Citation for published version (APA):
Hydrogenase biomimetics: Structural and spectroscopic studies on diphosphine-substituted derivatives of Fe₂(CO)₆(µ-edt) (edt = ethanedithiolate) and Fe₂(CO)₆(µ-tdt) (tdt = 1,3-toluenedithiolate)

Shahed Rana¹ · Shishir Ghosh¹* · Md. Kamal Hossain¹ · Ahibur Rahaman¹ · Graeme Hogarth²* · Shariff E. Kabir ¹,*

¹ Department of Chemistry, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
² Department of Chemistry, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK

E-mail: skabir_ju@yahoo.com (SEK); sghosh_006@yahoo.com (SG); graeme.hogarth@kcl.ac.uk (GH)

Abstract
Reactions of a series of diphosphines with Fe₂(CO)₆(µ-edt) (1) and Fe₂(CO)₆(µ-tdt) (2) have been explored, the nature of the products being highly dependent upon the diphosphine. Reaction of 1 with bis(diphenylphosphino)methane (dppm) in acetonitrile at 82 °C affords monosubstituted Fe₂(CO)₅(κ¹-dppm)(µ-edt) (3) in which the phosphine occupies an apical site and disubstituted Fe₂(CO)₄(µ-dppm)(µ-edt) (4) in which the phosphine is acting as a bridging ligand, while a similar reaction of 2 with dppm yields only Fe₂(CO)₄(µ-dppm)(µ-tdt) (5). In contrast, 1 and 2 react with 1,2-bis(diphenylphosphino)ethane (dppe) to form the chelate complex Fe₂(CO)₅(κ²-dppe)(µ-edt) (7) and Fe₂(CO)₅(κ²-dppe)(µ-tdt) (8), respectively, in both the diphosphine binds in an apical-basal fashion to a single iron atom. A second product of the dppe reaction with 1 is tetranuclear [Fe₂(CO)₅(µ-edt)]₂(κ¹,κ¹-dppe) (6) in which the diphosphine again occupies apical sites. Similar reactions of 1 and 2 with 1,1′-bis(diphenylphosphino)ferrocene (dppf) give single products namely, Fe₂(CO)₅(κ¹-dppf)(µ-edt) (9) and Fe₂(CO)₅(κ¹-dppf)(µ-tdt) (10), respectively, which are structurally similar to 3. All seven complexes have been characterized by a combination of analytical and spectroscopic data together with single crystal X-ray diffraction analysis for 3, 7, 9 and 10.

Keywords: Hydrogenase biomimetics, Diiron dithiolate complexes, dppm, dppe, dppf
Introduction

Over the past two decades there has been intense interest in the synthesis and structures of biomimetics of the active site (H-cluster) of the [FeFe]-hydrogenase enzyme (Fig. 1) [1-3] by far the majority of which contain a propanedithiolate (pdt) bridge [4-12]. The choice of the latter stems from the crystallographic work which shows that in the enzyme the two bridging sulfur atoms are linked by three other non-hydrogen atoms, and also the relative ease of preparation of pdt complexes as opposed to related adt (SCH₂N(R)CH₂S) species [2,3]. There are, however, some negative aspects to using pdt-bridged biomimetics. For example, in the solid-state the central methylene group is often disordered over two sites and this can result in relatively low quality X-ray crystallographic data [6,13]. In solution it is well-established that the central methylene unit is fluxional at room temperature “flipping” with a low activation barrier [13-15]. This can be problematic monitoring mechanistically important protonation reactions, since at the low temperatures required to observe intermediate hydride species, methylene fluxionality becomes slow on the NMR timescale leading to either a broadening of all resonances or, when sufficiently slow, a duplication of resonances resulting from the presence of isomers [6,14,15]. In our own work on [Fe₂(CO)₄(µ-κ¹,κ²-triphos)(µ-pdt)] (triphos = (Ph₂PCH₂CH₂)₂PPh) we have encountered this problem first hand [6]. Thus cooling to 183 K in CD₂Cl₂ in order to carry out a protonation experiment results in the freezing out of five isomers varying as a function of both phoshine and pdt orientations. The 31P{¹H} NMR spectrum at this temperature is extremely complex (consisting of 15 resonances each of which shows at least one coupling) and consequently attempts to monitor the protonation at this temperature were fruitless. One possible partial solution to this problem is to exchange the pdt-bridge for the far more rigid ligand such as ethane- (edt), benzene- (bdt) or toluene (tdt) dithiolate thus simplifying the system and allowing important information to be more easily abstracted [16-19].

In comparison to the volume of work on pdt-bridged diiron hydrogenase biomimics, relatively little attention has been paid to related models containing an edt-bridge [18-21]. Recently, we have synthesized two edt-bridged diiron complexes Fe₂(CO)₄(κ²-diamine)(µ-edt) containing diamine ligands, and investigated their electrocatalytic properties [21]. Experimental studies reveal that these edt-bridged complexes behave differently to their pdt-analogues, showing small but significant differences in their rates of protonation, leading to
different mechanisms for proton reduction [21]. This prompted us to extend our investigations on phosphine-substituted edt-bridged diiron complexes, and also to develop related toluene (tdt) dithiolate chemistry. Herein we report details of these together with structural studies in order to compare with the analogous pdt derivatives.

Experimental

Materials and Methods

All reactions were carried out under a nitrogen atmosphere using standard Schlenk techniques unless otherwise stated. Reagent grade solvents were dried by the standard procedures and were freshly distilled prior to use. Fe₂(CO)₆(µ-edt) (1) [22] and Fe₂(CO)₆(µ-tdt) (2) [22] were synthesized following published procedures. Infrared spectra were recorded on a Shimadzu FTIR 8101 spectrophotometer while the NMR spectra were recorded on a DPX 400 instrument. The chemical shifts were referenced to residual solvent resonances or external 85% H₃PO₄ in ¹H and ³¹P spectra respectively. Elemental analyses were performed in the Microanalytical Laboratories of Wazed Miah Science Research Centre at Jahangirnagar University. Preparative thin layer chromatography was carried out on 1 mm plates prepared from silica gel GF254 (type 60, E. Merck) at Jahangirnagar University.

Reaction of 1 with dppm

Fe₂(CO)₆(µ-edt) (1) (100 mg, 0.268 mmol), Me₃NO (21 mg, 0.280 mmol) and dppm (104 mg, 0.271 mmol) was heated in boiling acetonitrile (15 mL) for 30 min. After cooling to room temperature, the volatiles were removed under reduced pressure and the residue chromatographed by TLC on silica gel. Elution with hexane/CH₂Cl₂ (7:3, v/v) developed two bands. The faster moving band afforded Fe₂(CO)₅(κ¹-dppm)(µ-edt) (3) (135 mg, 69%) as red crystals while the slower moving band gave Fe₂(CO)₄(µ-dppm)(µ-edt) (4) [9] (17 mg, 9%) as red crystals after recrystallization from hexane/CH₂Cl₂ at 4 °C.

Fe₂(CO)₅(κ¹-dppm)(µ-edt) (3): Anal. (%): Calcd. for C₃₂H₂₆Fe₂O₅P₂S₂: C, 52.77; H, 3.60%. Found: C, 53.29; H, 3.71%. IR (νCO, CH₂Cl₂): 2046 s, 1984 s, 1959 sh, 1931 w cm⁻¹. ¹H NMR (CDCl₃): δ 7.53 (m, 4H), 7.31-7.18 (m, 16H), 3.25 (dd, J 1.7, 8.0, 2H), 1.89 (m, 2H), 1.39 (m, 2H). ³¹P{¹H} NMR (CDCl₃): δ 56.7 (d, J 86, 1P), −24.3 (d, J 86, 1P).
Fe$_2$(CO)$_4$(µ-dppm)(µ-edt) (4) [9]: Anal. (%): Calcd. for C$_{31}$H$_{26}$Fe$_2$O$_4$P$_2$S$_2$: C, 53.17; H, 3.74%. Found: C, 54.49; H, 3.79%. IR (ν$_{CO}$, CH$_2$Cl$_2$): 1991 m, 1959 s, 1924 m, 1906 w cm$^{-1}$. 1H NMR (CDCl$_3$): δ 7.49 (m, 8H), 7.29 (m, 12H), 3.88 (m, 1H), 3.34 (m, 1H), 2.40 (br. s, 2H), 2.34 (br. s, 2H). 31P{1H} NMR (CDCl$_3$): δ 57.8 (s).

Reaction of 2 with dppm

An acetonitrile solution (15 mL) of Fe$_2$(CO)$_6$(μ-tdt) (2) (100 mg, 0.230 mmol), Me$_3$NO (17 mg, 0.230 mmol) and dppm (89 mg, 0.232 mmol) was heated to reflux for 30 min. The volatiles were removed by rotary evaporation and the residue chromatographed by TLC on silica gel. Elution with hexane/CH$_2$Cl$_2$ (7:3, v/v) developed only one band which yielded Fe$_2$(CO)$_4$(µ-dppm)(µ-tdt) (5) (95 mg, 54%) as red crystals after recrystallization from hexane/CH$_2$Cl$_2$ at 4 °C.

Fe$_2$(CO)$_4$(µ-dppm)(µ-tdt) (5): Anal. (%): Calcd. for C$_{36}$H$_{28}$Fe$_2$O$_4$S$_2$P$_2$: C, 56.71; H, 3.70%. Found: C, 57.25; H, 3.76%. IR (ν$_{CO}$, CH$_2$Cl$_2$): 1994 s, 1964 s, 1930 s, 1911 w cm$^{-1}$. 1H NMR (CDCl$_3$): δ 7.30 (m, 20H), 6.32 (d, J 8.4, 1H), 6.94 (d, J 8.4, 1H), 7.51 (s, 1H), 3.72 (m, 1H), 3.49 (m, 1H), 2.05 (s, 3H). 31P{1H} NMR (CDCl$_3$): δ 56.9 (s).

Fe$_2$(CO)$_4$(κ2-dppe)(µ-tdt) (7): Anal. (%): Calcd. for C$_{32}$H$_{28}$Fe$_2$O$_4$P$_2$S$_2$: C, 53.80; H, 3.95%. Found: C, 54.32; H, 4.03%. IR (ν$_{CO}$, CH$_2$Cl$_2$): 2021 s, 1950 s, 1906 w cm$^{-1}$. 1H NMR (CDCl$_3$): δ 7.89 (m, 4H), 7.48 (m, 6H), 7.28-7.20 (m, 10H), 2.82 (m, 2H), 2.62 (m, 2H), 1.74...
<p>(m, 2H), 1.21 (m, 2H). 31P1H NMR (CDCl$_3$): major isomer: δ 92.9 (s). minor isomer: δ 76.3 (s). major/minor = 11:1.</p>

Reaction of 2 with dppe

An acetonitrile solution (15 mL) of Fe$_2$(CO)$_6$(μ-tdt) (2) (100 mg, 0.230 mmol), Me$_3$NO (17 mg, 0.230 mmol) and dppe (92 mg, 0.231 mmol) was heated to reflux for 10 min. The volatiles were removed by rotary evaporation and the residue chromatographed by TLC on silica gel. Elution with hexane/CH$_2$Cl$_2$ (4:1, v/v) developed only one band which yields Fe$_2$(CO)$_4$(κ$_2$-dppe)(μ-tdt) (8) (25 mg, 14 %) as red crystals after recrystallization from hexane/CH$_2$Cl$_2$ at 4 °C.

Fe$_2$(CO)$_4$(κ$_2$-dppe)(μ-tdt) (8): Anal. (%): Caled. for C$_{37}$H$_{30}$Fe$_2$O$_4$S$_2$P$_2$: C, 57.24; H, 3.90%. Found: C, 57.97; H, 3.98%. IR (νCO, CH$_2$Cl$_2$): 2021 s, 1950 m, 1906 m cm$^{-1}$. 1H NMR (CDCl$_3$): δ 8.03 (d, J 8.4, 1H), 7.97 (s, 1H), 7.81 (m, 4H), 7.49 (m, 6H), 7.28 (m, 2H), 7.14 (m, 8H), 6.96 (d, J 8.4, 1H), 2.82 (m, 2H), 2.62 (m, 2H), 2.37 (s, 3H).

Reaction of 1 with dpf

To an acetonitrile solution (15 mL) of Fe$_2$(CO)$_6$(μ-edt) (1) (100 mg, 0.268 mmol) and dpf (149 mg, 0.269 mmol) was added Me$_3$NO (21 mg, 0.280 mmol) and the mixture was heated to reflux for 1 h. After cooling to room temperature, the solvent was removed by rotary evaporation and the residue chromatographed by TLC on silica gel. Elution with hexane/CH$_2$Cl$_2$ (1:1, v/v) developed one band which yields Fe$_2$(CO)$_5$(κ$_1$-dpf)(μ-edt) (9) (145 mg, 60%) as red crystals after recrystallization from hexane/CH$_2$Cl$_2$ at 4 °C.

Fe$_2$(CO)$_5$(κ$_1$-dpf)(μ-edt) (9): Anal. (%): Caled. for C$_{41}$H$_{32}$Fe$_3$O$_5$S$_2$P$_2$: C, 54.82; H, 3.59%. Found: C, 55.39; H, 3.66%. IR (νCO, CH$_2$Cl$_2$): 2046 s, 1984 s, 1931 w cm$^{-1}$. 1H NMR (CDCl$_3$): δ 7.55-7.14 (m, 20H), 6.45 (d, J 6.4, 1H), 6.14 (s, 1H), 6.03 (d, J 6.4, 1H), 4.52 (br. s, 1H), 4.39 (br. s, 1H), 4.35 (br. s, 1H), 4.29 (br. s, 1H), 4.21 (br. s, 1H), 4.15 (br. s, 1H), 3.94 (br. s, 1H), 3.77 (br. s, 1H), 1.83 (s, 3H). 31P1H NMR (CDCl$_3$): δ 53.5 (s, 1P), –16.3 (s, 1P).

Reaction of 2 with dpf

(m, 2H), 1.21 (m, 2H). 31P1H NMR (CDCl$_3$): major isomer: δ 92.9 (s). minor isomer: δ 76.3 (s). major/minor = 11:1.
An acetonitrile solution (15 mL) of Fe$_2$(CO)$_6$(μ-tdt) (100 mg, 0.230 mmol), Me$_3$NO (17 mg, 0.230 mmol) and dppf (128 mg, 0.231 mmol) was heated to reflux for 1 h. The volatiles were removed by rotary evaporation and the residue chromatographed by TLC on silica gel. Elution with hexane/CH$_2$Cl$_2$ (9:1, v/v) developed only one band which yielded Fe$_2$(CO)$_5$(κ1-dppf)(μ-tdt) (10) (120 mg, 54%) as red crystals after recrystallization from hexane/CH$_2$Cl$_2$ at 4 °C.

Fe$_2$(CO)$_5$(κ1-dppf)(μ-tdt) (10): Anal. (%): Caled. for C$_{46}$H$_{34}$Fe$_3$O$_5$P$_2$S$_2$: C, 57.53; H, 3.57%. Found: C, 58.05; H, 3.62%. IR (ν$_{CO}$, CH$_2$Cl$_2$): 2049 s, 1989 s, 1932 m cm$^{-1}$. ¹H NMR (CDCl$_3$): δ 7.56-7.15 (m, 20H), 6.58 (d, J 8.4, 1H), 6.15 (s, 1H), 5.94 (d, J 8.4, 1H), 4.45 (br. s, 1H), 4.39 (br. s, 1H), 4.35 (br. s, 1H), 4.29 (br. s, 1H), 4.21 (br. s, 1H), 4.15 (br. s, 1H), 3.94 (br. s, 1H), 3.77 (br. s, 1H), 1.84 (3H, s). ³¹P{¹H} NMR (CDCl$_3$): δ 53.5 (s, 1P), -16.3 (s, 1P).

X-ray crystallography

Single crystals of 3, 7, 9 and 10 suitable for X-ray diffraction were grown by slow diffusion of hexane into a dichloromethane solution at 4 °C. All geometric and crystallographic data were collected at 150(2) K on a Bruker SMART APEX CCD diffractometer using Mo-Kα radiation (λ = 0.71073 Å) [23]. Data reduction and integration were carried out with SAINT+ [24] and absorption corrections were applied using the program SADABS [25]. Numerical (based on the real shape of the crystals) absorption correction was applied in all cases followed by the multi-scan SADABS procedure [25]. The structures were solved by direct methods and refined by full-matrix least squares on F2 [26,27]. All non-hydrogen atoms were refined anisotropically for 3, 7 and 10. The hydrogen atoms were placed in the calculated positions and their thermal parameters were linked to those of the atoms to which they were attached (riding model). The crystal of 9 decomposed considerably during the experiment leading to poor data collection, so the atoms of 9 were modeled isotropically with a common thermal parameter and no hydrogen atoms were included in this part of the model. The SHELXTL PLUS V6.10 program package was used for structure solution and refinement [27]. Final difference maps did not show any residual electron density of stereochemical significance. The details of the data collection and structure refinement are given in Table 1.
Results and discussion

Reaction 1 and 2 with dpdm

Me$_3$NO initiated reaction between Fe$_2$(CO)$_6$(µ-edt) (1) and dpdm in acetonitrile resulted in the isolation of Fe$_2$(CO)$_5$(κ1-dpdm)(µ-edt) (3) and Fe$_2$(CO)$_4$(µ-dpdm)(µ-edt) (4) in 69 and 9% yields, respectively, after chromatographic separation and work up (Scheme 1). In contrast a similar reaction between Fe$_2$(CO)$_6$(µ-tdt) (2) and dpdm yielded only Fe$_2$(CO)$_4$(µ-dpdm)(µ-tdt) (5) in 54% yield (Scheme 2), indicating that the removal of the second carbonyl from the molecule by phosphine is relatively faster in tdt-complex 2 as compared to that in edt-complex 1. Complex 4 has been previously reported and structurally characterized by Kabir and Hogarth, isolated from the reaction between 1 and dpdm in boiling toluene as the only product [9]. Here we have characterized 3 and 5 by a combination of analytical and spectroscopic data together with single crystal X-ray diffraction studies for 3.

The solid-state molecular structure of 3 is depicted in Fig. 2 with the caption containing selected bond distances and angles. The molecule contains a diiron framework bridged by an edt ligand in addition to five terminal carbonyls and a dangling dpdm ligand which complete the coordination sphere of the molecule. The Fe–Fe bond distance of 2.5052(6) Å in 3 is the same as that of the parent hexacarbonyl 1 [2.5032 (5) Å] [28] (within experimental error). The Fe–S bond distances of 3 are also very similar to those observed in 1 [28]. The dpdm ligand is apically bonded to a single iron atom using one phosphorus atom thus acting as a monodentate ligand, and the Fe–P bond distance of 2.2258(8) Å in 3 is within the range reported for related diiron-dithiolate complexes [5-15]. Almost a decade ago, Sun and co-workers reported the crystal structure of the pdt and adt analogues of 3 namely Fe$_2$(CO)$_5$(κ1-dpdm)(µ-pdt) and Fe$_2$(CO)$_5$(κ1-dpdm)(µ-SCH$_2$N(R)CH$_2$S) (R = CH$_3$CH$_2$CH$_3$) [29]. Whilst in the adt analogue the dpdm is bound to an apical site akin to that observed in 3, the diphosphine is found to be bonded to a single iron through a basal coordination site in the pdt complex [29]. The solution spectroscopic data of 3 also indicate that the solid-state structure persists in solution. The carbonyl region of the IR spectrum shows characteristic absorptions pattern of Fe$_2$(CO)$_5$(phosphine)(µ-dithiolate) complexes, while the 31P{1H} NMR spectrum displays two well separated doublets at 56.7 and –24.3 ppm (J 86 Hz) for the coordinated and non-coordinated 31P nuclei respectively. The 1H NMR spectrum is not very informative but it
shows separate resonances for the methylene moieties of dppm and edt ligands in addition to phenyls proton resonances in the aromatic region.

Complex 5 can be readily characterized by its IR spectra which show four absorption bands: three sharp and strong absorptions at 1994, 1964 and 1930 cm\(^{-1}\), and a weak absorption 1911 cm\(^{-1}\). It shows a single resonance in the \(^{31}\)P\{\(^1\)H\} NMR spectrum at 56.9 ppm since both the phosphorus atoms of the dppm ligand have an identical environment in this molecule. In addition to resonances in the aromatic region for the phenyl protons of dppm ligand, the \(^1\)H NMR spectrum of 5 also shows a multiplet at 3.49 ppm (integrated to two protons) and a singlet at 2.05 ppm (integrated to three protons) which are attributed to the methylene and methyl protons of the dppm and tdt ligands, respectively.

Reactions of 1 and 2 with dppe

Similar reactions described as above between 1 and dppe yielded the tetrairon [Fe\(_2\)(CO)\(_5\)(µ-edt)]\(_2\)(κ\(^1\),κ\(^1\)-dppe) (6) [20] and diiron Fe\(_2\)(CO)\(_4\)(κ\(^2\)-dppe)(µ-edt) (7) in 19 and 25% yields respectively, whereas reaction between 2 and dppe afforded only the chelate analogue Fe\(_2\)(CO)\(_4\)(κ\(^2\)-dppe)(µ-tdt) (8) in 14% yield. We could not isolate any complex similar to 3 from the reaction between 1 and dppe in which the dppe ligand is coordinated in monodentate fashion. The increased flexibility due to the presence of an extra methylene group in the backbone helps dppe to coordinate with a second diiron unit which is not possible for dppm. The tetrairon complex 6 has been previously reported and structurally characterized [20]. Here, we have characterized 7 and 8 by a combination of analytical and spectroscopic data together with X-ray diffraction analysis for 7. Both 7 and 8 show three absorption bands in the carbonyl region of their IR spectra which is characteristic of Fe\(_2\)(CO)\(_4\)(κ\(^2\)-diphophine)(µ-dithiolate) complexes. The \(^1\)H NMR spectra of both complexes are uninformative which show resonances attributed to the methylene protons of the dppe ligand in addition to other proton resonances. Their \(^{31}\)P\{\(^1\)H\} NMR spectra indicate that both exist in two isomeric forms in solution due to trigonal twist of the Fe(CO)(κ\(^2\)-dppe) unit commonly observed in this type of complexes (Chart) [9,10,15]. Both display a large singlet (92.9 ppm for 7 and 89.3 ppm for 8) together with a smaller singlet (76.3 ppm for 7 and 34.3 ppm for 8) in their \(^{31}\)P\{\(^1\)H\} NMR spectra which are ascribed to the basal-apical and dibasal isomers of 7 and 8, being formed in an approximate 11:1 and 8:1 ratio, respectively. Such isomerism has been previously observed in complexes of this type with exchange between isomers being slow on the NMR
time scale [9,10,15]. The major isomer in solution for diphosphines with flexible backbone such as dppe utilized in this study which are able to span apical and basal sites is the basal-apical isomer [10,15]. Complex 7 is also found to adopt basal-apical configuration in the solid-state (see later) which is in accord with this observation.

The solid-state molecular structure of 7 is shown in Fig. 3 with the caption containing selected bond distances and angles. The molecule consists of a diiron core ligated by four carbonyls, a dppe and a bridging edt ligand. The molecule structure of 7 is very similar to that of its pdt analogue, Fe$_2$(CO)$_6$(κ2-dppe)(μ-pdt) [30]. The diphosphine chelates one iron occupying the apical and one of the basal coordination sites in the solid-state with a bite angle of 86.91(2)° which is quite similar to 87.7(4)° observed in Fe$_2$(CO)$_6$(κ2-dppe)(μ-pdt) [30]. The Fe–Fe and Fe–P bond distances in 7 [Fe(1)–Fe(2) 2.5502(5) Å, Fe(1)–P(1) 2.1822(6) Å and Fe(1)–P(2) 2.2089(6) Å] are also quite similar to those reported for its pdt analogue Fe$_2$(CO)$_6$(κ2-dppe)(μ-pdt) [30] [Fe(1)–Fe(2) 2.547(7) Å, Fe(1)–P(1) 2.190(1) Å and Fe(1)–P(2) 2.231(1) Å].

Reactions of diiron complexes 1 and 2 with dppf

Recently, redox-active ligands containing ferrocene moiety have been successfully used in the diiron biomimics as a surrogate of ferredoxin clusters by several groups [11,31,32], which prompted researchers to synthesis and study more biomimetic models containing redox-active ligands based on ferrocene [17,33,34]. Couple of years ago, we examined the reaction of Fe$_2$(CO)$_6$(μ-pdt) with dppf in boiling toluene and observed that the tetrairon complex [Fe$_2$(CO)$_5$(μ-pdt)]$_2$(κ1,κ^1-dppf) formed very quickly which converted into the diiron complex Fe$_2$(CO)$_5$(κ1-dppf)(μ-pdt) upon prolonged heating at the same temperature [11]. Very recently, Kaur- Ghuumaan et al. studied the reactivity of the tdt complex 2 with dppf and reported that room temperature reaction between 2 and dppf (in 2:1 molar ratio) in presence of one equivalent Me$_3$NO∙2H$_2$O yielded three products: the tetrairon complex [Fe$_2$(CO)$_5$(μ-tdt)]$_2$(κ1,κ^1-dppf) and the diron complexes Fe$_2$(CO)$_5$(κ1-dppf)(μ-tdt) (10) and Fe$_2$(CO)$_5$(κ1-dppfO)(μ-tdt) [17]. The later formed due to the oxidation of dppf by Me$_3$NO∙2H$_2$O [17]. Here, we have investigated the reactivity of both 1 and 2 towards dppf using slightly different reaction conditions and obtained a single product in each case. Thus, the equimolar reaction between 1 or 2 and dppf in presence of one equivalent of Me$_3$NO in boiling acetonitrile only led to the formation of Fe$_2$(CO)$_5$(κ1-dppf)(μ-edt) (9) (60%) or Fe$_2$(CO)$_5$(κ1-dppf)(μ-tdt) (10)
(54%), respectively, after chromatographic separation and work up (Schemes 1 and 2). Complex 10 has been previously characterized by analytical and spectroscopic data by Kaur-Ghumaan et al. [17]. Here we have carried out single crystal X-ray diffraction analysis of both dppf-substituted complexes 9 and 10, the results of which are shown in Figs. 4 and 5. Although the refinement of the structure of 9 is poor since the crystal decomposed considerably during data collection, the structure gives sufficient information about the geometry of the molecule and the orientation of the ligands on the diiron framework.

Both molecules contain a diiron core ligated by five carbonyls, a dithiolate ligand and a dppf ligand. The Fe-Fe bond distance of 2.5164(13) Å in 9 is slightly longer than that in 10 [2.4877(6) Å] since the latter is bridged by comparatively more rigid tdt ligand. The dppf ligand is bonded to an iron through the apical coordination site in κ¹-fashion thus acting as a monodentate phosphine in both molecules. The Fe-P bond distance of both molecules are identical within the experimental error [2.2348(19) Å in 9 and 2.2374(8) Å], and are similar to those observed in related dppf-substituted diiron dithiolate complexes such as Fe₂(CO)₅(κ¹-dppfO)(μ-tdt) [2.2419(6) Å] [17] and Fe₂(CO)₄(μ-dppf)(μ-pdt) [2.2468(6) Å] [11]. In both, the geometry around each iron can be best described as distorted square pyramidal which is a common feature observed in diiron dithiolate complexes, and the Fe-S bond distances observed in 9 and 10 are quite similar to those found in related complexes. The solution spectroscopic data of both complexes are in accord with the solid-state structure. The IR spectra of both show three absorption bands in the carbonyl region characteristic for Fe₂(CO)₅(phosphine)(μ-dithiolate) complexes, whilst their ³¹P{¹H} NMR spectra displays two well-separated singlets for the coordinated and non-coordinated phosphorus of dppf ligand.

Conclusions

The reactivity of two diiron dithiolate complexes, Fe₂(CO)₆(μ-edt) (1) and Fe₂(CO)₆(μ-tdt) (2), toward three diphosphines (dppm, dppe and dppf) have been investigated which resulted in the isolation of a number of products. This reveals that the nature of the products is highly sensitive to the diphosphine used in the study. As we know, the dppm ligand in which the donor phosphorus atoms are separated by single CH₂ unit prefers bridging coordination mode thus led to the formation of product where the two iron atoms are bridged by the diphosphine.
In contrast, the dppe in which there are two CH$_2$ units between phosphorus atoms formed products where the diphosphine chelates a single iron. The dppf ligand shows only monodentate coordination mode in the present study since prolonged heating at high temperature is usually required to bind both donor atoms of dppf with the diiron core [11].

Supplementary Data

Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data centre. CCDC 1497271, CCDC 1497272, CCDC 1497361 and CCDC 1497358 contain supplementary crystallographic data for compound 3, 7, 9 and 10 respectively. These data can be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1 EZ, UK (fax: +44-1223-336033; Email: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.ac.uk).

Acknowledgments

This research has been partly sponsored by the Ministry of Education, Government of the People's Republic of Bangladesh.

References

23 APEX2 Version 2.0-2, Bruker AXS Inc.: Madison, WI, 2005
24 SAINT Version 7.23A; Bruker AXS Inc.: Madison, WI, 2005
25 Sheldrick GM, SADABS Version 2004/1, University of Göttingen, 2004
26 Program XS from SHELXTL package, V. 6.12, Bruker AXS Inc.: Madison, WI, 2001
27 Program XL from SHELXTL package, V. 6.12, Bruker AXS Inc.: Madison, WI, 2001
32 Camara JM, Rauchfuss TB, J Am Chem Soc, 133 (2011) 8098
Table 1 Crystal data and structure refinement details for compounds (3), (7), (9) and (10)

<table>
<thead>
<tr>
<th>Complex</th>
<th>3-CH₂Cl₂</th>
<th>7</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₃H₂₃Cl₂Fe₂O₃P₂S₂</td>
<td>C₃H₂₃Fe₂O₃P₂S₂</td>
<td>C₄H₂₃Fe₂O₃P₂S₂</td>
<td>C₅H₂₃Fe₂O₃P₂S₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>813.21</td>
<td>714.30</td>
<td>898.28</td>
<td>960.34</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>150(2)</td>
<td>150(2)</td>
<td>150(2)</td>
<td>150(2)</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>triclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P1bar</td>
<td>P2₁/n</td>
<td>P2₁/c</td>
<td>P1bar</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b (Å)</td>
<td>11.7655(10)</td>
<td>15.1211(16)</td>
<td>17.230(2)</td>
<td>17.3267(18)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>12.5708(10)</td>
<td>17.2738(18)</td>
<td>18.615(2)</td>
<td>14.0341(18)</td>
</tr>
<tr>
<td>α (°)</td>
<td>86.9620(10)</td>
<td>90</td>
<td>90</td>
<td>112.962(2)</td>
</tr>
<tr>
<td>β (°)</td>
<td>81.9960(10)</td>
<td>98.281(2)</td>
<td>102.550(3)</td>
<td>107.333(2)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>80.7460(10)</td>
<td>90</td>
<td>90</td>
<td>103.637(2)</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>1694.9(2)</td>
<td>3117.2(6)</td>
<td>3735.2(8)</td>
<td>2048.2(5)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated) (Mg/m³)</td>
<td>1.593</td>
<td>1.522</td>
<td>1.597</td>
<td>1.557</td>
</tr>
<tr>
<td>Absorption coefficient (mm⁻¹)</td>
<td>0.1272</td>
<td>1.204</td>
<td>1.393</td>
<td>1.276</td>
</tr>
<tr>
<td>F(000)</td>
<td>828</td>
<td>1464</td>
<td>1832</td>
<td>980</td>
</tr>
<tr>
<td>Crystal size (mm³)</td>
<td>0.14 x 0.12 x 0.03</td>
<td>0.18 x 0.16 x 0.08</td>
<td>0.04 x 0.03 x 0.01</td>
<td>0.22 x 0.10 x 0.08</td>
</tr>
<tr>
<td>θ range for data collection (°)</td>
<td>2.44 to 28.29</td>
<td>2.95 to 28.31</td>
<td>2.20 to 28.28</td>
<td>2.67 to 28.23</td>
</tr>
<tr>
<td>Index ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15 ≤ h ≤ 15, -15 ≤ k ≤ 15, -16 ≤ l ≤ 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflections collected</td>
<td>4494</td>
<td>26144</td>
<td>32465</td>
<td>16950</td>
</tr>
<tr>
<td>Independent reflections [R(int)]</td>
<td>7729 [R(int) = 0.0261]</td>
<td>7432 [R(int) = 0.0377]</td>
<td>8952 [R(int) = 0.1279]</td>
<td>9167 [R(int) = 0.0301]</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9628 and 0.71073</td>
<td>0.9099 and 0.8125</td>
<td>0.9862 and 0.9464</td>
<td>0.9048 and 0.7666</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>7729 / 0 / 415</td>
<td>7432 / 0 / 379</td>
<td>8952 / 0 / 478</td>
<td>9167 / 0 / 523</td>
</tr>
<tr>
<td>Goodness of fit on F²</td>
<td>1.115</td>
<td>1.000</td>
<td>1.127</td>
<td>1.029</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]</td>
<td>R₁ = 0.0419, wR₂ = 0.1294</td>
<td>R₁ = 0.0387, wR₂ = 0.0893</td>
<td>R₁ = 0.0956, wR₂ = 0.1589</td>
<td>R₁ = 0.0434, wR₂ = 0.0997</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R₁ = 0.0514, wR₂ = 0.1450</td>
<td>R₁ = 0.0546, wR₂ = 0.0952</td>
<td>R₁ = 0.1468, wR₂ = 0.1776</td>
<td>R₁ = 0.0595, wR₂ = 0.1058</td>
</tr>
<tr>
<td>Largest diff. peak and hole (e. Å⁻³)</td>
<td>0.880 and -0.767</td>
<td>0.597 and -0.408</td>
<td>0.921 and -0.683</td>
<td>0.634 and -0.330</td>
</tr>
</tbody>
</table>
Scheme 1 Reactions of Fe$_2$(CO)$_6$(µ-edt) (1) with various diphosphines

Scheme 2 Reactions of Fe$_2$(CO)$_6$(µ-edt) (2) with various diphosphines
Chart Basal-apical and dibasal isomers of Fe$_2$(CO)$_4$(κ$_2$-diphosphine)(μ-dithiolate) complexes

[diagram]

L = H$_2$O or vacant site

Fig. 1 Active site of [FeFe]-hydrogenase

[diagram]

Fig. 2 The solid-state molecular structure of Fe$_2$(CO)$_5$(κ$_1$-dppm)(μ-edt) (3). Ring hydrogen atoms are omitted for clarity. [Selected bond distances (Å) and angles (°): Fe(1)─Fe(2)
Fe(1)—P(1) 2.2258(8), Fe(1)—S(1) 2.2491(8), Fe(1)—S(2) 2.2481(8), Fe(2)—S(1) 2.2518(8), Fe(2)—S(2) 2.2525(8); P(1)—Fe(1)—Fe(2) 153.67(3), P(1)—Fe(1)—S(1) 106.31(3), P(1)—Fe(1)—S(2) 104.42(3), P(1)—Fe(1)—C(1) 97.40(10), P(1)—Fe(1)—C(2) 98.22(10)]

Fig. 3 The solid-state molecular structure of Fe₂(CO)₄(κ²-dppe)(μ-edt) (7). Ring hydrogen atoms are omitted for clarity. [Selected bond distances (Å) and angles (°): Fe(1)—Fe(2) 2.5502(5), Fe(1)—P(1) 2.1822(6), Fe(1)—P(2) 2.2089(6), Fe(1)—S(1) 2.2445(6), Fe(1)—S(2) 2.2392(6), Fe(2)—S(1) 2.2530(6), Fe(2)—S(2) 2.2529(7); P(1)—Fe(1)—Fe(2) 151.34(2), P(1)—Fe(1)—S(1) 103.62(2), P(1)—Fe(1)—S(2) 105.11(2), P(1)—Fe(1)—P(2) 86.91(2), P(1)—Fe(1)—C(1) 96.33(8)].
Fig. 4 The solid-state molecular structure of Fe$_2$(CO)$_5$(κ1-dppf)(μ-edt) (9). Ring hydrogen atoms are omitted for clarity. [Selected bond distances (Å) and angles (°): Fe(1)─Fe(2) 2.5164(13), Fe(1)─P(1) 2.2348(19), Fe(1)─S(1) 2.2510(19), Fe(1)─S(2) 2.2540(19), Fe(2)─S(1) 2.2439(19), Fe(2)─S(2) 2.2463(19); P(1)─Fe(1)─Fe(2) 152.59(6), P(1)─Fe(1)─S(1) 105.32(7), P(1)─Fe(1)─S(2) 104.53(7), P(1)─Fe(1)─C(1) 100.5(2), P(1)─Fe(1)─C(2) 94.9(2)].

Fig. 5 The solid-state molecular structure of Fe$_2$(CO)$_5$(κ1-dppf)(μ-tdt) (10). Ring hydrogen atoms are omitted for clarity. [Selected bond distances (Å) and angles (°): Fe(1)─Fe(2) 2.4877(6), Fe(1)─P(1) 2.2374(8), Fe(1)─S(1) 2.2854(9), Fe(1)─S(2) 2.2696(8), Fe(2)─S(1)
2.2812(9), Fe(2)─S(2) 2.2844(9); P(1)─Fe(1)─Fe(2) 152.96(3), P(1)─Fe(1)─S(1) 103.82(3), P(1)─Fe(1)─S(2) 103.99(3), P(1)─Fe(1)─C(4) 98.98(10), P(1)─Fe(1)─C(5) 97.49(9)].

Graphical abstract

Reactivity Fe$_2$(CO)$_6$(μ-edt) and Fe$_2$(CO)$_6$(μ-tdt) toward a series of diphosphines have been investigated from which a number of different kind of products are isolated and characterized.