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a b s t r a c t 

Sequence comparison is the core computation of many applications involving textual representations of 

data. Edit distance is the most widely used measure to quantify the similarity of two sequences. Edit 

distance can be defined as the minimal total cost of a sequence of edit operations to transform one se- 

quence into the other; for a sequence x of length m and a sequence y of length n , it can be computed 

in time O(mn ) . In many applications, it is common to consider sequences with circular structure: for 

instance, the orientation of two images or the leftmost position of two linearised circular DNA sequences 

may be irrelevant. To this end, an algorithm to compute the cyclic edit distance in time O(mn log m ) was 

proposed (Maes, 2003 [18]) and several heuristics have been proposed to speed up this computation. Re- 

cently, a new algorithm based on q -grams was proposed for circular sequence comparison (Grossi et al., 

2016 [13]). We extend this algorithm for cyclic edit distance computation and show that this new heuris- 

tic is faster and more accurate than the state of the art. The aim of this letter is to give visibility to this 

idea in the pattern recognition community. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

Sequence comparison is a fundamental step in many applica-

ions involving textual representations of data. Alignments consti-

ute one of the processes commonly used to compare sequences;

hey are based on notions of distance or of similarity between

trings. Edit distance is the most widely used measure to quan-

ify the similarity (or dissimilarity) of two given sequences. It can

e defined as the minimal total cost of a sequence of elementary

dit operations to transform one sequence into the other; for a se-

uence x of length m and a sequence y of length n , it can be com-

uted in time O(mn ) [8] . 

In many applications it is common to consider sequences with

ircular structure: for instance, the orientation of two images or

he leftmost position of two linearised circular DNA sequences may

e irrelevant . 

In [21] , the authors show that computing the edit distance can

e used to classify handwritten digits, where the contours of the

igits are represented with an 8-direction chain-code [11] ; a se-

uence over an eight-letter alphabet, representing the eight cardi-
∗ Corresponding author. 

E-mail address: solon.pissis@kcl.ac.uk (S.P. Pissis). 
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al directions that the contour faces when following the outline of

n image in a clockwise motion. 

Example applications where image retrieval is required include

igital libraries and multimedia editing [28] . Computing the cyclic

dit distance is a key requirement for image processing and shape

atching. The contours of a shape may be represented through a

yclic sequence which can be used in the computation of the cyclic

dit distance. This can identify similarities in shapes which appear

o be distinct from one another [20,26] . 

Circular molecular structures are abundant in all domains of

ife: bacteria, archaea, and eukaryotes, and in viruses. Exhaustive

eviews of circular molecular structures can be found in [7] and

14] . 

Using standard techniques to align circular sequences could in-

orrectly yield a high genetic distance between closely-related se-

uences. Indeed, when sequencing molecules, the position where

 circular sequence starts can be totally arbitrary. For instance, the

inearised human (NC 001807) and chimpanzee (NC 001643) mito-

hondrial DNA (mtDNA) sequences do not start in the same region

13] . Due to this arbitrariness, a suitable rotation of one sequence

ould give much better results for a pairwise alignment. This mo-

ivates the design of efficient algorithms that are specifically de-

oted to the comparison of circular sequences [1,4,5,13] . 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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The cyclic edit distance (CED) problem can be defined as follows.

Given a sequence x of length m and a sequence y of length n , find

the minimal edit distance between any conjugate (cyclic rotation)

of x and any conjugate of y . 

Few exact algorithms exist which are able to compute the cyclic

edit distance between x and y . Maes designed an elegant divide-

and-conquer algorithm which runs in time O(mn log m ) [18] . The

idea of this algorithm is to identify optimal edit paths which do

not cross each other on the edit graph of xx and y . An exact branch

and bound algorithm based on Maes’s algorithm, which runs in

time O(mn log m ) , was proposed by Barrachina and Marzal [2] .

This method explores only the nodes on the edit graph that could

lead to an optimal path, resulting in a much faster algorithm on

average . 

Several heuristic approaches exist for approximating the cyclic

edit distance. One of the first ones is the Bunke and Buhler ( BBA )

algorithm [6] . It estimates a lower bound for the cyclic edit dis-

tance by searching for an optimal path in time O(mn ) . The ex-

tended Bunke and Buhler method ( EBBA ) computes an estimation

of the upper bound for the exact cyclic edit distance, also in time

O(mn ) [22] . The weighted Bunke and Buhler algorithm ( WeBBA )

combines the lower and upper bound estimations, computed by

the BBA and EBBA algorithms, to produce an approximation of

the cyclic edit distance in time O(mn ) [23] . It is perhaps the best

performing heuristic currently. 

Palazon-Gonzalez and Marzal [27] studied the same problem

but from the indexing point of view for classification and re-

trieval. Their methods eliminate searching for a distance when it

is known that it will be greater than the distance (external bound)

to the nearest neighbour. They propose two algorithms. The first

one modifies the branch and bound algorithm of Barrachina and

Marzal [2] by avoiding exploring ranges known to be lower than

the lower bound in the branch and bound computation. The sec-

ond one modifies the BBA algorithm by preventing searching for

distances when it is known that the final result will not improve

the current external bound. 

Our contribution. In this letter, we propose hCED , a new

heuristic algorithm for cyclic edit distance computation. The first

important step of this computation is based on an idea that has

not been explored by the previous heuristics; that is, considering

q -grams, factors of length q . Informally, the q -gram similarity, de-

fined as a distance in [29] , is the number of q -grams shared by the

two sequences. Theoretical insight to support the suitability of the

algorithm is provided. hCED can be split into the following three

main stages: 

1. The rotation of x that minimises a generalisation of the q -gram

distance between x and y is computed using the algorithm in

[13] ; 

2. A refinement on this rotation of x is carried out by examining

only some short prefixes and suffixes of the rotation and se-

quence y ; 

3. Finally, the edit distance between the refined rotation of x and

sequence y is computed. 

Our main contribution is an extensive experimental study us-

ing both DNA and 8-direction chain-code datasets. These results

show that hCED is generally faster, up to one order of magnitude,

and more accurate than existing state-of-the-art heuristics. A free

open-source implementation of hCED is also made available as op-

posed to current methods. 

2. Definitions 

We begin with a few definitions, following Crochemore et al.

[8] . We think of a string x of length m as an array x [0 . .m − 1] ,

where every x [ i ], 0 ≤ i < m , is a letter drawn from some fixed
lphabet � of size | �| = O(1) . We refer to any string x ∈ �q as

 q-gram . The empty string of length 0 is denoted by ε. A string

 is a factor of a string y if there exist two strings u and v , such

hat y = ux v . Consider the strings x, y, u , and v , such that y = ux v .
f u = ε, then x is a prefix of y . If v = ε, then x is a suffix of y . 

A circular string of length m can be viewed as a traditional

inear string which has the left- and right-most letters wrapped

round and glued together in some way. Under this notion, the

ame circular string can be seen as m different linear strings,

hich would all be considered equivalent. Given a string x of

ength m , we denote by x i = x [ i. .m − 1] x [0 . .i − 1] , 0 < i < m , the

 th rotation of x and x 0 = x . Consider, for instance, the string x =
 

0 = abababbc ; which has the following rotations: x 1 = bababbca ,

 

2 = ababbcab , and so on. We say that two strings x and y are

onjugate if there exist two strings u and v such that x = u v and

 = v u . 
Given a string x of length m and a string y of length n ≥ m , the

dit distance , denoted by δE ( x, y ), is defined as the minimal total

ost of edit operations required to transform one string into the

ther. In general, the allowed operations are as follows: 

• Insertion : insert a letter in y , not present in x ; ( ε, b ), b � = ε
• Deletion : delete a letter in y , present in x ; ( a , ε), a � = ε
• Substitution : replace a letter in y with a letter in x ; (a, b) , a � =

b, and a, b � = ε. 

By ins (b) , del (a ) , and sub (a, b) , a � = b , and a, b ∈ �, we denote

he cost of insertion, deletion, and substitution operations, respec-

ively. In many applications, we only want to count the number

f edit operations, considering the cost of each to be 1 [17] . This

istance is known as Levenshtein distance , a special case of edit dis-

ance where unit costs apply. 

The cyclic edit distance , denoted by δCE ( x, y ), is defined as

CE (x, y ) = min i ( min j δE (x i , y j )) = min i δE (x i , y ) [18] . 

We give some further definitions following Ukkonen [29] . The

-gram profile of a string x is the vector G q ( x ), where q > 0 and

 q ( x )[ v ] denotes the total number of occurrences of q -gram v ∈ �q

n x . 

efinition 1. Given two strings x and y and an integer q > 0, the

-gram distance D q ( x, y ) is defined as 

∑ 

 ∈ �q 

| G q (x )[ v ] − G q (y )[ v ] | . (1)

Jokinen and Ukkonen [15] showed the following bound which

s directly applicable to the Levenshtein distance. 

emma 1 [15] . Let x and y be strings with Levenshtein distance k.

hen at least | x | + 1 − (k + 1) q of the | x | − q + 1 q-grams of x occur

n y. 

For a given integer parameter β ≥ 1, Grossi et al. [13] defined

 generalisation of the q -gram distance by partitioning x and y in

blocks as evenly as possible, and computing the q -gram distance

etween each pair of blocks, one from x and one from y . The ratio-

ale is to enforce locality in the resulting overall distance. For the

ake of presentation in the rest of this letter, we assume that the

engths | x | = m and | y | = n are both multiples of β , so that x and

 are conceptually partitioned into β blocks, each of size m / β for

 and n / β for y . 

efinition 2. Given strings x of length m and y of length n ≥ m

nd integers β ≥ 1 and q > 0, the β-blockwise q-gram distance

 β , q ( x, y ) is defined as 

−1 ∑ 

D q 

(
x 

[
jm 

β
. . 

( j + 1) m 

β
− 1 

]
, y 

[
jn 

β
. . 

( j + 1) n 

β
− 1 

])
. (2)
j=0 
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. Algorithm hCED 

We first begin by extending Lemma 1 to non-unit costs. 

emma 2. Let x and y be strings with edit distance k, such that C =
in { ins (b) , del (a ) , sub (a, b) } , for some C > 1, a � = b, and a, b ∈ �.

hen at least | x | + 1 − (� k/C� + 1) q of the | x | − q + 1 q-grams of x

ccur in y. 

roof. By assumption we have that δE (x, y ) = k, and if the edit op-

rations do not have uniform cost, we have that the number of edit

perations is less than or equal to � k / C � . Each edit operation could

lter at most q different q -grams and hence the lemma follows. �

Consider the case when C = min { ins (b) , del (a ) , sub (a, b) } , D =
ax { ins (b) , del (a ) , sub (a, b) } , and D − C = O(1) . This assumption

aptures most, if not all, real-world edit-distance-based applica-

ions. We claim that the lower bound on the number of q -grams

s good in the following sense. The number e of edit operations

ust be � k / D � ≤ e ≤ � k / C � . For | x | = | y | and e = (| x | − q + 1) /q, it

s easy to design a string such that each operation alters exactly

 q -grams. We can then see that the best bound we can achieve

n the above lemma, without some stronger assumptions, is | x | +
 − (� k/D � + 1) q shared q -grams and therefore in such cases, the

ound in Lemma 2 is within a constant factor. Note that the choice

f e = (n − q + 1) /q is not arbitrary; should e be more than this,

he pigeon-hole principle shows that it is not possible to distribute

 operations in such a way that each occurs at least q positions

part. This means that each operation can no longer alter exactly q

 -grams. 

emma 3. Let x and y be two conjugate strings. For a given q, x and

 share at most | x | − q + 1 q-grams and at least | x | − 2 q + 2 . 

roof. The first part is trivial. Consider the case when x is a string

ith a distinct letter per position and q = 1 . Then x and y share

xactly | x | − q + 1 distinct q -grams. 

For the second part, and by definition, notice that x and y can

lways be decomposed to x 1 x 2 and y 1 y 2 , respectively, where x 1 , x 2 ,

 1 , y 2 are strings, such that x 1 = y 2 and x 2 = y 1 . Then it is not dif-

cult to see that by choosing an appropriate decomposition, each

air, ( x 1 , y 2 ) and ( x 2 , y 1 ), shares | x 1 | − q + 1 and | x 2 | − q + 1 q -

rams, respectively. The sum | x 1 | − q + 1 + | x 2 | − q + 1 can be re-

ritten as | x 1 | − q + 1 + (| x | − | x 1 | ) − q + 1 which gives | x | − 2 q +
 . This concludes the proof. �

The small difference of the two bounds shown in Lemma 3 tells

s that the q -gram distance is not a good distance by itself to re-

over the rotation of x that minimises the edit distance to y . 

Based on the aforementioned remarks, we proceed with design-

ng hCED , a three-stage heuristic algorithm for cyclic edit distance

omputation. In the first stage, an initial rotation of x is computed

sing the β-blockwise q -gram distance. In the second stage, a re-

nement of this rotation is performed; and finally, the edit dis-

ance between this refined rotation of x and string y is computed. 

.1. Stage 1: circular sequence comparison with q -grams 

Grossi et al. [13] presented an exact algorithm to compute the

-blockwise q -gram distance between x and y . The algorithm is

ased on constructing the suffix array [19] for string xxy and as-

igning a rank to the prefix with length q of each suffix with length

t least q , based on its order in the suffix array. The algorithm then

nds the rotation i of x such that the β-blockwise q -gram distance

etween x i and y is minimal. Ties are broken arbitrarily. The algo-

ithm runs in time and space O(βm + n ) . The first stage of hCED

s essentially the aforementioned algorithm that exploits q -grams

see Lemma 2 ). For β = 1 this corresponds to minimising the stan-

ard q -gram distance which is not satisfactory (see Lemma 3 );
owever, the generalisation to β blocks enforces the property of

ocality. 

.2. Stage 2: refinement 

In the second stage, hCED refines rotation x i and produces a

efined rotation, denoted by x r . When in the first stage, the algo-

ithm splits strings x and y into β blocks, it naturally disregards

ocality within each block. Thus when the initial rotation is pro-

uced, it may need to be shifted again slightly to the left or to

he right. To this end, we introduce a new input parameter 0 <

 ≤ β/3 which defines the length L = � P × m 

β
� of the prefixes and

uffixes of x i and y to be considered by the refinement. 

The algorithm proceeds as follows. It creates two new strings

 

′ and y ′ both of length 3 L . In particular, x ′ is of the form x i 
0 
x i 

1 
x i 

2 
,

here x i 
0 

is the prefix of length L of string x i ; x i 
1 

is a string of

ength L consisting only of a letter $ �∈ �; and x i 
2 

is the suffix of

ength L of string x i . The same is done for y using the prefix and

uffix of y , resulting in the new string y ′ . 
Each rotation of x ′ is then compared to y ′ excluding when a

etter of x i 
1 

(letter $ ) is found at index 0 of the rotation of x ′ . No-

ice that the notion of edit distance is not appropriate here due

o the existence of letter $ which denotes a don’t care letter. We

hus rather utilise a notion of similarity between strings, for which

qualities between letters are positively valued; inequalities, inser-

ions, and deletions are negatively valued; and comparisons involv-

ng letter $ are neither positively nor negatively valued. The search

onsists then in maximising a quantity representative of the simi-

arity between the strings. 

To this end we make use of the Needleman–Wunsch algorithm

25] to compute a similarity score for each rotation of string x ′ and

tring y ′ . The rotation of x ′ which results in the maximum score is

hosen as the best rotation, and hence, the final rotation x r of x

s computed based on this rotation of x ′ . Ties are broken arbitrar-

ly. Both x ′ and y ′ have length 3 L resulting in a single Needleman–

unsch call to have a running time of O(L 2 ) . As this computation

s done exactly 2 L times, once for each rotation, the overall com-

utation of the refinement takes time O(L 3 ) . 

.3. Stage 3: edit distance computation 

In the third stage, hCED computes the edit distance between

trings x r and y . Myers bit-vector algorithm is used to compute

he edit distance when using unit costs for insertion, deletion, and

ubstitution [24] . Myers algorithm runs in time O(
 m 

w 

� n ), where

 is the word size of the machine. The standard edit distance al-

orithm is used when computing the edit distance with non-unit

osts. It runs in time O(mn ) [8] . Hence, notice that, compared to

he other heuristics, hCED offers an additional advantage. If one

s only interested in the rotation minimising the cyclic edit dis-

ance, but not the actual value of the distance, they can use algo-

ithm hCED and skip the third stage, allowing for a much faster

omputation. 

.4. Analysis 

The first two stages of algorithm hCED run in total time

(βm + n + L 3 ) . The parameters β and P can be tailored depend-

ng on the application; however our experiments show that setting

= O(m 

1 / 3 ) and P = O(1) performs very well in applications with

ircular strings. This can be theoretically explained as follows. No-

ice that β should not be too large to allow some flexibility corre-

ponding to insertions and deletions in the alignment. For P , this is

ot surprising either as the rationale of the second stage is to re-

ne via examining only the leftmost and rightmost blocks of each
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Table 1 

Accuracy of heuristic algorithms in comparison to exact results produced by 

Maes’s algorithm for datasets using unit costs. The highest accuracy for each 

dataset is shown in bold. 

DNA 

Accuracy (%) 

Dataset hCED BBA WeBBA EBBA 

12 .2500.5 100 .0 0 0 83 .302 100 .0 0 0 100 .0 0 0 

12 .2500.20 100 .0 0 0 76 .043 99 .939 99 .905 

12 .2500.35 100 .0 0 0 77 .673 99 .933 99 .889 

25 .2500.5 100 .0 0 0 84 .798 99 .997 99 .968 

25 .2500.20 99 .975 74 .606 99 .903 99 .868 

25 .2500.35 99 .961 73 .478 99 .882 99 .849 

50 .2500.5 100 .0 0 0 85 .303 99 .999 99 .960 

50 .2500.20 99 .999 79 .903 99 .977 99 .940 

50 .2500.35 99 .981 74 .043 99 .910 99 .867 

8-direction chain-code 

Accuracy (%) 

Dataset hCED BBA WeBBA EBBA 

12 .500.5 100 .0 0 0 82 .511 99 .895 99 .401 

12 .500.20 100 .0 0 0 81 .344 99 .718 99 .481 

12 .500.35 100 .0 0 0 87 .364 99 .783 99 .586 

Table 2 

Accuracy of heuristic algorithms in comparison to exact results produced by 

Maes’s algorithm for datasets using non-unit costs. The highest accuracy for 

each dataset is shown in bold. 

DNA 

Accuracy (%) 

Dataset hCED BBA WeBBA EBBA 

12 .2500.5 100 .0 0 0 79 .476 100 .0 0 0 100 .0 0 0 

12 .2500.20 99 .958 61 .197 99 .793 99 .763 

12 .2500.35 99 .997 73 .360 99 .953 99 .909 

25 .2500.5 99 .986 80 .950 99 .981 99 .956 

25 .2500.20 99 .970 70 .523 99 .903 99 .864 

25 .2500.35 99 .942 65 .091 99 .865 99 .831 

50 .2500.5 99 .996 81 .131 99 .992 99 .955 

50 .2500.20 99 .987 75 .358 99 .972 99 .937 

50 .2500.35 99 .969 69 .339 99 .932 99 .888 

8-direction chain-code 

Accuracy (%) 

Dataset hCED BBA WeBBA EBBA 

12 .500.5 99 .967 38 .044 99 .677 99 .282 

12 .500.20 99 .175 44 .569 98 .859 98 .592 

12 .500.35 99 .771 57 .554 99 .082 98 .854 
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sequence. These parameter choices imply that the first two stages

run in time O(m 

2 + n ) . The third stage runs in time O(
 m 

w 

� n ) with

unit costs and in time O(mn ) with non-unit costs. The space com-

plexity is O(βm + n ) ; the edit distance and Needleman–Wunsch

algorithms can both be implemented in O(m + n ) space [8] . 

4. Experimental results 

Algorithm hCED was implemented in C++ as a program to

compute an approximation of the cyclic edit distance. Given two

sequences x and y in MultiFASTA format, the number of β blocks,

and the length q of the q -grams, hCED finds an approximation of

the rotation of x that minimises its edit distance from y . It can

also output the corresponding rotation of x . The implementation is

distributed under the GNU General Public License (GPL), and it is

available freely at http://github.com/lorrainea/hCED . 

Another program 

1 was used to produce experimental results

for the Maes, Branch and Bound, BBA , EBBA , and WeBBA algo-

rithms and compare their performance against that of algorithm

hCED . The experiments were conducted on a computer using an

Intel Core i3-5005U CPU at 2.00 GHz under GNU/Linux. Both pro-

grams were compiled with g++ version 4.8.5 at optimisation level

3 (O3). All input datasets referred to in this section are publicly

maintained at the same website. 

Myers bit-vector algorithm was implemented using the SeqAn

library [9] . The standard edit distance algorithm was also imple-

mented to show how the hCED algorithm compares to the other

heuristics when both unit and non-unit costs are used for the edit

distance operations. 

4.1. Synthetic data 

DNA datasets were simulated using INDELible [10] , which pro-

duces sequences in a (Multi)FASTA file. A rate for insertions, dele-

tions, and substitutions are defined by the user to vary the simi-

larity of the sequences. 8-direction chain-code datasets were also

generated using a simple script that generates random (uniform

distribution) sequences over � = { 0 , 1 , . . . , 7 } . All datasets used in

the experiments are denoted in the form A.B.C , where A represents

the number of sequences in the dataset; B the average length of

the sequences; and C the percentage of dissimilarity between the

sequences. The dissimilarity values of 5, 20, and 35 were used for

both the DNA data and chain-codes. 

Nine datasets were simulated to measure the accuracy for DNA

sequences. Each dataset had a varying number of sequences, all

with an average length of 2500. For each dataset, the algorithms

were run for every possible pair of sequences in the set. Three 8-

direction chain-code datasets were also produced. These datasets

consisted of twelve sequences in each set with an average length

of 500. Similarly, for each dataset, the algorithms were run for ev-

ery possible pair of sequences in the set. For all datasets, we made

use of the following parameter values for algorithm hCED : q = 5 ,

β = m/ 50 , and P = 1 . 

The results in Table 1 show the accuracy of the algorithms for

both data types when unit costs were used for insertion, deletion

and substitution. In some applications, in particular in bioinformat-

ics, the cost for insertions and deletions is set higher than the cost

for substitutions. Table 2 shows the accuracy for each of the data

types when non-unit costs of 3, 3, and 1 were used for insertion,

deletion, and substitution, respectively. It becomes evident from

these results that algorithm hCED is the most accurate in com-

parison to the other heuristic algorithms. 

To measure the time performance for both data types, seven

pairs of sequences of varying length were simulated. The running
1 Obtained through personal communication with author – Guillermo Peris. 

i  

g  

h

ime for all sequence pairs were computed ten times and the aver-

ge was taken. For these experiments, the following parameter val-

es for algorithm hCED were used: q = 5 , β = min (50 , 
√ 

m ) , and

 ≤ P ≤ 2. Fig. 1 shows the time performance of hCED when using

nit costs compared to the other heuristic and exact algorithms. It

s clear that as the sequence length grows, hCED is an order of

agnitude faster than WeBBA , the current fastest performing al-

orithm. Notice that hCED is three orders of magnitude faster than

aes’s algorithm. 

Fig. 2 shows the time performance of algorithm hCED for

oth data types when using non-unit costs. A comparison between

CED and the other cyclic edit distance algorithms can be seen

n the figure. As the sequence length grows, hCED and WeBBA

ecome the fastest performing algorithms. Both figures also show

he time performance of algorithm hCED when only the rotation is

omputed: the cyclic edit distance value is not computed. It is ev-

dent that dismissing the computation of the cyclic edit distance

reatly improves the time performance of hCED . The results of

CED confirm our theoretical analysis. 

http://github.com/lorrainea/hCED


L.A.K. Ayad et al. / Pattern Recognition Letters 88 (2017) 81–87 85 

Fig. 1. Elapsed time to execute datasets using unit costs. 
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Fig. 2. Elapsed time to execute datasets using non-unit costs. 

Fig. 3. Handwritten digits. 
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.2. Real data 

Three datasets made up of nucleotide sequences were used to

est the hCED algorithm’s ability to identify accurate rotations. The

rst dataset (Mammals) includes 12 mtDNA sequences of mam-

als, the second dataset (Primates) includes 16 mtDNA sequences

f primates, and the last one (Viroids) includes 18 viroid RNA se-

uences. The average sequence length for Mammals is 16,777 base

airs (bp), for Primates is 16,581 bp, and for Viroids is 363 bp. 

Table 3 shows the accuracy of hCED ’s computation of the cyclic

dit distance for each pair, which we denote by AP, in compari-

on to the other heuristics, as well as the average time taken to

o so. The experiment was carried out when using unit costs for

nsertions, deletions, and substitutions, as well as when using the

ame non-unit costs previously presented. For the Mammals and

rimates datasets, we made use of the following parameter values

or algorithm hCED : q = 5 , β = m/ 100 , and P = 1 . For the Viroids

ataset, in which the sequences are much shorter, the following

arameters were used instead: q = 5 , β = m/ 25 , and P = 1 . It is

vident from Table 3 , that not only does hCED give the most accu-

ate results, but it is also faster for sequences of long length when

sing both unit and non-unit costs. 

Handwritten digits from the MNIST database [16] were also

sed and sorted into ten sets. Each image was placed in one of ten

atasets, depending on the value of the drawn digit. Each hand-

ritten digit was in the form of a 28 × 28 matrix consisting of
ixel values. 50 0 0 of the 60,0 0 0 images were extracted and con-

erted into binary matrices. A normalised 8-direction chain-code

as produced for the handwritten digits, where a subset can be

ound in Fig. 3 . Normalising the chain-code allows the image to be

reated as a circular sequence of minimum magnitude. This pro-

uces a sequence independent of the rotation of the image. This

as calculated by identifying the number of direction changes be-



86 L.A.K. Ayad et al. / Pattern Recognition Letters 88 (2017) 81–87 

Table 3 

Accuracy of heuristic algorithms in comparison to exact results produced by Maes’s algorithm and 

elapsed-time comparison for real nucleotide data. The highest accuracy and fastest time for each dataset 

are shown in bold. 

Unit costs 

Program hCED BBA WeBBA EBBA 

Dataset AP (%) Time (s) AP (%) Time (s) AP (%) Time (s) AP (%) Time (s) 

Mammals 99 .618 0 .479 69 .477 4 .870 96 .482 2 .162 96 .469 5 .015 

Primates 99 .743 0 .202 74 .256 4 .766 98 .749 2 .115 98 .742 4 .904 

Viroids 98 .363 0 .003 61 .057 0 .002 97 .874 0 .001 97 .614 0 .002 

Non-unit costs 

Program hCED BBA WeBBA EBBA 

Dataset AP (%) Time (s) AP (%) Time (s) AP (%) Time (s) AP (%) Time (s) 

Mammals 98 .221 2 .092 57 .092 4 .870 86 .728 2 .202 86 .716 5 .012 

Primates 99 .672 1 .964 65 .859 4 .748 94 .443 2 .175 94 .431 4 .898 

Viroids 98 .155 0 .003 49 .746 0 .002 97 .623 0 .001 97 .288 0 .002 

Table 4 

Accuracy of heuristic algorithms in comparison to exact results pro- 

duced by Maes’s algorithm for handwritten digits. The highest accuracy 

for each dataset is shown in bold. 

Accuracy (%) - Unit costs 

Dataset hCED BBA WeBBA EBBA 

0 .479.55 91 .781 52 .908 90 .126 88 .271 

1 .563.43 93 .159 58 .589 92 .037 89 .629 

2 .488.73 94 .504 54 .442 90 .265 88 .860 

3 .493.80 95 .371 54 .043 89 .441 88 .277 

4 .535.69 93 .855 59 .600 90 .351 89 .022 

5 .434.78 95 .287 53 .118 87 .869 86 .640 

6 .501.60 94 .139 54 .796 88 .954 87 .328 

7 .550.65 92 .436 55 .092 88 .984 88 .485 

8 .462.56 94 .006 55 .841 90 .720 89 .023 

9 .495.54 94 .211 55 .946 89 .814 88 .029 

Accuracy (%) - Non-unit costs 

Dataset hCED BBA WeBBA EBBA 

0 .479.55 87 .699 41 .323 80 .256 78 .535 

1 .563.43 88 .213 49 .656 85 .895 83 .727 

2 .488.73 89 .395 41 .645 77 .193 76 .145 

3 .493.80 87 .396 38 .844 72 .854 71 .849 

4 .535.69 89 .163 45 .332 77 .621 76 .350 

5 .434.78 85 .338 37 .622 69 .817 68 .870 

6 .501.60 86 .279 38 .630 72 .112 70 .759 

7 .550.65 88 .276 41 .018 75 .323 74 .108 

8 .462.56 87 .597 41 .948 75 .948 74 .398 

9 .495.54 86 .950 41 .765 76 .159 74 .715 
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tween two adjacent elements of the chain-code in an anticlockwise

direction (see [12] , for details). 

Table 4 shows the results of using algorithm hCED to compute

the cyclic edit distance for successive pairs in each dataset. Each

dataset is in the form D.E.F , where D represents the drawn digit;

E the number of sequences in the set; and F the average length of

the sequences in the set. For these datasets, we made use of the

following parameter values for algorithm hCED : q = 5 , 7 ≤ m / β ≤
15, depending on the average length of the sequence, and P = 1 . It

is evident from Table 4 , that for all sets, hCED is the most accu-

rate when using both unit and non-unit costs. Running times are

not presented for the handwritten digits datasets as the sequence

lengths are very small. 

5. Conclusion 

In this letter, algorithm hCED , a new heuristic approach to ap-

proximate the cyclic edit distance, was presented. It is an extension

of the q -gram based algorithm presented in [13] adapted for cyclic
dit distance computation. Our main contribution is an extensive

xperimental study to compare hCED against existing state-of-the-

rt heuristics for the same problem. In particular, we showed that

he performance of hCED , in terms of accuracy and speed, out-

erforms existing heuristics using both DNA and 8-direction chain-

ode data. 

The inherent structure of hCED allows for two important prop-

rties: (i) hCED enables the user to compute only the rotation of x

or an approximation of it) that minimises the cyclic edit distance

rom y , performing even faster if the actual value for the cyclic

dit distance is not required; and (ii) this also enables the usage

f the fastest known algorithm for the edit distance computation

ith unit costs if the actual value for the cyclic edit distance is

equired. Fig. 1 greatly reflects these advantages in practical terms.

Our improvements are particularly important for image re-

rieval and molecular biology applications. For instance, algorithm

CED can now be directly used for computing the cyclic edit dis-

ance between all pairs of sequences for progressive multiple cir-

ular sequence alignment [3] . 
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