Author’s Accepted Manuscript

Detecting Neuroimaging Biomarkers for Depression: A Meta-Analysis of Multivariate Pattern Recognition StudiesNeuroimaging Biomarkers of Depression

Joseph Kambeitz, Carlos Cabral, Matthew D. Sacchet, Ian H. Gotlib, Roland Zahn, Mauricio H. Serpa, Martin Walter, Peter Falkai, Nikolaos Koutsouleris

PII: S0006-3223(16)32980-8
DOI: http://dx.doi.org/10.1016/j.biopsych.2016.10.028
Reference: BPS13046

To appear in: Biological Psychiatry

Cite this article as: Joseph Kambeitz, Carlos Cabral, Matthew D. Sacchet, Ian H. Gotlib, Roland Zahn, Mauricio H. Serpa, Martin Walter, Peter Falkai and Nikolaos Koutsouleris, Detecting Neuroimaging Biomarkers for Depression: A Meta-Analysis of Multivariate Pattern Recognition StudiesNeuroimaging Biomarkers of Depression, Biological Psychiatry, http://dx.doi.org/10.1016/j.biopsych.2016.10.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Detecting neuroimaging biomarkers for depression: A meta-analysis of multivariate pattern recognition studies

Short title: Neuroimaging biomarkers of depression

Joseph Kambeitz, MD¹#, Carlos Cabral, MA¹, Matthew D. Sacchet, ScB², Ian H. Gotlib, PhD², Roland Zahn, MD³, Mauricio H. Serpa, MD⁴,⁵, Martin Walter, Prof⁶,⁷, Peter Falkai, Prof¹, Nikolaos Koutsouleris, Prof¹

¹Department of Psychiatry, Ludwig-Maximilians University Munich, Munich, Germany

²Neurosciences Program and Department of Psychology, Stanford University, Stanford California, United States of America

³Institute of Psychiatry, King’s College London, London, United Kingdom

⁴Laboratory of Psychiatric Neuroimaging, Institute and Department of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil

⁵Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil

⁶Clinical Affective Neuroimaging Laboratory, Department of Behavioural Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany

⁷Department of Psychiatry and Psychotherapy, Eberhard Karls University, Tuebingen, Germany
Corresponding author: Joseph Kambeitz MD, Dipl.-Psych., Address: Nußbaumstraße 7, 80336 Munich, Germany, Email: joseph.kambeitz@med.uni-muenchen.de, Phone: +4989/440052731, Fax: +4989/440055776

Key words: affective disorder, classification, prediction, sensitivity, specificity, diagnosis

Abstract

Introduction

Multiple studies have examined functional and structural brain alteration in patients diagnosed with from Major Depressive Disorder (MDD). The introduction of multivariate statistical methods allows investigators to utilize data concerning these brain alterations to generate diagnostic models that accurately differentiate patients with MDD from healthy controls. However, there is substantial heterogeneity in the reported results, the methodological approaches, and the clinical characteristics of participants in these studies.

Method

We conducted a meta-analysis of all studies using neuroimaging (volumetric measures derived from T1 weighted images, task-based functional MRI, resting-state MRI, or diffusion-tensor imaging) in combination with multivariate statistical methods to differentiate patients diagnosed with MDD from healthy controls.

Results

Thirty-three (k=33) samples including n=912 patients with MDD and n=894 healthy control subjects were included in the meta-analysis. Across all studies, patients with MDD were separated from healthy control subjects with 77% sensitivity and 78% specificity. Classification based on resting-state MRI (sensitivity of 85%, specificity of 83%) and on DTI data (sensitivity of 88%, specificity of 92%) outperformed classification based on structural
MRI (sensitivity of 70%, specificity of 71%) and task-based functional MRI (sensitivity 74%, specificity 77%).

Discussion

Our results demonstrate the high representational capacity of multivariate statistical methods to identify neuroimaging-based biomarkers of depression. Future studies are needed to elucidate whether multivariate neuroimaging analysis has the potential to generate clinically useful tools for the differential diagnosis of affective disorders and the prediction of both treatment response and functional outcome.

Introduction

Major Depressive Disorder (MDD) has a lifetime prevalence of 14.6%, making it one of the most common psychiatric disorders worldwide (1). Reliable diagnosis of MDD is a primary prerequisite for effective pharmacological and psychological interventions (2). Currently, the diagnosis of depression is based on the phenomenological evaluation of symptoms and behaviour by trained clinicians. Scientists have posited that neuroimaging holds ‘diagnostic potential’ given findings in multiple studies of significant anomalies in brain structure (3–5), function (6–8), and neurochemistry (9; 10) in patients suffering from depression. Even though these meta-analyses indicate that brain changes are replicable across studies, the alterations are often small and do not allow a reliable differentiation between patients and controls (11). Thus, neuroimaging markers are not included in clinical practice to guide decisions concerning psychiatric diagnosis (12; 13). This might result from the higher costs associated with neuroimaging examinations. Moreover, most of the previous neuroimaging studies in MDD have taken a univariate approach, which has important consequences in terms of the clinical applicability of the obtained results. For example, univariate approaches neglect the highly interconnected nature of the brain and, consequently, the statistical dependency of the given units of analysis (e.g. voxels or regions-of-interest) (14). Moreover, even if two groups (e.g. patients with depression and healthy controls [HC]) differ at a statistically significant level with respect to a target variable (e.g. hippocampal volume), there is typically substantial overlap of the two distributions, hindering reliable differentiation of depressed from nondepressed individuals.

To address these limitations, investigators have begun to apply multivariate statistical methods to the analysis of neuroimaging data (15; 16). By focusing on patterns of brain changes that are distributed across multiple regions, these methods allow for the generation
of statistical models with high diagnostic or predictive power. In this context, a recent meta-
analysis showed that patients with schizophrenia can be accurately differentiated from
healthy volunteers in 80% of the cases using only neuroimaging-based diagnostic models
(17). Moreover, these methods may facilitate the development of neuroimaging tools to
distinguish among different psychiatric disorders (18–21) or to predict clinical outcomes (22–
24). Indeed, multiple proof-of-concept studies have successfully used multivariate statistical
methods to guide the diagnosis of depression based on structural MRI (sMRI) data (19; 21;
25–27), resting-state functional MRI (rsfMRI) data (26; 28–34), and task-based functional
MRI (fMRI) data (35–39). The sensitivity and the specificity reported in these studies both
range from 70% to 90%. This variable diagnostic performance may be due to methodological
differences among these studies with respect to the neuroimaging data modality,
preprocessing protocol, classification algorithm, or the cross-validation procedure used. In
addition, these studies differ with respect to demographic and clinical characteristics of
depressed patients. Differences in performance and study heterogeneity make it difficult to
evaluate the potential of neuroimaging to identify diagnostic biomarkers for depression. Here,
we report the results of a meta-analysis conducted on studies that used multivariate
statistical methods to differentiate patients with depression from healthy controls. This meta-
analytic approach allows us to quantify the ability of multivariate methods to identify
depression-related patterns in neuroimaging data. In this way, we investigate the
neurobiological construct validity of the current clinical definition of MDD.

Methods

Search and study selection strategy

We searched the electronic PubMed database from 1st January 1950 up to 31st June 2015
(see supplementary information for details). Subsequently, we screened studies according to
the following criteria: To be included in the meta-analysis, a paper needed to report results of
a neuroimaging-based, supervised, multivariate two-group classification model separating
MDD patients from HC. Studies were included if the following measures of classification
performance were available or if data allowed for the calculation of the following parameters:
true positives (TP), true negatives (TN), false positives (FP), false negatives (FN). In cases in
which insufficient data were reported, authors were asked to provide additional information
regarding their published reports. The results of the literature search are presented in a flow-
chart following the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses”
(PRISMA) guidelines (40) (see Supplementary Info, Figure S1).

Data extraction
The main outcome was the diagnostic accuracy of the multivariate diagnostic models when applied to patients with MDD and HC as indicated by sensitivity (i.e. $= TP / (TP+FN)$) and specificity (i.e. $= TN / (TN+FP)$). Additional information was extracted from the selected studies as follows: names of the authors, year of publication, demographic characteristics of HC and patient groups (group size, age, gender, medication status, symptoms as measured by the Hamilton Depression Scale (41) or the Beck Depression Inventory (42), neuroimaging modality (volumetric measures derived of T1w MRI images 'sMRI', task-based functional MRI 'fMRI', resting-state fMRI 'rsfMRI', positron emission tomography 'PET', single photon emission computed tomography 'SPECT', diffusion tensor imaging 'DTI', scanner type, image resolution), characteristics of the neuroimaging preprocessing, configuration of the classification algorithm, and type of the cross-validation procedure (e.g. leave-one-out, k-fold cross-validation). To ensure accuracy of data extraction, two authors separately performed extraction and disagreements were resolved in a consensus conference.

Data analysis

In the present analysis we implemented the a random-effects, bivariate meta-analytical model as introduced by Reitsma et al. (43). Results of the meta-analysis are presented in forest plots separately for sensitivity and specificity. Summary estimates for sensitivity and specificity are provided separately for sMRI, for task-based fMRI studies, for rsfMRI studies, for DTI studies and for all studies combined. The robustness of the results and the effects of potentially confounding variables (e.g. age, gender ratio, year of publication) were investigated by adding moderator variables to the bivariate regression model. Furthermore, we tested for differences between studies in the clinical variables using univariate analysis-of-variance (ANOVA). Publication bias was assessed by creating funnel plots by plotting log diagnostic odds ratios (logDOR) for all studies against $\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ with n_1 and n_2 representing the sample sizes of the patient and the HC group, respectively. This measure is proportional to the inverted square root of the effective sample size (ESS): $\frac{1}{\sqrt{ESS}}$. In case of a publication bias, the distribution of studies in the funnel plot is asymmetrical. A statistical test for funnel plot asymmetry is provided by a regression of logDOR with $\frac{1}{\sqrt{ESS}}$ weighted by ESS (44). As an exploratory analysis, we generated a multivariate regression model using the elastic net algorithm to predict logDOR of individual studies based on n=23 clinical and methodological variables (see supplementary information for details). All computations were performed using the R statistical programming language version 3.3.1 (45) with the packages mada (46) and glmnet (47).
Results

Meta-analysis

The initial literature search identified 641 studies of interest. After screening all studies and applying the inclusion criteria, 608 studies were excluded (see Supplementary Information, Figure S1 for a flow-chart of the literature search). The final sample consisted of 33 studies with a total of 912 patients (mean age: 34.27 years) and 894 HC (mean age: 32.81 years). From those studies, k=14 samples used structural MRI (19–21; 25–27; 48–54), k=9 samples used rsfMRI (26; 29; 31; 33; 54–58), k=9 samples used fMRI (35–37; 39; 59–63), and k=6 samples used DTI (26; 64–67) to build predictive models (see Supplementary Information, Table S1 for an overview of the characteristics of the studies; please note that some studies provide more than one sample). There were no studies available using SPECT methodology. One study reported 85% classification accuracy using (18)FDG-PET but was excluded from further analysis due to the small number of available studies (68).

Meta-analysis of all studies indicated a sensitivity of 76.66% (95%-CI: 71.95 to 80.80%) and a specificity of 77.7% (95%-CI: 73.7 to 81.35%). Visual inspection of funnel plots and regression test for funnel plot asymmetry (p=0.69) did not indicate the presence of a publication bias (see Supplementary Information, Figure S2). Moreover, there was no relationship between size of the investigated samples and sensitivity of specificity (p>0.1, see supplementary information Figure S4). Different neuroimaging modalities (sMRI, fMRI, DTI, rsfMRI) were compared using a moderator analysis. Resting-state MRI studies showed higher sensitivity (p=0.007) and specificity (p=0.017) compared to sMRI studies. There were no significant differences compared to DTI or fMRI studies (all p>0.05). DTI studies showed a higher sensitivity (p=0.017) and specificity (p=0.006) than sMRI studies, but not than fMRI studies (p>0.05, see Figure 3 A).

Subanalysis for every neuroimaging modality showed the following results (see Table 1, Figure 1 & 2). For the subsample of sMRI studies, there was a sensitivity of 69.85% (95%-CI: 61.81 to 76.83%, Figure 1) and a specificity of 71.13% (95%-CI: 65.41 to 76.25%, see Figure 2). For the subsample of task-related fMRI studies, there was a sensitivity of 74.06% (95%-CI: 67.17 to 79.94%, see Figure 1) and a specificity of 77.20% (95%-CI: 69.92 to 83.15%, see Figure 2). For the subsample of rsfMRI studies, there was a sensitivity of 85.39% (95%-CI: 74.75 to 92.02%, see Figure 1) and a specificity of 82.59% (95%-CI: 74.64 to 88.43%, see Figure 2). For the subsample of DTI studies, there was sensitivity of 88.16% (95%-CI: 74.18 to 95.07%, see Figure 1) and a specificity of 91.51% (95%-CI: 97.15 to 77.32%, see Figure 2). Visual inspection of funnel plots and regression tests for funnel plot asymmetry did
ACCEP TED MANUSCRIPT

not indicate presence of publication bias in the meta-analysis of studies using sMRI (p=0.97),
DTI (p=0.68), fMRI (p=0.64) or rsfMRI (p=0.25).

There was no significant effect of HAMD score on sensitivity or specificity (p>0.80, Figure 3 C).
There was no effect of participants' age on sensitivity (p=0.112) or specificity (p=0.476,
see Figure 3 B) in the whole sample including all neuroimaging modalities. Similarly, there
was no effect of participants' age in the fMRI, or sMRI studies. There was a significant effect
of age on sensitivity in the DTI studies (p=0.014) and in the rsfMRI studies (p=0.015) but not
on specificity (p>0.05). Gender ratio of patients and of healthy controls was not related to
sensitivity (p=0.414, p=0.302, respectively) or specificity (p=0.582, p=0.776, respectively).

There were heterogeneous methodological approaches in the studies included in the present
meta-analysis. When comparing diagnostic accuracies between different cross-validation
schemes, there was a higher sensitivity in studies employing 2-fold CV as compared to
leave-one-out and leave-one-subject-per-group-out CV (p=0.035, p=0.020, respectively), but
no differences in specificity (see supplementary methods Figure S5). Because of the
heterogeneous methodological approaches of the studies included in the present meta-
analysis, we could not make a statistically valid comparison to test the effects of different
classification algorithms on classification accuracy. Thus, we provide a descriptive overview
of classification performance associated with different algorithms (see Supplementary
Information, Figure S2).

As an exploratory analysis, we tested whether model performance (logDOR) could be
predicted on the basis of clinical and methodological variables of the individual studies. Our
results indicate that predicted logDOR correlated with true logDOR with r=0.44 (p=0.002).
The n=5 most important variables in this meta-learning model (as measured by the absolute
value of their coefficient averaged across outer-CV folds) were “depression severity: severe”,
“feature selection: filter”, “patients (age)” (all associated with higher logDOR) and “data:
sMRI”, and “feature selection: none” (all associated with lower logDOR; see supplementary
analysis for further details).

Discussion

We present meta-analyses of a total of k=33 studies with of a total of n=912 patients
diagnosed with MDD and n=894 HC participants. Across all studies, neuroimaging-based
diagnostic models were able to differentiate patients from HCs with 77% sensitivity and 78%
specificity. These results were robust with respect to potential confounding variables such as
age of patients and controls, gender ratio, and year of publication. There was no evidence for
a publication bias. Resting-state fMRI studies (sensitivity of 85%, specificity of 83%) and DTI studies (sensitivity of 88%, specificity of 92%) outperformed sMRI (70% sensitivity, 71% specificity) and task-based fMRI studies (74% sensitivity, 77% specificity).

Different neuroimaging modalities

Our results suggest superior classification accuracy of diagnostic models based on rsfMRI or DTI data, compared to structural or task-based fMRI data. It is noteworthy that in a previous analysis, we found rsfMRI to outperform other neuroimaging modalities in differentiating patients with schizophrenia from healthy controls (17). We should note, however, that a limited number of studies were available using these neuroimaging modalities, so the results need to be interpreted with caution. If this pattern can be confirmed in future analyses, it suggests that rsfMRI and DTI data are the most informative neuroimaging metrics when classifying patients with psychiatric diagnoses versus HCs. On one hand, there might be factors driving this effect that are related to technical details of the neuroimaging methodology. For example, DTI and rsfMRI use scan sequences that typically take longer time to acquire than do structural MRI sequences and, therefore, might be more susceptible to motion artifacts (73–75). If motion is related to psychiatric diagnosis, then these artifacts might in turn be informative for psychiatric classification and could be picked up by the multivariate classification algorithm. The lower performance of classifiers based on task-based fMRI data compared to DTI and rsfMRI data might be caused by the lower test/re-test reliability of this method (72), the dependency on cognitive performance on this task, habituation while performing the task or variable degree of validity of the employed paradigms for the pathology of MDD. Depending on the preprocessing and the feature selection procedures employed in the task-based fMRI studies, these effects might add noise to the recorded data which, in turn, might reduce the discriminative power of extracted measures for the subsequent classification. Alternatively, rsfMRI and DTI may capture brain alterations that are more predictive in the context of classifying MDD. It is noteworthy that while both modalities are often used to investigate brain connectivity, rsfMRI is a functional measure and DTI is structural. This inherent difference suggests that these modalities capture complementary aspects of the neuropathology of MDD and, thus, that they could be combined in a multimodal classification model to improve performance. To date, there is only one study that compared uni- with multimodal classification approaches for MDD (26). In that study, multimodal classification (70% accuracy) was outperformed by unimodal classification based on DTI (77%), rsfMRI (77%), and T2 images (77%). Of note, Patel et al. (2015) assessed a sample of subjects with late-life depression and thus these results may not generalize to individual subjects with first depressive episodes that usually occur at age 30 (73). Moreover, there is evidence from studies of other psychiatric disorders such as
schizophrenia indicating that multimodal classification improves accuracy compared to unimodal approaches (74; 75).

Different classification algorithms & cross-validation schemes

The vast majority of studies in the present analysis used a support-vector machine (SVM) algorithm to classify patients (~60%). Looking at neuroimaging modalities separately, SVM was the most frequently used algorithm for DTI studies (~83%), fMRI studies (57%), rsfMRI studies (75%) and sMRI studies (~76%). Some studies used a gaussian-process classifier (19; 36), neural networks (30), random forests (50), k-means (50), random trees (50), or decision trees (26). Only two studies systematically investigated different classification algorithms within the same sample (19; 26). Redlich et al. (19) reported higher accuracy when classifying patients with depression or bipolar disorder using a SVM classifier than using a gaussian-process algorithm. Patel et al. (26) found that a decision tree algorithm (75%) outperformed linear SVMs (70%) and RBF-SVMs (68%). Interestingly, to date there are no systematic investigations of different algorithms in neuroimaging-based classification in psychiatry. It is noteworthy that, choice of classification algorithm did not appear to affect performance in the classification of individuals diagnosed with schizophrenia (17). However, it needs to be noted that in the current meta-analysis all studies were of limited sample size so that potential differences between classification algorithms might not have manifested. Moreover, some algorithms require more extensive training samples and might not have been employed due to the limited amount of available training data. Another important factor in the context of our analysis is the embedding of feature selection, classifier optimization and the estimation of the models’ generalizability in a CV scheme. We should note that in three papers that were included in the present meta-analysis, a feature selection procedure was implemented outside of the cross-validation (20; 31; 64). However, it is critical to avoid information leakage between the training and the test samples to avoid overfitting and biased estimates of classification accuracy. Moreover, even in the case of correct embedding, different cross-validation schemes might lead to different results. In our analysis 2-fold CV was associated with higher diagnostic accuracy than were 10-fold or LOOCV.

Limitations of the current meta-analysis: effect of clinical symptoms and antidepressant medication

One study suggest that the degree of functional and structural brain abnormalities found in depression is related to the severity of clinical symptomatology (76). In effect, neuroimaging-based classification models should perform better in more severely ill subjects. Mwangi et al.
(76) report a correlation between scores on the Beck’s Depression Inventory II (BDI-II) and the Spielberger State-Trait Anxiety Inventory (STAI) with individual SVM decision weights. In the present univariate analysis we found no effect of clinical symptoms as measured by HAMD. It is possible that the clinical and methodological heterogeneity present in our meta-analysis obfuscated a potential relation between accuracy and clinical symptoms. On the other hand, using a multivariate meta-learning model we found some evidence that depression severity as measured by the HAMD scale is an important predictor of classification accuracy. There are other clinical variables besides severity, that may influence brain anomalies in patients with depression and that may affect the accuracy of neuroimaging-based classification. These variables include age of onset or illness duration, and comorbidities such as anxiety, obsessive symptoms or substance abuse. Unfortunately, few studies assessed in the current analysis reported this information. Thus effects of these variables could not be investigated in the present meta-analysis.

A potential confounding factor in the context of our analysis is antidepressant medication. Multiple studies reported changes in brain structure (77) and function (82–84) following chronic antidepressant treatment. If such effects are present in neuroimaging-based classification experiments, the brain patterns identified might be associated with drug-effects rather than with effects specific to the pathology of depression. In our recent analysis in schizophrenia, we demonstrated that antipsychotic medication represents such potential bias (17). Because few studies in the present analysis reported treatment status, it was not possible to assess potential impact of this factor.

Future challenges for neuroimaging-based classification of depression

It is noteworthy that a substantial proportion of subjects included in the current meta-analysis (~25%) were not classified correctly. Multiple factors might drive misclassification using neuroimaging-based models. For example the pattern of brain changes associated with depression might have limited discriminative power. Alternatively, there might be one or more subgroups within individuals diagnosed with MDD that showed specific patterns of brain changes that are not shared by the majority of patients with depression. To explicitly test this hypothesis, a more detailed investigation of potential moderator variables on the basis of individual-subjects data is required. Moreover, future studies that focus on unsupervised classification methods would be better suited to identify such subgroups. This approach to classification might account for heterogeneity and improve diagnostic accuracy. Finally, the performance of neuroimaging-based diagnostic models is limited by the reliability of the diagnostic labels. For example, the recent investigation of the test-retest reliability of the diagnostic categories of the DSM V, indicated that MDD was diagnosed with limited accuracy (81). Similarly, MDD and bipolar disorder might frequently be confused (82). In effect,
misclassification in the initial psychiatric assessment might have contributed to reductions in classification performance.

An important consideration in the context of neuroimaging-based disease classification is the differentiation between diagnoses. Rather than distinguishing patients from HCs, a substantial part of clinical practice involves laborious and error-prone differential diagnostic processes to distinguish different patient groups from each other rather than from healthy controls. To date, few studies have investigated the potential of neuroimaging-based diagnostic models to differentiate among diagnostic groups. For example, Redlich et al. (19) studied two independent samples in which they were able to differentiate depressed from bipolar patients with 79.3% and 65.5% accuracy based on sMRI data, whereas Sacchet et al. report a lower classification accuracy of 59.5% (20). Similarly in our recent work we could demonstrate that patients with schizophrenia can be separated from depressed patients with 76% accuracy based on structural MRI data (18). However, Serpa et al. (21) report only 54% accuracy when differentiating psychotic bipolar patients from psychotic depressed patients, suggesting that these patient groups are harder to separate using brain-based features. In summary, differential-diagnostics represent an interesting potential application of neuroimaging-based models in clinical practice and a way to validate the current diagnostic categories in psychiatry.

Another important challenge for the application of neuroimaging-based diagnostics involves the generalizability of diagnostic models across different sites and populations. Redlich et al. (19) demonstrated that neuroimaging-based classifiers can be trained on data acquired at one site and then be applied to data from a different site. Similarly, Koutsouleris et al. (83) have also demonstrated the feasibility of such cross-site neuroimaging based classification for patients with schizophrenia. However, it needs to be noted that all studies included in the present meta-analysis were of small or modest sample size and that recent analyses suggest that larger samples are required for reliable estimates(84). A large-scale investigation of the generalizability of neuroimaging-based models (e.g. in the form of an “individual patient data meta-analysis” or “mega-analysis”) is still missing and the clinical and methodological factors that influence generalization are not clear.

We should note that while the present analyses support the hypothesis that multivariate methods are able to identify biological signatures of MDD in neuroimaging data, the current accuracy of around 75 % does not allow direct clinical application of these models. Moreover, neuroimaging-based diagnostic models must be evaluated critically with respect to cost efficiency. For example, self-rated screening questionnaires like the 9-item Patient Health
Questionnaire (PHQ9) provide an estimated sensitivity of 77% and a specificity of 85% in identifying MDD(85). Moreover, clinical questionnaires can be administered at substantially lower costs compared to neuroimaging investigations. Therefore, the main potential of neuroimaging-based diagnostic models might be to predict response to treatment interventions or to predict the course of the disorder. Generally subjects receiving pharmacological or psychotherapeutic interventions show large heterogeneity with respect to improvement or side-effects (86). Patel et al. (26) showed that response to treatment with a selective serotonin reuptake inhibitor (SSRI) could be predicted with up to 89% accuracy using neuroimaging. Relatedly, Fu et al. (59) used brain activation from a fMRI-Scan prior to treatment initiation to predict partial response to antidepressant treatment with 75% and full response with 62% accuracy. In another study, Siegle et al. (87) found that brain activation in response to negative words predicts response to cognitive-behavioural therapy with 75% and remission with 70% of accuracy. Using DTI data, Korgaonkar et al. (66) report the prediction of treatment response in major depression with 74% accuracy. Relatedly, Lythe et al. (88) report that neuroimaging-based models allow the prediction of recurrence risk of medication-free patients with MDD with 75% accuracy. In summary, neuroimaging-based classification represents a promising approach for classification of subjects with depression. Moreover, this approach might be of benefit to other endeavors, such as the prediction of disease course or treatment outcome. Current limitations include the generalizability of the models across research centers and the identification of methodological and clinical variables that moderate classification success.

Acknowledgements

We would like to thank the authors of the included studies for providing additional information.

Funding and Disclosure

All authors report no biomedical financial interests or potential conflicts of interest.

JK is supported by funds from the Friedrich-Baur Stiftung as well as the Förderung Forschung und Lehre (881/856).
References

discriminant analysis of glucose metabolism under acute tryptophan depletion.

Figure/Table legends

Figure 1: Forest plot of sensitivities & specificities. Summary estimates for sensitivity are computed using the approach described by Reitsma et al. (2005).

Figure 2: SROC curve of the Reitsma model with the summary sensitivity and false positive rate indicated in black as well as color-coded the sensitivity and false positive rate of the individual studies of different imaging modalities.

Figure 3: Results from the moderator analysis: (A) effect of age, (B) differences in sensitivity and specificity between imaging modalities, and (C) clinical symptoms as measured by HAMD.

<table>
<thead>
<tr>
<th>data</th>
<th>n of controls</th>
<th>n of patients</th>
<th>sensitivity</th>
<th>specificity</th>
<th>positive LR (95% CI)</th>
<th>negative LR (95% CI)</th>
<th>diagnostic OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sMRI</td>
<td>482</td>
<td>450</td>
<td>69.85 (61.81 to 76.83)</td>
<td>71.13 (65.41 to 76.25)</td>
<td>2.44 (1.85 to 3.14)</td>
<td>0.428 (0.312 to 0.566)</td>
<td>5.93 (3.31 to 9.87)</td>
</tr>
<tr>
<td>fMRI</td>
<td>179</td>
<td>183</td>
<td>74.06 (67.17 to 79.94)</td>
<td>77.2 (69.92 to 83.15)</td>
<td>3.29 (2.41 to 4.45)</td>
<td>0.339 (0.256 to 0.436)</td>
<td>10.00 (5.77 to 16.2)</td>
</tr>
<tr>
<td>rsfMRI</td>
<td>237</td>
<td>243</td>
<td>85.39 (74.75 to 92.02)</td>
<td>82.59 (74.54 to 88.43)</td>
<td>5.03 (3.07 to 7.76)</td>
<td>0.185 (0.0925 to 0.326)</td>
<td>31.90 (9.79 to 78.2)</td>
</tr>
<tr>
<td>DTI</td>
<td>162</td>
<td>135</td>
<td>88.16 (74.18 to 95.07)</td>
<td>91.51 (77.32 to 97.15)</td>
<td>12.30 (3.42 to 32.8)</td>
<td>0.145 (0.0513 to 0.32)</td>
<td>133.00 (11.2 to 573)</td>
</tr>
<tr>
<td>all combined</td>
<td>1060</td>
<td>1011</td>
<td>76.66 (71.95 to 80.8)</td>
<td>77.76 (73.7 to 81.35)</td>
<td>3.47 (2.79 to 4.26)</td>
<td>0.302 (0.24 to 0.374)</td>
<td>11.70 (7.57 to 17.4)</td>
</tr>
</tbody>
</table>

Table 1: Results from bivariate meta-analyses applying the approach by Reitsma et al. (2005). Positive LR, negative LR and DOR are estimated via MCMC (Zwindermann & Bossuyt, 2008).
Study and Specificity/Sensitivity

<table>
<thead>
<tr>
<th>Study</th>
<th>Specificity [95%-CI]</th>
<th>Sensitivity [95%-CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTT</td>
<td>Sacchet, 2015(47)</td>
<td>0.71 [0.60, 0.86]</td>
</tr>
<tr>
<td></td>
<td>Chin (revised), 2015(54)</td>
<td>0.68 [0.56, 0.81]</td>
</tr>
<tr>
<td></td>
<td>Chin, 2015(54)</td>
<td>0.68 [0.56, 0.81]</td>
</tr>
<tr>
<td></td>
<td>Patel, 2016(24)</td>
<td>0.76 [0.62, 0.92]</td>
</tr>
<tr>
<td></td>
<td>Korpaerke, 2012(40)</td>
<td>0.94 [0.77, 0.99]</td>
</tr>
<tr>
<td></td>
<td>Fang, 2012(25)</td>
<td>0.94 [0.79, 0.98]</td>
</tr>
<tr>
<td></td>
<td>RE Model for DTT studies</td>
<td>0.92 [0.77, 0.97]</td>
</tr>
<tr>
<td>rsfMRI</td>
<td>Loh, 2016(37)</td>
<td>0.67 [0.55, 0.80]</td>
</tr>
<tr>
<td></td>
<td>Je, 2015(34)</td>
<td>0.73 [0.52, 0.92]</td>
</tr>
<tr>
<td></td>
<td>Chin, 2015(34)</td>
<td>0.82 [0.62, 0.98]</td>
</tr>
<tr>
<td></td>
<td>Patel, 2015(36)</td>
<td>0.78 [0.61, 0.94]</td>
</tr>
<tr>
<td></td>
<td>Gao, 2014(30)</td>
<td>0.81 [0.64, 0.91]</td>
</tr>
<tr>
<td></td>
<td>Wu, 2013(31)</td>
<td>0.83 [0.69, 0.96]</td>
</tr>
<tr>
<td></td>
<td>Gao, 2013(34)</td>
<td>0.72 [0.57, 0.87]</td>
</tr>
<tr>
<td></td>
<td>Lond, 2012(25)</td>
<td>0.08 [0.61, 1.00]</td>
</tr>
<tr>
<td></td>
<td>Caddick, 2013(33)</td>
<td>0.76 [0.57, 0.91]</td>
</tr>
<tr>
<td></td>
<td>RE Model for rsfMRI studies</td>
<td>0.83 [0.75, 0.88]</td>
</tr>
<tr>
<td>fMRI</td>
<td>Yang, 2016(11)</td>
<td>0.74 [0.50, 0.89]</td>
</tr>
<tr>
<td></td>
<td>Savo, 2015(24)</td>
<td>0.84 [0.64, 0.94]</td>
</tr>
<tr>
<td></td>
<td>Shinnar, 2015(30)</td>
<td>0.86 [0.70, 0.94]</td>
</tr>
<tr>
<td></td>
<td>Rosa, 2015(33)</td>
<td>0.88 [0.75, 0.95]</td>
</tr>
<tr>
<td></td>
<td>Haber, 2013(35)</td>
<td>0.72 [0.40, 0.91]</td>
</tr>
<tr>
<td></td>
<td>Zhang, 2014(46)</td>
<td>0.65 [0.56, 0.93]</td>
</tr>
<tr>
<td></td>
<td>Hahn, 2015(36)</td>
<td>0.76 [0.58, 0.87]</td>
</tr>
<tr>
<td></td>
<td>Marquand, 2008(37)</td>
<td>0.69 [0.48, 0.85]</td>
</tr>
<tr>
<td></td>
<td>Fu, 2008(39)</td>
<td>0.62 [0.41, 0.86]</td>
</tr>
<tr>
<td></td>
<td>RE Model for fMRI studies</td>
<td>0.77 [0.70, 0.83]</td>
</tr>
<tr>
<td>sMRI</td>
<td>Wade, 2015(13)</td>
<td>0.69 [0.56, 0.86]</td>
</tr>
<tr>
<td></td>
<td>Ju, 2015(14)</td>
<td>0.69 [0.56, 0.86]</td>
</tr>
<tr>
<td></td>
<td>Wu, 2015(37)</td>
<td>0.71 [0.52, 0.91]</td>
</tr>
<tr>
<td></td>
<td>Patel, 2015(24)</td>
<td>0.71 [0.55, 0.83]</td>
</tr>
<tr>
<td></td>
<td>Johnson, 2008(40)</td>
<td>0.71 [0.55, 0.83]</td>
</tr>
<tr>
<td></td>
<td>Serpa, 2014(31)</td>
<td>0.73 [0.58, 0.84]</td>
</tr>
<tr>
<td></td>
<td>Rodin, 2015(46)</td>
<td>0.69 [0.53, 0.86]</td>
</tr>
<tr>
<td></td>
<td>Rodin (Pittsburgh), 2014(14)</td>
<td>0.62 [0.44, 0.77]</td>
</tr>
<tr>
<td></td>
<td>Rodin (Munster), 2014(30)</td>
<td>0.64 [0.44, 0.77]</td>
</tr>
<tr>
<td></td>
<td>Kopp, 2015(41)</td>
<td>0.70 [0.59, 0.80]</td>
</tr>
<tr>
<td></td>
<td>Liu, 2012(29)</td>
<td>0.75 [0.69, 0.80]</td>
</tr>
<tr>
<td></td>
<td>Meng, 2014(29)</td>
<td>0.65 [0.55, 0.79]</td>
</tr>
<tr>
<td></td>
<td>Gong, 2011(40)</td>
<td>0.69 [0.49, 0.84]</td>
</tr>
<tr>
<td></td>
<td>RE Model for sMRI studies</td>
<td>0.70 [0.62, 0.77]</td>
</tr>
</tbody>
</table>

RE Model for all studies combined: 0.78 [0.74, 0.81]