Title: Association of Stimulants With Dopaminergic Alterations in Users of Cocaine, Amphetamine, and Methamphetamine: A Systematic Review and Meta-analysis

Authors

Abhishekh H Ashok MBBS¹,²,³, Yuya Mizuno MD ³,⁴, Nora D Volkow MD⁵, Oliver D Howes MRCPsych MD PhD¹,²,³

Affiliation

¹ Psychiatric Imaging Group, MRC London Institute of Medical Sciences Centre (LMS), Du Cane Road, London, UK
² Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK
³ Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
⁴ Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
⁵ National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, Bethesda, USA

Word count: 3598

Corresponding Author

Abhishekh H Ashok, MBBS
Department of psychosis studies
Institute of Psychiatry, Psychology and Neurosciences
Kings College London
16 De Crespigny Park, London SE5 8AF
Email: abhishekh.ashok@kcl.ac.uk
Ph: 02083833703

Oliver D Howes D.M., Ph.D., M.A., B. M. B.Ch., MRCPsych
Professor, Psychiatric Imaging Group, MRC London Institute of Medical Sciences Centre (LMS), Du Cane Road, London W12 0NN. (Email: oliver.howes@lms.mrc.ac.uk)
Ph: +44 (0)20 8383 3298

Date of revision 12 January 2017
Abstract:

Importance: Stimulant use disorder is common, affecting between 0.3 to 1.1% of the population, and costs over $85 billion per year globally. There are currently no licensed treatments. Several lines of evidence implicate the dopamine system in the pathophysiology of substance use disorder. Thus understanding the nature of dopamine dysfunction seen in stimulant users has the potential to aid the development of new therapeutics.

Objective: To comprehensively review the in-vivo imaging evidence for dopaminergic alterations in stimulant (cocaine or amphetamine/methamphetamine) drug abuse or dependence.

Data sources: The entire PubMed, EMBASE and PsycINFO databases were searched for studies from inception date to May 14, 2016.

Study selection: A total of 31 studies were identified that compared dopaminergic measures between 519 stimulant users and 512 controls using positron emission tomography or single-photon emission computed tomography to measure striatal dopamine synthesis or release, or dopamine transporter or receptor availability.

Data extraction and synthesis: Demographic, clinical and imaging measures were extracted from each study and meta-analyses and sensitivity analyses were conducted for stimulants combined and cocaine and amphetamines separately where there were sufficient studies.

Main Outcomes and Measures: We determined the difference in dopamine release (assessed using change in the D2/3 receptor availability following administration of amphetamine or methylphenidate), transporter and receptor availability in cocaine, amphetamine and methamphetamine users and healthy controls.

Results: In majority of the studies the duration of abstinence varied from 5 days to 3 weeks.
There was a significant decrease in striatal dopamine release (stimulants combined: Hedge’s $g = -0.84$; cocaine: -0.87, both $p<0.001$), dopamine transporter availability (stimulants combined: Hedge’s $g = -0.91$, $p<0.01$; amphetamine and methamphetamine: Hedge’s g: -1.47, $p<0.001$) and D2/3 availability (stimulants combined: Hedge’s $g = -0.76$; cocaine: -0.73; amphetamine and methamphetamine: -0.81, all $p<0.001$). We did not find consistent alterations in vesicular monoamine transporter, dopamine synthesis or D1 receptor studies.

Conclusion and relevance: Our data suggest that both pre and post-synaptic aspects of the dopamine system in the striatum are down-regulated in stimulant users. We discuss the commonality and difference between these findings and the discrepancies with the preclinical literature as well as their implications for future drug development.
Introduction:

According to World Health Organization estimates amphetamine-like stimulants (predominantly methamphetamine and amphetamine) and cocaine are the second and fourth most common forms of illicit substance abuse respectively (world drug report 2015; https://www.unodc.org). The world-wide prevalence of amphetamine-like stimulant use was estimated at between 0.3-1.1 percent in 2015 (between 13.8 million and 53.8 million users), and for cocaine it was 0.3-0.4 percent of the population aged 15-64 (between 13 million and 20 million users) (world drug report 2015; https://www.unodc.org). Stimulant use is thus a significant burden to society. Dopamine dysregulation is hypothesized to underlie addictive behaviour and stimulants such as amphetamine and cocaine act on dopamine transporters and increase extracellular dopamine. Furthermore, preclinical models show that the acute rewarding effects of stimulant drugs are linked to the release of dopamine in the nucleus accumbens measured using micro-dialysis or fast scan cyclic voltammetry. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) enable us to measure dopaminergic function in-vivo in humans. Using these imaging tools, human studies have found that stimulant drugs increase synaptic dopamine levels in the whole striatum (including ventral striatum which includes the nucleus accumbens) and that increases are associated with the subjective perception of drug reward in non-drug abusing controls. However, determining the dopaminergic effects of stimulants in human stimulant users is essential as the neurobiological mechanisms may be different. A number of studies have investigated dopamine release, dopamine transporter and dopamine receptor levels in stimulant addiction. However, to our knowledge, there has not been a previous meta-analysis of these findings. Thus we aimed to synthesize the PET and SPECT imaging findings on dopaminergic
function in cocaine and amphetamine-like (amphetamine and methamphetamine) stimulant addiction and to consider their implications for its treatment. Since both drugs are known to increase extracellular dopamine levels, either by blocking (cocaine) or reversing (amphetamine/methamphetamine) the dopamine transporter, we pooled the data. We group findings into studies of dopamine release, dopamine transporter availability, and dopamine receptor availability. We focus on the whole striatum as it is richly innervated with dopaminergic neurons and reliably imaged with PET and SPECT in humans.

Methods:

Study selection

To be included in the meta-analysis, an article needed to investigate the striatal dopaminergic system in cocaine or amphetamine-like stimulant users (this included amphetamine and methamphetamine) and a control group, including the mean and standard deviations for both groups (see supplementary figures 1 and 2 for the study selection and supplementary methods for further details on the search and inclusion criteria). We focused on amphetamine and methamphetamine as these are the most widely used amphetamine-like drugs.

Data extraction

The main outcome measure was the difference in the dopaminergic imaging index between stimulant users and controls. The following variables were extracted from all the studies: authors, year of publication, subject characteristics of the control and stimulant users group (group size, age, sex, substance use characteristics, comorbid substance abuse, method of abstinence confirmation, duration of abstinence, diagnosis), imaging characteristics.
Data analysis

The main outcome measure was the effect size for the dopaminergic index for the whole striatum in the stimulant users (cocaine and amphetamine-like stimulants studies combined) using a random effects model. Separate secondary meta-analyses were conducted for the studies of dopamine transporter (DAT), dopamine release and dopamine receptor availability in cocaine and amphetamine-like substance users to determine if the effects were consistent across categories of stimulants. Publication bias was assessed using funnel plots as well as regression tests. Heterogeneity was estimated using the I^2 value (I^2 values $<50\%$ indicate low to moderate heterogeneity, whereas $I^2 > 50\%$ indicate moderate to high heterogeneity). Leave-one-out sensitivity analyses were conducted. A significance level of $p<0.05$ (2-tailed) was taken as significant (see supplementary materials for further methodological details).

Results

Dopamine release

There were 7 studies (5 in cocaine users and 2 in amphetamine-like stimulant users) assessing dopamine release in 164 stimulant users with 139 healthy controls. The meta-analysis showed a significant reduction in dopamine release in the stimulant users relative to controls with an effect size of -0.84 ([95% confidence interval (CI), $-1.08 - -0.60$], $p <0.001$). This was also seen when the meta-analysis was restricted to cocaine users, effect size -0.87 ([95% CI, $-1.15 - -0.60$], $p<0.001$). There were too few studies of amphetamine-
like stimulant users for a meta-analysis, but the effect sizes in the two studies were in the same direction (standardized mean difference (SMD): −1.05 [95% CI, −1.76 - −0.34] and −0.40 [95% CI, −1.11 - 0.32])20,21. The results of heterogeneity and sensitivity analysis are provided in supplementary material.

Dopamine transporter:

There were 12 studies (3 in cocaine users24-26 and 9 in amphetamine-like stimulant users27-35) assessing dopamine transporter availability in 177 stimulant users and 191 healthy controls. The meta-analysis showed a significant reduction in dopamine transporter availability in the stimulant users relative to controls with an effect size of −0.91 ([95% CI, −1.5 - −0.32], p<0.01). For sub-analysis, there were 9 studies in amphetamine-like stimulant users27-35 assessing dopamine transporter availability in 108 stimulant users and 126 healthy controls. The meta-analysis showed significantly reduced dopamine transporter availability in amphetamine-like stimulant users (effect size: −1.47 ([95% CI, −1.83 - −1.1]), p<0.001). There were 5 studies in cocaine users24-26,36,37. However, one study was excluded as it included cocaine users with potential CNS co-morbidity (HIV)36. This left too few studies for a separate meta-analysis in cocaine users. The results of these studies were inconsistent, with the two PET studies (where there was an overlap of samples) showing no significant difference in the DAT availability in cocaine users26,37, whilst the two SPECT studies reported elevated DAT in cocaine users who were acutely abstinent24,25. The two SPECT studies in cocaine users had durations of abstinence of a maximum of 4 days25 and mean of 7 days.24 As such, residual cocaine could block radiotracer binding to DAT, resulting in a slight underestimation of DAT levels in these studies. The results of heterogeneity and sensitivity analysis are provided in supplementary material.
Dopamine receptor availability

There were 19 studies assessing dopamine receptor availability in 342 stimulant users and 321 healthy controls (7 studies in amphetamine-like stimulant users\(^\text{20,21,38-42}\) and 12 studies in cocaine users\(^\text{16-19,22,37,43-48}\)).

The meta-analysis revealed an overall reduction in D2/3 receptor availability in stimulant users relative to controls with an effect size of −0.76 ((95% CI, −0.92 - −0.6), p<0.001). In the separate analyses a reduction in D2/3 receptor availability was noted in both cocaine users (effect size=−0.73 [95% CI, −0.94 - −0.53], p<0.001) and amphetamine-like stimulant users (effect size=−0.81 [95% CI, −1.12 - −0.49], p<0.001) relative to controls. The results of heterogeneity and sensitivity analysis are provided in supplementary material.

Other dopaminergic measures:

There was only one study in stimulant users using 6-[18F]fluoro-dihydroxy-phenylalanine ([18F]-DOPA) assessing dopamine synthesis capacity\(^\text{49}\). This study showed reduced dopamine synthesis capacity in cocaine users and the estimated effect size was found to be 0.46 [95% CI, −0.46 - 1.39]. We could not find any studies on dopamine synthesis capacity in amphetamine-like stimulant users. Four studies assessed vesicular monoamine transporter 2 (VMAT2) availability, with inconsistent findings. Two studies showed significantly reduced VMAT2 availability, one in cocaine users with two weeks of abstinence [Hedge’s g: 1.6, 95% CI: 0.68 - 2.52]\(^\text{50}\), and the other in methamphetamine abusers after three months of abstinence [Hedge’s g: 1.68, 95% CI: 0.86 - 2.5]\(^\text{28}\). However, two studies in recently abstinent methamphetamine users (mean duration of abstinence: 2.6 days and 19 days) showed elevated VMAT2 levels [Hedge’s g: 1.16, 95% CI: 0.56 - 1.76]\(^\text{51,52}\). Moreover, given
that metamphetamine interacts with VMAT2 at the same site as the PET tracers and the relatively short duration of abstinence, it is possible that VMAT2 levels were underestimated in some subjects.

There was only one study on stimulant users and D1 receptors, which used [11C] NNC112 to compare cocaine abusers with controls \(^{53}\). Though there were no differences in D1 receptors between groups, the availability of D1 receptors in cocaine abusers was negatively associated with the choice to self-administer cocaine by the cocaine abusers.

Discussion:

To our knowledge this is first meta-analysis investigating the nature of dopaminergic dysfunction in stimulant users. Our main findings are that dopamine release, transporter levels and D2/3 receptor availability are all lower in vivo in stimulant users compared to healthy controls with large to very large effect sizes (Hedge’s g: −0.84, −0.91 and −0.76 respectively). This indicates that there is a generalised down-regulation of the dopaminergic system in stimulant users, as summarised in Figure 4. Our sensitivity analyses of the dopamine D2/3 receptor availability and dopamine release findings showed consistent results and we noted low heterogeneity across studies of cocaine and amphetamine-like drugs, and across differing radiotracers and techniques. However, there was a difference between results in amphetamine/methamphetamine and cocaine drug users in dopamine transporter availability. In amphetamine/methamphetamine users there were large and consistent reductions in dopamine transporter availability. In contrast for cocaine users, despite the limited number of studies preventing sub-analysis, there were two studies that showed no difference \(^{26,54}\) and two other studies that reported elevated dopamine transporter availability, both in acutely abstinent cocaine users \(^{24,25}\). This may point to a mechanistic difference between the
effects of amphetamine-like drugs and cocaine on dopamine transporters, consistent with preclinical findings, and highlights the need for more studies in cocaine users. Cocaine is known to primarily act by blocking DAT, while amphetamine competitively inhibits dopamine re-uptake at DAT, and increases DAT mediated reverse-transport of dopamine from the cytoplasm into the synaptic cleft independent of action potential evoked vesicular release. It has also been suggested that amphetamine’s actions depend on its concentration, with it acting primarily as a DAT blocker at low concentrations and reversing dopamine transport at high concentrations. In addition, amphetamine-like stimulants are known to trigger internalization of plasmalemmal DAT. Finally, cocaine, amphetamine and methamphetamine are also known to act on serotonin and norepinephrine transporters, although their affinities for these are different. Given these pharmacological differences between stimulants, there could be differences in dopaminergic effects between stimulants that are masked by pooling studies.

There are some specific issues that affect interpretation of the results. For studies of D2/3 receptors, the tracers generally used do not distinguish between D2 and D3 receptors, or between the high and low affinity forms of the D2 receptor, so the reduction could reflect a change in one, or more of these. However, two studies used [11C]-PHNO, which is selective for the D2 high affinity form and shows a higher affinity for D3 receptors over D2 receptors. These studies did not show significant differences between stimulant users and controls in the striatum. This could suggest that the reduction seen in our meta-analysis reflects a reduction in the low affinity form of the D2 receptor availability. Also, given that the radiotracers used to measure D2/3 receptor availability are sensitive to endogenous dopamine levels, one possible interpretation of our finding of reduced D2/3 receptor levels is that this reflects elevated synaptic dopamine levels. However, a dopamine depletion study in cocaine users has shown that baseline synaptic levels are also reduced. This indicates that the reduction in D2/3 receptor availability represents a reduction in D2/3 receptor levels. Furthermore, when our findings are taken with the observation of reductions in synaptic dopamine levels, and dopamine synthesis capacity, they suggest there is a generalised reduction
in presynaptic dopaminergic activity. Although, with the available data we could not specifically rule out the possibility of upregulation D3 receptor.

Limitations

In common with other meta-analyses of psychiatric imaging studies, there are variations between studies in terms of both the sample characteristics, such as the inclusion of current or abstinent users, co-morbid use of other substances such as nicotine and alcohol and variations in the durations of abstinence, and methods, in particular in the radiotracer used and delineation of the striatum (see supplementary discussion).

Nevertheless, there was low heterogeneity across the analyses, with the exception of the dopamine transporter, and the random effects model we used allows for variations in effects. Furthermore, if anything, these variations between studies would obscure rather than account for the effects we observed. A general limitation of the literature, apparent in the funnel plots, is that there are few studies with large sample sizes. It should also be noted that there have been a relatively small number of studies on dopamine release and we could not investigate potential differences between oral and intravenous routes of drug challenge to elicit dopamine release. Although, in absolute terms the oral challenge studies showed lower release than those using an intravenous route, both indicated blunted release in stimulant users compared to controls.

Implications for understanding stimulant misuse and dependence

Preclinical studies using *in vivo* micro-dialysis and chronoamperometry conclusively demonstrate that acute administration of stimulants increases extra-cellular dopamine concentrations in the striatum, and nucleus accumbens. Furthermore, *in vivo* fast-scan cyclic voltammetry and implantable micro-sensor studies, which are able to quantify the dopamine signalling over a sub-second timescale, have shown that stimulants increase phasic dopamine release, and human *in vivo* imaging studies also show evidence consistent with acute exposure of stimulants leading to increased synaptic dopamine either through cue induced dopamine release or blockade of DAT, and
that this is linked to subjective ‘high’ 54 and craving 66,67. Moreover, change in in vivo dopamine imaging indices, following amphetamine administration, has been shown to be directly related to change in microdialysis measures 68, providing convergence across methods. Thus there is consistency between the preclinical and clinical findings indicating that acute administration of stimulants results in increased extra-cellular dopamine either by stimulating release (amphetamines) or by DAT blockade (cocaine).

Our meta-analysis shows a consistent reduction in dopamine release in people who have been exposed to chronic stimulants. In contrast, preclinical models of chronic use are inconsistent, with some studies showing no change in basal dopamine output after withdrawal of chronic amphetamine 69-72 and cocaine 73-77, whilst others have reported increases in dopamine output after cocaine withdrawal 78-81. The first major implication of our meta-analysis is thus that the findings in many preclinical models of chronic use do not reflect what is seen in the human studies. This suggests caution in extrapolating from preclinical models, and may explain the failure to develop treatments for stimulant addiction based on them. There are a number of potential explanations for this inconsistency, including differences in the dosing regimens and durations used in preclinical models relative to human usage patterns. Nevertheless, this discrepancy suggests we need to develop new preclinical models that reproduce the dopaminergic changes seen in the human condition.

Our findings are also striking in showing reductions in both presynaptic and post-synaptic aspects of the dopaminergic system, suggesting a generalised down-regulation. One potential explanation for the reduction in dopamine release and transporter availability (seen in amphetamine/methamphetamine users only) could be a loss of dopamine neurons per se or damage to the dopaminergic terminals. There is evidence that both cocaine and amphetamines induce apoptosis as indexed by activation of caspases, loss of mitochondrial potential, cytochrome c release and oxidative stress. 82 However, in addition to this, amphetamine and methamphetamine induce dopaminergic neuron damage through the formation of quinones and free radicals. 83-85
Moreover, preclinical models with methamphetamine have shown evidence of dopamine terminal damage that recovers with detoxification \(^{86,87} \). Furthermore, in humans, dopamine transporters recover with detoxification in methamphetamine abusers (reviewed in \(^{5,35} \)), which was interpreted to indicate that dopamine neurons were not lost. Moreover in the only post-mortem study we could find, which was in methamphetamine abusers, there was evidence of reduction in dopamine transporters but not of dopamine neuronal loss \(^{88} \). However preliminary evidence from two recent epidemiological studies that methamphetamine abuse might increase the risk for Parkinson’s disease \(^{89,90} \) suggests that in some cases its abuse might accelerate age-associated dopamine neuronal degeneration \(^{91} \).

It has been suggested that repeated drug use causes tolerance by various mechanisms including dopamine receptor alterations, changes in second messenger systems and altered regulation of dopamine neuron function.\(^{92-94}\) Thus, it is possible that the dopaminergic differences noted in our meta-analysis could be due to the development of tolerance through one or more of these mechanisms. Pre-clinical studies have also demonstrated that dopaminergic synaptic transmission is modulated by glutamatergic and GABAergic neurons\(^{94}\). Neuroimaging studies investigating these interactions are needed to determine if this is the case in humans.

Two alternative basic models are possible to account for both our pre and post-synaptic findings. The first is that repeated stimulant use results in adaptive changes in the dopamine system that lead to reduced firing of dopamine neurons, potentially similar to the depolarisation blockade that is seen after a period of repeated firing \(^{95}\), and consequently reduced dopamine synthesis and release. In this context, reduced transporter levels may be compensatory in response to reduced tonic dopamine levels in the synapse. The reduction in D2/3 receptor levels is less easy to understand in the context of the presynaptic reductions. However, D2/3 receptors undergo internalisation following activation by dopamine, and this would reduce radiotracer binding, at least to a number of the tracers used in the studies in our analyses \(^{96,97}\). Thus the reduction in D2/3 receptor availability could reflect a compensatory increase in internalized D2/3 receptors, which would reduce the
number of D2/3 receptors available to bind to dopamine. Repeated exposure may lead to loss of these internalized receptors and long-term transcriptional changes that reduce receptor availability. The second model is that reductions underlie the pathoetiologi of stimulant misuse, and precede its onset. Thus individuals at risk of stimulant misuse may have reductions in dopamine release, transporter levels and D2/3 receptor levels secondary to genetic and/or environmental risk factors. Reductions in D2/3 receptor levels and reduced release of dopamine to stimulants could mean an individual is less sensitive to the effects of taking a stimulant, leading to escalating use. However, it is less easy to see how reduced dopamine transporter levels fit with this model, as they would be anticipated to prolong the effects of stimulants. Longitudinal studies on the effects of stimulant drugs on patients with attention deficit disorder showed downregulation of dopamine release with chronic exposure 98, which indicates that some of the changes are driven by chronic drug exposures. Finally, a hybrid model may best account for our findings. Evidence suggests that reduced D2/3 receptor levels may precede and predispose to the onset of stimulant misuse but also show further reductions during stimulant use 99, and similar effects may be seen with dopamine release and transporter levels. It is interesting to note in our meta-analysis that dopaminergic alterations are marked even in the studies of several months abstinence, with evidence suggesting that dopamine receptor density and release are down-regulated even after 9 months of abstinence 35. This suggests that effects may persist, with implications for understanding relapse. Our findings also support the opponent process model 100.

Clinical implications of our findings
Our data identify a number of clear targets for treatment interventions. D2/3 receptors stand-out, given our finding of a large effect size reduction. This is further supported by studies in cocaine and in methamphetamine users showing that lower dopamine D2/3 receptor availability at baseline predicts relapse following treatment \(^{19, 21}\). Our data also provide a rationale for the development of drugs that target the presynaptic dopaminergic system to restore tonic striatal dopamine release, which is necessary for the function of the striato-cortical indirect pathway (a key system disrupted in addiction) \(^5\). This is supported by recent preclinical evidence showing that administration of the dopamine precursor L-DOPA restored the aberrant dopaminergic signalling in a cocaine addiction animal model \(^6, 100\), and preliminary clinical evidence that inhibiting dopamine reuptake (e.g., with bupropion, modafinil, or mazindol), or inhibiting dopamine metabolism (e.g., with selegiline or disulfiram) might hold some promise in the treatment for stimulant addiction \(^101\). Strategies to upregulate striatal D2 receptors have been shown in animal models to protect against compulsive stimulant drug intake \(^102\) and, thus, interventions that lead to D2 up-regulation, such as physical activity as recently shown in a preliminary study in methamphetamine abusers \(^103\), merit further investigation. A number of dopaminergic treatments have been tried to treat stimulant use disorder with limited success to date. \(^104-106\) Our data suggest some potential explanations for the lack of success and identify a number of clear targets for treatment interventions. D2/3 receptors stand-out, given our finding of a large effect size reduction. This is further supported by studies in cocaine and in methamphetamine users showing that lower dopamine D2/3 receptor availability at baseline predicts relapse following treatment \(^{19, 21}\). Our findings may also explain why strategies to block dopamine neurotransmission, for example using dopamine receptor antagonists \(^107\), have largely been disappointing to date as dopamine receptor levels are already low, and suggest that strategies to increase dopamine receptor levels or sensitivity could have potential.

Conclusions
There is robust evidence for down-regulated presynaptic and post-synaptic dopamine function in stimulant addiction with large effect sizes. These findings suggest that drug development should target the restoration of dopaminergic function as a target for the treatment of stimulant addiction.

Acknowledgments Statement

Conflict of Interest Disclosure

Dr Ashok conducts research funded by the Medical Research Council (UK) and King’s College London. Dr Mizuno has received manuscript fees or speaker’s honoraria from Sumitomo Dainippon Pharma, Astellas, and Yoshitomi Yakuhin, fellowship grants from the Japanese Society of Clinical Neuropsychopharmacology (Eli Lilly Fellowship for Clinical Psychopharmacology) and the Mochida Memorial Foundation for Medical and Pharmaceutical Research, and consultant fees from Bracket within the past three years. Prof Volkow is Director of the National Institute on Drug Abuse (USA) and conducts research as an intramural scientist that is funded by the National Institute of Alcohol Abuse and Alcoholism (USA). Prof Howes conducts research funded by the Medical Research Council (UK), the National Institute of Health Research (UK) and the Maudsley Charity. Prof Howes has received investigator-initiated research funding from and/or participated in advisory/speaker meetings organized by Astra-Zeneca, BMS, Eli Lilly, Jansenn, Lundbeck, Lyden-Delta, Servier, and Roche. Neither Prof Howes or his family have been employed by or have holdings/a financial stake in any biomedical company.

Funding/ Support: This study was funded by grants MC-A656-5QD30 from the Medical Research Council-UK, 666 from the Maudsley Charity 094849/Z/10/Z from the Brain and Behavior Research Foundation, and Wellcome Trust to Dr Howes and King’s College London scholarship to Dr Ashok.

Author Contributions:

Dr Ashok and Dr Mizuno had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Ashok, Howes
Acquisition, analysis, or interpretation of data: All authors
Drafting of the manuscript: All authors
Critical revision of the manuscript for important intellectual content: All authors
Statistical analysis: Ashok
Administrative, technical, or material support: Ashok and Mizuno
Study supervision: Howes and Volkow

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

the vervet monkey models aspects of a human exposure: brain neurotoxicity and behavioral
profiles. *Neuropsychopharmacology: official publication of the American College of

88. Wilson JM, Kalasinsky KS, Levey AI, et al. Striatal dopamine nerve terminal markers in

89. Callaghan RC, Cunningham JK, Sykes J, Kish SJ. Increased risk of Parkinson’s disease in
individuals hospitalized with conditions related to the use of methamphetamine or other

Methamphetamine/amphetamine abuse and risk of Parkinson’s disease in Utah: a

91. Collier TJ, Kanaan NM, Kordower JH. Ageing as a primary risk factor for Parkinson’s disease:

93. Nestler EJ. Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP
system in mediating the chronic actions of morphine and cocaine on neuronal function".
Brain research. 2016;1645:71-74.

94. Volkow ND, Koob GF, McLellan AT. Neurobiologic Advances from the Brain Disease Model of

95. Grace AA. The tonic/phasic model of dopamine system regulation: its relevance for
understanding how stimulant abuse can alter basal ganglia function. *Drug and alcohol

internalization of D2-receptors after amphetamine: differential findings with [3H]raclopride

97. Guo N, Guo W, Kralikova M, et al. Impact of D2 receptor internalization on binding affinity of
neuroimaging radiotracers. *Neuropsychopharmacology: official publication of the American
College of Neuropsychopharmacology.* 2010;35(3):806-817.

98. Volkow ND, Wang GJ, Tomasi D, et al. Methylphenidate-elicited dopamine increases in
ventral striatum are associated with long-term symptom improvement in adults with
attention deficit hyperactivity disorder. *The Journal of neuroscience: the official journal of

99. Nader MA, Morgan D, Gage HD, et al. PET imaging of dopamine D2 receptors during chronic

neuroscience.* 2014;17(5):644-646.

for psychostimulant dependence: a systematic review and meta-analysis of randomized

102. Thanos PK, Michaelides M, Umegaki H, Volkow ND. D2R DNA transfer into the nucleus
accumbens attenuates cocaine self-administration in rats. *Synapse (New York, NY).*

Dopamine D2/D3 Receptors in Methamphetamine Users during Behavioral Treatment.
*Neuropsychopharmacology: official publication of the American College of

104. Volkow ND, Fowler JS, Wang GJ, Swanson JM. Dopamine in drug abuse and addiction: results
Figure 1: Studies of dopamine release in stimulant users.

The forest plot shows the effect sizes estimated using a random effects model and 95% confidence intervals of the percentage change in the difference of change in D2/3 binding after challenge. There was an overall decrease in dopamine release in stimulant users relative to controls with a large to very large effect size (−0.84 [95% CI, −1.08 - −0.60], p<0.001) Schrantee et al. 2015 and Wang et al. 2012 studied amphetamine-like stimulant users. The remaining studies included cocaine users.

Figure 2: Studies of dopamine transporter availability.

The forest plot shows the effects sizes estimated using a random effects model and 95% confidence intervals of the difference between amphetamine/methamphetamine users and controls. There was an overall decrease in the dopamine transporter availability in methamphetamine users relative to controls (−0.91 [95% CI, −1.5 - −0.32], p <0.01)

Figure 3: Studies of dopamine receptor availability.

The forest plot shows the effect sizes estimated using a random effects model and 95% confidence intervals of D2/3 receptor binding potentials. There was an overall decrease in dopamine receptor availability compared to controls (−0.76 [95% CI, −0.92 - −0.60], p<0.001).

Figure 4: A summary of dopaminergic alterations in stimulant users

Summary of the synaptic location of the major dopaminergic findings from our meta-analyses and findings from studies of other aspects of the dopamine system.
1. Based on study by Wu et al. 1997
2. Based on study by Boileau et al. 2008 & 2015
3. Based on study by Narendran et al. 2012 and Johanson et al. 2006
4. Meta-analysis finding with effect size of −0.81 [95% CI, −1.34 - −0.29], p<0.01
5. Meta-analysis finding with effect size of −0.91 [95% CI, −1.50 - −0.32], p<0.01
6. Meta-analysis finding with effect size of −0.71 [95% CI, −0.91 - −0.52], p<0.001
Supplementary methods

Search strategy

The Pubmed, EMBASE and PsycINFO databases were searched from inception date to May 14, 2016 for relevant papers without language restrictions. The electronic searches using EMBASE and PsycINFO were carried out together using Ovid. The following keywords were used for cocaine use: “(Positron Emission Tomography OR PET OR Single photon emission tomography OR SPET OR Single Photon Emission Computed Tomography OR SPECT) AND (dopamine OR dopamine release OR dopamine synthesis OR dopamine availability OR dopamine transporter OR dopamine reuptake OR dopamine receptor) AND (cocaine OR cocaine abuse OR cocaine dependence)”. Furthermore the following keywords were used for amphetamine-like substance use: “(Positron Emission Tomography OR PET OR Single Photon Emission Tomography OR SPET OR Single Photon Emission Computed Tomography OR SPECT) AND (dopamine OR dopamine release OR dopamine synthesis OR dopamine availability OR dopamine transporter OR dopamine reuptake OR dopamine receptor) AND (amphetamine OR amphetamine abuse OR amphetamine dependence OR methamphetamine OR methamphetamine abuse OR methamphetamine dependence OR methylphenidate OR methylphenidate abuse OR methylphenidate dependence)”. In addition the reference lists in the included studies and relevant review papers were screened to search for additional studies.

Inclusion and exclusion criteria

The inclusion criteria were: 1) original molecular imaging studies that indexed dopamine receptors, dopamine transporters and/or dopamine release or synthesis; 2) in patients with a diagnosis of cocaine or amphetamine/ methamphetamine dependence or abuse and 3)
reported data for the whole striatum or a striatal sub-region. We excluded studies which did not have a healthy control group or that included subjects with CNS co-morbidity. For studies with an overlap in participants, we included the study with the largest sample size without potentially missing any subjects and excluded the smaller study from the meta-analysis to avoid duplication of subjects.

Outcome measures

Our primary outcome was the effect size for the difference in the dopaminergic index for the whole striatum between the stimulant user and control groups. Some studies only reported values for striatal subdivisions. Where this was the case, we averaged the striatal subdivision values to estimate the value for the whole striatum as described in other imaging meta-analyses \(^\text{1,2}\).

Meta-analysis

The statstodo software was used for the estimation of pooled standard deviation (http://statstodo.com/ComMeans_Pgm.php). Plot digitizer software was used to extract the data from studies where data was available only in a plot format (http://plotdigitizer.sourceforge.net/). The statistical analysis of the extracted data was conducted using the R statistical programming language version 3.2.2 with the ‘metafor’ package. One study reported data on dopamine receptor availability with both \([11C]\) raclopride and \([11C-\text{(+)-4-propyl-9-hydroxynaphthoxazine (}[11C]-\text{(+)-PHNO})\). We included the \([11C]\) raclopride data for the main analysis to maintain consistency with the other studies, more of which had also used this tracer than had used \([11C]\) PHNO. However we also discuss the \([11C]\) PHNO findings where relevant. A minimum of five studies was required to conduct a meta-analysis as findings from meta-analyses with small numbers of studies may
be less stable. Two independent authors (A.H.A. and Y.M.) conducted the electronic search and assessed studies for eligibility, while data extraction was carried out by A.H.A. and results of analyses confirmed by Y.M. and O.D.H.
Supplementary results:

Dopamine release

Heterogeneity and sensitivity analyses

Methylphenidate challenge was used to index dopamine release in 5 studies while one study each used intravenous amphetamine and dexamphetamine challenge. The I^2 value was 0% (95% CI, 0%-70%), indicating low heterogeneity. The regression test for funnel plot asymmetry was not significant ($t = 0.69$, df = 5, $p = 0.52$), suggesting publication bias is unlikely. In addition, the trim-and-fill analysis indicated that there were no missing studies on the funnel plot (Supplementary figure 3). The summary effect size reached significance in all cases in the leave-one-out analysis, with summary effect sizes varying from -0.78 to -0.90 (all $p<0.001$).

Among the 7 studies investigating dopamine release, two studies used oral methylphenidate challenge while the others used intravenous challenge. Since only two studies used the oral challenge, we could not perform sub-analysis to investigate effect of route of administration. However, it appears that an oral challenge produces less dopamine release [effect size: -0.43 and -0.57] compared to an iv challenge, although further studies are needed to directly test this.

Dopamine transporter

Heterogeneity and sensitivity analyses

The I^2 value was 84% (95% CI, 69%-94%), indicating high heterogeneity between studies. The regression test for funnel plot asymmetry was significant ($t = -2.5$, df = 10, $p = 0.03$). In addition, visual inspection of the funnel plot revealed asymmetry, indicating possible publication bias. The trim-and-fill analysis indicate two missing studies on the right side of the funnel plot (Supplementary figure 4). However, the results remained significant after
correcting for putatively missing studies [effect size= -0.68, (95%CI, - 1.3 - - 0.09), p=0.02].

The summary effect size reached significance in all cases in the leave-one-out analysis, with summary effect sizes (SMD) varying from -0.77 to -1.07 (all p<0.01).

Dopamine receptor availability

Heterogeneity and sensitivity analyses

The I^2 value was 0% (95% CI, 0% - 57%), indicating heterogeneity was low. The regression test for funnel plot asymmetry was not significant (t = -1.1, df = 17, p = 0.27). However, a visual inspection of the funnel plot revealed asymmetry, indicating possible publication bias. The trim-and-fill analysis indicated that there were potentially five missing studies on the funnel plot (Supplementary figure 5). Nevertheless, the summary effect size remained large and highly significant after correcting for these putatively missing studies (corrected effect size: -0.66 [95% CI, $-0.83 - -0.5$]; z: -8; p<0.001). The summary effect size reached significance in all cases in the leave-one-out analysis, with summary effect sizes varying from SMD = -0.72 to -0.8 (all p<0.001). To investigate the effect of radiotracer on the outcome measure, we performed sub-analysis of studies which used [11C] raclopride. The results remained significant with an effect size of -0.69 [95% CI, $-0.9—0.48$; p<0.001].
Supplementary discussion:

Moreover, where a value was not given for the whole striatum, we derived this by averaging the data for sub-regions. These variations may add noise to the findings. Thus the effect sizes calculated from these studies should be considered an estimate. It should also be noted that there are differences in dopaminergic indices between striatal sub-regions. For example D3 receptor levels are higher in ventral than dorsal striatum. Most of the radiotracers used to measure D2-like receptor levels have similar affinities for both D2 and D3 receptors. Thus the reduction in whole striatal D2/3 receptor levels we report could potentially mask sub-regional increases in D3 receptors or differences in the ratio of D2 to D3 receptors. Unfortunately there were insufficient studies reporting data from sub-regions for us to investigate sub-regional dopaminergic changes and only two studies in cocaine users used [11C]-PHNO, a tracer that does show significant selectivity for D3 over D2 receptors. Interestingly, in contrast to our overall findings, the two studies that used [11C] PHNO did not show significant differences in BP_{ND} between stimulant users and controls in the whole striatum. One explanation could be that an increase in D3 in ventral striatum is off set by a reduction in D2 receptors in dorsal striatum. However, neither study reported a significant difference in ventral striatum with [11C]-PHNO. Moreover, studies which used [11C] raclopride demonstrated reduced ventral as well as whole striatal D2/3 availability. Taken together, these lines of evidence suggest our findings in the whole striatum are not explained by opposing sub-regional differences. Nevertheless, the absence of marked differences in the [11C]-PHNO studies is intriguing and warrants further investigation.
Supplementary figure 1. Flowchart showing the inclusion of studies for the meta-analysis on dopaminergic function in cocaine users

Records identified through database searching

Records after duplicates removed

Records screened

Records excluded

Full-text articles assessed for eligibility

Full-text articles excluded for the following reasons

Reviews, editorials, commentaries (n=12)
No healthy control group (n=10)

Full-text articles remaining (n=47)

Additional articles identified through hand-search of reference lists (n=0)

Studies included in qualitative synthesis

Insufficient number of studies for the quantitative synthesis (meta-analysis)
Dopamine synthesis (n=1)
Vesicular monoamine transporter (n=1)
D1 receptor (n=1)

Studies included in quantitative synthesis (meta-analysis) (n=15)*1
Dopamine release: 5

*1 Dopamine release studies also reported on D2/3 availability.
Supplementary figure 2. Flowchart showing the inclusion of studies for the meta-analysis on dopaminergic function in amphetamine-like stimulant users

Records identified through database searching
(n=1,753 / Pubmed n=512, EMBASE & PsycINFO n=1,241)

Records after duplicates removed
(n=1,073)

Records screened
(n=1,073)

Records excluded
(n=1,018)

Full-text articles excluded for the following reasons

- Reviews, editorials, commentaries (n=25)
- Overlapping participants (n=6)
- No healthy control group (n=2)
- No extractable data (n=2)
- Conference abstract (n=1)

Additional articles identified through hand-search of reference lists (n=0)

Full-text articles assessed for eligibility
(n=55)

Full-text articles remaining
(n=18)

Insufficient number of studies for the quantitative synthesis (meta-analysis)

Studies included in qualitative synthesis
(n=18)

Studies included in quantitative synthesis (meta-analysis) (n=16)*¹

- Dopamine release: 2
- Dopamine transporter: 9

*¹ Dopamine release studies also reported on D2/3 availability.
Supplementary figure 3: Funnel plot of dopamine release studies in stimulant users

Supplementary figure 4: Funnel plot of dopamine transporter studies in stimulant users
◦ indicate potentially missing studies
Supplementary figure 5: Funnel plot of dopamine D2/3 receptor studies in stimulant users

○ indicate potentially missing studies
Supplementary table 1: Molecular imaging studies on dopamine release in stimulant users compared to healthy controls

<table>
<thead>
<tr>
<th>Author/year</th>
<th>Patients/Controls, n</th>
<th>Dopamine release paradigm</th>
<th>Diagnosis</th>
<th>Duration of abstinence</th>
<th>Comorbid substance abuse</th>
<th>Abstinence confirmed by</th>
<th>Region of interest</th>
<th>Tracer</th>
<th>Reference region</th>
<th>Measure</th>
<th>Results in patients compared to controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volkow et al. 1997</td>
<td>20/23</td>
<td>i.v. MP challenge</td>
<td>DSM-IV, cocaine dependence</td>
<td>3-6 wk</td>
<td>Nicotine and caffeine</td>
<td>Toxicological drug screens before scan</td>
<td>Striatum, thalamus</td>
<td>[11C] raclopride</td>
<td>Cerebellum</td>
<td>Δ B_{max} / K_d</td>
<td>↓</td>
</tr>
<tr>
<td>Volkow et al. 2014</td>
<td>43/19</td>
<td>i.v. MP challenge with concomitant cocaine cue-video</td>
<td>DSM-IV, cocaine dependence</td>
<td>Mean(SD) = 5(5) d</td>
<td>Nicotine</td>
<td>Not specified</td>
<td>Striatum prefrontal cortex</td>
<td>[11C] raclopride</td>
<td>Cerebellum</td>
<td>Δ B_{max} / K_d</td>
<td>↓</td>
</tr>
<tr>
<td>Volkow et al. 2005</td>
<td>21/15</td>
<td>i.v. MP challenge</td>
<td>DSM-IV, cocaine dependence</td>
<td>Maximum 1 mo, mean(SD) = 14(7) d</td>
<td>Nicotine and caffeine</td>
<td>Supervised admission</td>
<td>Striatum</td>
<td>[11C] raclopride</td>
<td>Cerebellum</td>
<td>Δ V_3</td>
<td>↓</td>
</tr>
<tr>
<td>Martinez et al. 2007</td>
<td>24/24</td>
<td>i.v. amphetamine challenge</td>
<td>DSM-IV, cocaine dependence</td>
<td>Minimum 14 d</td>
<td>Nicotine</td>
<td>Supervised admission</td>
<td>Striatum</td>
<td>[11C] raclopride</td>
<td>Cerebellum</td>
<td>Δ B_{max} / K_d</td>
<td>↓</td>
</tr>
<tr>
<td>Schrantee et al. 2015</td>
<td>16/19</td>
<td>i.v. dAMPH challenge</td>
<td>dAMPH users with ≥30 lifetime and ≥10 past year exposures</td>
<td>Minimum 1 wk</td>
<td>Nicotine</td>
<td>Multi-drug screen on a urine sample before scan</td>
<td>Striatum</td>
<td>[123I] IBZM</td>
<td>Occipital cortex</td>
<td>BP_{ND} ratio</td>
<td>↓</td>
</tr>
<tr>
<td>Volkow et al. 2015</td>
<td>16/15</td>
<td>Oral MP challenge</td>
<td>DSM-IV, MA abuse or dependence</td>
<td>Minimum 2 wk</td>
<td>Nicotine</td>
<td>Urine screening tests</td>
<td>Striatum</td>
<td>[11C] raclopride</td>
<td>Cerebellum</td>
<td>BP_{ND} ratio</td>
<td>↓</td>
</tr>
</tbody>
</table>

Supplementary table 1: Molecular imaging studies on dopamine release in stimulant users compared to healthy controls
Abbreviations: BP, binding potential; d, days; dAMPH, dexamphetamine; i.v., intravenous; MA, methamphetamine; mo, months; MP, methylphenidate; SD, standard deviation; wk, weeks

*1 Excluded from the meta-analysis on dopamine release due to overlapping participants with Wang et al. 2012.
Supplementary table 2: Molecular imaging studies on other presynaptic dopaminergic indices in stimulant users

<table>
<thead>
<tr>
<th>Dopaminergic measure</th>
<th>Author/year</th>
<th>Patients/ Controls, n</th>
<th>Diagnosis</th>
<th>Duration of abstinence</th>
<th>Abstinence confirmed by</th>
<th>Co-morbid substance abuse</th>
<th>Region of interest</th>
<th>Tracer</th>
<th>Measure</th>
<th>Results in patients compared to controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine synthesis capacity</td>
<td>Wu et al. 1997<sup>18</sup></td>
<td>11/8</td>
<td>DSM-III-R, cocaine dependence</td>
<td>Less than 30 d</td>
<td>Frequent random urine drug screens during admission</td>
<td>Not mentioned</td>
<td>Striatum</td>
<td>[18]-6-FDOPA</td>
<td>K_i</td>
<td>↓</td>
</tr>
<tr>
<td>Vesicular Monoamine Transporter 2</td>
<td>Narendran et al. 2012<sup>19</sup></td>
<td>12/12</td>
<td>DSM-IV, cocaine dependence</td>
<td>Minimum 2 wk</td>
<td>Witnessed urine sampling 3 times a week for 2 weeks in outpatient setting and 2 day admission</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>[11C]DTBZ</td>
<td>BP_{ND}</td>
<td>↓</td>
</tr>
<tr>
<td>Amphetamine-like stimulant users</td>
<td>Boileau et al. 2008<sup>20</sup></td>
<td>16/14</td>
<td>DSM-IV, MA dependence or abuse</td>
<td>Recently withdrawn, mean(SD) = 19(24) d</td>
<td>Urine sample for drug toxicology</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>[11C]DTBZ</td>
<td>BP_{ND}</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>Boileau et al. 2015<sup>21</sup></td>
<td>28/22</td>
<td>DSM-IV, MA dependence or abuse</td>
<td>2 scans, mean(SD) = 2.6(2.0) and 9.9(2.3) d</td>
<td>Urine and blood samples for drug toxicology</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>[11C]DTBZ</td>
<td>BP_{ND}</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>Johanson et al. 2006<sup>22</sup></td>
<td>16/18</td>
<td>DSM-IV, past MA dependence</td>
<td>Minimum 3 mo</td>
<td>Urine drug screen</td>
<td>Nicotine, past abuse of other drugs were allowed</td>
<td>Striatum</td>
<td>[11C]DTBZ</td>
<td>BP</td>
<td>↓</td>
</tr>
</tbody>
</table>

Abbreviations: BP, binding potential; d, days; MA, methamphetamine; mo, months; SD, standard deviation; wk, weeks
Supplementary table 3: Molecular imaging studies on dopamine transporter availability in stimulant users compared to healthy controls

<table>
<thead>
<tr>
<th>Author/year</th>
<th>Patients/Controls, n</th>
<th>Diagnosis</th>
<th>Duration of abstinence</th>
<th>Abstinence confirmed by</th>
<th>Co-morbid substance abuse</th>
<th>Region of interest</th>
<th>Reference region</th>
<th>Tracer</th>
<th>Measure</th>
<th>Results in patients compared to controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocaine users</td>
<td></td>
</tr>
<tr>
<td>Wang et al. 1997</td>
<td>20/20</td>
<td>DSM-IV, cocaine dependence</td>
<td>Active users, mean(SD) = 5(8) d</td>
<td>Pre-scan urine tests ensured the absence of psychoactive drugs except cocaine</td>
<td>Not specified</td>
<td>Striatum</td>
<td>Cerebellum</td>
<td>[11C]Cocaine</td>
<td>Distribution volume ratio ↔</td>
<td></td>
</tr>
<tr>
<td>Crits-Christoph et al. 2008</td>
<td>21/21</td>
<td>DSM-IV, cocaine dependence</td>
<td>Minimum 1 d, mean(SD) = 7.5(9.7) d</td>
<td>History, urine drug screen for other substance use</td>
<td>Nicotine and cannabis</td>
<td>Striatum</td>
<td>Elliptical ROI was placed on two consecutive slices of the supratentorial uptake</td>
<td>99mTc TRODAT-1</td>
<td>Distribution volume ratio ↑</td>
<td></td>
</tr>
<tr>
<td>Malison et al. 1998</td>
<td>28/24</td>
<td>DSM-III-R, cocaine dependence</td>
<td>Maximum of 96 hours</td>
<td>Urine laboratory test to rule out other illicit drug use</td>
<td>Not specified</td>
<td>Striatum</td>
<td>Occipital cortex</td>
<td>[123I]b-CIT</td>
<td>Distribution volume ratio ↑</td>
<td></td>
</tr>
<tr>
<td>Amphetamine-like stimulant users</td>
<td></td>
</tr>
<tr>
<td>Johanson et al. 2006</td>
<td>16/18</td>
<td>DSM-IV, past MA dependence</td>
<td>Minimum 3 mo</td>
<td>Urine drug screen</td>
<td>Nicotine, past abuse of other drugs were allowed</td>
<td>Striatum</td>
<td>Occipital cortex</td>
<td>[11C] Methylphenidate</td>
<td>BP ↓</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Sample Description</td>
<td>Minimum Specified Duration</td>
<td>Methodology</td>
<td>Drug of Interest</td>
<td>Region of Interest</td>
<td>Imaging Tracer</td>
<td>BP Changes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------</td>
<td>----------------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sekine et al. 2001<sup>29</sup></td>
<td>DSM-IV, MA users</td>
<td>Minimum 7 d, range 7-1.5 years</td>
<td>Urinary drug screening test</td>
<td>Occasional nicotine and alcohol</td>
<td>Striatum, nucleus accumbens, prefrontal cortex</td>
<td>[11C]WIN-35,428</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volkow et al. 2001<sup>30</sup></td>
<td>DSM-IV, MA dependence</td>
<td>Minimum 2 wk, mean(SD) 5.9(9.0) mo, range 0.5-36.0 mo</td>
<td>Urine toxicology screen</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>[11C]d-threo-methylphenidate</td>
<td>B<sub>max</sub>/K<sub>d</sub></td>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volkow et al. 2015<sup>37</sup></td>
<td>DSM-IV, MA abuse or dependence</td>
<td>Minimum 2 wk, mean(SD) 102(49) d</td>
<td>Urine screening tests</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>[11C]cocaïne</td>
<td>BP<sub>ND</sub></td>
<td>↓ caudate, putamen and ventral striatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chou et al. 2007<sup>31</sup></td>
<td>DSM-IV, MA abuse</td>
<td>Two scans (baseline and after 2 wk abstinence)</td>
<td>Drug urine analysis used to exclude polysubstance abuse</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>Tc-99m TRODAT</td>
<td>SUR</td>
<td>↓ baseline, partial recovery after two wk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schouw et al. 2013<sup>32</sup></td>
<td>Recreational dAMPH users, more than 40 occasions of previous use</td>
<td>Minimum 2 wk, mean(SD) 1.1(1.3) mo</td>
<td>Urine drug screening</td>
<td>No caffeine on scan day</td>
<td>Striatum</td>
<td>[123I]FP-CIT</td>
<td>Binding ratio: striatum to occipital cortex</td>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Sample Size</td>
<td>Diagnostic Criteria</td>
<td>Imaging Protocol</td>
<td>Drug Screen</td>
<td>ROI</td>
<td>Abbreviations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>-----</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuan et al. 2014<sup>33</sup></td>
<td>25/25</td>
<td>DSM-IV-TR, MA dependence</td>
<td>Three scans (24-48 hours, 2 wk, and 4 wk abstinence)</td>
<td>Urine drug screen</td>
<td>None</td>
<td>Striatum, Occipital cortex</td>
<td>99mTc-TRODAT-1 SUR ↓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volkow et al. 2001<sup>34</sup> *2</td>
<td>12/11</td>
<td>DSM-IV, MA dependence</td>
<td>Mean(SD) = 64 ± 40 d</td>
<td>Urine drug screen</td>
<td>Nicotine and caffeine</td>
<td>Striatum, Cerebellum</td>
<td>[11C]d-threo-methylpseudonidate B<sub>max</sub>/K<sub>d</sub> ↓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuan et al. 2015<sup>36</sup> *4</td>
<td>25/21</td>
<td>DSM-IV, MA dependence</td>
<td>2 wk</td>
<td>Urine drug screen</td>
<td>None</td>
<td>Striatum, Occipital cortex</td>
<td>99mTc-TRODAT-1 SUR ↓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BP, binding potential; d, days; dAMPH, dexamphetamine; MA, methamphetamine; mo, months; ROI, region of interest; SD, standard deviation; SUR, specific uptake ratio; wk, weeks

*1 Excluded from the meta-analysis on dopamine transporter availability due to overlapping participants with Wang et al. 1997.
*2 Excluded from the meta-analysis on dopamine transporter availability due to overlapping participants with Volkow et al. 2001.
*3 Excluded from the meta-analysis on dopamine transporter availability due to overlapping participants with Sekine et al. 2001.
*4 Excluded from the meta-analysis on dopamine transporter availability due to overlapping participants with Yuan et al. 2014.
Supplementary table 4: Molecular imaging studies on baseline D2/3 availability in stimulant users compared to healthy controls

<table>
<thead>
<tr>
<th>Author/year</th>
<th>Patients/ Controls, n</th>
<th>Diagnosis</th>
<th>Duration of abstinence</th>
<th>Abstinence confirmed by</th>
<th>Co-morbid substance abuse</th>
<th>Region of interest</th>
<th>Reference region</th>
<th>Tracer</th>
<th>Measure</th>
<th>Results in patients compared to controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volkow et al. 1993</td>
<td>20/20</td>
<td>DSM-III-R, cocaine dependence</td>
<td>Minimum 8 d</td>
<td>Random urine samples at least twice a wk during hospitalization</td>
<td>Nicotine and caffeine</td>
<td>Striatum</td>
<td>Cerebellum</td>
<td>[18F]N-methylspiroperidol</td>
<td>Ratio index</td>
<td>↓</td>
</tr>
<tr>
<td>Volkow et al. 1996</td>
<td>12/20</td>
<td>DSM-III-R, cocaine dependence</td>
<td>3-6 wk</td>
<td>Random urine samples at least twice a wk during hospitalization</td>
<td>Nicotine and caffeine</td>
<td>Basal ganglia, cortex, thalamus</td>
<td>Cerebellum</td>
<td>[18F]N-methylspiroperidol</td>
<td>Distributio n volume ratio</td>
<td>↓</td>
</tr>
<tr>
<td>Volkow et al. 1997</td>
<td>20/23</td>
<td>DSM-IV, cocaine dependence</td>
<td>3-6 wk</td>
<td>Toxicological drug screens before scan</td>
<td>Nicotine and caffeine</td>
<td>Striatum, thalamus</td>
<td>Cerebellum</td>
<td>[11C]raclopride</td>
<td>B<sub>max</sub>/ K<sub>d</sub></td>
<td>↓</td>
</tr>
<tr>
<td>Payer et al. 2014</td>
<td>15/15</td>
<td>DSM-IV, cocaine dependence</td>
<td>Mean (SD) 50.1(64.4) d; range 7-240 d</td>
<td>Urine drug screen</td>
<td>Nicotine, caffeine and cannabis</td>
<td>Striatum</td>
<td>Cerebellum</td>
<td>[11C]raclopride</td>
<td>BP<sub>ND</sub></td>
<td>↓</td>
</tr>
<tr>
<td>Volkow et al. 2014</td>
<td>43/19</td>
<td>DSM-IV, cocaine dependence</td>
<td>Mean(SD) = 5(5) d</td>
<td>Not specified</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>Cerebellum</td>
<td>[11C]raclopride</td>
<td>BP<sub>ND</sub></td>
<td>↓</td>
</tr>
<tr>
<td>Matuskey et al. 2014</td>
<td>10/10</td>
<td>DSM-IV, cocaine dependence</td>
<td>Mean(SD) = 7(4) d</td>
<td>Urine drug screen</td>
<td>Nicotine, caffeine and cannabis</td>
<td>Amygdala, hypothalamus , striatum, thalamus</td>
<td>Cerebellum</td>
<td>11C</td>
<td>BP<sub>ND</sub></td>
<td>↑ amygdala, hypothalamus and substantia nigra; ↔ striatum</td>
</tr>
<tr>
<td>Study</td>
<td>Subjects</td>
<td>DSM-IV or DSM-III-R</td>
<td>Condition</td>
<td>Minimum Duration</td>
<td>Supervision</td>
<td>Nicotine and/or Caffeine</td>
<td>Imaging Drug</td>
<td>Imaging Region</td>
<td>Imaging Measure</td>
<td>Detoxification</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Narendran et al. 2011</td>
<td>10/10</td>
<td>DSM-IV, cocaine dependence</td>
<td>Minimum 2 wk</td>
<td>Witnessed urine sampling 3 times a wk for 2 wk in outpatient setting and 2 d admission</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>Cerebellum</td>
<td>[11C] raclopride B<sub>ND</sub></td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Martinez et al. 2007<sup>1</sup></td>
<td>24/24</td>
<td>DSM-IV, cocaine dependence</td>
<td>Minimum 14 d</td>
<td>Supervised admission</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>Cerebellum</td>
<td>[11C] raclopride BP (ml/g)</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Volkow et al. 1990<sup>2</sup></td>
<td>10/10</td>
<td>DSM-III-R, cocaine abuse</td>
<td>Minimum 2 d, range 2-30 d</td>
<td>Not specified</td>
<td>Nicotine and caffeine</td>
<td>Striatum</td>
<td>Cerebellum</td>
<td>[18F]N-methylspiroperidol Ratio Index: striatum to cerebellum</td>
<td>↓ in detoxified for one wk or less ↔ after one mo</td>
<td></td>
</tr>
<tr>
<td>Volkow et al. 2005<sup>3</sup></td>
<td>21/15</td>
<td>DSM-IV, cocaine dependence</td>
<td>Maximum 1 mo, mean(SD) = 14(7) d</td>
<td>Supervised admission</td>
<td>Nicotine and caffeine</td>
<td>Striatum</td>
<td>Cerebellum</td>
<td>[11C]raclopride B<sub>max</sub>/K<sub>d</sub></td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Payer et al. 2014<sup>4</sup></td>
<td>15/15</td>
<td>DSM-IV, cocaine dependence</td>
<td>Mean(SD) = 50.1(64.4) d; range 7-240 d</td>
<td>Urine drug screen</td>
<td>Nicotine, caffeine and cannabis</td>
<td>Striatum</td>
<td>Cerebellum</td>
<td>11C<sub>PHNO</sub> BP<sub>ND</sub></td>
<td>↔</td>
<td></td>
</tr>
<tr>
<td>Wiers et al. 2016<sup>a</sup><sup>6</sup></td>
<td>38/42</td>
<td>Cocaine abusers (criteria not specified)</td>
<td>Mean(SD) = 5(5) d (From Volkow et al. 2014)</td>
<td>Not specified</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>Cerebellum</td>
<td>[11C]raclopride BP<sub>ND</sub></td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Wiers et al. 2016<sup>b</sup><sup>7</sup></td>
<td>24/21</td>
<td>DSM-IV, cocaine dependence</td>
<td>Mean(SD) = 5(5) d (From Volkow et al. 2014)</td>
<td>Not specified</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>Cerebellum</td>
<td>[11C]raclopride BP<sub>ND</sub></td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Ballard et al. 2015<sup>8</sup></td>
<td>27/27</td>
<td>DSM-IV, MA dependence</td>
<td>4-7 d</td>
<td>Supervised admission and urine test on scan day</td>
<td>Nicotine and cannabis</td>
<td>Striatum</td>
<td>Cerebellum</td>
<td>[18F]fallypride BP<sub>ND</sub></td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Boileau et al. 2012<sup>9</sup></td>
<td>16/16</td>
<td>DSM-IV, MA abuse</td>
<td>Mean(SD) =</td>
<td>Urine drug screen on</td>
<td>Nicotine</td>
<td>Substantia</td>
<td>Cerebellar</td>
<td>[11C]-PHNO BP<sub>ND</sub></td>
<td>↑</td>
<td></td>
</tr>
</tbody>
</table>

Amphetamine-like stimulant users
<table>
<thead>
<tr>
<th>Authors</th>
<th>N</th>
<th>DSM-IV, MA dependence</th>
<th>Minimum</th>
<th>Scan day</th>
<th>Urine or Drug Screen</th>
<th>Nicotine</th>
<th>Striatum, Amygdala, Cerebellum</th>
<th>Radiotracer</th>
<th>Parameter</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iyo et al. 1993</td>
<td>6/10</td>
<td>DSM-III-R, history of MA abuse and psychotic symptoms</td>
<td>Minimum 1 mo, range 2 mo-3 years</td>
<td>Not specified</td>
<td>Occasional alcohol</td>
<td>Striatum, frontal cortex</td>
<td>[11C]N-Methylspiperone</td>
<td>B<sub>a</sub>/K<sub>d</sub></td>
<td>↓</td>
<td>Striatum, ↓ striatum to frontal cortex ratio</td>
</tr>
<tr>
<td>Volkow et al. 2001<sup>55</sup></td>
<td>15/20</td>
<td>DSM-IV, MA dependence</td>
<td>Minimum 2 wk, range 2 wk-35 mo</td>
<td>Urine toxicology screen</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>[11C]raclopride</td>
<td>B<sub>a</sub>/K<sub>d</sub></td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Okita et al. 2016<sup>46</sup></td>
<td>27/20</td>
<td>DSM-IV, MA dependence</td>
<td>Mean(SD) = 6.9(2.24) d</td>
<td>Urine testing</td>
<td>Nicotine and marijuana</td>
<td>Amygdala, striatum</td>
<td>[18F] fallypride</td>
<td>BP<sub>ND</sub></td>
<td>↔ in amygdala, ↓ striatum</td>
<td></td>
</tr>
<tr>
<td>Schrantee et al. 2015<sup>56</sup></td>
<td>16/19</td>
<td>dAMPH users with >30 lifetime and >10 past year exposures</td>
<td>Minimum 1 wk</td>
<td>Nicotine</td>
<td>Multi-drug screen on a urine sample before scan</td>
<td>Striatum</td>
<td>[123I] IBZM</td>
<td>BP<sub>ND</sub></td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Lee et al. 2009<sup>57</sup></td>
<td>22/30</td>
<td>DSM-IV, current MA dependence</td>
<td>4-10 d</td>
<td>Residing at a research center during study</td>
<td>Nicotine</td>
<td>Striatum</td>
<td>[18F]fallypride</td>
<td>BP<sub>ND</sub></td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Ballard et al. 2015<sup>58</sup></td>
<td>18/18</td>
<td>DSM-IV, MA dependence</td>
<td>4-7 d</td>
<td>Supervised admission</td>
<td>Nicotine and caffeine</td>
<td>Striatum</td>
<td>[18F] fallypride</td>
<td>BP<sub>ND</sub></td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Okita et al. 2015<sup>59</sup></td>
<td>23/17</td>
<td>DSM-IV, MA dependence</td>
<td>Mean(SD) = 7.2(3.11) d, range: 4-15</td>
<td>Nicotine, cannabis and alcohol</td>
<td>Admission and urine screening</td>
<td>Striatum</td>
<td>[18F] Fallypride</td>
<td>BP<sub>ND</sub></td>
<td>↓</td>
<td></td>
</tr>
</tbody>
</table>
Abbreviations: BP, binding potential; d, days; dAMPH, dexamphetamine; MA, methamphetamine; mo, months; N/A, not applicable; SD, standard deviation; SUR, specific uptake ratio; wk, weeks

*1 [11C] PHNO data was excluded from the meta-analysis on dopamine receptor availability due to overlapping participants with [11C] raclopride data.
*2 Excluded from the meta-analysis on dopamine receptor availability due to overlapping participants with Martinez et al. 2007.
*3 Excluded from the meta-analysis on dopamine receptor availability due to overlapping participants with Volkow et al. 2014.
*4 Excluded from the meta-analysis on dopamine receptor availability due to overlapping participants with Volkow et al. 2014.
*5 Excluded from the meta-analysis on dopamine receptor availability due to overlapping participants with Ballard et al. 2015.
*6 Excluded from the meta-analysis on dopamine receptor availability due to overlapping participants with Ballard et al. 2015.
*7 Excluded from the meta-analysis on dopamine receptor availability due to overlapping participants with Lee et al. 2009.
Box 1: Future research direction

Preclinical research
- Develop preclinical models that reflect the chronic usage seen in human users and measure levels of dopamine receptors, transporters and release prior to and following chronic use in longitudinal studies
- Use translational methods such as imaging so findings can be directly related to human studies
- Evaluate dosing regimens (both doses and patterns) that reflect human usage
- Develop genetic or other models that reproduce the magnitude of lower dopamine receptor, transporter and release levels seen in human users and determine if these increase the risk of the animals self-administering stimulants
- Determine if reduced dopamine release, transporter and receptor levels seen in chronic stimulant use are reversible with abstinence

Clinical research
- Determine if the reduced dopaminergic activity is a pre-existing vulnerability factor or a direct result of repeated drug exposure
- Determine the dopaminergic changes over the course of stimulant use and its reversibility with abstinence.
- Determine dopaminergic activity in extra-striatal regions in stimulant addiction.
- Address the possible confounding factors which may affect dopamine signalling such as disrupted sleep patterns, obesity and co-morbid substance use (particularly of tobacco)
- Determine the interaction of the dopaminergic system with the glutamatergic and GABAergic systems.

Figure 1: Studies of dopamine release in stimulant users. The forest plot shows the effect sizes estimated using a random effects model and 95% confidence intervals of the percentage change in the difference of change in D2/3 binding after challenge. There was an overall decrease in dopamine release in stimulant users relative to controls with a large to very large effect size (−0.84 [95% CI, −1.08 - −0.60], p<0.001)

Schrantee et al. 2015 and Wang et al. 2012 studied amphetamine-like stimulant users. The remaining studies included cocaine users.
Figure 2: Studies of dopamine transporter availability. The forest plot shows the effects sizes estimated using a random effects model and 95% confidence intervals of the difference between amphetamine/methamphetamine users and controls. There was an overall decrease in the dopamine transporter availability in methamphetamine users relative to controls (-0.91 [95% CI, -1.5 - -0.32], p < 0.01)

<table>
<thead>
<tr>
<th>Amphetamine and Methamphetamine users</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chou et al., 2007</td>
<td>-1.61 [-2.92, -0.29]</td>
<td></td>
</tr>
<tr>
<td>Johanson et al., 2006</td>
<td>-0.96 [-1.71, -0.22]</td>
<td></td>
</tr>
<tr>
<td>McCann et al., 1998</td>
<td>-1.24 [-2.34, -0.14]</td>
<td></td>
</tr>
<tr>
<td>McCann et al., 2008</td>
<td>-0.82 [-1.74, 0.10]</td>
<td></td>
</tr>
<tr>
<td>Schouw et al., 2013</td>
<td>-0.94 [-1.92, 0.04]</td>
<td></td>
</tr>
<tr>
<td>Sekine et al., 2001</td>
<td>-1.70 [-2.72, -0.67]</td>
<td></td>
</tr>
<tr>
<td>Volkow et al., 2001</td>
<td>-1.82 [-2.63, -1.01]</td>
<td></td>
</tr>
<tr>
<td>Yuan et al., 2014</td>
<td>-2.25 [-2.96, -1.54]</td>
<td></td>
</tr>
<tr>
<td>Volkow et al., 2015</td>
<td>-1.62 [-2.43, -0.81]</td>
<td></td>
</tr>
<tr>
<td>RE Model</td>
<td>-1.47 [-1.83, -1.10]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cocaine users</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Criis-Christoph et al., 2008</td>
<td>0.70 [0.08, 1.32]</td>
<td></td>
</tr>
<tr>
<td>Malison et al., 1998</td>
<td>0.75 [0.18, 1.31]</td>
<td></td>
</tr>
<tr>
<td>Wang et al., 1997</td>
<td>0.07 [-0.55, 0.69]</td>
<td></td>
</tr>
</tbody>
</table>

| Overall RE Model | -0.91 [-1.50, -0.32] | |

Standardized Mean Difference
Figure 3: Studies of dopamine receptor availability. The forest plot shows the effect sizes estimated using a random effects model and 95% confidence intervals of D2/3 receptor binding potentials. There was an overall decrease in dopamine receptor availability compared to controls (-0.76 [95% CI, -0.92 - -0.60], $p<0.001$).

<table>
<thead>
<tr>
<th>Cocaine users</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martinez et al, 2011</td>
<td>-0.28 [-0.84, 0.29]</td>
</tr>
<tr>
<td>Martinez et al, 2009</td>
<td>-0.91 [-1.66, -0.16]</td>
</tr>
<tr>
<td>Volkow et al, 1993</td>
<td>-0.93 [-1.58, -0.27]</td>
</tr>
<tr>
<td>Volkow et al, 1996</td>
<td>-1.14 [-2.11, -0.17]</td>
</tr>
<tr>
<td>Volkow et al, 1997</td>
<td>-0.89 [-1.52, -0.27]</td>
</tr>
<tr>
<td>Payor et al, 2014</td>
<td>-0.77 [-1.53, -0.02]</td>
</tr>
<tr>
<td>Volkow et al, 2014</td>
<td>-0.67 [-1.23, -0.12]</td>
</tr>
<tr>
<td>Matuskey et al, 2014</td>
<td>0.01 [-0.87, 0.89]</td>
</tr>
<tr>
<td>Martinez et al, 2007</td>
<td>-0.70 [-1.29, -0.12]</td>
</tr>
<tr>
<td>Volkow et al, 1990</td>
<td>-1.48 [-2.57, -0.40]</td>
</tr>
<tr>
<td>Volkow et al, 2005</td>
<td>-0.89 [-1.59, -0.20]</td>
</tr>
<tr>
<td>Narendran et al, 2011</td>
<td>-0.77 [-1.68, 0.14]</td>
</tr>
<tr>
<td>RE Model</td>
<td>-0.73 [-0.94, -0.53]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amphetamine/ Methamphetamine users</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballard et al, 2015</td>
<td>-0.90 [-1.46, -0.34]</td>
</tr>
<tr>
<td>Boileau et al, 2012</td>
<td>-0.15 [-0.85, 0.54]</td>
</tr>
<tr>
<td>Iyo et al, 1993</td>
<td>-0.91 [-1.97, 0.15]</td>
</tr>
<tr>
<td>Volkow et al, 2001</td>
<td>-0.75 [-1.44, -0.06]</td>
</tr>
<tr>
<td>Wang et al, 2012</td>
<td>-0.54 [-1.26, 0.18]</td>
</tr>
<tr>
<td>Okita et al, 2016</td>
<td>-0.86 [-1.46, -0.25]</td>
</tr>
<tr>
<td>Schrantee et al, 2015</td>
<td>-1.65 [-2.42, -0.88]</td>
</tr>
<tr>
<td>RE Model</td>
<td>-0.61 [-1.12, -0.49]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stimulant users</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE Model</td>
<td>-0.76 [-0.92, -0.60]</td>
</tr>
</tbody>
</table>

Standardized Mean Difference
Figure 4: A summary of dopaminergic alterations in stimulant users

Summary of the synaptic location of the major dopaminergic findings from our meta-analyses and findings from studies of other aspects of the dopamine system.

1. Based on study by Wu et al. 1997
2. Based on study by Boileau et al. 2008 & 2015
3. Based on study by Narendran et al. 2012 and Johanson et al. 2006
4. Meta-analysis finding with effect size of −0.81 [95% CI, −1.34 - −0.29], p<0.01
5. Meta-analysis finding with effect size of −0.91 [95% CI, −1.50 - −0.32], p<0.01
6. Meta-analysis finding with effect size of −0.71 [95% CI, −0.91 - −0.52], p<0.001