident in the more proximal section (Fig. 3.3.8 C,D, black arrows).

Therefore, similar to the forelimbs, overall defects in the hindlimb tendon resulted in Meox2−/− animals. Interestingly, in both appendicular musculatures, cells of fascia were disorganised.

3.3.9 INTERCOSTAL MUSCLES ARE NORMAL IN MEOX2−/− NEONATES

Using tissue histology for muscles, we found normal epaxial and hypaxial muscles in the absence of Meox2 gene function. These muscle groups were examined on the thin sections obtained from trunk of control and mutants embryos (Fig. 3.3.9 A and B). The muscle morphology and fiber arrangement remained unaltered in all muscles on the sections.

Hence, the overall hypaxial muscles in the trunk that includes intercostal and abdominal wall along with epaxial muscles that encompasses right serratus anterior muscles were normal.
3.4. Discussion

Our detailed analysis on the role of *Meox2* in tendon morphogenesis provided a new insight in understanding genetic control of tendon development. Although *Meox2*⁻/⁻ animals are viable, the severe tendon defects were found in addition to the reported muscle defects. A detailed investigation of the phenotype was performed at a neona-tal stage. The histological analysis of all tendon tissues in the limb from post-natal mice revealed that these tissues were abnormal and disorganised. *ScxGFP* expression from the tendon cells showed *Meox2* mutant mice display an overall impaired tendon structure including failure in the formation of correct shape and size. Altogether, the axial and limb tendon defects in our mutant mice model, once again, featured the structural and molecular divergence in the relatively unexplored complex tissue like tendons.

Gross appendicular tendon defect in the absence of *Meox2*

In order to visualize the whole limb tendons in the *Meox2* null mice, we utilized the *ScxGFP* transgene. The fluorescent signals from this transgene revealed thinner tendons at all levels in the mutant limb. In agreement with the histological analysis, some subsets of tendons were completely missing e.g. extensor digiti quarti/quinti and an extensive loss of GFP signal from EDC tendon on the dorsoventral aspects of the forelimb. Furthermore, the *ScxGFP* analysis in the hindlimb showed complete loss of FDB tendon and only small tissue mass of Achilles tendon.

We further investigated this profound limb tendon malformation by histological examination in *Meox2*⁻/⁻ mice. The most dramatic aspect of this mutation was a complete loss of tendons, FDS in the forelimb and FDB in the hindlimb. The
developmental pathway of this tendon groups are unique compare to other limb tendons. The data from previous studies has shown that while the pattern and position of all other tendons was established by E14.5, the induction of FDS and FDB tendon cells initiates at this stage and mature form is only acquired at E16.5. (Huang et al., 2013; Pryce et al., 2009). Our data indicate complete failure of FDS and FDB tendon formation suggesting a role of Meox2 during late induction and maturation of these tendon groups in the forelimb and hindlimb. Moreover, Huang and co-workers show that FDS and FDB tendons share similar anatomical features based upon their position in the limbs, the only difference in tendon patterning steps is FDS tendon extends from distal to proximal axis in the forelimb, and then translocation occurs into the zeugopod that acts as the final location. In contrast, FDB tendon cells originate and differentiate within the hindlimb autopod. In agreement with this, our data conclude that the failure in formation of FDS and FDB confirm the requirement of Meox2 transcription factor in the developmental machinery for both tendon groups. In Scx−/− mutants, FDS tendons was absent in the digits and metacarpal level indicating an exclusive requirement of the Scx gene in the FDS tendon formation (Huang et al., 2013; Murchison et al., 2007). Despite sharing anatomical homology between FDS and FDB, in Scx−/− mutants, there is no analysis available on developmental effects Scx mutation on FDB tendons. Therefore, to date in our knowledge, Meox2 is the only known transcription factor that is critical for FDB tendon formation in hindlimb. We can conclude that in addition to Scx, Meox2 is also an important molecular regulator of FDS tendon development.

Another major flexor tendon in forelimbs i.e. FDP, though present, was rudimentary. This observation is consistent with Scx−/− mutants, in which FDP tendons were smaller (Murchison et al., 2007). A recent lineage tracing analysis using Six2CreERT2 deleter along with Rosa-TdTomato Cre reporter showed the co-expression of Six2+ and ScxGFP+ cells in the autopod FDP tendons (Huang et al., 2015b). However, the zeugopod segment for FDP only expressed ScxGFP. Thereby, separate groups of progenitor cells in the autopod and zeugopod to form FDP was concluded. Interestingly, in the absence of Meox2,
both of these FDP tendon progenitors in the autopod and zeugopod are affected.

Huang et al. (2015) have also shown that the cartilage is necessary and sufficient for the formation of normal FDS tendons in the autopod. The distal formation of FDS tendon in the autopod is dependent on the cues from the metacarpophalangeal (MCP) joint whereas the proximal development in the zeugopod is dependent on the FDS muscles. Notably, Meox2−/− mutants showed the regular bilateral symmetry of the MCP joint despite the loss of FDS digit tendon. The normal chondrocyte differentiation due to Meox2 mutation could not explain the complete loss of FDS tendons in distal segments of the digit. This indicates that in addition to the cartilage, a distinct but concurrent signal dependent on Meox2 is also required for normal FDS tendon formation.

Moreover, the proximal stretch of FDS tendon anlage was also absent. During late development of FDS muscles, the shifting of differentiated muscle fibres from the autopod towards zeugopod takes place by retraction at distal end that is attached to FDS tendon and proximal elongation once inside the zeugopod (Huang et al., 2013). The same study showed that in Scx−/− mutant embryos, there was a complete loss of distal retraction and restricted proximal elongation of FDS muscle. Conversely, Mdg embryos in which muscle paralysis occurred due to a mutation in voltage-gated calcium channels, there was a defective FDS muscle retraction and translocation along the proximodistal axis. Thereby, authors concluded that a coordinated response from the FDS tendon at distal end is necessary for the FDS muscle contractility. Previously, it was shown that Meox2−/− mice exhibit disrupted FDS muscle in the proximal zeugopod (Mankoo et al., 1999). Our data on the complete loss of FDS tendon explain the disruption FDS muscles and thereby indicates a crucial role of Meox2 in the formation of FDS muscle-tendon unit.

Closer examination of histology sections demonstrated that the EDC tendon was present in the autopod but reduced in size and like controls, were found as individual units on the top of each digit. Conversely, the EDC tendons inside the zeugopod showed a dramatic phenotype. The anatomical position of EDC
tendon tissue is known to present on the dorsal side of the forearm and is the key tendon on the dorsal aspect of the paw. As individual bands, each EDC tendon subunit fans out from the digits and passes through the compartment formed by the extensor retinaculum and radius, after which they reach the origins at the lateral epicondyle of the humerus. Other subsets of extensor tendon groups along the proximodistal axis i.e. extensor digiti quarti/quinti were fused into a highly reduced tendon tissue in Meox2\(^{-/-}\) animals. Moreover, the dislocation and fusion of the flexor carpi radialis longus tendon occurred in these animals with another extensor tendon groups i.e. carpi radialis longus and carpi radialis brevis within the zeugopod region. Recently, analogous observations were made where the fusion of tendon groups namely, EDC, extensor longus/brevis and extensor digiti quarti/quinti occurred due to muscle inactivity in the zeugopod (Huang et al., 2015b). Due to inactivation of Pax3 gene, in Splotch embryos myoblast migration was disrupted. In these embryos, the autopod tendons were found normal, whereas, at the wrist level of zeugopod segment showed coalescence of the fused extensor tendons.

Similarly, the fusion of EDC tendon bundles and other extensor tendon groups, carpi radialis longus/brevis and digiti quarti/quinti was also found in the Muscular dysgenesis (Mdg) embryos at E16.5. The embryos of Mdg contains a mutation in voltage-gated calcium channels resulting in the paralysis of all muscles, although, the muscle patterning remained unaffected (Chaudhari, 1992; Huang et al., 2015b; Huang et al., 2013). Therefore, it could be reasoned that the zeugopod tendon phenotype in Meox2 mutants is due to an extrinsic role of Meox2 gene from the muscle cells onto the zeugopod tendon morphogenesis. In addition, Meox2 gene is critical for the modular development of extensor tendons at the wrist level. However, the exact mechanism to address this issue is described in the subsequent results chapter. A summary of comparison of the development of major flexor and extensor tendons in the absence of Meox2\(^{-/-}\) mutants with the Scx\(^{-/-}\), Sp\(^d\), Mdg and Sox5\(^{-/-}\); Sox6\(^{-/-}\) mutants are listed in table 3.3 and 3.4. For instance, in the absence of Meox2 and Scx, FDP tendon cells showed similar defective phenotype in the digits whereas the paralysis of muscle in Mdg embryos or loss of cartilage in Sox5\(^{-/-}\); Sox6\(^{-/-}\) mutants does not affect FDP tendon development in digit autopod.
Conversely, the metacarpal location of FDP tendon cells showed severe abnormality in \textit{Meox2}-/- and \textit{Spd} but normal morphology was reported in \textit{Scx}-/- and \textit{Sox5}-/-; \textit{Sox6}-/- mutants. Moreover, the most remarkable tendon phenotype for FDS tissue was a complete loss throughout the proximodistal axis of the forearm due to loss of the \textit{Meox2} gene. In contrast, rudiments of FDS tendon was present \textit{Scx}-/- and \textit{Spd} mutants. Majority of the extensor tendons showed tissue fusion in the transgenic mice with defective expression of \textit{Meox2}, \textit{Scx}, and \textit{Pax3} or muscle inactivity. However, no defects of extensor tendons were observed in the proximal segment of the forearm in \textit{Sox5}-/-; \textit{Sox6}-/- mutants.

Furthermore, previous work that evaluated the developmental requirement of \textit{Meox2} by muscle cells also established disrupted forelimb flexor muscles namely, flexor digitorium profundus, flexor carpi ulnaris and flexor carpi radialis (Mankoo et al., 1999). Consistently, the data reported here, revealed the fusion of the interosseous and lumbricals muscles in the autopod of mutants. Additionally, the superficial paw muscles i.e. thenar and hypothenar were disarranged.

It has been shown that the cartilage cells express \textit{Sox9} gene and are derived from limb mesenchyme (Suzuki and Kuroiwa, 2002). Recent studies revealed the presence of a unique population in the early mesenchyme that express both \textit{Scx} and \textit{Sox9} (Blitz et al., 2013; Sugimoto et al., 2013a). The divergent fates of generation of either cartilage primordia or tendon primordia are due to the extrinsic signals received by these early progenitors during subsequent differentiation and maturation stage of development in the limb (Schweitzer et al., 2001). The inductive factors for tendon progenitors could be either TGF\textbeta\ signalling emanated from nearby cartilage or ectoderm derived Wnt signalling and repressed by BMP signalling from surrounding limb mesenchyme cells (Pryce et al., 2009; Yamamoto-Shiraishi and Kuroiwa, 2013;(Schweitzer et al., 2001). \textit{Meox2} is expressed in the early limb mesenchyme at E10.5 where multipotent chondro-tendo progenitor population exists expressing both \textit{Scx} and \textit{Sox9}, therefore it would be useful to analyse the \textit{Sox9} expression (cartilage marker) in \textit{Meox2}-/- mutants during embryonic stages. Analysis of this proposed experiment could provide a better understanding of the specific role of Meox2
only on $Scx^{-}/Sox9$ and not $Scx^{+}/Sox9^{+}$ progenitor cells. Extrapolation of the results would direct us to explain the normal cartilage but defective tendon formation in $Meox2^{-/-}$ animals at birth. Together, we conclude that $Meox2$ plays a significant and dual role in the tendon and muscle development.

$Meox2$ is necessary for the intercostal and tail tendon at P0

A pioneer study in chick using Scleraxis as a marker for tendon cells exposed details of axial and tail tendon development (Schweitzer et al., 2001). In both groups of tissue, the progenitors are derived from the compartment of somite called syndetome as opposed to the limb tendons whose developmental origins are limb bud mesenchyme. The robustness of $ScxGFP$ fluorescence from all tendon cells offered a tool to characterise the morphological consequences of the $Meox2$ mutation on the axial and tail tendons. Similar to our limb analysis, the whole mount $ScxGFP$ expression in the $Meox2$ deficient mice showed an extensive loss of axial tendon. We could not able to detect any $ScxGFP$ expression from the intercostal tendons in the $Meox2$ mutants. This tendon connects the adjacent ribs and assists in joining the intercostal muscles to the ribs. In $Scx^{-/-}$ mutant embryos, the intercostal tendon layer remained unaffected, however, all force-transmitting and intermuscular tendons connecting two muscles throughout the body were abnormal (Murchison et al., 2007). To our knowledge, the data presented in this thesis provide the first evidence for a requirement of specific transcription factor for the intercostal tendon development. Interestingly, our histological analysis showed normal intercostal muscles in the mutants that could explain the viability of these animals despite absence of tendon layer in the thorax.

The substantial loss of tail tendons in $Meox2$ mutants was evident due to the absence of $ScxGFP$ signal from long tendons in the tails. However, the highly organised ligament of tail tendon, annulus fibrosus, remained unaffected due to $Meox2$ mutation. The role of this ligament is to connect the adjacent vertebrae. The cells in the annulus fibrosus contain collagen fibres that are arranged
perpendicularly to the tendons and display criss-cross pattern. This observation is similar to the tail tendon phenotype of Scx\(^{-}\) mutants (Murchison et al., 2007). It is not yet clear how exactly the Meox2 dependent cues in these anatomical similar tissues (axial and tail tendons) led to discrete outcome and hence, elucidating the exact mechanism needs further investigation. Meox2 and Scx genes might be functioning independently or in a complementary manner for the proper formation of tail tendons. Evidence from data shown in this study suggests that the Meox2 dependent signals are necessary for the post-natal tendon growth and maintenance. Interestingly, TGF\(\beta\)2 mutant mice also show loss of all axial and tail tendons due to failure in the maintenance and recruitment of tendon progenitors by TGF\(\beta\) signalling during embryonic stages (Pryce et al., 2009). Additionally, an analogous phenotype was reported in Scx\(^{-}\) mice that showed severe disruption of the force-transmitting from the trunk (Murchison et al., 2007). A plausible explanation of the comparable phenotype in all these mutants could be the requirement of a cross talk of these molecular regulators during normal tendon development. For instance, complete loss of ScxGFP expression from trunk tendons in TGF\(\beta\)2\(^{-}\); TGF\(\beta\)3\(^{-}\) mutant mice was reported. Additionally, TGF\(\beta\) signalling acts as a potent inducer of Scx in both cell culture and organ culture. Besides, this study showed that TGF\(\beta\) signalling regulates Scx expression during key stages of tendon morphogenesis (Pryce et al., 2009). Likewise, in future, it would be interesting to observe if Meox2 could directly regulate Scx and or regulating TGF\(\beta\) signalling pathway to execute its function for the normal tendon development.

Furthermore, changes in the collagen fibril growth and extracellular matrix (ECM) deposition towards the end of embryogenesis are the hallmark of post-natal tendon growth. It includes further accumulation of the collagen matrix and maturation of collagen proteins. Recently, the Mohawk gene was shown to be involved in the tendon cell differentiation and maturation stage in addition to the Scx (Anderson et al., 2006; Ito et al., 2010; Liu et al., 2010). While the defects in collagen matrix in the absence of Mkx\(^{-}\) mice is appeared only after birth, the embryonic genesis of tendon is normal, highlighting the differences in the embryonic and post-natal tendon morphogenesis (Liu et al., 2010). Interestingly, Scx\(^{-}\) mice show a less and disorganised collagen matrix towards the end of
embryogenesis (Murchison et al., 2007). A unique role of Scx in regulating cardiac fibroblast was shown via its DNA-binding mechanism in promoting collagen 1α2 expression (Espira et al., 2009). This suggests an important function of Scx in regulating ECM proteins. Moreover, in situ analysis show Mkx expression in tendons and surrounding cells and therefore authors concluded that Scx could be considered as the key embryonic regulator of collagen proteins whereas Mkx determines the postnatal maturation and growth of these matrix proteins (Liu et al., 2010; Ito et al., 2010).

Furthermore, the reduction in overall tendon size and defective collagen matrix is also observed in a transgenic mice deficient of the Egr1 transcription factor (Guerquin et al., 2013). Although Scx expression along with collagen protein expression is relatively normal in the absence of Egr1, fragile tendons are evident after birth and mutant mice show a modest tendon phenotype. The importance of Egr gene in tendon biology is emphasised due to its capacity to convert the mesenchymal stem cells into tenogenic cells in vitro (Liu et al., 2015). Moreover, GDF6/BMP13 and GDF5/ BMP14 deficiencies in mice are associated with altered compositional, ultrastructural, and mechanical properties of tendons (Mikic et al., 2009).

Prior to the discovery of Scx, a type II transmembrane glycoprotein, Tenomodulin (Tnmd) served as faithful marker for the tendon cells (Shukunami et al., 2001). Tnmd−/− mutant mice show no tendon defects during embryonic stages and only a small reduction in tenocyte proliferation and tenocyte density was observed in tendon cells after birth (Docheva et al., 2005). However, it can still be considered, as an ideal marker for later stages of tendon development due to exclusive expression and is known to be positively regulated by Scx (Shukunami et al., 2006). Myostatin/GDF8 knockout mice show defects in muscle integrity and performance, and evidence indicates this is exacerbated by increased tendon stiffness (Mendias et al., 2008). The spatiotemporal expression of Myostatin during development, in conjunction with the observation that tendon fibroblasts continue to express both the Myostatin and receptors into adulthood and that Scx is a direct downstream target of Myostatin.
signalling, strongly suggest that Myostatin plays a role in both the prenatal and postnatal development and regulation of tendons.

A hallmark of tendon differentiation after birth include expression of several proteins in the collagen matrix of tendon fibres, namely, type I collagen, biglycan, decorin, fibromodulin, fibrillin 2, lumican and tenomodulin (Ansorge et al., 2009; Birk and Mayne, 1997; Birk et al., 1989; Boregowda et al., 2008; Elliott and Crawford, 1965; Trelstad et al., 1983). Evidence suggests that these proteins have key role in tendon differentiation, however, tendon induction and maturation remained normal in the absence of any of these proteins. For instance, mice double deficient for the Small Leucine Rich Proteoglycans (SLRPs) Biglycan and Fibromodulin show disruption in disturbed collagen fibril structures of tendons, with reduced stiffness (Young et al., 2002). Similarly, Lumican and Fibromoulin double mutants have defects in tendon integrity (Jepsen et al., 2002). Loss of Biglycan and Fibromodulin also impairs tendon formation in vivo by disrupting BMP signalling in the stem cell niche of TSPCs (Bi et al., 2007). So far, this is the only knockout model where a defect in tendon integrity has been linked to abnormalities in tendon stem cell function. Fibrillin2 is located in the pericellular matrix of interior tenocytes, and knockout mice have decreased collagen cross-linking of tendons (Boregowda et al., 2008). Mutations in Fibrillin2 result in muscle weakness and regenerative myopathy, a likely consequence of connective tissue abnormalities (Miller et al., 2010).

3.5. Conclusion

We finally conclude that our evidence represents the first demonstration of a requirement of Meox2 for normal tendon genesis in axial and appendicular tissue. The summary of the phenotype is tabulated in table 3.1 and 3.2 for the forelimbs and hindlimbs respectively. This provide, to our knowledge, the first direct evidence of a role Meox2 in the important and often neglected complex tissue i.e. tendon. Moreover, the detailed characterization reported for all individual tendons could provide a direction for the future studies to understand a diverse role of Meox2 in tendon morphogenesis. However, further
investigation is needed to understand whether the failure of tendon formation is an outcome of deteriorated tendon morphogenesis during the embryonic stages. Therefore, the experimental observations in next chapter focus embryonic stages of tendon development.

Meox2 is an important regulator of tendon development in axial and appendicular tissue. The tendon phenotype in zeugopod was more profound than the autopod segment demonstrating a unique regional role of *Meox2* in the modular limb tendon morphogenesis. Furthermore, our analyses from mutant mice highlighted the loss of FDS in the forelimb and FDB tendons from the hindlimb and hence, an exclusive role of *Meox2* in these anatomically similar tendons can be concluded. Interestingly, there was no discernible defect in cartilage and ligaments of *Meox2*⁻⁻ null mice. Together, *Meox2* is a key component of the cellular mechanisms that govern growth and maturation of highly disparate tissue i.e. tendons.
Table 3.1: Summary of the defects in the forelimb tendon in *Meox2^{-/-}* animal

<table>
<thead>
<tr>
<th>TENDON CLASSIFICATION</th>
<th>LOST</th>
<th>ABNORMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autopod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexor digitorum profundus (FDP) T1</td>
<td></td>
<td>✓ Reduced size</td>
</tr>
<tr>
<td>Autopod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexor digitorum superficialis (FDS) T2</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Zeugopod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexor carpi radialis T10</td>
<td></td>
<td>✓ Reduced size</td>
</tr>
<tr>
<td>Zeugopod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexor carpi ulnaris T11</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Zeugopod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmaris longus T12</td>
<td></td>
<td>✓ Dislocated</td>
</tr>
<tr>
<td>Extensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autopod and Zeugopod</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Extensor digitorum communis (EDC) T3 | | ✓ a)Normal in autopod
b) Fusion of individual bundles and reduced size in zeugopod |
| Zeugopod | | |
| Extensor Indicis Proprius T4 | | ✓ |
| Zeugopod | | |
| Extensor pollicis T5 | | ✓ Dislocation and fusion with carpi radialis longus/brevis tendons |
| Zeugopod | | |
| Extensor carpi ulnaris T6 | | ✓ |
| Zeugopod | | |
| Extensor carpi radialis longus T7 | | ✓ Fusion with carpi radialis longus/brevis tendons |
| Zeugopod | | |
| Extensor carpi radialis brevis T8 | | ✓ Fusion with carpi radialis longus/brevis tendons |
| Zeugopod | | |
| Extensor digiti quarti/quinti T9a/T9b | | ✓ Fusion of both tendon groups and reduced size |
Table 3.2: Summary of the defects in hindlimb tendons in the *Meox2^{−/−}* animal

<table>
<thead>
<tr>
<th>TENDON CLASSIFICATION</th>
<th>LOST</th>
<th>ABNORMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexor digitorum brevis (FDB) T14</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Flexor digitorum longus (FDL) T18</td>
<td></td>
<td>✓ Reduced size</td>
</tr>
<tr>
<td>Extensors</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Extensor digitorum longus (EDL) T16</td>
<td></td>
<td>✓ Reduced size</td>
</tr>
<tr>
<td>Extensor hallucis longus tendon T17</td>
<td></td>
<td>✓ Reduced size</td>
</tr>
<tr>
<td>Achilles tendon T13</td>
<td></td>
<td>✓ Reduced size</td>
</tr>
</tbody>
</table>
Table 3.3: Summary of the flexor tendon phenotype in the various mouse models (Huang et al., 2015)

<table>
<thead>
<tr>
<th>Tendons</th>
<th>Meox2<sup>−/−</sup></th>
<th>Scx<sup>−/−</sup></th>
<th>Sp<sup>g</sup></th>
<th>Mdg</th>
<th>Sox5<sup>−/−</sup>; Sox6<sup>−/−</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexor digitorum profundus (FDP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digits</td>
<td>Reduced</td>
<td>Reduced</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Metacarpal</td>
<td>Reduced</td>
<td>Normal</td>
<td>Lost</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Zeugopod</td>
<td>Reduced</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Flexor digitorum superficialis (FDS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digits</td>
<td>Lost</td>
<td>Reduced</td>
<td>Reduced</td>
<td>Reduced</td>
<td>Lost</td>
</tr>
<tr>
<td>Metacarpal</td>
<td>Lost</td>
<td>Reduced</td>
<td>Lost</td>
<td>Reduced</td>
<td>Present</td>
</tr>
<tr>
<td>Zeugopod</td>
<td>Lost</td>
<td>Reduced</td>
<td>Lost</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.4: Summary of the extensor tendon phenotype in the various mouse models (Huang et al., 2015)

<table>
<thead>
<tr>
<th>Tendons</th>
<th>Meox2-/-</th>
<th>Scx-/-</th>
<th>Sp⁺⁻</th>
<th>Mdg</th>
<th>Sox5-/-; Sox6-/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensor digitorum communis</td>
<td>Digits</td>
<td>Normal</td>
<td>Reduced</td>
<td>Reduced</td>
<td>Reduced</td>
</tr>
<tr>
<td>(EDC)</td>
<td>Metacarpal:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zeugopod</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensor carpi ulnaris</td>
<td>Zeugopod</td>
<td>Lost</td>
<td></td>
<td>Lost</td>
<td>Reduced</td>
</tr>
<tr>
<td>Extensor carpi radialis longus</td>
<td>Zeugopod</td>
<td>Fused</td>
<td>Fused</td>
<td>Fused</td>
<td>Fused</td>
</tr>
<tr>
<td>Extensor digiti quarti/quinti</td>
<td>Zeugopod</td>
<td>Fused</td>
<td>Fused</td>
<td>Fused</td>
<td>Fused</td>
</tr>
</tbody>
</table>
Nomenclature of tendons in *Meox2*^{+/−} and *Meox2*^{−/−} neonates and embryos

<table>
<thead>
<tr>
<th>No.</th>
<th>Tendon classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Flexor digitorum profundus (FDP)</td>
</tr>
<tr>
<td>T2</td>
<td>Flexor digitorum superficialis (FDS)</td>
</tr>
<tr>
<td>T3</td>
<td>Extensor digitorum communis (EDC)</td>
</tr>
<tr>
<td>T4</td>
<td>Extensor Indicis Proprius</td>
</tr>
<tr>
<td>T5</td>
<td>Extensor pollicis</td>
</tr>
<tr>
<td>T6</td>
<td>Extensor carpi ulnaris</td>
</tr>
<tr>
<td>T7</td>
<td>Extensor carpi radialis longus</td>
</tr>
<tr>
<td>T8</td>
<td>Extensor carpi radialis brevis</td>
</tr>
<tr>
<td>T9a</td>
<td>Extensor digiti quarti</td>
</tr>
<tr>
<td>T9b</td>
<td>Extensor digiti quinti</td>
</tr>
<tr>
<td>T10</td>
<td>Flexor carpi radialis</td>
</tr>
<tr>
<td>T11</td>
<td>Flexor carpi ulnaris</td>
</tr>
<tr>
<td>T12</td>
<td>Palmaris longus</td>
</tr>
<tr>
<td>T13</td>
<td>Achillies tendon</td>
</tr>
<tr>
<td>T14</td>
<td>Flexor digitorum brevis (FDB)</td>
</tr>
<tr>
<td>T15</td>
<td>Peroneous longus brevis</td>
</tr>
<tr>
<td>T16</td>
<td>Extensor digitorum longus</td>
</tr>
<tr>
<td>T17</td>
<td>Extensor hallucis longus tendon</td>
</tr>
<tr>
<td>T18</td>
<td>Flexor digitorum longus(FDL)</td>
</tr>
</tbody>
</table>
Fig 3.3.1 Decreased ScleraxisGFP expression from the forelimb tendons in Meox2 null neonates

The heterozygous and homozygous alleles for Meox2 were maintained on a ScxGFP transgenic background. Whole-mount view of ScleraxisGFP in the heterozygous and homozygous forelimb dorsal (A and B) and ventral (C and D) confirmed the limb tendon abnormality. Numerical tendon assignments are tabulated in Table 2. Marked decrease in the GFP levels can be seen in mutant forelimbs and absence of extensor digiti quarti/quanti subsets of tendons (T9a and T9b) in the mutant zeugopod. Scale bar=50um
Fig 3.3.2 Absence of major hindlimb tendons in Meox2 null neonates

The heterozygous and homozygous alleles for Meox2 were maintained on a ScxGFP transgenic background. Whole-mount view of ScleraxisGFP was compared in the dorsal and ventral aspects of heterozygous (A, C) and homozygous (A and B) and ventral (C and D). The tendon names are as follow; (EDL), (EHL), (PLB) and achilles tendon (AT). The apparent reduction in an overall GFP expression from hindlimb tendons can be seen.
Fig 3.3.3 Axial and tail tendons showed diminished ScxGFP expression in the absence of Meox2 at neonatal stage

Axial and limb tendons of Meox2 heterozygous and homozygous littermates are directly visualized in skinned tissue using ScxGFP transgenic reporter. Axial tendons (A and B) showed significant reduction in GFP levels. The intercostal tendons were completely lost as shown by red arrowheads. In contrast, all tail tendons (C and D) are lost in mutants as shown by white arrows. White arrowhead indicates unaffected ligaments in the tail. Scale bars=100um
Fig 3.3.4 Forelimb autopod of Meox2−/− neonates showed tendon deformities

Sequential transverse sections of a forelimb autopod stained for Haematoxylin & eosin from a heterozygous control (A, B, C and D) and Meox2 homozygous (A’, B’, C’ and D’). Tendon classifications are shown with black numerals except Flexor digitorium superficialis (FDS, T2) in red for its absence in the mutants. The nomenclature is described in Table 1. Majority of other tendons are reduced in size in mutants e.g. Flexor digitorium profundus (T1), extensor digiti quarti/quanti subsets of tendons (T9a and T9b). Red arrowheads indicate FDS tendon, Pink arrowheads indicate collateral ligament metacarpophalangeal joint (MCP), blue arrows head indicate interosseous muscle , blue arrows indicate lumbricals muscle, yellow arrowhead show thenar muscle , yellow arrow show hypothenar muscle and white arrow indicates transverse carpal ligament. Scale bars= 100um.
Fig 3.3.5 Reduction of zeugopod tendon mass in Meox2-/- postnatal mice

Transverse sections through the zeugopod of heterozygous control (A, B, C and D) and Meox2 mutant (A’, B’, C’ and D’) at P0. Haematoxylin & eosin staining show abnormality in tendon histology in Meox2 mutants including severe reduction in tendon mass and tendon fusion. Tendon classifications are shown with black numerals. Notice the absence of FDs tendons (T2 in red) the mutant zeugopod. Tendon classification as shown with black numerals is named in Table 2. Red arrowheads indicate missing FDP tendon. Scale bars=100um
Fig 3.3.6 Irregular fascia in the forelimb zeugopod of Meox2 mutants

Transverse sections through the forearm of the heterozygous control (A, B, C and D) and Meox2 mutant (A’, B’, C’ and D’) at P0. Haematoxylin & eosin staining show drastic reduction of the thick fascia at the wrist level which includes several extensor and flexor tendons. Blue arrow shows *m. flexor digitorium profundus*; blue arrowheads show *m. flexor digitorium sublimis* and red arrowheads indicate *t. flexor digitorium sublimis*. Notably, in the absence of Meox2, defective fascia was observed in the majority of tendon-muscle attachment. Tendon classification as shown with black numerals is named in Table 2.
Fig 3.3.7 Hindlimb autopod showed severe tendon defects

Sequential transverse sections of a hindlimb autopod stained for Haematoxylin & eosin from a heterozygous control (A, C, E) and Meox2 homozygous (B, D, F). Tendons are shown by arrow and classifications are as follow: red arrowhead indicate *flexor digitorum brevis* (FDB), blue arrowhead show *flexor digitorum longus* (FDL), black arrow head indicate *flexor hallucis longus* tendon and black arrows assign *extensor digitorum longus* tendons. The meta-tarsal joint is shown by yellow arrowhead and lumbricals muscle indicated by yellow arrowhead. FDB tendons, a serial homologues of FDS tendon in the forelimb found missing in the Meox2^{−/−} mutants. Scale bars= 100um.
Fig 3.3.8 Abnormal zeugopod tendon mass and defective fascia in the hindlimb

Transverse sections through the zeugopod of heterozygous control (A, C) and Meox2 mutant (B, D) at P0. Haematoxylin & eosin staining show abnormality in the tendon histology including severe reduction in tendon mass and loss of fascia. The zeugopod bones are t, tibia and f, fibula. Individual tendon and muscles indicated by numbers:; 5, m. extensor digitorum longus; 6, m. biceps femoris; 7, m. soleus. Black arrowheads indicate fascia separating the muscle compartments in the proximal end of zeugopod. Considerable loss of thick fascia is evident in the mutant hindlimb. Scale bar=100um.
Fig 3.3.9 Normal intercostal muscles in the Meox2 null neonates

Transverse sections through the trunk of heterozygous control (A) and Meox2 mutant (B) at P0. Haematoxylin & eosin staining show normal epaxial muscle i.e. right serratus anterior muscles shown by yellow arrows and hypaxial muscles i.e. intercostal muscle (external and internal layers) shown by black arrows. The brown fact overlying the shoulder muscles were also normal as shown by white arrows. H, heart; Sc, spinal cord; C, cartilage primordium. Scale bar=100μm.
Chapter 4

Embryonic tendon defects in the absence of Meox2
4.1 Introduction

Vertebrate tendon development is multistep processes that include three stages in modular fashion: a) induction of tendon progenitors b) recruitment and organisation c) aggregation and differentiation of these tendon precursors. In mouse, the initial induction of committed tendon progenitor cells occurs in somite and limb mesenchyme between E10.5-11.5 and in somites that is associated with FGF signalling (Edom-Vovard et al., 2002; Eloy-Trinquet et al., 2009). At this stage, the limb bud progression occurs from the proximal to the distal axis and Scx expression is found in dorsal and ventral sub-ectoderm patches (Murchison et al., 2007; Schweitzer et al., 2001). By E12.5, a loose cellular organisation of tendon progenitors and muscle connective tissue occurs throughout the body between differentiating muscles and cartilage tissue. This phase of limb tendon development is dependent on TGFβ signals emanating from the skeletal elements and muscles, which contributes towards recruiting more tendon progenitors at the site of condensation. Additionally, TGFβ signals emitted from the induced tendon progenitors are involved to maintain the tenoblastic identity of the committed progenitors and are recruiting more committed precursors to undergo tendon cell fate at E12.5 (Pryce et al., 2009). Finally, in some tendon groups, the differentiation and aggregation from E13.5 depends on the presence of muscles (Bonnin et al., 2005; Edom-Vovard and Duprez, 2004; Eloy-Trinquet et al., 2009; Kardon, 1998; Schweitzer et al., 2001). Scx, which is expressed in all tendon progenitors, plays an essential role as molecular regulator for tendon cell differentiation in force-transmitting tendons (Murchison et al., 2007).

Tendon progenitor cells from E14.5 onwards are also known as tenocytes and are fibroblast-like characteristics that form the mature tendons. These tenocytes are capable of synthesizing the extra-cellular matrix including the assembly of early collagen fibres, which acts as fundamental units of a mature tendon. From E14.5, onwards tendon growth occurs and is a tightly regulated balance
between collagen fibrillogenesis and cellular processes that package the collagen fibrils into a higher order structure forms.

Recent evidence indicates that tendon development in the autopod and zeugopod is modular (Huang et al., 2015b), whereby the autopod progenitors are induced and organised in the developing digits (Schweitzer et al., 2001). Interestingly, the zeugopod tendon cells are induced near the presumptive wrist and then extend proximally to form various tendon groups (Huang et al., 2015b). While the axial tendon progenitor induction occurs in the somite under the influence of FGF signalling, the subsequent stages are then assumed similar to the limb tendon development. (Brent et al., 2003; Brent and Tabin, 2002; Schweitzer et al., 2001; Schweitzer et al., 2010).

In the previous chapter, we established that Meox2 mutant mice display a neonatal tendon phenotype. This indicated a primary defect in embryonic or foetal stages of tendon development, which could be in induction (E11.5), organisation (E12.0-12.5), maturation (E13.5), or maintenance (E14.5 onwards). To identify when the primary defect occurs, we closely monitored the entire embryonic stages that are relevant to axial and appendicular tendon development. We performed analysis starting from E11.5 (induction of tendon progenitors) until E14.5 (mature tendon formation) in Meox2−/− embryos. From this, we also aimed to suggest if Meox2 has a role in the developmental modularity by comparing defects in the autopod and zeugopod segments in our mutant model.

4.2 Aim

The tendon progenitor cells were identified by expression of the ScxGFP transgene and whole mount in situ hybridization detected Scx mRNA expression in the Meox2 heterozygous controls and homozygous mutants during the key tendon developmental stages starting from induction at E11.5 until maturation and growth stage at E14.5.
4.3 Results

4.3.1 NORMAL TENDON CELL INDUCTION AT E11.5

The induction of tendon progenitors in the axial and appendicular regions occurs at E11.5 (Schweitzer et al., 2001). To determine if there is a requirement for Meox2 at this stage we performed Scx whole-mount in situ hybridization at E11.5 (Fig. 4.3.1). We found normal tendon progenitor distribution in the syndetome that is present in intersomitic region of mutant embryos (Fig. 4.3.1A-D, yellow arrows). When analysed at higher magnification, the proximal sclerotome showed orderly strips of Scx expressing cells in both controls and mutants (Fig. 4.3.1C-D, yellow arrows). The Scx positive committed tendon progenitors were also normally induced in the mesodermal cells residing in the limb bud (Fig. 4.3.1A-B, red arrows).

Therefore, we conclude that the induction of tendon precursors in trunk and limbs at embryonic stage 11.5 does not depend on Meox2 gene activity.

4.3.2 FAILURE OF INITIAL ALIGNMENT OF TENDON CELLS IN FORELIMB AT E12.0

The expression analysis of Scx at E12.0 shows that tendon cells are aligned and distributed evenly on the proximomedial axis and beneath surface ectoderm of growing limb bud (Schweitzer et al., 2001). We observed a significant loss of Scx expression using whole mount in situ hybridisation on the dorsal and ventral sides of the forelimb at E12.0 (Fig 4.3.2A-D). These included a reduction in the anterior and posterior domains in the presumptive autopod and zeugopod. The substantial loss of a chevron-shaped Scx domain was observed in the medial region of zeugopod (Fig 4.3.2A,B, yellow arrows).
Moreover, the ventral side of the limb showed severely reduced Scx expressing tendon progenitor cells indicating defective positioning of induced tendon progenitor cells at their functional site in the limbs (Fig. 4.2C, D). Furthermore, the control and mutant hindlimbs showed a similar expression of Scx transcripts that were present as a small patch of tendon progenitors on the dorsal side (Fig 4.3.2E-H). However, there was a small reduction of Scx mRNA on the ventral aspects of the hindlimb (Fig 4.3.2E-H, yellow arrows).

Together, our results indicate that the first tendon phenotype is at E12.0 in the forelimb of Meox2−/− embryos, and suggests Meox2 is necessary for the normal resolution of the initial alignment of tendon progenitors in the limbs. The hindlimbs are developmentally delayed by half a day, and this may reflect the absence of severe phenotype in the hindlimbs at this stage.

4.3.3 LOSS OF FORELIMB LIMB TENDONS AT E12.5

Having established a failure of tendon cell alignment at E12.5 in the absence of Meox2, we asked does the phenotype persist in the forelimb after half a day. To answer this, we next examined Scx expression at E12.5, the stage when tendon progenitors undergo expansion and reorganisation between the skeletal elements i.e. muscle and cartilage (Murchison et al., 2007; Pryce et al., 2009). To determine whether Meox2 is involved in these events, whole mount in situ hybridisation of Scx was performed in the control and Meox2−/− mutant limbs. The results showed a sequential loss of tendon precursors at E12.5 (Fig. 4.3.3A-C’).

The degree of disruption for Scx expression domains varied in the presumptive zeugopod and autopod. For instance, the Scx expression was obvious in the autopod segment that gives rise to the distal digit tendons in heterozygous controls (Fig 4.3.3A, C, yellow arrowheads). In the mutants, a profound loss of Scx mRNA transcripts in the autopod tendon cells was noticeable (Fig 4.3.3B, D, yellow arrowheads).
Furthermore, despite the presence of Scx positive cells near the presumptive wrist of Meox2−/− forelimbs, overall levels of Scx expression were much reduced compared to the control limbs. Moreover, the arrangement of Scx positive domains in the zeugopod showed striking differences between the control and mutant limbs. The chevron-shaped Scx domain first observed to be completely missing at E12.0 was also absent at E12.5 in the absence of Meox2 (Fig.4.3.3A, B and B’, red arrowheads). There was also an overall reduction of Scx expression throughout the zeugopod in the dorsal and ventral aspects of the forelimbs (Fig.4.3.3A-D’, yellow arrows).

Collectively, these observations indicate that in Meox2−/− mutants at E12.5 the tendon precursors failed to position correctly between the developing muscles and cartilage. Moreover, due to the loss of Meox2 derived cues, the alignment, and integration of the functional musculoskeletal tendon tissue was defective at this stage.

4.3.4 LOSS OF HINDLIMB TENDON PROGENITOR CELLS AT E12.5

As hindlimbs are developmentally delayed by half a day with respect to forelimbs, and showed no abnormality at E12.0, we decided to analyse the Scx expression in the tendon progenitors of the hindlimb at E12.5. In Meox2−/−, we found a more dramatic loss in the arrangement of tendon cells within presumptive zeugopod displayed on the dorsal and ventral aspects of the hindlimb (Fig. 4.3.4A-D, black arrows). There was also a decrease in Scx transcripts in the developing autopod of Meox2−/− mutant hindlimbs (Fig. 4.3.4A-D, black arrowheads).

Hence, the loss of tendon progenitors from the hindlimbs at E12.5 indicated a catastrophic outcome of an earlier breakdown during the stages in the alignment of tendon precursors.
4.3.5 AXIAL TENDON PROGENITORS ARE DISRUPTED IN MEOX2−/− AT E12.5

Our initial analysis of Scx mRNA expression in the trunk could not detect any significant changes at E12.0 and thus we analysed any axial tendon phenotype begin to emerge at E12.5. For this purpose, we took advantage of the ScxGFP transgene to analyse the distribution of tendon precursors in the control and mutant embryos (Fig. 4.3.5A, B). Using this tool, we found the GFP reporter expression in the dorsoventral regions of two adjacent somites in control embryos (Fig. 4.3.5A, white arrow). Additionally, control embryos also showed the expression of ScxGFP in the condensing mesenchyme (Fig. 4.3.5A, white arrowhead). In contrast, a profound reduction of GFP fluorescence from the condensing mesenchyme was evident in the Meox2−/− embryos (Fig. 4.3.5B, white arrowhead). There was also a widespread reduction of ScxGFP in the syndetome of the mutants (Fig. 4.3.5B, white arrow).

At E12.5, ScxGFP expression is comparable to the endogenous Scx expression only for axial tendon cells (Pryce et al., 2007). The reduction of the ScxGFP in the proximal sclerotome prompted us to evaluate this region using Scx gene expression by whole mount in situ hybridisation (Fig. 4.3.5C-H). In controls, Scx mRNA was detected in the vertebral bodies (Fig 4.3.5C, black arrowhead) and stripes of transcripts were found in the condensing mesenchyme of the proximal ribs that form from the posterior sclerotome (Fig. 4.3.5C, black arrowhead). The cartilaginous rib primordia are shown to express Scx and Sox9 at high levels and hence are denoted as multipotent cells (Sugimoto et al., 2013a; Sugimoto et al., 2013b). The domains of Scx expression were markedly reduced in the somites of Meox2−/− embryos (Fig 4.3.5D, F, and H). The most dramatic reduction of Scx was seen in the regions of condensing mesenchyme in the posterior sclerotome that gives rise to the ribs and (Fig. 4.3.5H, black arrows). In addition, the Scx expression was lost in proximal regions of somites of the mutants near neural tube (Fig. 4.3.5H, black arrowhead).
Therefore, a tendon defects were first manifest in axial tissues, similar to that of hindlimbs, at E12.5, in contrast to the forelimbs where abnormalities in Scx expression were first detected at E12.0.

4.3.6 MODULARITY IN THE TENDON PHENOTYPE DUE TO THE MEOX2 MUTATION

The classification of various tendon groups begins to emerge at E13.5. In Meox2\(^{-/-}\) embryos, the examination of a cross section from autopod using ScxGFP transgene showed normal GFP expression and cellular arrangement when compared with a wild type section (Fig. 4.3.6A, B). Additionally, the two distinct condensed layers that form FDP tendon (Murchison et al., 2007) were found normal in Meox2\(^{-/-}\) autopod at this stage (Fig. 4.3.6A, B, yellow arrowheads). This could explain the residual FDP found in the post-natal autopod of Meox2\(^{-/-}\) animals (Result section 3.3.1). Moreover, the EDC tendon precursors also showed normal ScxGFP fluorescence and the alignment of cells on top of the digits (Fig. 4.3.6A, B, white arrows).

Furthermore, our observations of transverse sections from the proximal zeugopod segments at E13.5 showed significant differences in contrast to the normal ScxGFP expression from the proximal regions. The ScxGFP fluorescence from the identified tendons groups at this stage in zeugopod showed reduced signal in the mutants suggesting the presence of fewer tendon cells in these groups (Fig. 4.3.6C, D). Meox2\(^{-/-}\) embryos showed fewer flexor digitorum profundus (FDP) tendon cells near the cartilage (T1 in Fig. 4.3.6C, D). Conversely, EDC tendon precursors were found normal (T3 in Fig. 4.3.6C, D). Additionally, a reduction in the condensation of tendon cell numbers for digiti quinti/quarti and pollicis were observed that could explain the abnormality of these tendon groups in postnatal mutant mice (T5, T9a and T9b in Fig. 4.3.6).

These results overall demonstrate that the autopod tendon individuation was not affected and normal FDP tendon cells anlagen were present at E13.5 even in the absence of Meox2. In addition, Meox2 gene regulates some aspects of
zeugopod tendon condensation and maintenance. Therefore, we conclude the autopod and zeugopod modularity of the tendon phenotype begins to emerge at E13.5 in Meox2\(^{-/-}\) mutant embryos.

4.3.7 DEFECTS IN TENDON CELL DIFFERENTIATION IN MEOX2\(^{-/-}\) EMBRYOS

As ScxGFP analysis showed the beginning of modularity in tendon phenotype in autopod and zeugopod at E13.5, here we performed whole mount analysis of Scx mRNA along the proximal-distal axis of the developing limb. The Scx expression from the distal segments of the digit tendon cells was severely reduced in both dorsal and ventral sides of the limb in the Meox2\(^{-/-}\) embryos (Fig. 4.3.7A-D, black arrows). Furthermore, in the hand plate of a heterozygous control limbs showed the wider expression of Scx in both dorsal and ventral aspects (Fig. 4.3.7A-D). The examination of the wrist region in a homozygous limb showed extended and disorganised domains of Scx expressing tendon cells (Fig. 4.3.7B, D, red arrowhead).

We conclude that the initial stages of the tendon cell condensation and differentiation were perturbed in the absence of Meox2. Thus the defective formation of load bearing tendons cells already existed at E13.5 in the Meox2\(^{-/-}\) and there was an early irregularity of the tendon individualisation in the autopod and zeugopod of the Meox2\(^{-/-}\) limbs resulting in defective long tendon formation.

4.3.8 LOSS OF SCXGFP EXPRESSION IN SOMITES AT E13.5

We evaluated ScxGFP expression in longitudinal sections obtained from the trunk of heterozygous controls and homozygous mutant embryos at E13.5 (Fig. 4.3.8A, B). In the somites of heterozygous control, strong ScxGFP expression was present at the junction between adjacent myotomes (Fig 4.3.8A). However, a considerable loss of ScxGFP expression from mutant somites was evident
Therefore, the failure of axial tendon cell condensation at E13.5 in the absence of Meox2 could serve as plausible explanation for the post-natal tendon phenotype where all ScxGFP expression was disrupted.

4.3.9 FAILURE OF FORELIMB FLEXOR TENDON DIFFERENTIATION IN MEOX2\(^{-/}\) EMBRYO AT E14.5

By E14.5, the majority of the tendons in the limb have achieved their developmental maturity except FDS and FDB tendons. Tendon tissues from this stage onwards, while preserving their mature arrangement, only undergo growth and differentiation. In mouse, tendons that are associated with muscles are identifiable at this stage and can be considered as a miniature of the tendon of an adult animal. Therefore, we decided to evaluate the limb autopod tendons using the ScxGFP transgene to identify tendon cells. Myosin-heavy chain antibody was used to detect terminally differentiated muscles on the same sections. The deletion of Meox2 led to the disruption of FDP tendons at the metacarpal level, which were severely disorganised, in contrast to the controls, which showed a tight compact arrangement of ScxGFP\(^{+}\) tendon fibres in the FDP (T1 in Fig. 4.3.9A-F).

The failure of the cell condensation process in the presumptive wrist region at E13.5 could explain a profound ScxGFP loss at E14.5 (Fig. 4.3.9, white arrowhead). Although examination at lower magnification of EDC tendons showed slight differences in GFP levels between controls and mutants; higher magnification levels revealed the normal cell condensation for this tendon group in the autopod and therefore this explains the presence of normal EDC tendon morphology in the digits after birth (T3 in Fig. 4.3.9G-H; see chapter 3).

Furthermore, the staining for muscle fibres revealed mispatterend and loosely organised interosseous and lumbrical muscles in the palm (Fig. 4.3.9C and D, red arrowhead and red arrows). Cartilage formation in the mouse limbs is considered complete at E14.5 in all individual digits (Martin, 1990). When
analysed in Meox2\(^\sim\), the individuation for cartilage formation in each digits was found normal at this stage (Fig. 4.3.9A-F).

Therefore, we conclude that there is continuous requirement of Meox2 gene during embryonic tendon morphogenesis through to E14.5. The tendon defects seen at this stage are the outcome of earlier breakdown of tendon cell condensation.

4.3.10 DEFECTIVE ZEUPOPOD TENDON CELL DIFFERENTIATION IN MEOX2\(^\sim\) EMBRYOS

Although rudimentary flexor tendons in the autopod were formed in the mutants when analysed using ScxGFP expression, these flexor tendons along with extensors in zeugopod were severely reduced in the mutants. Analysis of transverse sections through the zeugopod showed strong ScxGFP expression in the FDP tendons of the control limb (Fig. 4.3.10A). However, in distal sections of mutant zeugopod, ScxGFP expression was completely absent from the FDP tendon bundles (T1 in Fig. 4.3.10B). Interestingly, an even more striking phenotype was evident in a proximal zeugopod section where mispattering of FDP tendon cells occurred in this segment of Meox2\(^\sim\) embryos (Fig. 4.3.10C, D).

In contrast to the autopod, EDC tendon cells were loosely organised and muscle fibres replaced tendon cells, which could potentially explain the similar phenotype found at P0 (T3 in Fig. 4.3.10C, D; T3 in Fig. 3.3.6A, A'). At this level of section, the loss of other extensor tendons namely, carpi radialis brevis and carpi radialis longus was observed in Meox2\(^\sim\) embryos (T7, T8 in Fig 4.3.10C, and D). Furthermore, a severe reduction in the size of extensor carpi ulnaris was noticeable that was lost completely at P0 (T6 in Fig 4.3.10C, D). Additionally, muscle patterning defects and splitting of muscle cells was also observed in the mutant zeugopod. The chondrification of the proximal limb elements was normal and resulted in the orderly formation of radius and ulna seen in the Meox2\(^\sim\) embryos.
Together, these results demonstrate that Meox2 regulates the tendons of the zeugopod segment and coordinates in muscle patterning at E14.5. Additionally, the differential outcome of Meox2 mutation in the autopod and zeugopod was fully manifested by E14.5 since zeugopod tendons were profoundly affected then autopod tendons. It supports the notion of modularity in limb tendon development described by Huang et al., 2015.

4.3.11 DISRUPTED INTERCOSTAL MUSCLE/TENDON UNIT AT E14.5

The defects in the neonatal axial tendons prompted us to examine the organisation of trunk tendons at E14.5. The analysis of ScxGFP fluorescence from sagittal section of the trunk represented clear differences in the heterozygous and homozygous embryos. Consistent with the limb data, trunk tendon cells of control embryos showed strong ScxGFP+ cells near the cartilage in the ribs and thereby assisting in the joining of the intercostal muscles to the ribs (Fig. 4.3.11A). Conversely, ScxGFP expression was completely lost from intercostal tendons in a homozygous mutant embryo (Fig. 4.3.11B). This observation explains with the loss of GFP+ cells from intercostal tendons in the Meox2−/− neonates (see chapter 3).

The intercostal muscles of control embryos appeared as highly organized in a meshwork of parallel muscle fibers divided in layers and formed muscle mass boundaries in between adjacent cartilages of the trunk (Fig. 4.3.11C, yellow arrows). However, in the Meox2−/− embryos, a sharp disruption of these muscles were observed (Fig. 4.3.11D, yellow arrows). Strikingly, the internal intercostal muscle that connect the two adjacent cartilages in the rib cage was completely missing in the mutants, whereas, other intercostal muscles layers showed loosely organised muscle fibres (Fig. 4.3.11D). Collectively, these observations indicate an exclusive role of Meox2 expression in the development of intercostal muscle-tendon units at embryonic stages.
4.3.12 LOSS OF SKELETAL MUSCLE PROGENITORS REFLECTS THE ZEUGOPOD TENDON DEFECT AT E12.5

In previous findings, $Meox2^{−/−}$ embryos show a down regulation $Pax3$, which is expressed in somitic myogenic precursors that eventually populate the limb mesenchyme (Mankoo et al., 1999). The $Pax3$ transcription factor is required for the myogenic progenitor cells to migrate into the limb bud mesenchyme (Goulding et al., 1994; Williams et al., 1994). $Meox2$ is expressed by these muscle precursors when migrating from somite to limbs between E9.5-E10.5; however, it is down regulated soon after entering into limb territory (Mankoo et al., 1999). In addition, $Meox2$ is also known to be upstream of $Pax3$ in the genetic hierarchy and thereby to regulate limb skeletal muscle development (Bismuth and Relaix, 2010).

All this led us to investigate whether the limb tendon phenotype could be an indirect consequence of the $Meox2$ activity due to defective migration of muscle cells. For this purpose, we utilized a Sp^{d} muscle-less embryo that has a mutation in the $Pax3$ gene locus to examine Scx expression at E12.5. Consistent with a recent study, we found normal distribution of Scx transcripts in the presumptive autopod of both control and mutant forelimbs (Fig. 4.3.12A-D) (Huang et al., 2015b). However, in the zeugopod, the tendon progenitor cells that differentiate and form a chevron-shaped domains were severely reduced (Fig. 4.3.12A,B, yellow arrowhead) This specific tendon phenotype of the zeugopod was found to be similar to $Meox2^{−/−}$ forelimbs at E12.5 (Fig. 4.3.8). Although in absence of $Meox2$, this chevron-shaped domain remained invisible whereas loss of $Pax3$ results in remnants of this Scx expressing domain in the zeugopod. Once again, our data showed the spatial relationship that exists between the diverse musculoskeletal tissues in these early stages. Hence, we conclude that $Meox2$ expressing cells could be acting indirectly via developing muscles to regulate the zeugopod tendon development during embryonic stages.
A recent study revealed the necessity of cartilage derived cues for autopod tendon development (Huang et al., 2015b). The authors showed that in the absence of Sox9, the autopod tendon cells were failed to form at E12.5, whereas, zeugopod tendon cells were properly aligned at their functional positions. Thereby, it was concluded that the cartilage cells are necessary and sufficient for autopod tendon induction. Moreover, it has been shown that during musculoskeletal development, at E12.5, a subpopulation of tendon progenitor cells express Scx and Sox9 in axial and appendicular regions (Sugimoto et al., 2013a; Sugimoto et al., 2013b). Specifically, in ScxCre-H;Ai14;ScxGFP at E12.5, the endogenous Scx and Sox9 expression was located in the cartilaginous rib primordia and intervertebral regions (Sugimoto et al., 2013a). Further analysis in this genetic model revealed overlapping expression domains of Scx and Sox9 also in the limb region.

We found that due to Meox2 mutation, there was complete loss of forelimb autopod tendons at E12.5, highly reduced Scx expression from the syndetome (Scx+/Sox9-) and diminished Scx regions in the proximal sclerotome (Scx+/Sox9+). Therefore, we aimed to evaluate the consequences of Meox2 alteration on the cartilage cells labelled by Sox9, which could provide better explanation of tendon phenotype in Meox2-/- mutant embryos at E12.5. We performed Sox9 whole mount in situ hybridisation on Meox2+/ heterozygous controls and Meox2-/- homozygous mutant embryos at E12.5. The patterns of Sox9 expression were found indistinguishable between control and mutant embryos (Fig. 4.3.13A-D). In the limb buds at this stage, the Sox9 transcripts were found normal in the cartilage primordia of the digits. Therefore, it seems that Meox2 dependent autopod tendon development is independent but parallel to the skeletal derived regulation for the tendon cells in this segment of the limb.

Furthermore, in axial regions, we found similar expression pattern in the vertebrae, ribs, cranial cartilage and tail tip vertebrae suggesting normal
progression of cartilage condensation even in the absence of Meox2. This could explain the presence of normal skeleton in the Meox2⁻/⁻ newborn littermates (Mankoo et al., 1999). In conclusion, the data indicate that the process of chondrogenesis in the axial and appendicular tissues remained unaffected in the Meox2⁻/⁻ embryos at E12.5 when there was a profound loss of Scx⁺ tendon cells.

4.4 Discussion

In this study, we showed that the defects seen in Meox2⁻/⁻ neonates are preceded by a dramatic loss of tendon progenitor cells during embryonic stages. In Meox2⁻/⁻ mutant embryos, Scleraxis expressing tendon cells were induced normally at E11.5. However, the proliferative phase of tendon precursors was impaired. The earliest limb tendon phenotype was found in the forelimb at E12.0, the stage when committed tendon cells initiate to align between muscle and cartilage cells and at E12.5 for hindlimb and axial tendon tissues. Moreover, we found differential outcome of Meox2 mutation on tendon development whereby a profound defect of all zeugopod tendons occurred in contrast to the autopod tendons. This observation is in agreement with the developmental modularity established for limb tendon morphogenesis. Further analysis of Meox2⁻/⁻ mutant embryos revealed a sustained role of Meox2 in alignment and organisation (E12.5), maturation (E13.5), integration, and differentiation (E14.5) of tendon progenitor cells to form the musculoskeletal system. In somites, disruption of Scx expression occurred both in sclerotome (Scx⁺/Sox9⁺) and in the syndetome (Scx⁺/Sox9⁻). The intercostal muscle-tendon unit was severely affected where tendon layer connecting adjacent ribs were lost. We found normal cartilage formation that persisted through the embryogenesis.
Meox2 promotes organisation and alignment of tendon progenitor cells

Whole mount Scx expression analysis in *Meox2*−/− embryos indicates that tendon precursor cells are induced normally in the limb mesoderm and syndetome, and that *Meox2* plays an essential role in the maintenance of committed tendon precursors after the induction. In the absence of *Meox2*, a significant loss of Scx expression in the forelimbs of *Meox2*−/− embryos occurred from E12.0 onwards. The experimental data in this study using Scx labelled tendon precursors strongly indicate that *Meox2* is also required for the proper organisation and alignment of tendon cells. Interestingly, these tendon defects precede the tendon phenotype found in *Scx*−/− embryos where the tendon disruption was first apparent at E13.5 (Murchison et al., 2007).

Moreover, in *TGFβ2*−/−;*TGFβ3*−/− and *TGFβRII* embryos, the first indication of a tendon loss was seen at E12.5 and thereby demonstrated an absolute necessity of TGFβ signalling for the alignment of tendon primordia between the differentiating muscles and cartilage. Our observations suggest a dynamic role of *Meox2* in tendon genesis, which is upstream of Scx and presumably parallel or downstream to TGFβ signalling. Furthermore, *TGFβ2* signalling encompasses a second wave of tendon cell recruitment at E12.5 (Pryce et al., 2009). In line with this report, our data provide substantial evidence that supports the notion that along with TGFβ signalling, *Meox2* could also actively participate in maintaining the tenoblastic identity and recruitment of a second wave of committed progenitors. This alignment then begins to resolve into the tendon-like elements from E13.5 under the influence of Scx gene and the appropriate trajectories of all tendon groups found by E14.5. However, it is unclear at this point that whether *Meox2* and TGFβ signals act in a reciprocal fashion whereby *Meox2* synergies with TGFβ signals or *Meox2* stimulates TGFβ signals to produce a similar outcome on tendon development by maintaining the committed identity and incorporating more cells to form mature tendons.
Murchison and colleagues (2007) reported an important role of Scx function during tendon development. In Scx^{−/−} mutant embryos the majority of the progenitors were lost by E13.5 and the rudimentary tendon cells that were, still present exposed their loosely organised mesenchyme identity as opposed to tight compaction of tendon cell mass found in control embryos. Meox2 ablation led to very similar outcome in forelimb tendon differentiation with severe loss of autopod flexor tendon and a significant disruption of zeugopod tendons. The defective flexor tendons at metacarpal level show similar phenotype in Meox2^{−/−} and Scx^{−/−} embryos at E13.5. However, unlike Scx^{−/−} mutant embryos, the extensor tendons in the forelimbs were normal in Meox2^{−/−} mutant embryos. This demonstrates a divergent role of Meox2 in the extensor and flexor tendon formation. Notably, we found an overall complex phenotype at E13.5 along the proximodistal axis of the limb in three ways: first, the significant loss of all zeugopod tendons revealed by gross reduction in ScxGFP expression. Second, an unaffected autopod EDC tendon cell segment demonstrated by normal condensation of ScxGFP⁺ cells. Third, reduction in the digit FDP tendons defined by reduced endogenous Scx in the distal autopod segment.

To gain a better understanding of Meox2 gene function, we also performed analysis on the hindlimbs of mutant embryos that are developmentally delayed by half a day. The hindlimb shares similar developmental sequences to that of the forelimb. The observations in a Meox2^{−/−} mutant hindlimb found a reduction in Scx expression emphasising an overall failure of tendon development machinery that was visible at E12.5. In favour of limb tendon modularity during development (Huang et al., 2015b), our hindlimb data showed an apparent reduction in zeugopod than the autopod similar to autopod. This suggests that the tendon alignment disruption that was appeared in the forelimb at E12.5 could be a consequence of an even earlier defect during the transition from induction to the alignment stage of tendon progenitors, which is at E12.0.

Furthermore, the data presented here on axial tissues lends to support the hypothesis that Meox2 is necessary for both axial and appendicular tendon development, at different anatomical locations. The syndetome is a sub compartment of sclerotome in which the Scx-expressing axial tendon progenitors are concentrated; in contrast to the appendicular tendon cells that
are induced from undifferentiated limb mesenchyme (Brent et al., 2003; Schweitzer et al., 2001). The reduction of axial tendon tissue marked by endogenous Scx expression and ScxGFP transgene due to Meox2 loss-of-function from E12.5 onwards provided a conclusive evidence for the substantial role of Meox2 in overall tendon genesis. Moreover, a similar phenotype of tendon cells in axial musculature was also observed in Scx−/− embryos (Murchison et al., 2007). Similar to Meox2−/− embryos, Scx−/− embryos also displayed reduction in tendon cells at E13.5. Therefore, we can extrapolate that in addition to Scx, Meox2 play a decisive role in axial tendon morphogenesis.

The multipotent progenitors for tendons and cartilage are initially intermixed in the somites and limbs (Brent et al., 2005; Sugimoto et al., 2013a; Sugimoto et al., 2013b). Interestingly, in somites, a mutual repression of cartilage forming sclerotome cells labelled by Sox9 and promoting the tendon-forming Scx cells present in the syndetome is due to FGF signalling from adjacent myotome (Brent et al., 2005; Brent et al., 2003; Tozer and Duprez, 2005). Further evidence has shown an implication of TGFβ signalling during tendon induction, which promotes Scx+ cells to differentiate (Pryce et al., 2009). Sugimoto and co-workers (2013 a,b) more recently showed that the sclerotome is comprised of Scx+/Sox9+ cells whereas the syndetome has Scx+/Sox9− cell population.

We found that in Meox2−/− mutant embryos, the severe loss of Scx expression in the sclerotome that could be from the loss of Scx+ in Scx+/Sox9+ multipotent cells. However, Scx expression was slightly reduced in the syndetome suggesting a milder effect of the Meox2 mutation on Scx+/Sox9− cell population. Our data of ScxGFP expression in somites demonstrate complete loss of GFP signals from the proximal sclerotome that reinforced our observation of complete loss of Scx+ only in Scx+/Sox9+ cell population. Normally, Scx expression can be found in the anterior and posterior somite borders (Brent et al., 2003). Previously, it was shown that Meox2 expression is restricted to dermomyotome and sclerotome at stage 16 chick embryos (Reijntjes et al., 2007) and therefore, it might be possible that Meox2 loss-of function targeted the Scx+ cells in the sclerotome. The syndetome expression though present was found to be severely reduced. Nevertheless, the extensive loss of Scx
transcripts in the somites represented a gross embryonic tendon defect due to Meox2 ablation at E12.5.

The residual expression of Scx at E12.5 in Meox2−/− embryos suggests that Meox2 is could be directly or indirectly regulating Scx expression and thereby commencing the tendon phenotype. The analysis to understand the expression domains of Meox2 and Scx during the formation of a mature tendon segments in the autopod and zeugopod are investigated in the next chapter.

Meox2 specifies condensation and differentiation of tendon cells

By E14.5, the tendons and muscles appear as a miniature of mature musculoskeletal system (Pryce et al., 2009). Although some features e.g. FDS and FDB tendon units are incomplete and the final development of these tissues are achieved by E16.5 (Huang et al., 2013). Our results suggest the disorganised tendon cell-condensation and differentiation due to Meox2 mutation at E14.5 in the forelimbs. This could be a most likely explanation of the tendon phenotype in the Meox2−/− mutant new-borns. It emphasizes the continuous requirement of Meox2 gene in the later stages of tendon development. In the autopod segment, ScxGFP expression showed that despite defect in both tendon categories, flexor tendons were more affected than extensor tendons. An essential function of Meox2 was also evident for the zeugopod tendons since we found a severe reduction of ScxGFP expression in all tendon cells. Consequently, we propose that a unique cue from Meox2+ cells is necessary alongside the muscle cells for normal zeugopod tendon development (Huang et al., 2015b). Additionally, loose fibers of interosseous and lumbrical muscles in the palm was evident, highlighting, a pivotal role of Meox2 in muscle and tendon development during embryonic stage.

Similar to the limb tendons, we also found defects in the axial tendons at E14.5, despite anatomical differences between both tendon categories. In the absence of Meox2 derived clues, the intercostal muscle-tendon unit were severely
affected. The absence of tendon layer from this unit during embryogenesis explains the complete loss in neonates (chapter 3). Intercostal tendons are grouped in anchoring tendon tissues that mediate connection between associated muscle and ribs. While the Scx loss of function did not affect intercostal tendons, all force-transmitting and inter-muscular tendons showed phenotype (Murchison et al., 2007). Notably, our findings suggest an identical role of Meox2 for the development of all tendon categories. On the other hand, it also suggests a significant role of Meox2 in the development of anchoring tendons.

It has been shown that intercostal muscles were lost in Myf5−/− embryos at E12.5 (Tajbakhsh and Buckingham, 1994). While the Myf5−/− mutant embryos show delay in hypaxial myogenesis (Braun et al., 1994); still these embryos displayed lung hypoplasia due to complete lack of intercostal muscles and rib cage (Inanlou and Kablar, 2005a, b). Similar abnormality due to defect of these muscles was also found in myogenin null mice (Tseng et al., 2000). Interestingly, Meox2 mutation targeted the down regulation of Myf5 (Mankoo et al., 1999) and a subsequent study showed that the concerted role of Meox transcription factors is necessary to maintain Myf5 and myogenin expression (Mankoo et al., 2003). While this study showed non-redundant roles of Meox genes in skeletal musculature, the Meox1; Meox2 double homozygous mutant foetuses at E16.5 lacked both epaxial (back) and hypaxial (intercostal) muscles. Therefore, the disruption of intercostal muscles in Meox2−/− embryo in our report indicates an essential requirement of Meox2 gene activity in hypaxial myogenesis.

Collectively, these data are an important contribution to the evidence for the role of Meox2 in modular limb tendon formation. In general, it emphasizes the distinctive role of Meox2 in segmental and complex dense connective tissue such as tendons. Furthermore, a transgenic approach would be required to generate conditional inactivation of Meox2 gene. Prx1-Cre mediated loss-of-function (Logan et al., 2002) of Meox2 allele would result in the ubiquitous loss of Meox2 protein from limb bud mesenchyme that gives rise to connective tissue and cartilage cells.
Furthermore, to evaluate the outcome of defective migration of Meox2+ muscle cells on the limb tendon development, mating Meox2 heterozygous animals with Splotch animals that has defective Pax3 gene restricting the migration of myogenic cells from somites in to the limb territory could be achieved. The observations from this approach would be useful to gain a better understanding of Meox2 gene function in modular tendon development along the proximodistal axis of the limbs.

Orderly cartilage condensation in the absence of Meox2

In the primitive mesenchyme, Sox9 gene labels the cells undergoing cartilage condensation (Wright et al., 1995). Due to the shared progenitors for tendons and cartilage cells in the limb mesenchyme at E10.5 and subsequently the overlapping expression of Sox9 labelled cartilage cells and Scx positive tendon cells in the axial and appendicular tissue at E12.5 was reported (Blitz et al., 2013; Sugimoto et al., 2013a). Previously, it has been shown that the expansion of tendon progenitors occured in the absence of cartilage differentiation in Sox5-/-; Sox6-/- double mutants in sclerotome (Brent et al., 2005). However, a recent study from the embryos of Sox9Prx1Cre mutants revealed complete failure of autopod tendon formation in the absence of cartilage and authors concluded that cartilage is necessary and sufficient for the induction of autopod tendon progenitors (Huang et al., 2015b). In our study, we found that Meox2 ablation does not affected Sox9 expressing cartilage cells at E12.5, in fact, we found normal chondrogenesis throughout the embryonic stages and at neo-natal stage (see chapter 3). Despite normal cartilage cells in the autopod of Meox2-/mutant embryos, we found gross tendon defects in the digits and metacarpal segment of the limb.

Moreover, Sugimoto and coworkers found that all tendons are derived from early precursor cells that are either Scx+/Sox9+ near the joints or Scx+/Sox9- in all other regions due to presence of bipotent cells in the limb mesenchyme and sclerotome. Using loss-of-function assays, they further showed that the tendon
cells closer to the cartilage primordia were originated from Scx+/Sox9+ (Sugimoto et al., 2013a; Sugimoto et al., 2013b). The normal Sox9 expression in the limbs and axial cartilage tissue of Meox2-/- mutant embryos at E12.5, suggest the substantial effects of Meox2 derived clues are restricted to Scx+/Sox9- cell population.

Furthermore, in autopod segment of the forelimb, reports have shown that Wnt signalling from the ectoderm can induce Scx expression (Yamamoto-Shiraishi and Kuroiwa, 2013) and TGFβ signalling secreted from the condensing autopod cartilage can also potently induce Scx expression (Pryce et al., 2009). Therefore, we could anticipate that these signalling pathways might affect the spatial and temporal expression of Meox2+ cells during regulation of autopod tendon genesis. However, current study is limited to address this issue, as it would require in vitro analysis using mesenchymal cell line and in vivo analysis using bead soaked in the recombinant protein solution and implanted in to the chick or mouse limb to monitor the effect on Meox2 transcripts. From these experiments, we aimed to understand the Meox2 expression in response to TGFβ and Wnt signalling that can help in elucidating the mechanism behind the autopod tendon defects in Meox2-/- mutants.

Together, the tendon and muscle phenotype in our mutant model, demonstrate that these defects are not secondary to the skeletal perturbations but represent an independent role of Meox2 gene on the tendon cells either intrinsic or extrinsic during the tendon morphogenesis.

An indirect role of Meox2 in the zeugopod tendon development

Various comprehensive studies had identified diversity in the segmental development limb tendons along the proximodistal axis (Bonnin et al., 2005; Huang et al., 2015b; Kardon, 1998; Swinehart et al., 2013). The data from the chick experiments showed that muscle and tendon induce autonomously in the
limb (Chevallier et al., 1977). However, for continuous growth and differentiation, both tissues are highly dependent on each other. This interdependence in the generation of functional musculoskeletal system has revealed an increased complexity during the limb tendon development. In addition, the distinct and independent developmental cues of the autopod tendons from skeletal cells and zeugopod tendons from muscle cells are established by Huang and co-worker (2015).

Previous work has shown that in the earliest stages of limb development, Meox2 plays an important role in limb myogenesis and positively regulate the onset of Pax3 and Myf5 expression. During the subsequent stages, Meox2 is necessary to restrict uncontrolled MyoD-dependent terminal muscle differentiation at the time of patterning and splitting of muscle masses during limb development (Bismuth and Relaix, 2010; Mankoo et al., 1999). Furthermore, role of muscles in tendon development was revealed using Spd mutants in which Pax3 point mutation resulted in loss of all muscle cells (Huang et al., 2015b; Vogan et al., 1993). The tendon progenitors of presumptive autopod and zeugopod are induced normally in the absence of muscles but the differentiation and maintenance of zeugopod tendon progenitors were lost at E13.5 (Bonnin et al., 2005; Huang et al., 2015b; Kardon, 1998).

Our analysis of Scx expression in Spd embryos at E12.5 showed severe reduction of chevron-shaped tendon domain in the medial region of the presumptive zeugopod that was lost in the Meox2−/− embryos. This indicates a secondary defect of Meox2 mutation on Scx+ tendon cells in zeugopod. It could provide us to hypothesis an indirect role of Meox2 gene activity from the muscle connective tissue on the zeugopod tendon development and muscle patterning. Cohort studies have shown a pivotal role of muscle connective tissue on limb muscle patterning and tendon formation (Hasson et al., 2010; Kardon et al., 2003; Mathew et al., 2011; Swinehart et al., 2013). The evidence showed ectopic splitting of the dorsal and ventral limb muscle masses in the absence of Tbx5 gene from muscle connective tissue (Hasson et al., 2010). The limb tendon organisation was also affected due to loss of Tbx5 function in the muscle connective tissue. In another report, authors showed that an over
expression of Tcf4 gene in muscle connective tissue, resulted in ectopic muscle formation (Kardon et al., 2003). There is also demonstration that Hox11 gene coordinates in the maintenance and differentiation of zeugopod tendon and muscle formation (Swinehart et al., 2013). It therefore follows that the retrospective analysis of Meox2 function in zeugopod requires the generation of conditional knockout mice by removing the limb specific expression of Meox2 by mating with prx1Cre animal (Logan et al., 2002) and thereby examining zeugopod tendon development.

4.5 Conclusions

In summary, we found that induction of axial and appendicular tendon progenitor cells does not required Meox2 function. Forelimb tendon phenotype was first manifested at E12.0, whereas, the hindlimb and axial tendon phenotype emerged at E12.5. The limb tendon phenotype was more profound in autopod than in zeugopod segments. In our mutant model, the proximal sclerotome (Scx+/Sox9+) and the syndetome (Scx-/Sox9-) showed reduction in Scx expressing tendon progenitor cells. At E14.5, in Meox2-/- mutant embryos, flexor digitorium profundus (FDP) was severely affected whereas extensor digitorium communis (EDC) remained normal in the autopod. An overall disruption of all tendons including extensors and flexors in zeugopod segment occurred. There was a complete loss of intercostal tendon layer and disrupted intercostal muscle in Meox2-/- mutant embryos. Lastly, our data indicate the fact that Meox2 is crucial for the normal limb muscle patterning and tendon formation. In conclusion, the embryonic tendon defect in the Meox2-/- embryos has uncovered various previously unexplored role of Meox2 in the tendon development. The following chapter investigates the possible mechanism by determining whether Meox2 acts intrinsically or extrinsically from tendon during embryogenesis.
Fig 4.3.1 Normal tendon induction in the absence of *Meox2* at embryonic day (E) 11.5

Whole-mount in situ analysis for *Scx* at E11.5 in a wild-type embryo (A and C) and in *Meox2*−/− embryo (B and D). Red arrows represent normal induction of *Scx* positive tendon progenitors in the limb buds. Yellow arrows indicate normal *Scx* transcripts in the interlimb somites. C and D is a higher magnification of interlimb somites.
Fig. 4.3.2 Aberrant Scleraxis expression restricted for only forelimb tendon precursor cells at E12.0

Whole-mount in situ analysis for Scx at E12.0 in a wild-type forelimb dorsal and ventral (A and C) and in the Meox2^{−/−} embryo dorsal and ventral forelimb (B and D) was performed. Yellow arrowhead indicates a missing chevron-shaped Scx expression domain and yellow arrows on the ventral side showed overall considerable reduction of Scx levels in the absence of Meox2. In addition, Scx whole-mount in situ analysis on the hindlimb dorsal and ventral (E and G) and in Meox2^{−/−} embryo dorsal and ventral (F and H) was performed. Yellow arrows in ventral side represent reduced Scx expression domain in the presumptive autopod of hindlimb.
Meox2^+/^- Meox2^-/-

Forelimbs

Dorsal

Ventral

Hindlimbs

Dorsal

Ventral
Fig 4.3.3 Disordered organization of tendon progenitors in the absence of Meox2 at E12.5

Whole-mount in situ analysis for Scx at E12.5 in a wild-type forelimb dorsal and ventral (A and C) and in the two separate Meox2^{−/−} embryos 1 and 2 dorsal forelimbs (B, B’) and ventral forelimbs (D, D’). Red arrows indicate a missing chevron-shaped Scx expression domain in the Meox2 mutants. Yellow arrow heads indicate considerable reduction of Scx levels in the presumptive autopod; yellow arrows indicate reduction in zeugopod tendon progenitors.
Fig 4.3.4 Depleted Scleraxis levels in the hindlimbs of Meox2^{-/-} at E 12.5

Whole-mount in situ analysis for Scx at E12.5 in a wild-type hindlimb dorsal and ventral (A and C) and in Meox2^{-/-} embryo dorsal and ventral (B and D) was performed. Black arrows represent reduced Scx expression domain in the presumptive zeugopod of hindlimb whereas black arrowhead showed considerable reduction of Scx levels in the hindlimb autopod.
Fig 4.3.5 Disordered axial tendon progenitors in the absence of
Meox2 at embryonic day (E) 12.5

Analysis of ScxGFP on longitudinal sections of the trunk at E12.5 in a heterozygous embryo (A) and in homozygous mutant embryo (B) revealed important differences for axial tendon progenitors. White arrowheads represent complete loss of ScxGFP expression domains in the proximal sclerotome in the mutants; white arrows indicate reduction in GFP expression from syndetome. Endogenous Scx expression was observed by whole mount in situ hybridisation in a Meox2+/− heterozygous control (C,E and G) and in Meox2−/− homozygous mutant embryo (D, F and H). Black arrowheads represent severe loss of Scx mRNA expression domains in the somite whereas black arrows indicate decreased Scx expressing domains.
Fig 4.3.6 ScxGFP expression at E13.5 remained unaffected in autopod but reduced in zeugopod of Meox2 mutant mice

The heterozygous and homozygous alleles for Meox2 were maintained on a ScxGFP transgenic background. The cross sections of autopod in the heterozygous embryo (A) and homozygous embryo (B) were observed for ScxGFP expression domains. The GFP signals from extensor and flexor tendons were found normal. T1, flexor digitorium profundus indicated by yellow arrowheads; T3, extensor digitorium communis tendon progenitors showed by white arrows. Additionally, the cross sections of zeugopod in the heterozygous (C) and homozygous (D) at E13.5 showed reduction in ScxGFP tendon cells, visualised as green cells. Tendon nomenclatures are listed in table 3.1.
Fig 4.3.7 Endogenous Scx expression at E13.5 showed disrupted expression patterns in both autopod and zeugopod

Whole-mount in situ analysis was performed using Scx antisense cRNA probe on a heterozygous control forelimbs (A and C) and in homozygous Meox2^{−/−} mutant embryo (B and D). The dorsal aspect of the limb is shown as A and C whereas the ventral aspects is shown in B and D. Red arrowhead indicate an expansion of Scx mRNA domain in the Meox2 mutants. Black arrows show reduced Scx expression in the autopod.
Fig 4.3.8 Decreased ScxGFP expression in tendon precursors of somite at E13.5

Frontal sections of the trunk from Meox2+/−;ScxGFP (A) and Meox2−/−;ScxGFP (B) embryos observed under fluorescence microscope for ScxGFP signal (green) in tendon precursors residing in the somite.
Fig 4.3.9 Disruption of autopod tendons at E14.5 in Meox2 mutant mice

The heterozygous and homozygous alleles for Meox2 were maintained on a *ScxGFP* transgenic background. The cross sections of autopod in the heterozygous embryo (A,C,E and G) and homozygous embryo (B,D,F and H) were stained for myosine heavy chain (C and D) red immunofluorescence and *ScxGFP* tendon cells are in green (A and B). Merged image shown in E and F. The EDC tendon (T3) was found normal at higher magnification in G and H. Tendon nomenclature are tabulated in Table 2. Yellow arrowhead indicates interosseous muscle and yellow arrow show lumbricals muscle. Scale bars=100um
Fig 4.3.10 **Loss of zeugopod tendons at E14.5 in $Meox2^{+/−}$;ScxGFP**

The heterozygous and homozygous alleles for $Meox2$ are maintained on a ScxGFP transgenic background. The cross sections of zeugopod in the heterozygous embryo (A) and homozygous embryo (B) at E14.5 stained for muscles using myosin heavy chain antibody and ScxGFP tendon cells are in green. White arrow indicates flexor digitorium profundus (FDP) tendon (T1). Yellow arrows indicate FDP muscle.
Fig 4.3.11 Disrupted intercostal muscle-tendon unit at E14.5

Frontal sections of the trunk from *Meox2^+/−;ScxGFP* (A,C and E) and *Meox2^−/− ;ScxGFP* (B,D and F) embryos stained with myosin heavy chain (MHC;red) which detected intercostal muscles to the ribs. ScxGFP signal (green) from the intercostal tendons were completely lost (A and B, white arrows) in the mutants. Yellow arrowhead represents intercostal muscle in controls (C and E) but absent in mutants (D and F). Scale bars=100um
Fig 4.3.12 Disrupted zeugopod tendon progenitor cells in Sp^d embryos at E12.5

Whole-mount in situ analysis for Scx at E12.5 in a $Pax3^{+/Sp}$ heterozygous forelimb dorsal and ventral (A and C) and in the $Pax3^{Sp/Sp}$ homozygous mutant embryo (B and D) was performed. Yellow arrowheads indicate a reduced chevron-shaped Scx expression domain that was similar in the $Meox2$ mutants.
Fig 4.3.13 **Normal cartilage development in the absence of Meox2 at embryonic day (E) 12.5**

Whole-mount in situ analysis for Sox9 at E12.5 in a Meox2\(^{+/−}\) heterozygous embryo (A,C) and in Meox2\(^{−/−}\) homozygous mutant embryo (B,D). The left and right sides of the embryos showed normal Sox9 expression in the somites and limbs in controls and mutants. The heads were removed in the Meox2\(^{−/−}\) homozygous mutant embryo to distinguish them from controls.
Chapter 5

Cellular and molecular mechanisms of Meox2 function in tendon development
5.1 Introduction

Several studies have shown the chain of events ongoing during tendon development. Despite this progress, we still lack a fundamental understanding of many aspects of tendon development, such as the molecular regulators that control all tendon categories in a similar fashion. In previous chapters, we showed that in the absence of *Meox2*, all tendon categories are affected. We also show that the tendon defect is embryonic in origin. In addition, the expression of the *Scx* transcription factor is downregulated in *Meox2*−/− mutant embryos. In the previous chapter, we concluded that the first manifestation of the embryonic tendon phenotype in the *Meox2*−/− mutant embryos occurred at E12.5 in axial tissue.

Tendon fate commitment and induction (E10.5-11.5), alignment and organisation (E12.0-12.5), condensation and aggregation (E13.5) and lastly, tendon differentiation, growth and maturation (E14.5 onwards continuing after birth) are well-coordinated events. The early specification and induction of committed axial tendon progenitors occurs inside the syndetome and are dependent on FGF signalling emanated from the adjacent myotome (Brent and Tabin, 2004; Edom-Vovard et al., 2002). This extrinsic signal is necessary and sufficient to promote *Scx* expressing tendon precursors thereby expanding them in the sclerotome. The tendon precursors are induced at the expense of *Sox5/6* expressing chondrogenic progenitors that also share common origins in the sclerotome (Brent et al., 2003). Interestingly, a recent study showed that the sclerotome acts as host for multipotent chondroteno progenitors expressing both *Scx* and *Sox9* (Sugimoto et al., 2013). Under the influence of extrinsic cues, the relative proportions of *Scx*+/Sox9+ inside the sclerotome are maintained and as the development proceeds, they diverge into a *Scx*+/Sox9+ cell population that is retained inside the sclerotome, whereas *Scx*+/Sox9− expressing cells are concentrated in the syndetome.
Moreover, the TGFβ signalling pathway is also shown to coordinate cartilage and tendon differentiation (Lorda-Diez et al., 2009). It favours tendon formation by leading to the robust induction of Scx and tenomodulin, a type II transmembrane protein (Furumatsu et al., 2010; Lorda-Diez et al., 2009; Pryce et al., 2009). In addition, unlike in somites, the initial Scx induction for limb tendons is independent of the requirement of myogenic factors and is achieved by mutual repression between BMP and FGF signalling. Thus, FGF and TGFβ signalling pathways modulate the Scx+/Sox9− cell population at the myotendinous junction and repress Sox9+ cartilage cells in the limb. Conversely, BMP signalling pathways favour cartilage progenitors and repress tendon precursors at the site of skeletal condensations (Edom-Vovard and Duprez, 2004; Edom-Vovard et al., 2002; Schweitzer et al., 2001).

TGFβ signalling is crucial for the orderly alignment and organisation of limb tendon progenitors to maintain the integrity of the musculoskeletal system at E12.5 (Pryce et al., 2009). The same study also showed that the ectopic expression of the TGFβ2 protein could induce Scx in both vivo and in vitro systems. Moreover, the TGFβ signals are also required for maintaining the tenoblastic identity of the committed precursor, thereby restricting them from adopting alternative cell fates, such as cartilage formation. Evidence also suggests that TGFβ signals recruit a second wave of tendon progenitor cells at E12.5 (Pryce et al., 2009).

From E13.5, Scx is required for the tendon progenitor cells to undergo condensation and differentiation (Murchison et al., 2007). Additionally, another transcription factor, Mohawk (Mkx) is also expressed in tendon cells at E13.5 (Anderson et al., 2006); yet, it has no functional role at this stage of tendon development (Anderson et al., 2006; Ito et al., 2010; Liu et al., 2010).

Our earlier chapters showed that in the Meox2 null mice, almost all diverse groups of tendon tissue, i.e. short tendons (intercostal tendons), long tendons (limb and tail tendons) and fascia were profoundly affected. The first manifestation of the tendon phenotype in the forelimbs occurs at E12.0 and thus precedes the tendon defects found in TGFβ2/3 knockouts (E12.5)(Pryce et al.,
2009), TGFβRII mutants (E12.5)(Pryce et al., 2009), and Scx null mutants (E13.5)(Murchison et al., 2007). Conversely, in axial tissues, the failure of tendon machinery in the absence of Meox2 was first detectable at E12.5, coinciding with the TGFβ2/3 mutant axial tendon phenotype (Pryce et al., 2009). Moreover, Scx expression domains were overall reduced in both mutant mice models at E12.5. Therefore, with an aim to unravel the molecular mechanisms involving Meox2 in tendon genesis, at this point, we hypothesized that Meox2 and TGFβ signalling pathways act in a complementary manner to modulate Scx expression in tendon development. And that Meox2 and TGFβ signals are coordinated for the proper alignment, organisation, and recruitment of additional tendon progenitor cells during the assembly of the musculoskeletal system.

5.2 Aims

First, we aimed to account for the considerable loss of Scx expression in Meox2−/− mutant embryos at E12.5. For this, we analysed changes in cell proliferation and cell death using anti-Ki-67 and anti-Caspase 3 antibodies. Second, we aimed to characterise the expression domains of Meox2 and Scx during embryonic stages. This would be the key to understanding whether Meox2 acts intrinsically or extrinsically on Scx+ tendon progenitor cells. We utilised the ScxGFP transgene to identify tendon cells on cross sections obtained from E12.5 (only in axial tissue), E13.5, and 14.5 embryos. We used Scx in situ hybridization for the limbs at E12.5. Third, using Meox2-nLacz tool, we observed the derivatives of Meox2 expressing cells in Meox2 heterozygous embryos and therefore lineage tracing analysis was performed using salmon-gal staining to detect β-galactosidase activity at embryonic stages. Subsequently, we also performed X-gal staining on Meox2nLacZ/+ heterozygous control and Meox2nLacZ/nLacZ homozygous foetuses at E16.5. At this point, we also hypothesised that Meox2 and TGFβ signals are coordinated for the proper alignment, organisation, and recruitment of additional tendon progenitor cells during the assembly of the musculoskeletal system. For this, we investigated the interaction between Meox2 and TGFβ2 signalling by analysing endogenous
Tgfβ2 expression in Meox2−/− embryos at E12.5 and by in vitro assays, which included the evaluation of ectopic expression of TGFβ2 protein on Meox2 expression in C3H10T1/2 mesenchyme cell line.

5.3 Results

5.3.1 IMPAIRMENT OF CELLULAR PROLIFERATION IN MEOX2−/− MUTANT EMBRYOS AT E12.5

Here we tested the hypothesis that failure of cell proliferation could be responsible for the reduction in Scx expression in Meox2−/− embryos at E12.5. For this purpose, we performed immunostaining for anti-Ki67 (cell proliferation marker) on longitudinal trunk sections obtained from Meox2+/--; ScxGFP heterozygous and Meox2−/--; ScxGFP homozygous mutant embryos at E12.5 (Fig. 5.3.1A-D). We were able to detect the active proliferation of cells by bright red fluorescence for Ki67 staining (Fig. 5.3.1A and B). Conversely, a severe loss of proliferating cells was observed in the absence of Meox2 (Fig. 5.3.1C and D). An overall failure of cell proliferation was found evenly throughout the section. ScxGFP expression was used to locate the tendon progenitors in the syndetome (Fig. 5.3.1B and D). This suggests a necessary role of the Meox2 transcription factor during cell proliferation of all tissue types that label various regions within somites.

Furthermore, we also evaluated the expression of Meox2 on an equivalent longitudinal section by antibody staining of the Meox2+/− embryo heterozygous control at E12.5 (Fig. 5.3.1E and F). We found a strong Meox2+ signal in cells situated at distinct region away from the syndetome (Fig. 5.3.1E, white arrow).

Taken together, these findings reveal that the failure of cell proliferation indeed accounted for the defective tendon genesis and therefore reduced Scx expression at E12.5 in Meox2−/− embryos.
5.3.2 NORMAL LEVELS OF APOPTOSIS IN MEOX2<sup>−/^e EMBRYOS AT E12.5

We also suspected that the loss of Scx levels in the somites could be due to apoptotic cell death. To test the attribution of Meox2 role in this pathway, we examined the expression of active caspase3 on longitudinal sections obtained from Meox2^{+/−}; ScxGFP heterozygous controls and Meox2^{−/−}; ScxGFP homozygous mutant embryos (Fig. 5.3.2). The cells of neural tube progenitors showed cell death in a pattern indistinguishable between controls and mutants serving as an internal positive control for the experiment (Fig. 5.3.2A and D, white arrowheads). Moreover, the expression of caspase3 remained unchanged in the somites of Meox2^{−/−} mutant embryos (Fig. 5.3.2B and E, white arrowheads). Therefore, these data suggest that Meox2 dependent signals play no role in the normal cell death machinery, which is an important cellular event during embryonic development of musculoskeletal development.

5.3.3 MEOX2 EXPRESSION IN NON-TENOGENIC CELLS AT E12.5

The ScxGFP transgenic reporter labels all tendon cells in axial tissue (Pryce et al., 2007). To compare the expression domains of Meox2⁺ cells in detail, we performed antibody staining for Meox2 and GFP on frozen sections obtained from Meox2^{+/−};ScxGFP embryos at E12.5. The syndetome exhibited overlapping expression patterns for Meox2⁺ and ScxGFP⁺ cells when observed under a fluorescence microscope (Fig. 5.3A and B, white arrowheads). To investigate if Meox2 expression was expressed within tendon progenitor cells, we performed confocal analysis. Importantly, we found that ScxGFP⁺ cells were predominantly found in the syndetome (Fig. 5.3B and E, yellow arrows). In contrast, the majority of Meox2⁺ cells were found in the regions of the sclerotome (Fig. 5.3A and D, white arrows). However, there were few double
positive cells ($Meox2^+/ScxGFP^+$) identified at the interface of the two exclusive domains (Fig. 5.3C and F, yellow arrowheads).

Therefore, these data indicate that $Meox2$ is widely expressed in the sclerotome that hosts the chondro-tenogenic progenitors ($Scx^+/Sox9^+$). It also shows the absence of $Meox2$ expression from $ScxGFP^+$ tendon progenitors at E12.5 in the axial tissue.

5.3.4 NON-OVERLAPPING EXPRESSION OF $MEOX2^+$ AND SCX^+ CELLS IN THE LIMB TENDON CELLS AT E12.5

Since the ScxGFP reporter only corresponds faithfully to endogenous Scx expression for limb progenitors from E13.5 onwards (Pryce et al., 2007), we decided to evaluate the expression of Scx and $Meox2$ at E12.5 limbs by in situ hybridisation for Scx combined with immunostaining for Meox2. Due to lack of Scx antibody, we used this feasible approach of combination of in situ hybridisation and immunofluorescence and thereby demonstrating the expression domains of $Meox2^+$ and Scx^+ tendon cells. We observed that location of $Meox2^+$ cells adjacent to the Scx^+ cells and surrounding the cartilage primordia (Fig. 5.3.4A, white arrows). Moreover, Scx expression was found in dorsal and ventral patches in the mesenchyme of developing limb bud (Fig. 5.3.4B, white arrows) (Schweitzer et al., 2001). In order to achieve the comparison of both cell populations on same section, a false colour image for Scx expression was produced using photoshop and merged with the fluorescent image of Meox2 antibody staining. Similar to axial tendon cells at E12.5, limb tendon progenitors also showed non-overlapping expression domains for Scx^+ and $Meox2^+$ cell populations (Fig. 5.3.4C).
Hence, we can infer that the Meox2 gene is specifically expressed in the regions that are closely associated with tendon precursors in the limbs at E12.5 but never co-expressed with Scx.

5.3.5 EXPRESSION PATTERN OF MEOX2 IN THE FORELIMB AT E13.5

The severe loss of autopod tendons and the expanded domain of Scx transcripts in the metacarpal region at E13.5 (Fig. 4.3.6 in chapter 4), prompted us to examine endogenous Meox2 expression during tendon cell condensation. The comparison of Meox2 and Scx transcripts in the digit tendons showed partially overlapping expression domains (Fig. 5.3.5A-D, red arrowheads). This could be a plausible explanation for the reduced Scx expression in the digit tendons of Meox2−/− embryos at E13.5.

Furthermore, Scx labelled tendon cells in the zeugopod showed overlapping and non-overlapping expression domains with Meox2 throughout the proximodistal axis. Specifically, Meox2 transcripts were detected in the cells immediately beneath the ectoderm and overlaid the broader Scx+ domains (Fig. 5.3.5, A-D, black arrows). Although tendon progenitor cells in the prospective metacarpal region were clearly identified as a broad patch of Scx expression, this cell group does not express Meox2 transcripts (Fig. 5.3.5, yellow arrows). Interestingly, despite the absence of Meox2 expression in the prospective metacarpal tendon progenitors, a patterning defect in these tendon cells was found in Meox2−/− embryos (see Fig.4.3.6 in chapter 4, red arrowheads).

In summary, the partially overlapping expression patterns of Meox2 and Scx in the distal digit tendons could explain the failure in the formation of these tendons cells and therefore an intrinsic role of Meox2 in autopod tendon cells. On the contrary, wrist tendon cells and zeugopod tendons do not express Meox2 suggesting an extrinsic role of Meox2 for zeugopod tendon development.
5.3.6 CHARACTERISATION OF MEOX2 EXPRESSION IN THE AUTOPOD AT E13.5

Previously, it was reported that Meox2⁺ cells showed non-overlapping expression patterns with MyoD⁺ muscle cells in the chick embryos at stage 25 (Reijntjes et al., 2007). Similarly, in the mouse embryos at E13.5, it was observed that the Meox2-nLacZ⁺ signal could not be detected in muscle cells (B. Mankoo, unpublished observation). Therefore, here we investigated the expression pattern of Meox2 using antibody staining on forearm autopod cross sections at E13.5. The results showed strong antibody staining inside the cells surrounding flexor digitorium profundus tendons (Fig. 5.3.6A-D, white arrows). Closer examination revealed that Meox2 expression was also observed in the regions nearby tendons and cartilage (Fig. 5.3.6C, D white arrowheads). This expression is likely to be from the muscle connective tissue that contributes to maintain a functional musculoskeletal system.

Collectively, Meox2 is strongly expressed in the cell group located at the circumference of the flexor digitorium profundus tendons. These cells could be tendon sheath, which are an elastic connective tissue that surrounds tendons. Meox2 expression is also in the muscle connective tissue at E13.5.

5.3.7 DISTINCT EXPRESSION PROFILES FOR MEOX2⁺ AND SCXGFP⁺ IN THE ZEUGOPOD AND STYLOPOD AT E13.5

Examination of transverse sections through the zeugopod and stylopod of a Meox2⁺/⁻; ScxGFP embryo at E13.5 revealed the distribution of Meox2⁺ cells along the proximodistal axis of the limb segment. Using the Meox2 antibody and the ScxGFP expression to label tendon cells, we found that Meox2⁺ cells were positioned adjacent to the surface ectoderm and at the circumference of the cartilage condensations (Fig. 5.3.7A, D and G, white arrows). ScxGFP expression was found strongest in the regions surrounding the radius and ulna.
in the zeugopod and the humerus in the stylopod (Fig. 5.3.7A, D and G, yellow arrows). The exclusive domains of Meox2+ and ScxGFP+ cells were obvious and paralleled our observation recorded for both cell populations at E12.5.

Hence, Meox2+ cells exhibit non-overlapping expression territories when compared with the ScxGFP+ tendon cells.

5.3.8 MEOX2 IS EXPRESSED IN THE DIGIT TENDONS AT E14.5

By E14.5, tendon differentiation and individualisation was clearly observed in the forelimb by performing whole mount in situ hybridisation for Scx in a Meox2+/− control embryos (Fig. 5.3.8A). The profound loss of ScxGFP expression in the mutants led us to investigate the Meox2 expression in the forelimb autopod at E14.5. Once again we performed immunostaining using the Meox2 antibody on cross section obtained from Meox2+/−;ScxGFP control embryos (Fig. 5.3.8B-H). The observation was performed for the digit tendons and tendon anlagen at the metacarpal level. In the distal autopod segment, the Meox2 protein was strongly confined to the FDP (T1) and EDC (T3) tendon bundles (Fig. 5.3.8B-E, white arrows, white arrowheads). Noticeably, a cell population near the tendon tissue also expressed Meox2; however, these were restricted near the tendon periphery (Fig. 5.3.8B-E, pink arrowheads).

Furthermore, at the metacarpal level, the expression patterns of both genes showed striking differences compared to the distal region. A robust expression of Meox2 was found in the cell population that was present near the cartilage condensation and found in between the cartilage and ScxGFP+ EDC tendon cells (T3 in Fig. 5.3.8H, white arrowheads). The FDP tendon was found at the wrist region as an expanded ScxGFP+ domain and few Meox2+ cells were interspersed in this region (T1 in Fig. 5.3.8H, white arrow).

Together, the molecular diversity among the tendon cells was exhibited by the distinct expression of Meox2 in the distal and proximal autopod segments.
5.3.9 MEOX2 EXPRESSION IN THE ZEUGOPOD AND STYLOPOD AT E14.5

We analysed Meox2 expression and tendon cells by the ScxGFP transgene in the zeugopod and stylopod at E14.5. On the cross sections obtained from Meox2\(^+/\);ScxGFP control embryos, we observed exclusive domains of Meox2 and ScxGFP expression along the proximodistal axis of the forearm (Fig. 5.3.9). We found a close proximity of both cell populations in the zeugopod segment (Fig. 5.3.9C and F, white and yellow arrowheads). Conversely, in the stylopod both of these cell groups are positioned as two distinct cell population that were situated far apart on the section, i.e. ScxGFP\(^+\) cells were found adjacent to the cartilage whereas Meox2\(^+\) cells were located beneath the ectoderm (Fig. 5.3.9G-I, white and yellow arrowheads).

Collectively, these data demonstrate that in the zeugopod and stylopod, Meox2\(^+\) cells represent non-ScxGFP tendon cells, however, a close proximity with ScxGFP labelled tendon cells only in the zeugopod. It also strongly implies the important role of Meox2 in the modular development of tendons in autopod and zeugopod.

5.3.10 MEOX2 DERIVED CELLS CONTRIBUTE TO TENDONS AND MUSCLE CONNECTIVE TISSUE

To facilitate a temporal-spatial characterisation of Meox2 derived cells during key stages of tendon morphogenesis, we utilised mice carrying insertion of a LacZ cassette into the Meox2 locus. The Meox2-nLacZ transgene created a null allele of Meox2 by nuclear localised expression of lacZ gene under the control of Meox2 regulatory elements. Expression of the Meox2-nLacZ transgene faithfully outlines Meox2 expression in the progeny cell populations inside axial and appendicular tissues throughout developmental stages. As previously shown that Meox2 proteins were recruited in the autopod tendons by E14.5,
using genetic fate mapping approach we hypothesized an intrinsic role of Meox2 in tendon precursors during development.

Therefore, in order to address the mechanisms that account for the tendon phenotype in the absence of Meox2, we used Salmon-gal staining for visualising β-galactosidase activity in the cells that were expressing Meox2-nLacZ gene. We obtained transverse sections of the forelimb from Meox2nLacZ/+ embryos at two developmental stages i.e. at E13.5, the phase when tendon cell condensation is ongoing, and at E15.5, when all mature tendon bundles are formed.

Our results show that at both stages, S-gal positive cells were found in EDC (T3) and FDP (T1) tendons in the distal autopod sections (Fig. 5.3.10A and E). FDS tendon development is considered almost complete by E15.5 and it surrounds the FDP tendon tissue in the autopod segment (Watson et al., 2009). S-gal staining was also present in FDS tendon cells (T2 in Fig. 5.3.10E, F, G and J). Furthermore, we found a broader staining of S-gal positive cells in the proximal autopod at both embryonic stages (Fig 5.3.10 B, G and J). This cell group must be classified as loose connective tissue cells due to following reasons: (i) Meox2-nLacZ cells are never present in muscle cells as revealed by non-overlapping expression of LacZ+ cells and MyHC expression at E13.5, and (ii) Meox2 derived cells never contribute to cartilage cells of the digits (Fig. 5.3.10A).

In the proximal zeugopod segment, Meox2-nLacZ labelling was observed in all tendon groups and in a broader zone closer to the cartilage condensation that appears to be the muscle connective tissue (Fig. 5.3.10C, D, H, and I). Notably, S-gal staining was not observed in radius and ulna at both developmental stages. This observation is consistent with our line of reasoning that Meox2 progeny do not contribute to the cartilage.

Taken together, these data confirm that β-galactosidase reporter at the Meox2 locus labelled both dense (tendon) and loose (muscle connective tissue)
connective tissue in the forelimb at E13.5 and E15.5 during embryonic development.

5.3.11 DISRUPTED MUSCLE CONNECTIVE TISSUE IN MEOX2nLacZ/nLacZ FOETUS AT E16.5

Our data showed that tendons and muscle connective tissue express the Meox2-nLacZ. Next, we investigated the impact of a Meox2 mutation on muscle connective tissue. Therefore, in Meox2nLacZ/+ heterozygous control and Meox2nLacZ/nLacZ homozygous foetus, we investigated expression of β-galactosidase gene. We obtained forelimb cross-sections at E16.5 and performed X-gal staining to perform LacZ staining. Strong blue cells were observed in all zeugopod tendons of heterozygous controls (Fig. 5.3.11A, B, black arrow). Meox2-nLacZ+ cells were also detected in the cell population surrounding stained tendons and unstained cartilage cells, which are grouped as muscle connective tissue (Fig. 5.3.11A, B, red arrows). In addition, all the cells surrounding the individual muscle groups in the proximal zeugopod were stained for strong β-galactosidase activity (Fig. 5.3.11D). Noticeably, X-gal staining was never found in muscle fibres (Fig. 5.3.11D, red asterisks). Collectively, these analyses served to demonstrate the contribution of Meox2 to muscle connective tissue.

Furthermore, examination of the cross sections obtained from Meox2nLacZ/nLacZ embryos demonstrated disruption of blue staining in mature tendon bundles in the zeugopod (Fig. 5.3.11C and E). It is noteworthy that, despite the absence of tendons, the same sections showed lacZ (Meox2) positive cells from the muscle connective tissue. However, finding fields of Meox2-nLacZ positive cells in this tissue group showed severe abnormality in patterning around the muscles that resulted in the fusion of individual loosely organised muscle compartments.

Corroborating our genetic fate mapping data clearly indicated that Meox2 derived cells are recruited to the individuated tendon cells and muscle connective tissue. The absence of lacZ expression from muscle fibres
confirmed the down regulation of the Meox2 gene in the myoblasts when they have migrated and are positioned as differentiated muscle groups inside the limb territory (Mankoo et al., 1999).

5.3.12 INTERLIMB SOMITES DISPLAY ATYPICAL EXPRESSION OF TGFβ2 IN MEOX2−/− EMBRYOS AT E12.5

TGFβ2 plays a pivotal role in axial tendon development (Pryce et al., 2009). Therefore, we examined the effect of Meox2 mutation on TGFβ2 expression by whole mount in situ hybridization in Meox2+/− heterozygous controls and Meox2−/− homozygous mutants at E12.5 (Fig. 5.3.12). The expression pattern was similar in most regions of the trunk for both mutants and controls (Fig. 5.3.12A and B, yellow arrowheads). Surprisingly, we found an elevated TGFβ2 expression in interlimb somites that extended towards the distal sclerotome, whereas, in controls, it was restricted only in the medial regions of sclerotome (Fig. 5.3.12A-F, black arrowheads).

Together, our data here represent an unexpected increase in the level of TGFβ2 expression only in somites present at interlimb level in Meox2−/− mutant embryos.

5.3.13 INCREASED TGFβ2 EXPRESSION IN THE ZEUGOPOD IN MEOX2−/− MUTANTS AT E12.5

Given the critical tendon inducing activity of TGFβ2 signalling in limb tendon development, we analysed TGFβ2 expression in the dorsal and ventral aspects of Meox2+/− heterozygous controls and Meox2−/− homozygous mutant forelimbs and hindlimbs (Fig. 5.3.13). While, the evidence showed a decrease in Scx expression in TGFb2-/− mutants (Pryce et al., 2009), the Meox2-/− mutants showed similar down regulation of Scx domains at E12.5. We predicted this
down regulation of Scx could be accompanied by decrease in TGFb2 expression. Surprisingly, we found an increase in the TGFβ2 within the zeugopod in Meox2−/− mutant embryos. Importantly, there was a wider expression domain towards the proximal axis of the forelimb segment on dorsal and ventral aspects (Fig. 5.3.13A-D, red arrowheads). Conversely, we observed similar expression patterns in forelimb autopod segments of control and mutant (Fig. 5.3.13A-D, yellow arrows).

Furthermore, in hindlimbs, we found a similar phenotype with the broader expression pattern of TGFβ2 in the prospective zeugopod (Fig. 5.3.13E-H, red arrows). However, no evident differences were observed in the autopod of hindlimb (Fig. 5.3.13E-H, yellow arrows). In summary, absence of Meox2 results in an increase in levels and domains of TGFβ2 expression in zeugopod segments of the forelimb and hindlimb. This observation does not support our proposed model of Meox2 coordinates with TGFβ signalling that up regulates Scx expression in target cells.

5.3.14 MEOX2 EXHIBITS VARIABLE LEVELS IN RESPONSE TO TGFβ2 SIGNALLING

After our investigation of TGFb2 up regulation in the absence of Meox2, at this point, we proposed an alternative model that TGFb signalling acts upstream on both Scx and Meox2. Therefore, we decided to use an in vitro assay to investigate if Meox2 is regulated by TGFb signalling as previously described for Scx in C3H10T1/2 cell line by Pryce et al., (2009). We stimulated these cells by adding recombinant TGFβ2 protein and performed semi-quantitative PCR analysis of Scx and Meox2 mRNA at various time points up to 24 hours (Fig. 5.3.14). TGFβ2 protein induced robust expression of Scx at 8 hours (Fig. 5.3.14A) (Pryce et al., 2009). We found that Meox2 levels were initially down regulated after addition of TGFβ2 protein; however, the level sharply increased at 24 hours (Fig. 5.3.14B). We found repeatedly this biphasic response of Meox2 in response to TGFβ2 protein.
5.4 Discussion

Our evidence indicates that the Meox2 protein is not expressed by Scx\(^+\) tendon progenitors at E12.5-13.5 and E14.5 in the zeugopod of the forearm. However, Meox2\(^+\) cells are present in forelimb autopod tendons at E14.5 revealing a pivotal function of Meox2 in modular limb tendon development. The aim of our study was to identify whether Meox2 acts extrinsically or intrinsically in tendon progenitor cells during embryonic tendon development. We employed the co-expression analysis for Meox2 and ScxGFP at E12.5, the stage when profound loss of Scx transcripts is evident. For this purpose, first we optimised the IHC protocol using the Meox2 antibody as described in methods section. Moreover, using a lineage-tracing method, an integrative description for Meox2 contribution during tendon formation and muscle connective tissue is described. Interestingly, in the absence of Meox2, severe loss of cell proliferation resulted, which could account for the reduction in the number of cells being recruited to express Scx.

Various signalling molecules have been demonstrated to influence tendon cell commitment, organisation, and differentiation at all stages of tendon development (Brent et al., 2004; Edom-Vovard et al., 2002; Pryce et al., 2009; Lords-Diez et al., 2009; Mendias et al., 2008; Clark et al., 2001; Eloy-Trinquet et al., 2009). Using Scx as a marker for tendon cells, in Tgf\(\beta\)2\(^{-/-}\); Tgf\(\beta\)3\(^{-/-}\) double knock out mouse embryos, a complete loss of all tendons was reported. In addition, Tgf\(\beta\)2\(^{-/-}\) mutant embryos exhibit severe disruption in tendon progenitor cells at E12.5 but no change of Scx expression observed in Tgf\(\beta\)3\(^{-/-}\) mutant embryos (Pryce et al., 2009). However, deletion of TGF\(\beta\)RII, which is single type II receptor utilised by all the members TGF\(\beta\) superfamily, affected overall tendon development suggesting a wider role of the signalling pathway in tendon morphogenesis.

Likewise, Meox2\(^{-/-}\) mutant embryos also show first manifestation of axial tendon phenotype at E12.5 whereas limb phenotype was apparent at E12.0 (see chapter 4). All these facts point to the existence of a reciprocal interaction
between Meox2 and TGFβ2 signals in regulating Scx expression and thereby suggest their significant contributions in maintaining tendon architecture. For this study, we employed analysis of two experimental approaches: (i) TGFβ2 expression in Meox2−/− mutant embryos (ii) response of Meox2 by over expressing TGFβ2 proteins under in vitro conditions.

Characterization of Meox2 expression during tendon development

Given the satisfactory results of Meox2 expression in limb buds during optimization protocols, we next characterised the expression of Meox2 from E12.5-14.5 that are the key developmental phases to form load bearing functional tendons. We then compared these expression patterns with ScxGFP fluorescence to identify tendon progenitor cells. Thereby, we proposed two alternative hypotheses: (i) Meox2 is co-expressed in ScxGFP+ cells and thereby causing an intrinsic defect in tendon cells at E12.5 in the knockouts. (ii) Alternatively, Meox2 is never co-expressed with ScxGFP+ tendon cells and is part of extrinsic cues necessary for normal tendon morphogenesis. Therefore, we used confocal analysis to identify co-expression of both genes in the tendon cells at E12.5. Our analysis in the syndetome demonstrated that the majority of the Meox2+ cells are located in the sclerotome and very few cells show co-expression with ScxGFP+ cells in syndetome.

Furthermore, the study that generated the ScxGFP reporter mouse has shown an expanded GFP expression in the early limbs bud (E10.5-12.5) (Pryce et al., 2009). Therefore, for our limb tendon analysis at this stage, we combined Scx in situ hybridization with Meox2 antibody staining on limb cross sections. The non-overlapping domains for both genes are evident (Fig. 5.3.2). However, we speculate that our observations for double positive cells from this method could be challenging. This is because the dense colour precipitates from the whole mount in situ hybridisation protocol in a cell could potentially mask the GFP signals that are localised in the cytoplasm. To ascertain our current observation for limbs at E12.5, in future we will perform double whole mount in situ
hybridization for both genes using fluorescent probe to compare the expression domains using a confocal microscope. Alternatively, the limb tissue specimens can be doubly labelled with Scx and Meox2 antibodies, which will provide a robust conclusion for the limbs. Due to the lack of a Scx antibody, the later approach is not possible at present.

In order to gain a better understanding of Meox2 expression during further developmental stages of the tendons, we compared whole mount in situ hybridizations for Meox2 and Scx in forelimbs of Meox2+/− control embryos at E13.5. The analysis of these results suggests a distinct role of Meox2 in modularity during tendon development. Both transcription factors showed partially overlapping expression domains in the distal autopod tendon cells, which suggest an intrinsic requirement of Meox2 by digit tendon precursors. Likewise, the subectodermal mesenchyme region showed overlapping expression patterns in the presumptive zeugopod segment. Although overlapping within the proximal limb, Scx mRNA was expressed in a considerable wider region than Meox2. Additionally, the Scx⁺ wrist tendon progenitors never expressed Meox2 (Fig. 5.3.3, yellow arrows). These wrist tendon cells connect the autopod tendons to their corresponding muscle counterparts in the proximal limb region (Huang et al., 2015b). Similar to autopod tendon precursors, the induction of wrist tendon cells is independent of the cues from the muscle cells, however, the maintenance and elongation towards the proximal zeugopod is dependent on the signals derived from muscle cells (Huang et al., 2015b; Huang et al., 2013). Despite the absence of Meox2 in this unique tendon population, we found severe irregularity in the organisation of wrist tendon anlagen in Meox2−/− mutant embryos at E13.5 (see Fig. 4.3.6, red arrowheads). This suggests an extrinsic role of Meox2 in tendon development whereby Meox2⁺ non-tenogenic cells are essential for continuous maintenance of the wrist tendon cells.

The presence of Meox2⁺ in non-tenogenic cells is apparent throughout the proximodistal axis that includes zeugopod and stylopod of the developing limb at E13.5 (Fig. 5.3.4 and 5.3.5). Whilst the specific identity of these Meox2⁺ cells
was not determined at this point, the fact they are present at the circumference of condensed tendons e.g. in the digits and nearby periphery of tendons suggest that they could be muscle connective tissue cells. Moreover, in the zeugopod and stylopod, cells that populate the regions adjacent to the surface ectoderm express Meox2 whereas tendon cells (ScxGFP+) are present near the cartilage condensations. This analysis once again exposed an inevitable involvement of Meox2 in modular limb tendon development due to its distinct expression patterns in autopod, zeugopod and stylopod.

By E14.5, the majority of the Meox2+ cells are integrated into the autopod tendon cells in the distal digit segment (Fig. 5.3.6). Conversely, the tendon cells at the metacarpal level do not express Meox2 and this expression pattern persisted in the zeugopod and stylopod regions even at this stage (Fig. 5.3.7).

Altogether, on one hand, Meox2 plays an intrinsic role for the digit tendon development. On the other hand, for normal wrist tendons and zeugopod tendons, Meox2 provides extrinsic cues for their maintenance and growth. Similar differential regulations of tendon development is also observed in various mouse models. For instance, Sox5 and Sox6 transcription factors are shown to be essential for autopod tendon development only. In Sox5−/−;Sox6−/− double mutant embryos at E12.5, due to a failure in cartilage formation, all autopod tendons are lost, on the contrary, zeugopod tendons remained unaffected (Huang et al., 2015b). This study has shown for the first time a positive cooperative action of cartilage on normal autopod tendon induction. The authors concluded that cartilage is not only necessary but also sufficient for the autopod tendon formation. In the same line of reasoning, it would be worth identifying the mechanisms by which Meox2 coordinates with Sox5 and Sox6 genes for normal digit tendon formation and therefore could be the topic of future investigations.
The *Meox2* cell lineage contributes to normal tendon development and muscle connective tissue

The proper insight into the consequences of *Meox2* loss-of-function on muscle-tendon interactions and muscle connective tissue was revealed by inserting the *LacZ* gene into the *Meox2* locus (see methods section). The analysis of *Meox2-nLacZ* at embryonic stages revealed that the *lacZ* (*Meox2*) cells contribute to the establishment of tendons and muscle connective tissue at E13.5 (Fig. 5.3.8). In general, the connective tissue can be defined as cells rich in proteoglycan and collagen fibers. Categorically using this definition, they can be divided into two subgroups: (i) dense fibrous connective tissues i.e. tendons and ligaments, which aid in joining muscle to the bone and bone to bone, respectively, (ii) loose fibrous connective tissue i.e. muscle connective tissue and fascia which encompass muscle fibers and individual muscle groups (Gray et al., 2005).

Several studies have shown that the limb mesenchyme contains pools of multipotent progenitor cells that give rise to both categories of connective tissues and are present adjacent to the muscle and cartilage progenitors (Kardon, 1998; Oliver et al., 1995; Suzuki and Kuroiwa, 2002). These lateral plate mesoderm derived connective tissue are shown to regulate various aspects of limb muscle development and patterning (Chevallier and Kieny, 1982) (Chevallier and Kieny, 1982; Grim and Wachtler, 1991; Hasson et al., 2010; Kardon et al., 2003; Mathew et al., 2011; Swinehart et al., 2013).

Furthermore, muscle connective tissue actively coordinates muscle-tendon interactions during embryonic morphogenesis (Hasson et al., 2010; Kardon et al., 2003; Swinehart et al., 2013). All tendons and ligaments express *Scx* that is widely acknowledged as a faithful marker for distinguishing events in dense connective tissue (Schweitzer et al., 2001). Likewise, the *Tcf4* transcription factor, a member of the *Tcf/Lef* family was identified as a marker for muscle connective tissue (Kardon et al., 2003). A critical role for the muscle connective tissue during myogenesis was demonstrated using *TCF4*, which is a
downstream regulator of the canonical Wnt-β-catenin pathway (Mathew et al., 2011). The TCF4-dependent signal from the MCT was shown to regulate the muscle fibre differentiation from embryonic to fetal myofibers. In another study, Hasson et al. (2010) reported the forelimb muscle patterning defects including muscle splitting in the absence of Tbx5 gene. They further reported that Tbx5 is expressed in the muscle connective tissue and regulates muscle development in a cell non-autonomous manner.

Our lineage tracing data suggest that Meox2 is expressed by both categories of connective tissues. In the autopod segment, all prominent tendon groups e.g. FDP, FDS and EDC tendons show strong staining for Meox2-nLacZ at embryonic stages beginning from E13.5. Moreover, β-galactosidase activity is widely detected in the proximal tendon cells of the zeugopod. Therefore, in dense connective tissue i.e. tendons, Meox2 seems to play an essential role in the specification of the committed tendon progenitors cells. Interestingly, the close proximity of Meox2+ cells near the autopod tendons at E13.5 (Figure 5.3.4) and the strong Meox2-nLacZ+ (Figure 5.3.8) in these tendon groups strongly suggests that Meox2 expressing cells are later on recruited for autopod tendon formation. Indeed, by E14.5, Meox2+ cells are detected in digit tendons (Figure 5.3.6).

Additionally, we demonstrated that the differentiated cartilage cell population are not a derivative of the Meox2 progeny. Despite sharing common origins with tendon progenitor cells in limb mesenchyme, chondrocytes never show β-galactosidase activity at any embryonic stages and hence specify the role of Meox2 as restricted to tendons and muscle connective tissue only.

By E15.5, defined regions of Meox2-nLacZ expression corresponded to the FDS tendon cup formed around FDP tendon cells. In this scenario, Meox2 performs an intrinsic role in tendon genesis whereby it is involved in commitment and specification of tendon progenitor cells. In addition, the loss of this early Meox2 dependent tendon precursor specification caused both embryonic and post-natal tendon defects (see chapter 3 and 4). On the contrary, continuous expression of Meox2 is required for the proper
establishment and functioning of muscle connective tissue. Hence, an indispensable requirement of Meox2 in muscle connective tissue during muscle patterning and tendon formation in the limbs are concluded.

The possibility of Meox2 playing a central in tendon cell morphogenesis was further established by carrying out analysis in Meox2^{nLacZ/+} heterozygous controls and a Meox2^{nLacZ/nLacZ} homozygous mutant fetus at E16.5 that provided two key informations. First, all tendon groups show strong β-galactosidase activity. The majority of tendons were lost in Meox2^{nLacZ/nLacZ} embryos, the stage when morphogenesis of all tendon groups are achieved and the muscle-tendon units are well-established. Some tendon tissue that was present showed reduction in tissue mass and fusion of tendon bundles (Fig. 5.3.9).

Second, the loose connective tissue (fascia and muscle connective tissue) was present despite the insertion of the LacZ gene at both allelic loci disrupting Meox2 gene function. However, severe patterning defects of this tissue are evident in the mutants. Strikingly, the Meox2 mutation in the muscle connective tissue caused intermixing and disruption of individual muscle compartments. Evidently, it demonstrates an important intrinsic function of Meox2 from muscle connective tissue to regulate muscle patterning and organisation.

Altogether, our data provide strong evidence that the muscle phenotype in Meox2 mutants is due an abnormality in the muscle connective tissue (see chapter 3 and (Mankoo et al., 1999). It also indicates both intrinsic and extrinsic actions of Meox2 during tendon development and muscle connective tissue specification.
Meox2 is essential for normal cellular proliferation but not cell death during tendon morphogenesis

The down regulation of ScxGFP⁺ tendon cells at E12.0 suggests that the Meox2 gene act as an even earlier regulatory factor to dictate tendon cell commitment compared to TGFβ signalling and the Scx transcription factor. Once specified, these cells no longer need Meox2 in zeugopod tendons but exhibit a continuous wave of recruitment in autopod tendon formation. During development of a tissue, it is worth considering cell proliferation and cell death that occur in synchronisation to achieve a final functional form of that tissue. Therefore, this fact along with our data on the failure of muscle connective tissue organisation and tendon progenitor specification led us to perform analysis for both important cellular events in Meox2⁺/⁻ mutant embryos. We concluded severe loss of cellular proliferation at E12.5, which occurred due to loss of Meox2 function.

This strongly implies that Meox2 regulates tendon genesis by promoting cell proliferation and thereby assists in additional recruitment of tendon progenitor cells at the site of condensation. However, there was an overall reduction in cell proliferation among all cell types across the entire compartment in somites suggesting a significant role of Meox2 in cell cycle progression during embryogenesis. Nonetheless, functional roles of Meox2 in promoting cell cycle events need a rigorous examination during embryonic development.

Moreover, in the absence of Meox2, reduction in ScxGFP⁺ cells in somites is not due to activation of the cell death machinery at E12.5 (see Fig. 4.3.11 and 5.3.11). We found no change in apoptotic pathways in the mutants at this embryonic stage. Taken together, one of the aspects by which Meox2 is required for tendon development is through regulating mitotic proteins in the cell cycle of tendon cell proliferation. It also implies that early Meox2 expression represents a commitment to tendon lineage at E12.5 by regulating only cell proliferation and not cell death.
Increase of \textit{TGFβ2} in interlimb somites in \textit{Meox2/-} embryos at E12.5

To gain insight into the cooperative molecular functions of \textit{Meox2} and TGFβ2 signals, it was important for us to demonstrate that both molecules are regulating Scx expression in a complementary manner. Therefore, to begin with, we sought to validate the expression patterns of TGFβ2 in the absence of \textit{Meox2} at E12.5. Surprisingly, our results demonstrated an increase in TGFβ2 levels in the interlimb somites of \textit{Meox2/-} mutant embryos. TGFβ2 expression pattern were similar in cervical (contribute towards tongue, neck and shoulder muscles) and lumbar (opposite the hindlimbs) somites.

Various studies have shown that along the rostrocaudal body axis, somites at each levels exhibit some variation in morphological characteristics (Franz et al., 1993; Smith et al., 1994; Tajbakhsh et al., 1996). Interlimb somites differ from the somites located opposite to the limbs that express \textit{Pax3}, \textit{c-met}, \textit{Meox2} and \textit{Lbx1} and thereby leave the lateral dermomyotome and migrate into the developing limb bud (Bober et al., 1991; Mankoo et al., 1999). As a result, the lateral dermomyotome of somites at the limb level is reduced compare to the somites present at the interlimb levels. The migratory behaviour of somite cells opposite to the limb was accompanied by apoptosis in the lateral dermomyotome during later developmental stages of forelimb level somites (Tosney, 1994). From these evidence, we can attempt to interpret the differences found in TGFβ2 expression only in interlimb somites of \textit{Meox2/-} mutant embryos.

However, this contradicts our initial hypothesis, as our assumptions were that at E12.5, the expression pattern of TGFβ2 in \textit{Meox2/-} embryos and \textit{Meox2} in \textit{TGFβ2/-} mutant embryos would be normal in somites and limbs. Thereby, we predicted a concerted action of \textit{Meox2} and TGFβ2 in providing means of guiding the developing tendons from the site of induction to their appropriate insertions. Furthermore, evidence suggests a complex interaction between \textit{Meox2} and TGFβ signals in epithelial cell biology (Valcourt et al., 2007). Tgfβ1
derived signals synergised with ectopic *Meox2* to arrest proliferation of epithelial cells and, conversely, *Meox2* partially caused blockage of TGFβ-1 derived epithelial-to-mesenchymal transition (EMT) in cultured keratinocytes (Valcourt et al., 2007). Therefore, our results should be considered novel in the course of development, but are unexpected.

Moreover, during development, TGFβ2 expression is localised in the medial domains of the sclerotome that act as primitive sites of cartilage condensation (Pryce et al., 2009). It was shown that this compartment contains a multipotent cell population that expresses both *Scx* and *Sox9* (Sugimoto et al., 2013). Conversely, TGFβ2 expression was never located in the syndetome, which hosts only *Scx*/Sox9 - tendon precursors (Pryce et al., 2009; Sugimoto et al., 2013a; Sugimoto et al., 2013b). Moreover, TGFβ2 levels are upregulated in the presumptive zeugopod and stylopod of *Meox2* mutant limbs at E12.5 (Fig. 5.3.12). On the contrary, the *Meox2* mutation does not affect TGFβ2 expression in the autopod segment. Finally, unlike in epithelial cells, we could not detect any down regulation of TGFβ2 in the absence of *Meox2*.

Previously, Pryce and co-worker (2009) indicated that the prechondrogenic mesenchymal condensation along the proximodistal axis of the limb bud shows robust expression of TGFβ2. In the same work, the authors described a partial but not complete overlap of TGFβ2 with differentiating muscles and tendon progenitor cells in the limbs. Evidence suggests that the distal tendon progenitor cells of the limb never express TGFβ2 at E12.5. In the same way, we found non-overlapping expression of *Meox2* and *Scx* in the dorsal and ventral domains of the limb. Collectively, we can deduce two possible ways of interaction between *Meox2* and TGFβ2 during embryonic development: (i) in a growing limb bud, *Meox2* muscle connective tissue and TGFβ2+ cartilage cells work in conjunction to guide the Scx+ tendon precursors for their organisation and proper insertions to establish a functional musculoskeletal system (Pryce et al., 2009). (ii) During proximodistal differentiation of limb bud and in somites, *Meox2*+ cells in turn also restrict TGFβ2+ cells to achieve an integrated musculoskeletal system by limiting TGFβ2+ domains.
In the same line of reasoning, we could propose the involvement of Meox2 along with TGFβ2 for the active recruitment of a second stream of induced tendon progenitor cells. This is because all tendon groups and muscle connective tissue at later embryonic tendon development stages are derived from the Meox2 progeny (see Fig. 5.3.8 and 5.3.9). Nonetheless, in future it would be useful to analyse Meox2 expression in TGFβ2−/− mutant embryos at E12.5. This will help us to conclude if Meox2 functions upstream of TGFβ2 for regulating Scx expression during tendon development.

Transient expression of Meox2 in response to TGFβ signalling

In this study, effect TGFβ signalling on Meox2 expression was evaluated using C3H10T1/2 fibroblast cells. We found ambiguous patterns of Meox2 expression at various time points of the experiment. Initially, upon stimulation of cultured cells, Meox2 levels were downregulated until 8 hour after which its expression was elevated. We found this behaviour analogous to observations performed in cultured epithelial cells (Valcourt et al., 2007). The authors described that the cytostatic response of TGFβ1 caused an initial suppression of Meox2 expression but at later time points, a sharp elevation of Meox2 levels occurred. Furthermore, the functional experiments in keratinocytes suggested Meox2 forms a complex with Smad proteins and thereby acts as a downstream effector of TGFβ1 induced cell growth arrest.

Collectively, evidence so far suggest a biphasic interaction between Meox2 and TGFβ signals, however, our next step will be to analyse the expression pattern of known downstream effectors of the TGFβ pathway in Meox2−/− mutant embryos e.g. Smad proteins. Thereby, for future studies, we hypothesised that Meox2 is involved in restricting TGFβ signalling pathways and thereby promotes cellular proliferation during embryonic development.
5.5 Conclusions

In summary, *Meox2* plays an intrinsic role for the distal autopod tendon development, whereas, it exhibits a key extrinsic role for the zeugopod tendons. *Meox2* is also necessary for normal cell proliferation. Additionally, using lineage tracing, we concluded that Meox2 derived cells are incorporated in both tendons and muscle connective tissue. Moreover, our data here represent an unexpected increase in the level of *TGFβ2* expression only in the somites present at interlimb level in *Meox2−/−* mutant embryos. Also, an increase in levels and domains of *TGFβ2* expression in zeugopod segments of the forelimb and hindlimb. There is a biphasic interaction between *TGFβ2* and Meox2 under *in vitro* conditions.
Fig 5.3.1 Failure of cell proliferation in Meox2/- embryos at E12.5

Sagittal sections were obtained from trunk of a Meox2+/-;ScxGFP (A and C); Meox2-/-;ScxGFP (B and D) and Meox2+/- (E and F) at E12.5. (A-D) Immunostaining was performed to identify actively proliferating cells by Ki67 antibody. ScxGFP fluorescence marked tendon progenitor cells in the syndetome. The profound loss of proliferating cells occurred due to Meox2 mutation. (E and F) An equivalent sagittal section from Meox2+/- embryo was stained using Meox2 antibody. White arrows indicate the Meox2+ expression from a distinct cell population outside the syndetome in E. NT, neural tube.
Fig 5.3.2 Normal apoptosis in Meox2−/− embryos at E12.5

Sagittal sections were obtained from trunk of a Meox2+/−;ScxGFP (A, B and C); Meox2−/−;ScxGFP (D, E and F) at E12.5. Immunostaining was performed for activated caspase 3 by antibody as marker for apoptotic cell death. ScxGFP fluorescence marked tendon progenitor cells in the syndetome. (A and D) high level of apoptosis is observed near neural tube in control and mutant embryos. (B and E) Expression of Caspase 3 staining is found normal in the somite of heterozygous controls and homozygous mutants. (C and F) The caspase 3 staining is merged with ScxGFP expression to detect tendon cells. White arrowheads indicate the expression of Caspase 3 from the cells undergoing apoptosis. nt, neural tube.
Fig 5.3.3 Majority of Meox2+ cells are distributed in the sclerotome

Longitudinally sections from a Meox2+/;ScxGFP embryo at E12.5 was obtained (A-I). Immunostaining was performed using specific antibodies for Meox2 and GFP while nuclei were stained with DAPI. (A-C) show overlapping expression domains of Meox2+ and ScxGFP+ under fluorescence microscope. The boxes I and II in C show the two regions of the section analysed under confocal microscope. (D-I) show the higher magnification of the same section observed in confocal microscope. ScxGFP+ cells mark syndetome region in the somite. Meox2+ cells were mostly located in the sclerotome. White arrowheads in A-C indicate overlapping Meox2+ and GFP+ cells; white arrows in D,F and G indicate Meox2+ cells; yellow arrows in E,F and H show ScxGFP+ cells; yellow arrowheads show few Meox2+;ScxGFP+ double positive cells. NT, neural tube; DRG, dorsal root ganglion.
Fig 5.3.4 *Meox2*\(^+\) is not expressed in Scx+ domains in the limbs at E12.5

The transverse section of limbs from an E12.5 *Meox2*\(^{+/−}\) embryo was obtained (A-C). In situ hybridisation for Scx was performed to identify tendon progenitor cells in the limb (B) and immunofluorescence for *Meox2* using an antibody was performed (A). The non-overlapping expression domains of *Meox2* and Scx were evident on merged image (C). White arrowhead indicates *Meox2*\(^+\) cells surrounding cartilage primordia; white arrows indicate dorsal and ventral patches of mesenchyme positive for Scx transcripts. C, cartilage.
Fig 5.3.5 Expression analysis of *Meox2* and *Scx* in the forelimbs at E13.5

(A-D) Whole mount in situ hybridization of the forelimbs using antisense probe for Meox2 and Scx at E13.5. (A and B) show the dorsal aspect of limbs while (C and D) show the ventral aspects of limbs. Black arrows show similar region of expression in the zeugopod. Red arrows in the autopod show expression of Meox2 transcripts in the digit tendon cells. Yellow arrows represent Scx expression in the tendons of metacarpal region of the limb.
Fig 5.3.6 *Meox2* expressing cells surround the condensed tendon bundles in the autopod at E13.5

(A-D) Transverse sections of limbs from an E13.5 *Meox2*+/− embryo were stained for Meox2 expression using an antibody. FDP tendons cells were visibly condensed (T1). The higher magnification of a tendon tissue in C and D is from the boxed regions in A and B. *Meox2*+ cells were confined at the circumference of tendon tissue and were found in muscle connective tissue. White arrowheads indicate *Meox2*+ cells surrounding cartilage primordial and connective tissue; white arrows indicate *Meox2*+ cells surrounding tendon condensation; white arrowheads show Meox2+ cells in muscle connective tissue; C, cartilage; T1, flexor digitorum profundus.
Fig 5.3.7 Non-overlapping expression of Meox2+ and ScxGFP+ in the zeugopod and stylopod at E13.5

The transverse section of limbs from an E13.5 Meox2+/−; ScxGFP embryo was obtained (A-D). Immunofluorescence for Meox2 using an antibody was performed (red) and tendons cells were identified using ScxGFP expression. The higher magnification of a tendon tissue in C and D is from tagged panel in A and B. The Meox2+ was confined in outer layer of tendon tissue and was found in soft connective tissue. White arrowhead indicates Meox2+ cells surrounding cartilage primordial and connective tissue; white arrows indicate Meox2+ cells surrounding tendons; yellow arrowhead show tendons; C, cartilage; D, distal; P, proximal
Fig 5.3.8 Distinct expression of Meox2 in distal and proximal autopod tendon compartment at E14.5

(A) Whole mount in situ hybridisation for Scx in a Meox2+/− embryo showing individuated tendon groups in the forelimb. (B-E) Immunostaining with antibody for Meox2 (red) and nuclei stained with DAPI (blue) on a transverse section from the digit of a Meox2+/− embryo. The level of section (1) obtained is indicated in panel (1 in A). The boxed areas in B and C is shown in higher magnification in D and E. (F-H) Transverse section through the limb of Meox2+/−;ScxGFP was obtained at the metacarpal level indicated in figure (2 in A). Meox2+ cells in red identified by using antibody staining and ScxGFP expression for tendon cells. White arrowheads in B and C indicate EDC tendons (T3); white arrows in B and C show FDP tendons (T1); pink arrowheads in B-E show Meox2 expression in muscle connective tissues; white arrowheads in F and H Meox2+ cells adjacent to EDC tendon (T3) and white arrowheads in F and H show FDP tendons. C, cartilage
Fig 5.3.9 *Meox2*⁺* cells are not expressed in ScxGFP*⁺* tendon cells of zeugopod at E14.5*

(A-I) Transverse section was obtained from a forearm zeugopod and stylopod of Meox2⁺/⁻;ScxGFP at E14.5. Immunostaining was carried out using Meox2 antibody (red) and ScxGFP expression located tendon cells (green). (A-F) represents a cross section from zeugopod segment in which Meox2⁺* cells marked a non-ScxGP⁺ regions. The boxed regions in A-C were analysed at higher magnification as shown in D-F. The Meox2⁺ cells were never found in the regions of ScxGFP⁺ expression domains. (G-H) represent a stylopod segment following the similar pattern of non-overlapping expression domain of Meox2 (red) and ScxGFP tendon cells (green). White arrows show Meox2⁺ cells; yellow arrows show ScxGFP⁺ cells; r, radius; u, ulna; h, humerus
Fig 5.3.10 **Fate-mapping of Meox2\(^+\) cells during embryonic stages:**

\(\beta\)-galactosidase activity was identified from Meox2 locus on transverse sections obtained from the forelimbs of Meox2\(^{nLacZ/+}\) embryos at E13.5 (A-D) and E15.5 (E-J). Descendants of Meox2+ cells were visualised by S-gal staining. (A-D) At E13.5, Meox2 derived S-gal\(^+\) cells are present in the FDP (T1) and EDC (T3) digit tendons. The proximal sections show wider expression from the muscle connective tissue in C and D. (E-J) At E15.5, all digit tendon show S-gal staining. The boxed region in E is shown at higher magnification in F and the boxed region of G is magnified in J. Tendon nomenclature is tabulated in Table 2. Notice, by E15.5, all tendon groups and surrounding cells are showing a strong \(\beta\)-galactosidase activity. The cartilage cells are not S-gal\(^+\) at both embryonic stages.
Fig 5.3.11 Meox2+ derived cells are present in tendons and muscle connective tissue at E16.5

Transverse sections of forearm zeugopod were obtained from Meox2\(^ {nLacZ/+}\) (A, B and D) and Meox2\(^ {nLacZ/nLacZ}\) (C and E). X-gal staining was performed to identify β-galactosidase activity from Meox2 locus. The boxed region in B is magnified in A to show blue tendon cells and muscle connective tissue in heterozygous controls. (C and E) In homozygous mutant, all tendons were lost, however, the muscle connective tissue showed strong X-gal staining. Black arrow in (A) show tendon; red arrows represent muscle connective tissue; asterisks in (D) show muscle fibres; R, radius; U, ulna. Notice, absence of blue cells from muscle fibres in (D).
Fig 5.3.12 Interlimb somites showed increase in TGFb2 transcripts in Meox2^-/- at E 12.5

Whole-mount in situ analysis for TGFb2 at E12.5 on a Meox2^+/- control embryo (A, C and E) and in homozygous Meox2^-/- mutant embryo (B, D and F) was performed. Black arrows represent increased TGFb2 expression domain in the interlimb somites whereas yellow arrowhead showed normal expression levels in the other regions of trunk.
Fig 5.3.13 Increased TGFβ2 expression restricted for only zeugopod and not autopod in Meox2\(^{-/-}\) at E 12.5

Whole-mount in situ analysis for TGFβ2 at E12.5 in a Meox2\(^{+/+}\) forelimb dorsal and ventral (A and C) and in the Meox2\(^{-/-}\) embryo dorsal and ventral forelimb (B and D) was performed. Yellow arrows indicate normal TGFβ2 expression domain whereas red arrows showed overall considerable increase of TGFβ2 expression levels in the absence of Meox2. In addition, TGFβ2 whole-mount in situ analysis on the Meox2\(^{+/+}\) control hindlimb dorsal and ventral (E and G) and in Meox2\(^{-/-}\) embryo dorsal and ventral (F and H) was performed.
Fig 5.3.14 Biphasic interaction between Meox2 and TGFβ2 signalling in cell culture

Overexpression of TGFβ2 protein was performed in C3H10T1/2 cells. Scx and Meox2 cDNA was monitored by semi-quantitative PCR after 1h, 2h, 6h and 8h of the incubation followed by harvesting cells. Scx was upregulated from 6h onwards whereas Meox2 levels showed biphasic response to the TGFβ2 signalling pathway.
Chapter 6

General Discussion
6.1 General discussion

During embryonic tendon genesis, the specified tendon cells are positioned between the muscle fibres and bone to form a functional musculoskeletal system. However, the mechanisms underlying precise alignment of tendon cells at their functional sites have just started to be elucidated. Currently, there are only few molecular regulators present to study the development of tendon. Using Meox2\(^{-/-}\) mutant mice, we show an essential role for the Meox2 gene in tendon formation. The mutant neonates displayed much thinner and extremely fragile tendons; and these defects were found to be a failure in embryonic tendon development and demonstrated a sustained role for Meox2 in the alignment and organisation (E12.5), maturation (E13.5), integration, and differentiation (E14.5 onwards) of tendon progenitor cells. However, the induction of tendon progenitor cells at E11.5 remained unaffected in the mutant embryos, and there was no discernible defect in cartilage cells and ligaments of Meox2\(^{-/-}\) embryos. Deciphering the tendon phenotype in the Meox2 mutants, we show that Meox2 is expressed by the Scleraxis\(^{+}\) autopod tendons but not in the zeugopod tendon indicating a position specific roles of Meox2 in the autopod and zeugopod. Furthermore, Meox2 ablation affected cell proliferation but not cell death. In mice, TGF\(\beta\)2 signalling is crucial for the embryonic tendon development where it maintains tendon cell identity and recruits additional specified tendon progenitor cells. We found a biphasic interaction between Meox2 and TGF\(\beta\)2 signalling \textit{in vitro} whereby, initially Meox2 levels were up regulated and then weakly repressed at later time points. Therefore, it raises the possibility of direct interaction between Meox2 and TGF\(\beta\)2 signalling during embryonic tendon development. Interestingly, in Meox2 mutant embryos we observed an increase in TGF\(\beta\)2 expression in interlimb somites and limbs.
Meox2/− mutant animals have profound limb tendon defects

Broadly, connective tissues are categorized into two groups: (i) dense connective tissue (tendons and ligaments) and (ii) loose connective tissue (fascia and muscle connective tissue). Using the ScxGFP transgene as a tendon marker, we showed that mutant neonates lack axial tendons of the trunk, tail tendons and the limbs displayed only thin trails of tendon fibres. In **Meox2**/− neonates, apart from the substantial defects in all appendicular and axial tendons, there was severe impairment of fascia formation that led to intermixing of muscle groups in the forelimbs and hindlimbs.

An essential requirement of the Scx gene has been proposed for FDS tendon development in the forelimb autopod but not in the zeugopod (Huang et al., 2013; Murchison et al., 2007). Our observations in **Meox2**/− neonates indicated a complete loss of FDS in the autopod and zeugopod. This suggests that **Meox2** also plays a decisive role in the autopod and zeugopod FDS tendon development, Scx expressing FDS tendon progenitors in the autopod rely on the cues from meta-carpophalageal joints (MCP) joints for the development (Huang et al., 2015b). This observation was supported by the loss of the autopod FDS tendon unit in Sox5+/−; Sox6+/− double mutant embryos which show complete failure in the cartilage differentiation; and in the Indian hedgehog null embryos (Ihh−/−) embryos that exhibit skeletal defects (Huang et al., 2015b). Conversely, zeugopod FDS tendon segment does not rely on the cartilage and therefore, it suggests that Scx mediates the signals from the cartilage in the FDS tendon progenitors of the autopod.

It is noteworthy that **Meox2**/− mutant neonates displayed a regular bilateral symmetry of MCP joints in the digits. So why then does a loss of FDS tendon in the digit occur in the mutants despite the presence of normal skeletal elements? We propose the **Meox2** gene is required intrinsically for the normal development of the autopod tendons. The finding that the Meox2 protein is expressed in digit tendons during tendon maturation stage supports this view. Our data showed
similar expression domains of Meox2 transcripts with Scx in the distal autopod tendon cells of the forelimb at E13.5 and Meox2 proteins in the forelimb autopod tendons by E14.5. In this scenario, we propose an intrinsic role of Meox2 to drive the normal expression of Scx gene function inside digits of the forelimb. Interestingly, we have observed the loss of Scx mRNA expression in Meox2−/− mutant embryos at E13.5. Therefore, we conclude that a Meox2 function genetically upstream of Scx in the autopod tendon progenitors and that Meox2 is a member of the intrinsic regulatory mechanisms to control maturation and differentiation of digit tendon progenitors. Therefore, skeletal cues are unable to compensate for the loss of Meox2 gene function in the autopod.

As development proceeds, FDS tendons residing in the zeugopod (Huang et al., 2015b; Huang et al., 2013) control contraction of differentiated FDS muscle from the autopod towards zeugopod. The muscle inactivity in paralysed mdg embryos or absence of muscles in Spd embryos shows loss of FDS tendon in zeugopod but not in autopod (Huang et al., 2015b) suggesting that the cues from the muscles are necessary for the development of FDS tendon inside zeugopod. Likewise, our data revealed a reduction in the FDS tendon in the zeugopod due to Meox2 loss-of-function. We propose that unlike the autopod, an extrinsic regulation of Meox2 gene function for the zeugopod tendon development. This is supported by the observation that expression of Meox2 is not localised to Scx+ cells throughout zeugopod tendon development.

The morphological characterisation in Meox2−/− neonates revealed an overall disruption of flexor and extensor tendons. Other major tendons that were affected throughout the proximodistal axis included other flexor and extensor tendons i.e. FDP and EDC tendons. Lineage tracing analysis has shown that induction and progression of these tendons originates from two separate pools of progenitor cells in the autopod (Six2+/Scx+) and zeugopod segments (Scx+) (Huang et al., 2015b). The same study also showed that extrinsic cues from the muscle cells are required for the tendon development in the metacarpal and zeugopod segments. The subtle changes in FDP tendon morphology and fusion of individuated EDC tendon bundles in the zeugopod of the forelimb in Meox2−/− neonates indicate deleterious effects on both of these cell populations in the autopod (Six2+/Scx+) and zeugopod (Scx+). We demonstrate the EDC tendon
phenotype in Meox2−/− was similar to that reported for Spd and mdg mutant embryos (Huang et al., 2015b). This suggests an indirect role of Meox2 during zeugopod tendon formation and we conclude that the zeugopod tendon defects are secondary to an initial failure of the normal muscle formation. Significantly, Meox2 is expressed in limb myoblasts only as they migrate into the limb at E10.5, and is quickly down regulated prior to the expression of myogenic regulators such a MyoD (Mankoo et al., 1999). Furthermore, the same study also showed that in Meox2 mutants, limb myoblast migration and differentiation are observed to be normal (Mankoo et al., 1999). Therefore, we conclude the tendon defects, although similar to those seen in Sp and mdg mutants, are unlikely to be a consequence of a loss of Meox2 in myogenic precursors. Instead, we propose that Meox2 functions in muscle connective tissues (MCT), affecting muscle development that secondarily impacts on zeugopod tendon development, as previously shown (Hasson, 2011; Kardon et al., 2003; Mathew et al., 2011). Of course, this does exclude the possibility that Meox2 functions extrinsically to Scx+ cells in progenitors that are subsequently recruited to tendons. Additionally, we cannot exclude the possibility that a pool of mesoderm cells that are bipotential and can be directed to a MCT or tendon fate; in a mechanism similar to that seen with Sox9+; Scx+ cells which can contribute to cartilage or tendon (Lorda-Diez et al., 2014; Lorda-Diez et al., 2009).

Our lineage analysis with the Meox2-nLacZ transgene further revealed the muscle connective tissue retains a history of Meox2 expression. Interestingly, unlike the complete loss of tendons in Meox2nLacZ/nLacZ foetus at E16.5, loose connective tissue (fascia and muscle connective tissue) was still present in the mutants. However, development defects of these tissues were evident in the mutants that showed severe mispatterning and reduction in the tissue mass. Importantly, this correlated with the intermixing and disruption of individual muscle compartments at E16.5 and neonatal stage (Mankoo et al., 1999). This demonstrates an important intrinsic function of Meox2 from muscle connective tissue to regulate muscle patterning and organisation. Muscle connective tissue actively coordinates muscle-tendon interactions and muscle patterning during embryonic morphogenesis (Hasson et al., 2010; Kardon et al., 2003; Swinehart et al., 2013). A critical role for the muscle connective tissue (MCT) during
myogenesis was demonstrated using classic chick-quail experiment and single-cell lineage tracing of myogenic progenitor cells that lacked the capacity to form a particular anatomical muscle (Chevallier et al., 1977; Christ et al., 1977; Kardon et al., 2002). Therefore, the pivotal role of the cells that are derived from limb mesoderm emerged as an extrinsic cue for muscle pattern. In recent years, the TCF4 transcription factor, a downstream regulator of the canonical Wnt-β-catenin pathway is recognised as a marker for MCT (Kardon et al., 2003; Mathew et al., 2011). The TCF4-dependent signal from the MCT was shown extrinsically regulating the muscle fibre differentiation as genetic deletion of fibroblast specific Tcf4 expression led to severe reduction in muscle mass at P0. Same study also showed that Tcf4-dependent signals are necessary for the switching of embryonic myofibres to multinucleated foetal muscle fibres. Intriguingly, the authors showed that Tcf4 positively regulates embryonic and foetal myogenic cells by directly binding to the MyHCI and MyHCIIb enhancers via Wnt/β-catenin signalling pathway and therefore, an intrinsic regulatory Tcf4 dependent machinery controls muscle fibre switch.

In addition, Hasson et al. (2010) reported that Tbx genes are also required for the development of MCT. Tbx5 knockout mice have forelimb muscle patterning defects including the muscle splitting in the forelimb. The data in the same report also showed that Tbx5 regulates muscle connective tissue development via N-Cadherin and β-catenin pathway and thereby controls the intrinsic pathway in maintaining integrity of this tissue. The profound disruption in the embryonic development of zeugopod muscle and tendon was also occurred due to the loss of Hox11 genes in the muscle connective tissue (Swinehart et al., 2013). Using Hoxa11eGFP reporter, the study showed that Hoxa11 gene is expressed in the muscle connective tissue, however, in Hox11 knock out embryos, tendons and muscle precursors failed to differentiate and thereby an extrinsic role of Hox genes from MCT was suggested during tendon morphogenesis.

Evidence for a direct contribution of Meox2+ cells to developing tendons was obtained from the analysis of Meox2αLacZ/+ mice limbs which showed that all prominent tendon groups of the autopod e.g. FDP, FDS and EDC tendon
bundles showed strong LacZ staining from E13.5 onwards. Similarly, the zeugopod tendons showed β-galactosidase activity indicating that the Scx+/Meox2- tendon cells at these stages are derivatives of Meox2 progenitor cells. Interestingly, the close proximity of Meox2+ cells near the autopod tendons and strong Meox2-nLacZ+ in these tendon groups at E13.5 strongly suggests that Meox2 expressing cells are recruited in the autopod tendon formation. Indeed, by E14.5, Meox2+ cells are detected in the digit tendons. Therefore, in dense connective tissue i.e. tendons, Meox2 seems to play essential role in organisation and recruitment of the committed tendon progenitors cells.

Therefore, on the basis of published data and observations in the present study, we hypothesize that, during tendon development, Meox2 regulates autopod tendon progenitors intrinsically whilst there is an external cues delivered by Meox2 for proper zeugopod tendon formation. Our RNA and protein expression data confirmed Meox2 expression is excluded from domains of Scx+ tendon progenitors at E12.5-13.5 and by E14.5 in the zeugopod of the forearm, although, significantly, the Meox2+ positive areas are adjacent to Scx+ domains. These observations indicate an indirect role of Meox2 and this interpretation is further supported by similarities in the phenotype of Scx expression in Meox2- and Spd embryos at E12.5. Whilst Meox2 loss-of-function resulted in complete loss of chevron-shaped Scx domain in the medial zeugopod; there was a significant reduction of the same expression domain due to the absence of muscles in Pax3 mutants. The presence of Meox2-nLacZ+ cells in both MCT and tendons can suggest that a pool of uncommitted progenitors in the limb are bipotential and can be recruited to both MCT and tendon fates.
Embryonic limb tendon development

Induction
E10.5-11.5

Organisation and alignment
E12.0-12.5

Aggregation and differentiation
E13.5 onwards
Figure 6.1: Diagrammatic summary of research findings in limb tendon development. (A) Induction of initial Scx/Sox9/Meox2 multipotent limb mesenchyme cells is specified to form tendons under the influence of Wnt and Fgf signalling. (B) Organisation of tendon progenitors requires signals that are derived from Meox2+ muscle connective tissue, muscle cells and adjacent cartilage condensation in the zeugopod. However, the extrinsic signals from the cartilage and Meox2 derived cues within the tendon cells are necessary for the autopod tendon formation. (C) Scx favours aggregation and differentiation of tendon progenitors to form mature distinct tendon along the proximo-distal axis occurs by E13.5. Additional Meox2+ cells are recruited to form the autopod tendons. While in the zeugopod, Meox2+ cells continue to regulate tendon development extrinsically from the muscle connective tissue.

An extrinsic and intrinsic influence of the transcription factors to regulate the development of neuron, blood cell and retinal tissue development has been described before (Cepko, 1999; Nguyen et al., 2014; Tosney et al., 1994). For instance, the extrinsic regulation of Meox1 from the somite on the endothelial cell derivatives was revealed when the genetic deletion of Meox1 in the zebrafish embryos resulted in the expansion of haematopoietic stem cells that are derived from endothelial cells (Nguyen et al., 2014). Moreover, during the vertebrate eye development, various cell types (rod and cone photoreceptor cells, bipolar cells and glial cells) though derived from common pool of progenitors, the morphogenesis all cells are affected by extrinsic and intrinsic activities of bHLH transcription factors (Brown et al., 2001; Furukawa et al., 2000; Hatakeyama et al., 2001). For example, bHLH genes Mash1, Mash3 and Chx10 play an intrinsic role for the bipolar cell morphogenesis. While, Mash1 and Mash3 indirectly promoted the formation of rod cell genesis, Chx10 extrinsically favoured glial cell formation (Cepko, 1999). Such findings support the notion of both intrinsic and extrinsic roles of Meox2 that governs the molecular mechanisms for the normal differentiation and morphogenesis of tendon tissue.

Furthermore, several line of evidence have demonstrated the modular development of FDS, FDP and EDC tendon groups by two separate groups of
progenitor cells in the autopod and zeugopod; we propose a crucial role of Meox2 function that controls the regulatory mechanisms in both progenitor populations of the tendons along the proximodistal axis of the forelimb.

A particularly striking finding of our data is the conserved role of Meox2 along the proximo-distal axis of the limb. Specifically, it indicate that Meox2 plays an evolutionary conserved function in the genetic regulatory mechanisms that are responsible for the functional and morphological shifts from fish fins to the tetrapod limbs. Using comparative morphology and functional genomics methods, previous studies have shown that the tetrapod limbs develop due to dual phases of HoxD and HoxA expression. These phases modulate the development of the autopod including wrist and digits that are controlled by cis-acting enhancers (Zakany and Duboule, 2007). A recent study has shown that two topological domains at Hox loci are conserved both in the zebrafish and in tetrapods (Woltering et al., 2014). However, functional genomics studies show that the late phase enhancers isolated from teleosts (zebrafish, tetraodon) are able to drive the expression of Hox genes only in the proximal structure of the limb but not in the autopod (Spitz et al., 2003). This suggests that the extrinsic roles of Meox2 in the zeugopod are conserved in the ancestors during early evolution. On the other hand, it also suggests that the intrinsic role of Meox2 in the autopod is acquired during the late evolution of autopods in the tetrapods.

Therefore- and hindlimb share similar genetic regulations and are evolutionary conserved (Wagner, 1989; Young et al., 2009), so it was not surprising that the FDB in the hindlimb, an analogue of the FDS in the forelimb, was completely missing in Meox2+/− neonate. To date, there is no other genetic model described that investigated FDB tendon development. Therefore, our data can be considered as the first report of a conserved genetic mechanism necessary for both FDS (forelimb) and FDB (hindlimb) tendon development.

Meox2+/− neonates showed a significant loss of Achilles tendon mass suggesting a role in both the prenatal and postnatal development and regulation of tendons. The hallmark of postnatal tendon development is the continuous deposition of collagenous matrix. Interestingly, the majority of the molecular
regulators that are important for post-natal tendon formation do not exhibit embryonic tendon defects in the respective mutants. Abnormalities in the collagen fibril organisation of Achilles tendon have been reported in COMP mutants, which display muscle myopathy, bone dysplasia, and reduce tendon thickness (Pirog et al., 2010). The defects in the collagen composition from this tendon group was also observed in Gdf5−/− that showed impaired properties of mechanical loading along with delayed in healing properties when observed in injury model. Therefore, it is interesting for us to speculate that the biomechanical properties of individual collagen fibrils in the Achilles tendon of Meox2−/− could be altered.

Meox2−/− mutant animals show gross axial tendon defects

Our analysis of the trunk and tail tendons in addition to the limbs indicated that Meox2 plays an essential role in the tendons that assist in the passive transfer of the force from both epaxial and hypaxial muscles. Whilst epaxial muscles support the back and neck muscles, the hypaxial muscles controls the limb, tongue, diaphragm, intercostal, tail and the entire body wall (Kablar et al., 1997). The somite expression of Meox1 in the demomyotome and Meox2 in the sclerotome suggests they regulate epaxial and hypaxial muscle development (Candia et al., 1992; Mankoo et al., 2003).

Using ScxGFP transgene expression, we showed the disrupted tendon fibres of the dorsal back skeleton in the mutant neonates. However, Meox2 exhibits a crucial role for the maintenance of intercostal at E14.5 and tail tendons that are required by hypaxial muscles of the trunk. Interestingly, the annulus fibrosus ligament in the tail, that also expresses ScxGFP, remained unaffected in our mutant model. A similar tail tendon phenotype was also reported in the ScxGFP−/− animals (Murchison et al., 2007). Previously, the data showed that Meox2−/− animals are born with expected Mendelian frequency and no embryonic lethality observed due to Meox2 mutation (Mankoo et al., 1999). Such normal survival ratio despite loss of ScxGFP from the intercostal tendons could be explained by
the observation of normal tissue morphology and size of the hypaxial muscles in neonates i.e. intercostal and diaphragm muscles that are essential for the viability of all vertebrates.

Our findings further demonstrated the tendon defects are embryonic and the earliest tendon phenotype was at E12.5 for axial tendon tissues, in contrasts to E12.0 in the limbs. Between E12.0- E12.5, the committed axial tendon cells initiate to position between muscle and cartilage cells (Murchison et al., 2007; Schweitzer et al., 2001). It is well known that tenocytes that are positioned near a cartilage arise from Scx⁺/Sox9⁺ progenitor cells, whereas Scx⁻/Sox9⁺ cells contribute to the cartilage (Blitz et al., 2013; Sugimoto et al., 2013a; Sugimoto et al., 2013b). The lack of Meox2 has shown no effect on the cartilage cells that are marked by Sox9.

The evidence here further showed that the expression of Meox2 was predominantly found in the sclerotome that hosts the multipotent Scx⁺/Sox9⁺ cell progenitors (Sugimoto et al., 2013a; Sugimoto et al., 2013b). However, we also found a narrow overlap between Meox2⁺ cells residing in the sclerotome and ScxGFP⁺ cells in the syndetome. The syndetome is a sub compartment of the anterior sclerotome (Brent et al., 2003; Schweitzer et al., 2001), which is comprised of Scx⁺/Sox9⁻ tendon precursors (Sugimoto et al., 2013a). Collectively, we conclude that Meox2⁺ cells in the sclerotome selectively affects only Scx⁺/Sox9⁻ progenitor and not Scx⁺/Sox9⁺ cells during tendon morphogenesis population although further analyses are needed to establish this point.

Meox2 regulates cell proliferation but not cell death

We observed that at E12.5 there was an overall reduction in cell proliferation in mutant embryos across the entire compartment in somites suggesting a significant role of Meox2 in cell cycle progression. In contrast, we found no change in programmed cell death in mutants at embryonic stages. This is consistent with our finding that Meox2 is required for additional recruitment of
tendon progenitor cells at the site of condensation, and suggests the primary role of Meox2 is by regulating the proliferation of progenitors that will be recruited to the tendon pool. Previous data has shown the overlapping expression regions of Meox homoeobox genes in the early developing somites of chick and mouse embryos (Reijntjes et al., 2007). Moreover, the somites of Meox1 null embryos showed developmental alterations in cell proliferation (Mankoo et al, 2009). It was shown that in the absence of functional Meox1, increased cell proliferation rates were observed in the rostral somitic region at the expense of caudal region. However, ablation of Meox1 gene caused no significant changes in the cell death. The similarities of the role of Meox genes during the somite development highlight the concentrated action of Meox1 and Meox2 during the cell proliferation and cell death in developing embryos. Therefore, our data provide a line of evidence that Meox2 function is essential to maintain the cell densities during embryonic tendon development.

Interaction between Meox2 and TGFβ signalling

By E12.5, an overall decrease of Scx levels was observed in the absence of both TGFβ2 (Pryce et al., 2009) and Meox2. TGFβ signalling is essential for the organisation and recruitment of tendon progenitor cells. Using Scx as a marker for tendon cells, in Tgfβ2−/−; Tgfβ3−/− double knock out mouse embryos, a complete loss of all tendons was reported (Pryce et al., 2009). In addition, Tgfβ2−/− mutant embryos exhibit a severe disruption in tendon progenitor cells at E12.5 but no change of Scx expression was observed in Tgfβ3−/− mutant embryos (Pryce et al., 2009). However, deletion of the TGFβRII, which is the single type II receptor utilised by all the members of the TGFβ superfamily, affected overall tendon development suggesting a wider role of the signalling pathway in tendon morphogenesis. Therefore, we propose a series of possible models for the interaction of Meox2 and TGFβ2 in regulating Scx expression. First, Meox2 acts upstream of TGFβ2, and so a loss of Meox2 will lead to a deficit of TGfb2 signalling and impact in turn on Scx expression; second Tgfβ2 functions upstream of Meox2, a loss of Meox2 will therefore impair the TGFb mediated signalling required for Scx expression; last, Meox2 and TGFβ2 acting
in parallel to regulate the Scx expression at E12.5. Consequently, we expected either, a down regulation (model 1) or normal (models 2 and 3) TGFβ2 expression in Meox2 knock out embryos. Surprisingly, our results revealed an increase in Tgfβ2 transcripts in the interlimb somites and in the zeugopod of Meox2-/- mutant embryos. On the contrary, other regions e.g. cervical (contribute towards tongue, neck and shoulder muscles), lumbar (opposite the hindlimbs) somites and presumptive autopod showed similar Tgfβ2 expression pattern. At present we cannot resolve this paradox, and it is essential to investigate expression of TFGb2 protein levels in Meox2 mutants. We have attempted to investigate the expression of Meox2 in TGFBI12 mutants; however these experiments were unsuccessful, due to transport delays of embryos from Dr. Schweitzer’s laboratory.

We also investigated the relationship between TGFβ signalling and Meox2 using the in vitro culture of C3H10T1/2 mesodermal stem cells. We observed a biphasic interaction of Meox2 expression due to ectopic TGFβ2 proteins at various time points in the cells. There was a decrease in Meox2 levels until 8 hours; however, Meox2 expression was later on increased. Interestingly, it was shown that the Scx level was significantly up regulated when TGFβ2 was added in the medium (Pryce et al., 2009). Moreover, a previous study has shown the complex interaction between Meox2 and TGFβ signals in epithelial cell biology (Valcourt et al., 2007). Tgfβ1 derived signals synergised with ectopic Meox2 to arrest proliferation of epithelial cells and, conversely, Meox2 partially caused blockage of TGFβ-1 derived epithelial-to-mesenchymal transition (EMT) in cultured keratinocytes (Valcourt et al., 2007).

We can suggest a possible mechanism by which Meox2 modulates restriction of TGFβ2 domains to maintain integrity of functional musculoskeletal system. Moreover, the TGFβ signalling pathway promotes programmed cell death during limb formation (Dunker et al., 2002), whereas, Meox2 stimulates cellular proliferation. Hence, we hypothesize a reciprocal interaction between Meox2 and TGFβ2 could play a role in modulating limb morphogenesis.
6.2 Future perspectives

ScxGFP expression and tissue histology in Meox2−/− neonates revealed gross tendon defects in appendicular and axial tissues. The specific loss of tendons, namely, FDS in forelimb and FDB in hindlimb suggest a unique role of Meox2 in these tendon groups. Further investigations are needed in Meox2 null embryonic and foetal stages to examine the FDS/FDB tendon induction, organisation, and differentiation as these events are delayed in mouse (starting only at E14.5 until E16.5) compare to all other limb tendons (from E10.5 until E14.5) (Huang et al., 2013; Schweitzer et al., 2001). Moreover, during this late developmental phase, FDS muscle differentiates in the autopod and then translocation occurs towards zeugopod. Substantial effects of this translocation are shown to be associated with FDS tendon development because this tendon elongates from the FDS muscle insertion sites within the autopod towards zeugopod (Huang et al., 2013). Therefore, developmental analysis of FDS muscle in Meox2 control embryos from E14.5 to E16.5 will provide a clue for the failure of FDS tendon formation.

Tendon is composed largely of collagen-rich extracellular matrix and secreted by tendon fibroblasts and this has a pivotal role in the normal physiological homeostasis and regulation of the tendon matrix. Therefore, a manifestation of defective collagen fibril organization would be analysed by transmission electron microscopy to investigate collagen fibril diameter and arrangement in the mutant neonates. There are number of individual proteins present in tendon cells e.g. type I and type II collagen and tenomodulin, therefore, these proteins will be observed by immunohistochemistry in the mutant tendons. Collectively, all these analysis will help us to derive the focussed role of Meox2 in determining the post-natal integrity of tendons and regulating tendon homeostasis.

In vitro assays in C3H10T1/2 cells can be validated to identify the levels of Meox2 in response to TGFβ signalling. It was also shown that in the C3H 10T/2
cells, Scleraxis expression increases in response to TGFβ addition over the period of 24 hours. Therefore, our assay will provide an opportunity to identify direct targets of Meox2 gene. Additionally, we can extrapolate this method to identify response of cell cycle proteins in the fibroblasts as we established that Meox2 positively regulates cellular proliferation during embryogenesis. For this, we could also able to employ the assay in primary fibroblast and monitor their active proliferation in response to ectopic expression of Meox2.

Finally, it is necessary to unfold the interaction of Meox2 and TGFβ2 proteins. As we have already found a regionalised increase of Tgfβ2 transcripts in Meox2−/− embryos at E12.5, an in vivo analysis of Meox2 expression in TGFβ2−/− embryos would be important. In limb organ culture, ectopic expression of Scx is induced by TGFβ2 soaked beads. Therefore, an ex vivo approach using Scx as the positive control, TGFβ2 soaked bead would be implanted in the chick limbs of appropriate stages and Meox2 expression will be monitored. Our results from this methodology will also enable to describe the dynamic relationships of Meox2 and TGFβ2 throughout the proximo-distal axis of the limb.

Meox2 mutants in some aspects resemble Scx knockouts, with defects associated with the later stages of limb tendon development. As our data from Meox2-nLacZ expression analysis provide an evidence that all tendon cells retains Meox2 expression history during the tendon development, therefore, from our proposed genetic model we aimed to study the Meox2 gene function in tendon-less model. To analyse the intrinsic regulation of tendon progenitor cells by Meox2, we plan to utilize Prx1-Cre transgenic mice (Logan et al., 2002) that will be obtained from Prof. Malcolm Logan in the Randall division. The conditional inactivation of Meox2 in limb mesoderm could then be achieved by mating Meox2+/− heterozygous animals with Prx1-Cre mice.
6.3 Final conclusion

In summary, our study reveals that *Meox2* is an important regulator of axial and appendicular tendon development. *Meox2* exhibit an intrinsic regulation of autopod tendons whereas it extrinsically regulates zeugopod tendon development. The muscle connective tissue is derivatives of *Meox2* progenitor cells and therefore *Meox2* extrinsically regulate muscle and tendon patterning during embryogenesis. Our study has contributed an additional transcription factor in tendon research that provides novel insights for the new therapeutic methods during tendon pathology and will benefit the tendon tissue healing efforts during stress or injury.
List of references

Brukner, P., Connell, D., 2016. 'Serious thigh muscle strains': beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains. British journal of sports medicine 50, 205-208.

Rodrigo, I., Bovolenta, P., Mankoo, B.S., Imai, K., 2004. Meox homeodomain proteins are required for Bapx1 expression in the sclerotome and activate its transcription by direct binding to its promoter. Molecular and cellular biology 24, 2757-2766.

Tidball, J.G., Lin, C., 1989. Structural changes at the myogenic cell surface during the formation of myotendinous junctions. Cell and tissue research 257, 77-84.

