Fast circular dictionary-matching algorithm

TANVER ATHAR†, CARL BARTON†, WIDMER BLAND‡, JIA GAO†, COSTAS S. IlioPOULOS†, CHANG LIU† and SOLON P. PISSIS†

†Department of Informatics, King’s College London, London, UK
‡Department of Computing and Software, McMaster University, Hamilton, Canada

Received 9 February 2014; revised 5 March 2015

Circular string matching is a problem which naturally arises in many contexts. It consists in finding all occurrences of the rotations of a pattern of length \(m \) in a text of length \(n \). There exist optimal worst- and average-case algorithms for circular string matching. Here, we present a suboptimal average-case algorithm for circular string matching requiring time \(O(n) \) and space \(O(m) \). The importance of our contribution is underlined by the fact that the proposed algorithm can be easily adapted to deal with circular dictionary matching. In particular, we show how the circular dictionary-matching problem can be solved in average-case time \(O(n + M) \) and space \(O(M) \), where \(M \) is the total length of the dictionary patterns, assuming that the shortest pattern is sufficiently long. Moreover, the presented average-case algorithms and other worst-case approaches were also implemented. Experimental results, using real and synthetic data, demonstrate that the implementation of the presented algorithms can accelerate the computations by more than a factor of two compared to the corresponding implementation of other approaches.

1. Introduction

In order to provide an overview of our results and algorithms, we begin with a few definitions generally following (Smyth 2003). We think of a string \(x \) of length \(n \) as an array \(x[0..n - 1] \), where every \(x[i], 0 \leq i < n \), is a letter drawn from some fixed alphabet \(\Sigma \) of size \(\sigma = |\Sigma| \). The empty string of length 0 is denoted by \(\varepsilon \). A string \(x \) is a factor of a string \(y \) if there exist two strings \(u \) and \(v \), such that \(y = uxv \). Let the strings \(x, y, u, \) and \(v \), such that \(y = uxv \). If \(u = \varepsilon \), then \(x \) is a prefix of \(y \). If \(v = \varepsilon \), then \(x \) is a suffix of \(y \). Let \(x \) be a non-empty string of length \(n \) and \(y \) be a string. We say that there exists an occurrence of \(x \) in \(y \) or, more simply, that \(x \) occurs in \(y \), when \(x \) is a factor of \(y \). Every occurrence of \(x \) can be characterized by a position in \(y \). Thus we say that \(x \) occurs at the starting position \(i \) in \(y \) when \(y[i..i + n - 1] = x \). We define the \(i \)th prefix to be the prefix ending at position \(i \) i.e. \(x[0..i] \), \(0 \leq i < n \). On the other hand, the \(i \)th suffix is the suffix starting at position \(i \) i.e. \(x[i..n - 1] \), \(0 \leq i < n \).

A circular string of length \(m \) can be viewed as a traditional linear string which has the left- and right-most symbols wrapped around and stuck together in some way. Under this notion, the same circular string can be seen as \(m \) different linear strings, which would all be considered equivalent. Given a string \(x \) of length \(m \), we denote by
The approach presented in Lothaire (2005) consists in preprocessing the circular structure in a text \(t \). Then, by feeding \(t \) into the automaton, the lengths of the longest factors of \(xx \) occurring in \(t \) can be found by the links followed in the automaton in time \(O(n) \). In Fredriksson and Grabowski (2009), the authors presented an optimal average-case algorithm for circular string matching, by also showing that the average-case lower bound for single string matching of \(O(n \log_m m/m) \) also holds for circular string matching. Very recently, in Chen et al. (2013), the authors presented two fast average-case algorithms based on word-level parallelism. The first algorithm requires average-case time \(O(n \log_w m/w) \), where \(w \) is the number of bits in the computer word. The second one is based on a mixture of word-level parallelism and \(q \)-grams. The authors showed that with the addition of \(q \)-grams, and by setting \(q = O(\log_m m) \), an optimal average-case time of \(O(n \log_m m/m) \) is achieved.

Given a set \(D \) of \(d \) pattern strings, the dictionary-matching problem is to index \(D \) such that for any online query text \(t \), one can quickly find the occurrences of any pattern of \(D \) in \(t \). This problem has been well studied in the literature (Aho and Corasick 1975; Chan et al. 2007), and an index taking optimal space and simultaneously supporting time-optimal queries is achieved (Belazzougui 2010; Hon et al. 2010). In some applications in computational molecular biology, such as, for instance, pattern matching of a collection of viral sequences, we are interested in searching for, not only the original patterns in \(D \), but also all of their rotations. This is the problem of circular dictionary matching.

A variant of this problem for an offline query text was first discussed in Iliopoulos and Rahman (2008). The authors proposed two index data structures, namely CPI-I and CPI-II. CPI-I can be constructed in time and space \(O(n \log^{1+\varepsilon} n) \), and an online pattern query can be answered in time \(O(m \log \log n + Occ) \), where \(Occ \) is the number of occurrences. However, CPI-I involves constructing two suffix trees (Weiner 1973) as well as a complex range-search data structure. Hence, it is suspected that, despite a good theoretical time bound, the practical performance of CPI-I would not be very good both in terms of time and space. CPI-II on the other hand uses a suffix array (Manber and Myers 1993), which is much more space-efficient than a suffix tree and does not require the range-search data structure. CPI-II is conceptually much simpler and can be built in time \(O(n \log n) \) and requires \(O(m \log n) \) bits of space; an online pattern query can then be answered in time \(O(m \log n + Occ) \).

The problem for any online query text was studied in Hon et al. (2011). The authors proposed a variant of suffix tree, called circular suffix tree and showed that it can be
compressed into succinct space. With a tree structure augmented to a circular pattern
matching index called circular suffix array, the circular suffix tree can be used to solve
the circular dictionary-matching problem efficiently. Very recently, in Hon et al. (2013)
the authors proposed the first algorithm for the efficient construction of the circular suffix
tree, which requires time $O(M \log M)$ and $O(M \log \sigma + d \log M)$ bits of working space,
where M is the total length of the dictionary patterns.

In this article, we revisit the following two problems in the average-case setting.

<table>
<thead>
<tr>
<th>CircularStringMatching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: a pattern x of length m and a text t of length $n > m$</td>
</tr>
<tr>
<td>Output: all factors u of t such that $u = x^i, 0 \leq i < m$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CircularDictionaryMatching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: a set $D = {x_0, x_1, \ldots, x_{d-1}}$ of patterns of total length M and a text t of length n, such that $n ></td>
</tr>
<tr>
<td>Output: all factors u of t such that $u = x^i_j, 0 \leq j < d, 0 \leq i <</td>
</tr>
</tbody>
</table>

1.1. Our contribution

We present a new suboptimal average-case algorithm for circular string matching requiring
time $O(n)$ and space $O(m)$. We show how it can be extended to solve the circular dictionary-
matching problem in average-case time $O(n + M)$ and space $O(M)$, assuming that the
shortest pattern is sufficiently long. Furthermore, we implement the presented average-case
algorithms and the index data structure CPI-II presented in Iliopoulos and Rahman (2008)
for an offline query text. Experimental results, using real and synthetic data, demonstrate
that the implementation of the algorithms proposed here can accelerate the computations
by more than a factor of two compared to the corresponding implementation of CPI-II.
A preliminary version of this work appeared in Barton et al. (2013).

2. Properties of the partitioning technique

In this section, we give a brief outline of the partitioning technique in general; and then
show some properties of the version of the technique we use for our algorithms. The
partitioning technique, introduced in Wu and Manber (1992), and in some sense earlier
in Rivest (1976), is an algorithm based on filtering out candidate positions that could
generally solve a solution to speed-up string-matching algorithms. An important point to note
about this technique is that it reduces the search space but does not, by design, verify
potential occurrences. To create a string-matching algorithm filtering must be combined
with some verification technique. The idea behind the partitioning technique was initially
proposed for approximate string matching, but here we show that this can also be used
for exact circular string matching.

The idea behind the partitioning technique is to partition the given pattern in such
a way that at least one of the fragments must occur exactly in any valid approximate
occurrence of the pattern. It is then possible to search for these fragments exactly to give
Fig. 1. Illustration of Lemma 2.1. (a) String \(x' = x[0..m-1]x[0..m-2] \). (b) Partition \(x' \) in four fragments of length \(\ell_f = (2m-1)/4 \). (c) \(m > 2\ell_f \); any factor of length \(m \) of \(x' \) contains at least one of the four fragments.

A set of candidate occurrences of the pattern. It is then left to the verification portion of the algorithm to check if these are valid approximate occurrences of the pattern. It has been experimentally shown that this approach yields very good practical performance on large-scale datasets (Frousios et al. 2010), even if it is not theoretically optimal.

For exact circular string matching, for an efficient solution, we cannot simply apply well-known exact string-matching algorithms, as we must also take into account the rotations of the pattern. We can, however, make use of the partitioning technique and, by choosing an appropriate number of fragments, ensure that at least one fragment must occur in any valid exact occurrence of a rotation. Lemma 2.1 together with the following fact provide this number.

Fact 1. Let \(x \) be a string of length \(m \). Any rotation of \(x \) is a factor of \(x' = x[0..m-1]x[0..m-2] \); and any factor of length \(m \) of \(x' \) is a rotation of \(x \).

Lemma 2.1. Let \(x \) be a string of length \(m \). If we partition \(x' = x[0..m-1]x[0..m-2] \) in four fragments of length \(\lfloor (2m-1)/4 \rfloor \) and \(\lceil (2m-1)/4 \rceil \), at least one of the four fragments is a factor of any factor of length \(m \) of \(x' \).

Proof. Let \(\ell_f \) denote the length of the fragment. If we partition \(x' \) in at least four fragments of length \(\lfloor (2m-1)/4 \rfloor \) and \(\lceil (2m-1)/4 \rceil \), we have that

\[
\ell_f \leq (2m-1)/4,
\]

which gives \(2m > 4\ell_f \) and \(m > 2\ell_f \). Therefore, any factor of length \(m \) of \(x' \), and, by Fact 1, any rotation of \(x \), must contain at least one of the fragments. For a graphical illustration of this proof inspect Figure 1.
3. Circular string matching via filtering

In this section, we present CSMF, a new suboptimal average-case algorithm for exact circular string matching via filtering. It is based on the partitioning technique and a series of practical and well-established data structures.

3.1. Longest common extension

First, we describe how to compute the longest common extension, denoted by lce, of two suffixes of a string in constant time. lce queries are an important part of the algorithms presented later on.

Let SA denote the array of positions of the sorted suffixes of string x of length n, i.e. for all $1 \leq r < n$, we have $x[SA[r-1]..n-1] < x[SA[r]..n-1]$. The inverse iSA of the array SA is defined by $iSA[SA[r]] = r$, for all $0 \leq r < n$. Let $lcp(r,s)$ denote the length of the longest common prefix of the strings $x[SA[r]..n-1]$ and $x[SA[s]..n-1]$, for all $0 \leq r, s < n$, and 0 otherwise. Let LCP denote the array defined by $LCP[r] = lcp(r-1,r)$, for all $1 < r < n$, and $LCP[0] = 0$. We perform the following linear-time and linear-space preprocessing:

- Compute arrays SA and iSA of x (Nong et al. 2009).
- Compute array LCP of x (Fischer 2011).
- Preprocess array LCP for range minimum queries, we denote this by $RMQLCP$ (Fischer and Heun 2011).

With the preprocessing complete, the lce of two suffixes of x starting at positions p and q can be computed in constant time in the following way (Ilie et al. 2010):

$$LCE(x, p, q) = LCP[RMQLCP(iSA[p]+1, iSA[q])].$$

(1)

Example 3.1. Let the string $x = abbababba$. The following table illustrates the arrays SA, iSA, and LCP for x.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x[i]$</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>$SA[i]$</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>$iSA[i]$</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>$LCP[i]$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

We have $LCE(x, 1, 2) = LCP[RMQLCP(iSA[2]+1, iSA[1])] = LCP[RMQLCP(6, 8)] = 1$, implying that the lce of bbababba and $bababba$ is 1.

3.2. Algorithm CSMF

Given a pattern x of length m and a text t of length $n > m$, an outline of algorithm CSMF for solving the CIRCULARSTRINGMATCHING problem is as follows.
1. Construct the string $x' = x[0 \ldots m - 1] x[0 \ldots m - 2]$ of length $2m - 1$. By Fact 1, any rotation of x is a factor of x'.

2. The pattern x' is partitioned in four fragments of length $\left[(2m-1)/4\right]$ and $\left[(2m-1)/4\right]$. By Lemma 2.1, at least one of the four fragments is a factor of any rotation of x.

3. Match the four fragments against the text t using an Aho–Corasick automaton (Dori and Landau 2006). Let L be a list of size Occ of tuples, where $<p_{x'}, \ell, p_t> \in L$ is a three-tuple such that $0 \leq p_{x'} < 2m - 1$ is the position where the fragment occurs in x', ℓ is the length of the corresponding fragment, and $0 \leq p_t < n$ is the position where the fragment occurs in t.

4. Compute SA, iSA, LCP, and RMQ_{LCP} of $T = x't$. Compute SA, iSA, LCP, and RMQ_{LCP} of $T_r = rev(tx)$, that is the reverse string of tx'.

5. For each tuple $<p_{x'}, \ell, p_t> \in L$, we try to extend to the right via computing

$$E_r \leftarrow \text{LCE}(t, p_{x'} + \ell, 2m - 1 + p_t + \ell);$$

in other words, we compute the length E_r of the longest common prefix of $x'[p_{x'} + \ell \ldots 2m - 1]$ and $t[p_t + \ell \ldots n - 1]$, both being suffixes of T. Similarly, we try to extend to the left via computing E_l using lce queries on the suffixes of T_r.

6. For each E_l, E_r computed for tuple $<p_{x'}, \ell, p_t> \in L$, we report all the valid starting positions in t by first checking if the total length $E_l + \ell + E_r \geq m$; that is the length of the full extension of the fragment is greater than or equal to m, matching at least one rotation of x. If that is the case, then we report positions

$$\max\{p_t - E_r, p_t + \ell - m\}, \ldots, \min\{p_t + \ell - m + E_r, p_t\}.$$

Example 3.2. Let the pattern $x = GGGTCTA$ of length $m = 7$, and the text $t = GATACGATACCTAGGGTGATAGAATAG$. Then $x' = GGGTCTAGGGTGATAGAATAG$ (Step 1). x' is partitioned in GGTT, CTA, GGGT, and GTA (Step 2). Consider $<4, 3, 10> \in \mathcal{L}$, that is, fragment $x'[4 \ldots 6] = \text{CTA}$, of length $\ell = 3$, occurs at starting position $p_t = 10$ in t (Step 3). Then $T = GGGTCTAGGGTGATACGATACCTAGGGTGATAGAATAG$ and $T_r = \text{TCTGGGGATCTGGATAGTGGGATCCATAGCTGGATAG}$ (Step 4). Extending to the left gives $E_l = 0$, since $T_r[9] \neq T_r[30]$; and extending to the right gives $E_r = 4$, since $T[7 \ldots 10] = T[26 \ldots 29]$ and $T[11] \neq T[30]$ (Step 5). We check that $E_l + \ell + E_r = 7 = m$, and therefore we report position 10 (Step 6):

$$p_t - E_r = 10 - 0 = 10, \ldots, p_t + \ell - m + E_r = 10 + 3 - 7 + 4 = 10;$$

that is, $x^4 = \text{CTAGGG}$ occurs at starting position 10 in t.

Theorem 3.1. Given a pattern x of length m drawn from alphabet Σ, $\sigma = |\Sigma|$, and a text t of length $n > m$ drawn from Σ, algorithm CSMF requires average-case time $O(n)$ to solve the **CircularStringMatching** problem.

Proof. Constructing and partitioning the string x' from x can trivially be done in time $O(m)$ (Steps 1–2). Building the Aho–Corasick automaton of the four fragments requires time $O(m)$; and the search time is $O(n + Occ)$ (Step 3) (Dori and Landau 2006). The preprocessing step for the lce queries on the suffixes of T and T_r can be done in
Fast circular dictionary-matching algorithm

149

time $O(n)$ (Step 4). Computing E_1 and E_r for each occurrence of a fragment requires time $O(Occ)$ (Step 5). For each extended occurrence of a fragment, we report $O(m)$ valid starting positions, thus $O(mOcc)$ in total (Step 6). Since, the expected number Occ of occurrences of the four fragments in t is $4n/\sigma^{(2m-1)/4} = O(n^{\frac{m}{\sigma^{m-1}}})$, algorithm CSMF requires average-case time $O((1 + \frac{m}{\sigma^{m-1}})n)$. It achieves average-case time $O(n)$ iff

$$f = \frac{4m}{\sigma^{m-1}} n \leq cn$$

for some fixed constant c. For $\sigma = 2$, the maximum value of f is attained at

$$m = 2/\ln 2 \approx 2.8853$$

and so for $\sigma > 1$ we get

$$\frac{4m}{\sigma^{m-1}} n \leq 5.05n.$$

3.3. Algorithm CSMF-Simple

In this section, we present algorithm CSMF-Simple, a more space-efficient version of algorithm CSMF. Algorithm CSMF-Simple is very similar to algorithm CSMF. The only differences are:

- Algorithm CSMF-Simple does not perform Step 4 of algorithm CSMF;
- For each tuple $⟨p_x, /, p_t⟩ \in L$, Step 5 of algorithm CSMF is performed without the use of the pre-computed indexes. In other words, we compute E_r and E_l by simply performing letter comparisons and counting the number of mismatches occurred. The extension stops right before the first mismatch.

Fact 2. The expected number of letter comparisons required for each extension in algorithm CSMF-Simple is less than three.

Proof. Recall that on an alphabet of size σ, the probability that two random strings of length ℓ are equal is $(1/\sigma)^\ell$. Thus, given two long strings, and setting $r = 1/\sigma$, such that $r < 1$, there is probability r that the initial letters are equal, r^2 that the prefixes of length two are equal, and so on. Thus, the expected number of positions to be matched before inequality occurs can be described by the summation of infinite terms

$$S = r + 2r^2 + \cdots = \sum_{k=1}^{\infty} kr^k$$

which is bounded by $r/(1-r)^2 < 2$ for $r < 1$.

Thus S, the expected number of matching positions, is less than two, and hence, the expected number of letter comparisons required for each extension in algorithm CSMF-Simple is less than three.

\[\square\]
Theorem 3.2. Given a pattern \(x \) of length \(m \) drawn from alphabet \(\Sigma \), \(\sigma = |\Sigma| \), and a text \(t \) of length \(n > m \) drawn from \(\Sigma \), algorithm CSMF-Simple requires average-case time \(O(n) \) and space \(O(m) \) to solve the \textsc{CircularStringMatching} problem.

Proof. By Fact 2, computing \(E_{\ell} \) and \(E_{r} \) for each occurrence of a fragment requires expected time \(O(occ) \). Therefore, algorithm CSMF-Simple requires average-case time \(O(n) \). The required space is reduced to \(O(m) \) since Step 4 of algorithm CSMF is not performed.

\[\square \]

4. Circular dictionary matching via filtering

In this section, we give a generalization of our algorithm for circular string matching and show that it can easily be modified to solve the problem of circular dictionary matching. We denote this new algorithm by CDMF. Algorithm CDMF follows the same approach as before but with a few key differences. In circular dictionary matching we are given a set \(D = \{x_0, x_1, \ldots, x_{d-1}\} \) of patterns of total length \(M \) and we must find all occurrences of the patterns in \(D \) or any of their rotations. To modify algorithm CSMF to solve this problem we perform Steps 1 and 2 for every pattern in \(D \), constructing the strings \(x'_{0}, x'_{1}, \ldots, x'_{d-1} \) and breaking them each into four fragments in the same way specified in Lemma 2.1. From this point the algorithm remains largely the same (Steps 3–4); we build the automaton for the fragments from every pattern and then proceed in the same way as algorithm CSMF. The only extra consideration is that we must be able to identify, for every fragment, the pattern from which it was extracted. To do this we alter the definition of \(L \) such that it now consists of tuples of the form \(\langle p_{x_{j}}, \ell, j, p_{t} \rangle \), where \(j \) identifies the pattern the fragment was extracted from; \(p_{x_{j}} \) and \(\ell \) are defined identically with respect to the pattern \(x_{j} \) and \(p_{t} \) remains the same. This then allows us to identify the pattern for which we must perform verification (Steps 5–6) if a fragment is matched. The verification steps are then the same as in algorithm CSMF with the respective pattern.

Theorem 4.1. Given a set \(D = \{x_0, x_1, \ldots, x_{d-1}\} \) of patterns of total length \(M \) drawn from alphabet \(\Sigma \), \(\sigma = |\Sigma| \), and a text \(t \) of length \(n > |x_j| \), where \(0 \leq j < d \), drawn from \(\Sigma \), algorithm CDMF requires average-case time \(O((1 + \frac{d|x_{max}|}{\sigma})n + M) \) to solve the \textsc{CircularDictionaryMatching} problem, where \(x_{min} \) and \(x_{max} \) are the minimum- and maximum-length patterns in \(D \), respectively.

Proof. Constructing and partitioning the strings \(x'_{0}, x'_{1}, \ldots, x'_{d-1} \) from \(D \) can trivially be done in time \(O(M) \) (Steps 1–2). Building the Aho–Corasick automaton of the 4d fragments requires time \(O(M) \); and the search time is \(O(n + Occ) \) (Step 3). The preprocessing step for the loc queries on the suffixes of \(T \) and \(T_r \) can be done in time \(O(n) \) (Step 4). Computing \(E_{\ell} \) and \(E_{r} \) for each occurrence of a fragment requires time \(O(occ) \) (Step 5). For each extended occurrence of some fragment \(\langle p_{x_{j}}, \ell, j, p_{t} \rangle \), we may report \(O(|x_j|) \) valid starting positions. The expected number of occurrences for any fragment of some pattern \(x_{j} \) is \(n/\alpha(2|x_{j}|–1)/4 \) thus \(4n/\alpha(2|x_{j}|–1)/4 \) for all four fragments. So the total expected number \(Occ \) of occurrences is \(\sum_{j=0}^{d-1} \frac{4n}{2\alpha(2|x_{j}|–1)/4} = O\left(\frac{dn}{\sigma 2 \text{min} – 1}\right) \), where \(x_{min} \) is the minimum-length string in \(D \) (Step 6). Since the expected number \(Occ \) of occurrences of the fragments in \(t \) is
$O\left(\frac{dn}{\sigma^{x_{\min}}}\right)$, algorithm CDMF requires average-case time $O((1 + \frac{d|x_{\max}|}{\sigma^{x_{\min}}}n + M)$, where x_{\max} is the maximum-length string in D.

In a similar way as in algorithm CSMF-Simple, we can apply Fact 2 to obtain algorithm CDMF-Simple and achieve the following result.

Theorem 4.2. Given a set $D = \{x_0, x_1, \ldots, x_{d-1}\}$ of patterns of total length M drawn from alphabet Σ, $\sigma = |\Sigma|$, and a text t of length $n > |x_j|$, where $0 \leq j < d$, drawn from Σ, algorithm CDMF-Simple requires average-case time $O((1 + \frac{d|x_{\max}|}{\sigma^{x_{\min}}}n + M)$ and space $O(M)$ to solve the CircularDictionaryMatching problem, where x_{\min} and x_{\max} are the minimum- and maximum-length patterns in D, respectively.

Algorithm CDMF achieves average-case time $O(n + M)$ iff

$$\frac{4d|x_{\max}|}{\sigma^{x_{\min}}} n \leq cn$$

for some fixed constant c. So we have

$$\frac{4d|x_{\max}|}{\sigma^{x_{\min}}} \leq c$$

$$\log_{\sigma} \left(\frac{4d|x_{\max}|}{c}\right) \leq \frac{2|x_{\min}| - 1}{4}$$

$$4(\log_{\sigma} d + \log_{\sigma} |x_{\max}| - \log_{\sigma} |x_{\min}| - \log_{\sigma} c) \leq 2|x_{\min}| - 1$$

Rearranging and setting c such that $\log_{\sigma} c \geq 1/4 + \log_{\sigma} 4$ gives a sufficient condition for our algorithm to achieve average-case time $O(n + M)$:

$$|x_{\min}| \geq 2(\log_{\sigma} d + \log_{\sigma} |x_{\max}|).$$

Corollary 4.1. Given a set $D = \{x_0, x_1, \ldots, x_{d-1}\}$ of patterns of total length M drawn from alphabet Σ, $\sigma = |\Sigma|$, and a text t of length $n > |x_j|$, where $0 \leq j < d$, drawn from Σ, algorithm CDMF-Simple solves the CircularDictionaryMatching problem in average-case time $O(n + M)$ iff $|x_{\min}| \geq 2(\log_{\sigma} d + \log_{\sigma} |x_{\max}|)$, where x_{\min} and x_{\max} are the minimum- and maximum-length patterns in D, respectively.

5. Detailed description of CPI-II

The index data structure CPI-II essentially consists of the suffix array SA and the inverse suffix array iSA of t. The result of a query for a pattern x of length m on the suffix array SA of t of length n can be represented in the form of an interval $[s, e]$, such that the starting positions of x in t are given by the set $\{SA[s], SA[s + 1], \ldots, SA[e]\}$ of cardinality Occ. The query algorithm on CPI-II relies on the following two lemmas. We denote this interval by Int_x.
Lemma 5.1 (Gusfield (1997)). Given a text t of length n, its suffix array SA, and an interval Int_c of a query for a pattern x, the interval $Int_{c,c}$ for any character c can be computed in time $O(\log n)$.

Lemma 5.2 (Huynh et al. (2006)). Given a text t of length n, its suffix array SA, its inverse suffix array iSA, and two intervals Int_{x_1} and Int_{x_2} of queries for patterns x_1 and x_2, respectively, the interval Int_{x_1,x_2} can be computed in time $O(\log n)$.

In order to find all the rotations of a string x, we can first find the intervals for all prefixes and suffixes of x. Let $Pref[i] = Int_{x[i..]}$ and $Suff[i] = Int_{x[i..m-1]}$.

Consider the prefixes in ascending order by length. The interval $Pref[0]$ for prefix $x[0]$ can be found in time $O(\log n)$ by a binary search on SA. Each subsequent interval $Pref[i]$ for prefix $x[0..i]$ can be found in time $O(\log n)$ by Lemma 5.1. Hence, the intervals for all prefixes can be found in time $O(m \log n)$.

The intervals for the suffixes can be found in time $O(m \log n)$ in a similar way. The interval $Suff[m-1]$ for suffix $x[m-1]$ can be found in time $O(\log n)$. Each subsequent interval $Suff[i]$ can also be found in time $O(\log n)$ by first finding $Int_{x[i]}$, where $c = x[i]$, in time $O(\log n)$, then applying Lemma 5.2 with $Int_{x_1} = Int_{x[i]}$ and $Int_{x_2} = Suff[i+1]$.

Having found the intervals $Pref[i]$ and $Suff[i]$ for all $i \in [0, m-1]$, we next find the set of intervals for all the rotations of x. The interval for the first rotation of x is $Suff[m-1]$. For $j \in [0, m-1]$, the interval for the j-th rotation of x can be found in time $O(\log n)$ using Lemma 5.2 with $Int_{x_1} = Suff[j]$ and $Int_{x_2} = Pref[(j + m - 2) \mod (m - 1)]$. Thus all intervals for all the rotations of x can be found in time $O(m \log n)$. Finally, we use SA to convert this set of intervals into a set of occurrences in t of cardinality Occ. In all, this query algorithm requires time $O(n + m \log n + Occ)$.

6. Experimental results

We implemented algorithms CDMF-Simple and the index data structure CPI-II as library functions to perform circular string matching for a set of patterns. The functions were implemented in the C programming language and developed under GNU/Linux operating system. They take as input arguments a set $D = \{x_0, x_1, \ldots, x_{d-1}\}$ of patterns and a text t; and then return the list of starting positions of the occurrences of the rotations of $x_0, x_1, \ldots, x_{d-1}$ in t as output. The library implementation of CDMF-Simple is distributed under the GNU General Public License (GPL), and it is available at http://www.inf.kcl.ac.uk/research/projects/asmf/, which is set up for maintaining the source code and the man-page documentation. The library implementation of CPI-II is distributed under the GPL, and it is available at http://github.com/blandw/cpm. The experiments were conducted on a Desktop PC using one core of Intel i7 2600 CPU at 3.4 GHz under GNU/Linux. The programmes were compiled with gcc version 4.6.3 at optimization level 3 (-O3). Time and memory measurements were taken using the GNU/Linux time command.

To evaluate the efficiency of CDMF-Simple, we compared its performance against CPI-II using real data. As input datasets we used: for the set of patterns, a set of $d = 22,918$ Sugarcane white streak virus short reads, produced by Illumina platform, of total length
Table 1. *Elapsed-time and speed-up comparisons of algorithms CPI-II and CDMF-Simple using synthetic DNA data (σ = 4) for n = 100 MB.*

<table>
<thead>
<tr>
<th>Number of patterns</th>
<th>Length of each pattern</th>
<th>CPI-II (s)</th>
<th>CDMF-Simple (s)</th>
<th>Speed-up of CDMF-Simple</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>25</td>
<td>8.5</td>
<td>4.9</td>
<td>1.73</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td>8.6</td>
<td>5.1</td>
<td>1.68</td>
</tr>
<tr>
<td>1000</td>
<td>25</td>
<td>8.6</td>
<td>5.6</td>
<td>1.53</td>
</tr>
<tr>
<td>10,000</td>
<td>25</td>
<td>9.0</td>
<td>6.2</td>
<td>1.45</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>8.4</td>
<td>4.3</td>
<td>1.95</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>8.6</td>
<td>5.1</td>
<td>1.68</td>
</tr>
<tr>
<td>1000</td>
<td>50</td>
<td>8.6</td>
<td>5.7</td>
<td>1.50</td>
</tr>
<tr>
<td>10,000</td>
<td>50</td>
<td>9.4</td>
<td>6.2</td>
<td>1.51</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>8.6</td>
<td>4.3</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>8.6</td>
<td>4.9</td>
<td>1.75</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>8.7</td>
<td>5.8</td>
<td>1.50</td>
</tr>
<tr>
<td>10,000</td>
<td>100</td>
<td>9.6</td>
<td>7.2</td>
<td>1.33</td>
</tr>
</tbody>
</table>

M = 516,076 base pairs; and, for the text, the *Homo sapiens* chromosome 1 sequence of length *n* = 248,956,422 base pairs. CPI-II finished the assignment in 25.1 seconds; CDMF-Simple finished in 17.7 seconds. The maximum allocated memory was 2436 MB for CPI-II and 691 MB for CDMF-Simple. As input datasets we also used: for the set of patterns, a set of *d* = 14,880 *Human immunodeficiency virus* (HIV-1) short reads, produced by 454 Life Sciences platform, of total length *M* = 3,040,354 base pairs; and, for the text, the *Homo sapiens* chromosome 1 sequence of length *n* = 248,956,422 base pairs. CPI-II finished the assignment in 30.1 seconds; CDMF-Simple finished in 25.5 seconds. The maximum allocated memory was 2436 MB for CPI-II and 675 MB for CDMF-Simple.

To further evaluate the efficiency of CDMF-Simple, we compared its performance against CPI-II using synthetic data. The data were generated using a randomized script; and the parameters for this script were chosen based on the properties (length) of real data. Tables 1 and 2 illustrate elapsed-time and speed-up comparisons for different combinations of input parameters. As it is demonstrated by the experimental results, algorithm CDMF-Simple is in all cases the fastest with a speed-up improvement between 1.3 and 2.3 over CPI-II. The maximum allocated memory (per task) for the experiments in Table 1 was 998 MB for CPI-II and 337 MB for CDMF-Simple. The maximum allocated memory (per task) for the experiments in Table 2 was 1940 MB for CPI-II and 525 MB for CDMF-Simple. Notice that, this occurs for the largest number of patterns, and CDMF-Simple has a lower memory footprint for less patterns, whilst CPI-II remains static. This confirms our theoretical findings in terms of space complexity.

Here, it becomes evident what is generally expected in practical terms: there is a certain point, as the value of *M* grows and *n* remains static, that CDMF-Simple will become slower than CPI-II; however, for smaller *M*, CDMF-Simple is expected to retain a significant speed-up, in particular when one has *multiple* online query texts.
Table 2. Elapsed-time and speed-up comparisons of algorithms CPI-II and CDMF-Simple using synthetic DNA data ($\sigma = 4$) for $n = 200$ MB.

<table>
<thead>
<tr>
<th>Number of patterns</th>
<th>Length of each pattern</th>
<th>CPI-II (s)</th>
<th>CDMF-Simple (s)</th>
<th>Speed-up of CDMF-Simple</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>25</td>
<td>21.1</td>
<td>10.4</td>
<td>2.02</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td>21.3</td>
<td>10.8</td>
<td>1.97</td>
</tr>
<tr>
<td>1000</td>
<td>25</td>
<td>21.4</td>
<td>11.9</td>
<td>1.79</td>
</tr>
<tr>
<td>10,000</td>
<td>25</td>
<td>21.5</td>
<td>13.3</td>
<td>1.61</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>21.2</td>
<td>9.2</td>
<td>2.3</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>21.5</td>
<td>10.8</td>
<td>1.99</td>
</tr>
<tr>
<td>1000</td>
<td>50</td>
<td>21.5</td>
<td>12.3</td>
<td>1.74</td>
</tr>
<tr>
<td>10,000</td>
<td>50</td>
<td>22.3</td>
<td>13.4</td>
<td>1.66</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>21.3</td>
<td>9.1</td>
<td>2.34</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>21.6</td>
<td>10.4</td>
<td>2.07</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>22</td>
<td>12.4</td>
<td>1.77</td>
</tr>
<tr>
<td>10,000</td>
<td>100</td>
<td>22.3</td>
<td>15.3</td>
<td>1.45</td>
</tr>
</tbody>
</table>

7. Final remarks

In this article, we presented a suboptimal average-case algorithm for circular string matching requiring time $O(n)$ and space $O(m)$. We showed how it can be extended to solve the circular dictionary-matching problem in average-case time $O(n + M)$ and space $O(M)$, assuming that the shortest pattern is sufficiently long. Experimental results, using real and synthetic data, demonstrate that the implementation of the presented algorithms can accelerate the computations by more than a factor of two compared to the corresponding implementation of other approaches. For future work, we will try to improve our algorithms in order to achieve average-case optimality; and to extend our approaches to the edit distance model (Barton et al. 2014, 2015).

The publication costs for this article were funded by the Open Access funding scheme of King’s College London. Tanver Athar is supported by an EPSRC grant (Doctoral Training Grant #EP/L504798/1). Solon P. Pissis is supported by a Research Grant (#RG130720) awarded by the Royal Society.

References

Fast circular dictionary-matching algorithm

