Title Page

Title: RA-Differentiation Enhances Dopaminergic Features, Changes Redox Parameters and Increases Dopamine Transporter Dependency in 6-Hydroxydopamine-Induced-Neurotoxicity in SH-SY5Y cells

Authors: Fernanda M. Lopes¹,²*, Leonardo L. da Motta¹, Marco A. De Bastiani¹, Bianca Pfaffenseller¹, Bianca W. Aguiar¹, Luiz F. de Souza³, Geancarlo Zanatta¹, Daiani M. Vargas¹; Patrícia Schönhofen¹, Giovana F. Londero¹, Liana M. de Medeiros¹, Valder N. Freire⁴, Alcir L. Dafre³, Mauro A. A. Castro⁵, Richard B. Parsons², Fabio Klamt¹*.

Filiation: ¹Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS/UFRGS, 90035-003 Porto Alegre (RS), Brazil; ²Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK; ³Cellular Defenses Laboratory, Department of Biochemistry, Biological Sciences Centre, Federal University of Santa Catarina (UFSC), 88040-900 Florianopolis (SC), Brazil; ⁴Department of Physics at Federal University of Ceará (UFC), 60455-760 Fortaleza (CE), Brazil; ⁵Bioinformatics and Systems Biology Laboratory, Federal University of Paraná (UFPR), Polytechnic Center, 81520-260 Curitiba (PR), Brazil.

*Correspondence to: MSc Fernanda M. Lopes & Prof. Fábio Klamt, PhD Laboratório de Bioquímica Celular (LBC), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St., Porto Alegre (RS), Brazil, 90035-003. Phone: +55 51 3308-5556; FAX: +55 51 3308-5535, e-mail: fe.m.lopes@gmail.com / fabio.klamt@ufrgs.br
Abstract
Research on Parkinson's disease (PD) and drug development is hampered by the lack of suitable human *in vitro* models that simply and accurately recreate the disease conditions. To counteract this, many attempts to differentiate cell lines, such as the human SH-SY5Y neuroblastoma, into dopaminergic neurons have been undertaken since they are easier to cultivate when compared to other cellular models. Here we characterized neuronal features discriminating undifferentiated and retinoic acid (RA)-differentiated SH-SYSY cells, and described significant differences between these cell models in 6-hydroxydopamine (6-OHDA) cytotoxicity. In contrast to undifferentiated cells, RA-differentiated SH-SY5Y cells demonstrated low proliferative rate and a pronounced neuronal morphology with high expression of genes related to synapse vesicle cycle, dopamine synthesis/degradation, and of dopamine transporter (DAT). Significant differences between undifferentiated and RA-differentiated SH-SY5Y cells in the overall capacity of antioxidant defenses were found; although RA-differentiated SH-SY5Y cells presented a higher basal antioxidant capacity with high resistance against H$_2$O$_2$ insult, they were two-fold more sensitive to 6-OHDA. DAT inhibition by 3α-bis-4-fluorophenyl-methoxytropane and dithiothreitol (a cell-permeable thiol reducing agent) protected RA-differentiated, but not undifferentiated, SH-SY5Y cells from oxidative damage and cell death caused by 6-OHDA. Here we demonstrate that undifferentiated and RA-differentiated SH-SY5Y cells are two unique phenotypes and also have dissimilar mechanisms in 6-OHDA cytotoxicity. Hence, our data support the use of RA-differentiated SH-SY5Y cells as an *in vitro* model of PD. This study may impact our understanding of the pathological
mechanisms of PD and the development of new therapies and drugs for the management of the disease.

Keywords SH-SY5Y cells; retinoic acid; Parkinson’s disease; experimental model; 6-hydroxydopamine; dopamine transporter.

Acknowledgements
Brazilian funds CNPq/MS/SCTIE/DECIT - Pesquisas Sobre Doenças Neurodegenerativas (#466989/2014-8), MCT/CNPq INCT-TM (#573671/2008-7), and Rapid Response Innovation Award/MJFF (#1326-2014) provided the financial support without interference in the ongoing work. FK received a fellowship from MCT/CNPq (#306439/2014-0). FML received a fellowship from Programa de Doutorado Sanduíche no Exterior - PDSE/CAPES (#14581/2013-2). We thank Dr. Florencia M. Barbé-Tuana for technical assistance with flow cytometry, and Dr. Tadeu Mello e Souza for kindly providing DATi.
Introduction

Dopaminergic degeneration found in Parkinson’s disease (PD) (Gibb 1991) is mainly associated with oxidative stress (Fariello 1988) and mitochondrial dysfunction (Schapira et al. 1990). However, the functional changes operating during the initial stage of PD remain unknown (Mullin and Schapira 2015). The lack of understanding the molecular mechanisms of PD has many causes (Olanow et al. 2008; Olanow 2009), which one of them is attributed to the difficulty to reproduce the complex physiological features of a human dopaminergic neuron *in vitro* (Schüle et al. 2009; Bal-Price et al. 2010). Hence, there are limited reliable neuronal *in vitro* cell models to study PD pathophysiological mechanisms (Radio and Mundy 2008; Haggarty and Perlis 2014).

In this context, the human neuroblastoma cell line SH-SY5Y is the most used *in vitro* model of dopaminergic neurons (Xie et al. 2010) because not only it expresses the catecholamine synthesis machinery, but also it is easy to cultivate when compared with another *in vitro* models (*e.g.* primary culture and inducible pluripotent stem cells –iPS) (Biedler et al. 1978; Kovalevich and Langford 2013). Even though these cells are widely used in PD research, they are epithelial cells and do not present neuronal properties such as a terminal post-mitotic state and the expression of synaptic proteins (Radio and Mundy 2008). Interestingly, the *in vitro* differentiation induced by retinoic acid (RA) of this cell line into a neuron-like phenotype was established more than 30 years ago (Påhlman et al. 1984).

However, there is no consensus which differentiation protocol is more suitable for this cells line. The scientific literature shows a divergence not only in
serum concentration (1-10% FBS), which neurotrophin to be used (e.g. RA, BDNF, TPA), but also in differentiation length (4-12 days). Hence, depending on the protocol used, there are several discrepancy among findings regarding neuronal and dopaminergic markers (e.g. tyrosine hydroxylase –TH and dopamine transporter –DAT) (Presgraves et al. 2004; Cheung et al. 2009; Agholme et al. 2010; Lopes et al. 2010; Korecka et al. 2013). This brings discussion whether SH-SY5Y cells must be differentiated (Luchtman and Song 2010; Xie et al. 2010).

Furthermore, different protocols also may cause changings in cell susceptibility to neurotoxins, such as 6-hydroxydopamine (6-OHDA) (Cheung et al. 2009; Lopes et al. 2010; Forster et al. 2016). In vivo, it is widely accepted that this toxin enters into the dopaminergic neuron via DAT and causes a massive oxidative stress (Ljungdahl et al. 1971). However, 6-OHDA mechanism of action is still controversial for in vitro studies. Although DAT inhibitors provide a partial protection against 6-OHDA toxicity towards primary dopaminergic neurons (Cerruti et al. 1993; Abad et al. 1995), many lines of evidence showed no protection in undifferentiated SH-SY5Y cells from cell death induced by this toxin (Storch et al. 2000; Izumi et al. 2005; Hanrott et al. 2006). Regarding RA-differentiated SH-SY5Y cells, no study showed the effect of DAT inhibition in 6-OHDA-induced cell death.

Even though with the emergence of new, more physiologically relevant models such as iPS as in vitro models for PD (Hartfield et al. 2014), it is clear that the majority of studies have been undertaken using cell lines such as SH-SY5Y due to considerations such as availability of iPS and the necessary expertise in their differentiation into dopaminergic neurons (Filograna et al.
Hence, an understanding of the potential differences in SH-SY5Y cell line RA-differentiated and undifferentiated states and their response to 6-OHDA are imperative as this remains the most commonly-used in vitro model (Kovalevich and Langford 2013).

In the present work, we aimed to validate a differentiation protocol previously described by our research group (Lopes et al. 2010) comparing undifferentiated and RA-differentiated SH-SY5Y cells regarding gene expression of important cellular networks related to dopaminergic neuronal machinery, morphology, redox metabolism and 6-OHDA cytotoxicity. To further investigate 6-OHDA operating mechanisms in both models, DAT inhibition and pre-treatment with thiol reducing agents were performed. Here we demonstrate critical differences between models, such as DAT dependency of 6-OHDA-induced cell death in RA-differentiated SH-SY5Y cells.

Materials and Methods

Cell Culture

Human neuroblastoma cell line SH-SY5Y (ATCC, Manassas, VA, USA) was maintained in a 1:1 mixture of Ham's F12 and Dulbecco Modified Eagle Medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Cripion®, São Paulo, SP, Brazil), 2 mM of glutamine, 100 U/mL of penicillin/streptomycin and antimycotic (Thermo Fisher Scientific®, cat. #10378016, Waltham, MA, USA) in a humidified atmosphere of 5% of CO₂ at 37ºC.

In our cellular differentiation protocol (as described in Fig.1) only attached cells were maintained and floating cells were discarded. 3 X10⁴ cells/cm² were seed in 10% FBS medium. After 24 hours (day 1), medium was
replaced with medium in which the FBS concentration was reduced to 1% and supplemented with 10 µM of RA (all-trans-retinoic-acid, Enzo® - East Farmingdale, NY, USA), and incubated for 7 days. At the day 4, the medium was replaced, and at the day 7, cells were harvested and used for experiments.

It is important to note that successful differentiation depends upon (at least) 3 factors: (i) the confluence of the cells in day 1 must be around 75% (higher confluence inhibits neurite outgrowth, and lower confluence leads SH-SY5Y cells to detach); (ii) the cell medium should only be used for a maximum of 2 weeks to avoid glutamine decomposition; and (iii) RA powder is diluted in absolute ethanol to prepare the stock solution. The concentration of this solution was determined using $E_M (351 \text{ nm}) = 45000$ at the day of the medium replacement (i.e. days 1 and 4) to control any changes in the concentration that may occur during storage (Lopes et al. 2010; Sharow et al. 2012).

RNA isolation and microarray assay

Cells were harvested and the RNA was isolated using TRIzol Reagent (Thermo Fisher Scientific®, Waltham, MA, USA) following by purification (Qiagen RNeasy Mini Kit #74 104 and #79 254 - Free RNase DNase Set Qiagen, Hilden, Germany). Microarray analysis was performed using the chip GeneChip® PrimeView™ Human Gene Expression Array (Affymetrix™). The samples were collected at the day 0 (undifferentiated cells) and day 7 (RA-differentiated cells) (Fig. 1) and raw data was deposited on GEO repository (GEOID: GSE71817).

Gene Set Enrichment Analysis (GSEA) and expression values

Four genes networks were analyzed in both undifferentiated and RA-differentiated SH-SY5Y cells: cell cycle, synapse vesicle cycle, dopaminergic synapse and antioxidant (extracted from KEGG platform)
Gene set enrichment analysis was used to identify genes that contribute to global changes in expression levels in a given microarray dataset comparison. GSEA considers experiments with genome-wide expression profiles from two classes of samples (e.g. RA-differentiated cells vs. undifferentiated). Genes were ranked based on the correlation between their expression and the class distinction. Given a prior defined network (e.g. synaptic vesicle cycle), the GSEA determines if the members of these sets of genes are randomly distributed or primarily found at the top or bottom of the ranking (Subramanian et al. 2005).

To access the logarithm of gene expression, raw CEL files were analyzed using the R/Bioconductor pipeline. The data was normalized by Robust Multi-array Average (RMA) using the AFFY package, log (base 2) transformed, and batch-corrected with ComBat using the SVA package.

Cell cycle and cellular growth

DNA composition was measured using propidium iodide (PI) (Thermo Fisher Scientific®, cat. # P3566, Waltham, MA, USA), flow cytometry (BD Accuri™ C6 Flow Cytometer, USA). The results were express as percentage of cells in each cell cycle phase (G0/G1, S, G2/M). Cellular proliferation was measured by cell counting using a Neubauer Chamber. Undifferentiated cells reach the confluency at the day 4, forming a monolayer. After this, cells continued to proliferate, as shown in Fig. 2a, but as floating cells.

Neurite Density

Neurite density was evaluated by immunofluorescence. Cells were washed with PBS, fixed with methanol/acetone solution (1:1) for 20 minutes in room temperature and permeabilized with PBS/Tween 0,2%. The blocking was performed with 1% BSA solution for 1 h in room temperature. Then, cells were
incubated with anti-βIII tubulin antibody (Alexa 488-conjugated – Abcam®, cat. # ab204605, Cambridge, UK, dilution: 1:250) for 2 hours in room temperature and with Nuclear dye DAPI (Thermo Fisher Scientific®, cat. # D1306, Waltham, Massachussetts, USA- dilution: 0.25 µg/µL) for 5 min. Randomly selected Images were captured using an Olympus IX70 inverted microscope and analyzed with NIS-elements software. Neurite density was assessed using the AutoQuant Neurite software (implemented in R), and expressed as arbitrary units (A.U.) (Schönhofen et al. 2015).

Dopamine immunoreactivity
Dopamine reactivity was evaluated using an anti-dopamine antibody (Abcam®, cat. # ab6427, Cambridge, UK dilution: 1:250) followed by incubation with Alexa 488-conjugated-antibody (Thermo Fisher Scientific®, cat. #A11008, Waltham, MA, USA- A11008 - dilution: 1:500). Randomly selected images were captured using an EVOS® FLoid® Cell Imaging (Korecka et al. 2013).

Cytotoxicity parameters
Undifferentiated and RA-differentiated SH-SY5Y cells were treated for 24 hours with 6-OHDA and H₂O₂. Cell viability were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT- Sigma®, cat. # M5655) reduction assay as previously described (Lopes et al. 2010).

Oxidative stress parameters
We evaluated the redox status in both undifferentiated and RA-differentiated SH-SY5Y cells by measuring: reduced thiol and reduced glutathione (GSH) levels as well as the following antioxidant enzymes activities: Glutathione Peroxidase (GPx), Catalase (CAT), Superoxide Dismutase (SOD), Thioredoxin Reductase (TrxR), Glutathione Reductase (GR), Glutathione-S-transferase (GST) as described previously (Lopes et al. 2012). H₂O₂ generation
was measured using AmplexRed® (Thermo Fisher Scientific®, cat. # a12222, Waltham, MA, USA).

Reducing thiol agents treatment

The role of reducing agents in 6-OHDA-cytotoxicity was assessed via pre-treatment with Dithiothreitol (DTT) (Sigma®, cat. # D0632) or tris(2-carboxyethyl)phosphate (TCEP) (Sigma®, cat. # C4706) in both cell models for 1 hour in 37\textdegree C. Cells were then incubated with the median toxic dose (TD\textsubscript{50}) dose of 6-OHDA. The cytotoxicity was analyzed using MTT reduction.

DAT immunocontent

To evaluate changes in DAT immunocontent during the RA-differentiation process, western blot analysis was performed using anti-DAT antibody (Santa Cruz® Biotechnology, cat. # 9299, Dallas, TX, USA - dilution: 1:1000) and rabbit anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibody (Abcam®, cat. # ab9485, Cambridge, UK - dilution 1:5000) as loading control.

Molecular Docking

The calculations performed in this study have taken full advantage of the X-ray crystal structure of the *Drosophila melanogaster* DAT (PDB ID 4M48) at 3.0 Å of resolution (Penmatsa et al. 2013).

Molecular docking was performed using Autodock4 and the protocol adopted validated through the redocking of nortriptyline in the DAT binding site, as describe elsewhere (Halperin et al. 2002; Mohammad et al. 2008), which was employed to obtain the molecular structures of dopamine, 6-OHDA, \(p\)-quinone and DATi (DATi = 3\(\alpha\)-bis-4-fluorophenyl-methoxytropane) (Tocris®, cat. #0918, Avonmouth, Bristol, UK) for docking input. Upon completion, a thousand poses were obtained (50 poses per output) and clustered within a RMSD tolerance of 1.0 Å using Autodock Tools The best results obtained were based
upon visual inspection and the calculated binding energy. Binding energy (E_{OPT}) was recalculated, using Forcite code, through the equation “$E_{OPT} = EDAT + L - (EDAT + EL)$” where $EDAT + L$ is the total energy of the system formed by ligand bond in DAT; $EDAT$ is the total energy of the DAT alone, while EL is the total energy of the ligand molecule alone.

DAT pharmacological inhibition

To investigate the DAT dependency of 6-OHDA-induced cell death in both models, cells were pre-incubated for 30 minutes with 20 µM of DATi (Tocris®, cat. #0918, Avonmonth, Bristol, UK). Following this, cells were exposure to TD$_{50}$ 6-OHDA for 24 hours (Lopes et al. 2010). Cell viability was assessed using MTT assay. H$_2$O$_2$ generation was measured using AmplexRed®.

Statistical Analysis

Data were expressed as means ± S.D of at least 3 independent experiments carried out in triplicate, and P-values were considered significant for $p < 0.05$. Differences within the experimental groups were determined by Student’s t-test or one-way analysis of variance (ANOVA). Comparison among means was carried out using Newman-Keuls multiple comparisons test as post hoc (GraphPad® Software 5.0).

Results

RA-differentiation protocol induces neuronal features in SH-SY5Y cells

PD-target cells are neurons derived from substantia nigra pars compacta, which are specialized cells that process and transmit information through electrical and chemical synapses, with stellate morphology and do not undergo to cell divisions (Kandel 2013). To evaluate these relevant features to mimic more accurately the neuronal cell physiology, we explored the effect of RA-
differentiation protocol on cell growth, morphology and the expression of gene sets associated with cell cycle and synapse vesicle cycle (protocol description in Fig. 1).

Here we showed a significant decrease in the proliferation rates of RA-differentiated SH-SY5Y cells (Fig. 2a) ($n = 3$; $p < 0.001$) mainly associated with a decrease in S phase in combination with an arrest in G2-M (Fig. 2b) ($n = 3$; $p < 0.001$). Further, we investigated gene expression of the cell cycle network (KEGG pathways entry #hsa04110) using microarray analysis in undifferentiated and RA-differentiated cells. Although no statically significant differences were observed between the two phenotypes, there are genes associated with G2-M arrest, such as $GDD45G$ and $SMAD3$ (Herrup and Yang 2007), upregulated in RA-differentiated SH-SY5Y cells as shown in Supplementary Fig. 1 (Electronic Supplementary Material).

Upon the decrease in proliferation rate and cell cycle arrest, a significant change in morphology with increased neurite density was verified in RA-differentiated cells (Fig. 2c,d) ($n = 3$; $p < 0.0001$), suggesting a change from epithelial (as defined by ATCC for SH-SY5Y cells) (www.atcc.org/Products/All/CRL-2266.aspx) to a stellate neuronal morphology. After morphological characterization, we analyzed which cellular model possessed the appropriate molecular machinery to support the synaptic transmission, using the synaptic vesicle cycle gene list (extracted from KEGG pathways entry #hsa04728). We found a significant enrichment of this gene set in RA-differentiated, compared to undifferentiated, SH-SY5Y cells (Fig. 2e,f) ($n = 4$; $p < 0.05$). Enriched genes are listed in Table 1.
RA differentiation potentiates dopaminergic features in SH-SY5Y cells

After studying the differences in general neuronal properties obtained with from RA-differentiation protocol, we investigated dopaminergic features of both phenotypes of SH-SY5Y cells. At first, we evaluated global differences in gene expression of the dopaminergic synapse network, where we found no significant differences between the two models (Fig. 3a). However, there are genes upregulated in RA-differentiated cells listed in Supplementary Table 1, (Electronic Supplementary Material).

Using differential gene expression analysis, we verified the expression levels of the most common dopaminergic markers (Korecka et al. 2013), associated with catecholamine synthesis (Dopa decarboxylase- DDC, GTP cyclohydrolase- GCH1 and TH), degradation (monoamine oxidase A and B - MAOA, MAOB-, Catechol-O-methyltransferase- COMT), and synaptic function (Vesicular monoamine transporter 1 and 2- SLC18A1, SLC18A2, dopamine transporter- SLC6A3, dopamine receptor D2- DRD2). Both models present the same level of expression in all genes studied except for DR2, GHC and SLC18A1, which have higher expression in the RA-differentiated cells (Fig. 3b).

Lastly, dopamine immunocontent was investigated using an immunocytochemical approach in both SH-SY5Y phenotypes. In Figure 3c, we confirmed that both models have immunochemical detection of this neurotransmitter. Hence, in spite of both models of SH-SY5Y cells present dopamine content, neuronal dopaminergic features are potentiated after RA-differentiation (e.g DRD2 and SLC18A1).

RA-differentiation induces changes in oxidative status and 6-OHDA-mediated neurotoxicity in SH-SY5Y cells

Due to the pivotal role played by reactive species in PD (Fariello 1988), the endogenous machinery responsible for the basal redox status should be
characterized when establishing any relevant *in vitro* cell model of PD. To do so, we firstly evaluated the gene expression levels of the human antioxidant network (according to KEGG pathways). There were no differences in gene expression in antioxidant network. However, some antioxidant genes were upregulated in RA-differentiated cells (*e.g.* GPX3, TMX4 and GRLX) (Fig. 4a).

To better characterize these redox differences, we evaluated the activity of several enzymes involved in first line antioxidant defenses and the level of non-enzymatic antioxidant defenses in both SH-SY5Y phenotypes. Our *in vitro* validation revealed that RA-differentiated cells have higher antioxidant enzymes activities and lower levels of H$_2$O$_2$ production (Table 2).

After investigate the basal redox metabolism in undifferentiated and RA-differentiated SH-SY5Y cells, we aimed to examine their susceptibility to oxidative stress induced by H$_2$O$_2$ and 6-OHDA. RA-differentiated SH-SY5Y cells were more resistant to H$_2$O$_2$, yet they were two-fold more susceptible to 6-OHDA cytotoxicity (Table 2). It is well known that 6-OHDA toxicity acts via the induction of oxidative stress, however the higher endogenous antioxidant capacity observed was not able to protect RA-differentiated cells from the cell death, suggesting a dissimilar mechanism of 6-OHDA detoxification in this cellular model.

The role of thiols in 6-OHDA-induced cell death in undifferentiated and RA-differentiated SH-SY5Y cells

Previous data have shown that 6-OHDA uptake is not an essential process and the auto-oxidation occurs extracellularly in undifferentiated SH-SY5Y cells (Storch et al. 2000; Hanrott et al. 2006; Iglesias-González et al. 2012), suggesting that this toxin has different mechanisms from animal and
primary culture models. Hence, in order to understand our previous results regarding the susceptibility of 6-OHDA in RA-differentiated cells, we evaluate the role of cell-permeable and cell-impermeable reducing agents in 6-OHDA-induced-cell-death.

We first pre-incubated undifferentiated and RA-differentiated cells with two thiol reducing agents TCEP (a cell-impermeable compound) and DTT (a cell-permeable molecule), before challenging cells with 6-OHDA (Fig. 4b,d) (Hsu et al. 2005). Interestingly, no differences were found between both cellular models when TCEP were used to protect cells against 6-OHDA-oxidant insult (Fig. 4c). On the other hand, DTT was able to prevent 60% of 6-OHDA-dependent cytotoxicity in RA-differentiated cells (Fig. 4e) \((n = 3; p < 0.0005)\), in contrast to only 24% in undifferentiated cells, indicating that, in RA-differentiated cells, an intracellular oxidation step of the neurotoxin is associated with the cell death caused by 6-OHDA (Fig 4b, \(F(3,8) = 126.5, n = 3; p < 0.0001\)).

The role of DAT in 6-OHDA-induced-cell death in undifferentiated and RA-differentiated SH-SY5Y cells

To investigate more accurately the role of intracellular auto-oxidation, we evaluated the role of DAT in the toxicity induced by 6-OHDA in both cellular models because the activity of this transporter is fundamental for toxin uptake. In Figure 5a shows an increase in DAT immunocontent in RA-differentiated cells \((n = 3; p < 0.01)\).

We then verified whether the inhibition of this transporter interfered in the cell death caused by 6-OHDA. First, we examined how DATi and 6-OHDA interacts with DAT by using molecular docking followed by classical refinement of geometries (Fig. 5b), and compared the binding energy \(E_{OPT}\) of those
compounds with the corresponding values obtained for dopamine and p-quinone (Supplementary Fig. 2 and Supplementary Table 2 for the raw docking data in Electronic Supplementary Material). Our data suggests that DATi inhibits DAT by preventing substrate binding and stabilizing the outward-open conformation. Furthermore, we found that dopamine, DATi, p-quinone and 6-OHDA, all compete sterically for the same binding site via the spatial blockage of Asp46 residue (Asp79 in DAT from Homo sapiens). This steric blockage of the same binding site demonstrates a competitive inhibition mechanism of action for DATi (Fig. 5b). Due to the lower ligation energy of DATi for DAT in comparison to p-quinone and 6-OHDA, but higher for dopamine, our docking data showed that DATi blocks completely the interaction of dopamine with DAT, but only partially p-quinone and 6-OHDA (Supplementary Table 2 in Electronic Supplementary Material). Thus, it suggests that DATi inhibits DAT by preventing substrate binding and stabilizing the outward-open conformation.

Based on these findings, we pharmacologically inhibited DAT in both cellular models via incubation with DATi prior to challenging cells with 6-OHDA. Our data showed that DAT inhibition resulted in a significant decrease in cell death (41%) (Fig. 5f) and H$_2$O$_2$ production (48%) (Fig. 5d) by 6-OHDA treatment only in RA-differentiated cells with no effect observed in undifferentiated cells, suggesting a specific role played by DAT in the cell death caused by this neurotoxin in the neuronal phenotype (Fig. 5c, $F(3,12) = 9.571$, n = 3; $p < 0.01$) (Fig. 5e, $F(3,8) = 201.4$, n = 3; $p < 0.0001$).

Discussion

The difficulty in mimicking neuronal features *in vitro* has always been an issue in neurosciences studies, thus the development of more suitable models
is necessary since they are fundamental to study molecular mechanism of neurodegenerative disease, such as PD. In this regard, the most in vitro experimental model used for PD is the human neuroblastoma SH-SY5Y cell because they express dopaminergic markers and are easy to cultivate when compared to other models (Xie et al. 2010; Kovalevich and Langford 2013). We previously established a catecholaminergic differentiation protocol for this cell line (Lopes et al. 2010). Here we focused in explore neuronal features in both cellular models.

There are many lines of evidence showing the effect of RA-differentiation in SH-SY5Y regarding the evaluation of proliferation rates (Ross 1996; Pezzini et al. 2016; Kunzler et al. 2016). Previous studies have demonstrated that RA-induced differentiation can cause cell cycle arrest either in G1/G0 phase or in G2/M phase and a decrease in proliferation rates, which leads to terminal differentiation of neuroblastoma cells (Qiao et al. 2012; Hämerle et al. 2013).

We verified decreased cellular growth in RA-differentiated cells was associated with a decrease in S phase in combination with G2-M arrest (Fig. 2b). This data corroborates with our findings regarding gene expression of the cell cycle network. Genes upregulated in RA-differentiated cells are associated with cell cycle arrest, for instance, cyclin-dependent protein kinases (CDK) inhibitors (e.g. p18, p19, p21 and p27) and to G2-M arrest, such as GDD45G and SMAD3 (Herrup and Yang 2007) (Summarized in Supplementary Fig. 1 in Electronic supplementary material). Moreover, the cell cycle arrest in G2-M is commonly found in neurodegenerative diseases such and PD, where some populations of neurons complete DNA synthesis and are able to pass through the S phase, but are arrested at the G2/M (Frade and Ovejero-Benito 2015).
Another important neuronal parameter is cellular morphology. Neurons present neurites, which refers to axons and dendrites extended by neuronal cell lines, thus their quantification is an important morphological parameter of neuronal differentiation (Radio and Mundy 2008; Bal-Price et al. 2010). Here, we showed an increase in neurite density in RA-differentiated cells, representing a significant advantage of this cellular model, since these structures form synapses and can be used as an endpoint in neurotoxicological evaluations (Lopes et al. 2012).

Besides low proliferation rates and stellate morphology, dopaminergic neuronal cells process their information through chemical synapses. The biological event related to neurotransmitter release is the synaptic vesicle cycle (Kandel 2013). This pathway consists of exocytosis followed by endocytosis and recycle (Rizo and Xu 2015). At first, vesicles are loaded with neurotransmitters, which require the presence of an active transporter along with a proton pump to provides the required pH and electrochemical gradients. Fundamental to this is the role of H⁺-ATPase transporters and solute carriers such as \textit{SLC18A}1, \textit{SLC18A}3 and \textit{SLC17A}8 (Beyenbach and Wieczorek 2006). Once the vesicles are loaded, they are tethered near to the release sites, after which vesicles are primed before being ready to undergo fusion. Genes involved in this process include \textit{UNC13}, \textit{RIMS}1 and syntaxin (Madison et al. 2005). The primed vesicles subsequently undergo fusion processes that are regulated by SNARE proteins, such as SNAP-25, NSF and complexins (Hu et al. 2002). Finally, the synaptic vesicles incorporated to the plasma membrane are retrieved by endocytosis, a process which involves many proteins, \textit{e.g.} dynamins and clathrins (Takei et al. 1996). Our results demonstrated that all of
these genes were up-regulated in RA-differentiated cells (Fig. 2e,f; Table 1), suggesting that this model has appropriate machinery to support synapses.

Our data point to highly diverse phenotypes presented by both cellular models. Undifferentiated cells exhibited characteristics typical of a tumoral phenotype, namely epithelial morphology and high proliferation rates. In contrast, RA-differentiated SH-SY5Y cells were characteristic of a neuronal phenotype, presenting low proliferation rates, a pronounced neuronal morphology and an enrichment of the molecular machinery responsible for synaptic function.

After neuronal characterization, we aimed to verify if both cellular models have dopaminergic phenotype, since these cells are the most affected neurons in PD. Here, we demonstrated that both phenotypes of SH-SY5Y cells expressed the dopaminergic machinery. This was expected since it is well known that neuroblastoma cancers (as the primary tumor that SH-SY5Y cells were isolated from) produce catecholamines, mainly because they have low levels of dopaminergic markers (Howman-Giles et al. 2007). As such, undifferentiated cells are commonly used as PD model (Xie et al. 2010).

Previous data showed that the differentiation process does not lead to increase of dopaminergic markers in SH-SY5Y cells, which brings the discussion whether they need to be differentiated (Luchtman and Song 2010). On the other hand, many lines of evidence showed that RA-differentiated cells increase their expression of these dopaminergic markers, such as TH and DAT (Påhlman et al. 1984; Lopes et al. 2010; Filograna et al. 2015). These discrepancies in the literature might be attributable to the varying differentiation protocols used, since there are differences between them, such as duration, cell
densities, serum concentration and differentiation agent (e.g. RA, staurosporine, BDNF) (Cheung et al. 2009; Agholme et al. 2010; Lopes et al. 2010; Filograna et al. 2015).

Hence, our results show that both models have the machinery necessary to synthetize and release dopamine. Although no global statistically significant differences were observed between the two phenotypes, there are genes associated with dopamine synthesis regulation (PKA, MAPK, CAMKII and PP2A) significantly upregulated in RA-differentiated SH-SY5Y cells (Fig. 3a; Supplementary Table 1) (Dunkley et al. 2004; Daubner et al. 2011). Moreover, differential expression showed significant increase in GHC1, DRD2 and SLC18, three important catecholaminergic markers. These findings demonstrated that RA –differentiation potentiates the dopaminergic phenotype, which validates our protocol and its potential use as PD in vitro model.

Since dopaminergic neurons are exposed to a chronic oxidative damage, mostly attributed to the high levels of iron present in SNpc, the hydroxyl radical (HO•) produced by dopamine metabolism (Zhou et al. 2010), oxidative stress is thought to causally contribute to the pathogenesis of progressive neurodegeneration observed in PD (Fariello 1988). Hence, oxidative stress parameters should be investigate when establishing in vitro cell model of PD. Our in vitro validation revealed that both models have thioredoxin and glutathione antioxidant systems as the main antioxidant defense. The H₂O₂ detoxification in neuronal cells is catalyzed primarily by thioredoxin and glutathione systems, which are the most important antioxidants in the brain (Lopert et al. 2012; Garcia-Garcia et al. 2012), hence we found that both models mimic the oxidative neuronal profile.
Moreover, we showed that RA-differentiated cells presented a higher basal antioxidant capacity and decrease of H$_2$O$_2$ production. At first, these data seem controversial because neuronal cells presents low antioxidant levels (Halliwell 2006; Dexter and Jenner 2013), hence the differentiated cells do not represent accurately the physiology of dopaminergic neurons. However, here we are comparing the neuronal and tumoral phenotypes. The oxidative environment of the undifferentiated cells could be explained by its proliferative profile since H$_2$O$_2$ is fundamental for cellular growth (Policastro et al. 2004; Sies 2014).

Here the most intriguing observation was that RA-differentiated SH-SY5Y cells were more resistant to H$_2$O$_2$, yet were more susceptible to 6-OHDA cytotoxicity (Table 2). Cellular resistance to H$_2$O$_2$ in the neuronal phenotype can be explained by the elevated basal antioxidant capacity. Since the RA-induced differentiation decreases levels of TrxR and GSH, this may suggests a role of these antioxidants in 6-OHDA detoxification, as previously described (Soto-Otero et al. 2000; Lopert et al. 2012). Hence, the resistance to 6-OHDA found in undifferentiated cells can be explained, at least in part, by the high GSH levels presented in the tumoral phenotype.

It is widely elucidate that 6-OHDA is taken up by dopaminergic neurons via DAT (Tranzer and Thoenen 1973) and auto-oxidation process occurs intracellularly (Glinka et al. 1997) manly because the toxicity can be blocked by DAT inhibition (González-Hernández et al. 2004). On the other hand, previous data have shown that 6-OHDA uptake is not an essential process and the auto-oxidation occurs extracellularly in undifferentiated cells (Izumi et al. 2005). Here we found that part of the oxidative dysfunction caused by 6-OHDA involves the
uptake of the neurotoxin (or some metabolite, such as p-quinones) presumably followed by intracellular auto-oxidation in RA-differentiated cells.

Further investigation about intracellular oxidation demonstrated that pharmacological DAT inhibition decreases H$_2$O$_2$ production and cellular death caused by 6-OHDA only in RA-differentiated SH-SY5Y cells. Regarding undifferentiated SH-SY5YS cells, DAT inhibition did not protect the cells, possibly because these cells have low levels of DAT (Presgraves et al. 2004), which corroborates with previous results (Storch et al. 2000; Izumi et al. 2005).

These results may impact the development of new therapies and drugs for the management of the disease. To date, PD is still an incurable disease and we have failed to find neuroprotective compounds (Olanow et al. 2008). The main reason to this issue is the lack of understanding of the initial steps underlying dopaminergic degeneration (Obeso et al. 2010). Although PD is considered a complex disorder where many mechanisms are involved (e.g. protein aggregation, mitochondria dysfunction and oxidative stress), the common pathology found in all PD cases is the dopaminergic degeneration (Gibb 1991). Hence, the development of better dopaminergic cell models and the understanding of dopaminergic cell physiology are essential for PD research. In spite of many lines of evidence have shown that undifferentiated SH-SY5Y cells are dopaminergic-producing cells and easy to cultivate (Presgraves et al. 2004; Cheung et al. 2009; Agholme et al. 2010; Lopes et al. 2010), they do not reproduce both dopaminergic physiology and 6-OHDA-induced-cell death mechanisms of in vivo or primary cell culture studies. Thus, SH-SY5Y cells are the target of many discussions whether it should be used in PD research. Our data suggests, for the first time, the role of toxin uptake by
DAT in RA-differentiated cells, showing that an easy cellular model can mimic, at least part, 6-OHDA-induced cell death in vivo.

Conclusions
Undifferentiated and RA-differentiated SH-SY5Y cells are two unique phenotypes which can be distinguished by differences found in cells morphology, cell growth, neuronal and dopaminergic marker expression and redox metabolism. These features may contribute towards two different mechanisms of action for 6-OHDA-cytotoxicity observed in both models. In the neuronal phenotype, we demonstrated DAT dependency in 6-OHDA-induced cell death, which is likely related to their dopaminergic phenotype. Many previous studies have used undifferentiated cells as a PD model to study molecular mechanisms, to test potential drugs for the treatment of this disease and also to evaluate 6-OHDA’s mechanisms of action and cellular targets. However, our data demonstrate that undifferentiated cells does not possess neuronal properties, which can create significant bias in such studies, and may have contributed, at least in part, to the limitations in our understanding of PD pathophysiology and, consequently, the lack of potential drugs to treat the disease. Hence, our data support the use of RA-differentiated cells as an in vitro model of PD.

Conflict of interests
The authors declare that they have no competing interests.

Author Contributions Statement
M.A.D.B, M.A.A.C., R.B.P., A.L.D. and F.K. analyzed and interpreted the data. F.M.L, and F.K. conceived and designed the experiments. F.M.L and F.K. wrote the manuscript.

References

doi: 10.1074/jbc.M511560200

Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. doi: 10.1007/s12035-016-0189-4

www.atcc.org/Products/All/CRL-2266.aspx

Figure Captions

Fig 1 Protocol design of the RA-induced differentiation. At day 0, exponentially growing SH-SY5Y cells were cultured in cell medium containing 10% FBS. After 24 hours (day 1), the medium was removed and fresh medium containing 1% FBS and 10 µM RA (differentiation medium) was added. 3 days later (day 4), the differentiation medium was replaced with fresh differentiation medium. At day 7, SH-SY5Y cells were used in experiments.

Fig. 2 Neuronal characterization of undifferentiated and RA-differentiated SH-SY5Y cells. (A) Cellular growth in undifferentiated and RA-differentiated cells. (B) Cell cycle analysis. Representative image of the cell cycle analysis in undifferentiated cells and RA-differentiated cells, in which results were expressed as percentage of cells in each cell cycle phase (G0/G1, S, G2/M). Neurite density was evaluated by immunofluorescence. (C) Representative images of immunocytochemical detection of tubulin in undifferentiated and RA-differentiated SH-SY5Y cells. (D) Quantification of the neurite density per cell body using AutoQuant Neurite software. Expression of synaptic vesicle cycle network in undifferentiated and RA-differentiated SH-SY5Y cells. (E) STRING representation of synaptic vesicle cycle network gene interactions and landscape analysis, generated with ViaComplex® V1.0. Color gradient (Z-axis), demonstrating elevated expression of this network in 7-day-RA-differentiated, compared to undifferentiated, SH-SY5Y cells. *P* value refers to bootstrap analysis comparing cell lines. (F) Enrichment analysis used to identify the genes that contributed individually to the global changes in expression levels observed in RA-differentiated cells in the syntactic vesicle cycle network. Data are presented as mean ± SD of four independent experiments (*n* = 4), each carried
out in triplicates. *$P < 0.05$ (Student’s t-test). Transcripts obtained as described in Material and Methods section. Nominal p value of enrichment analysis obtained from GSEA ($p < 0.05$)

Fig. 3 Dopaminergic characterization of undifferentiated and RA-differentiated SH-SY5Y cells. (A) Enrichment analysis used to identify the genes that contributed individually to the global changes in expression levels observed in RA-differentiated cells in the dopaminergic synapse network using GSEA. (B) Differential expression levels of pre-synaptic dopaminergic markers in undifferentiated and RA-differentiated cells. (C) Immunocytochemical detection of dopamine. Representative fluorescence microscopy images of undifferentiated and RA-differentiated SH-SY5Y cells. Data are presented as mean ± SD of four independent experiments ($n = 4$), each carried out in triplicates ($n= 4$). *$P < 0.05$ (Student’s t-test).

Fig. 4 Redox characterization of undifferentiated and RA-differentiated SH-SY5Y cells. (A) Enrichment analysis used to identify the genes that contributed individually to the global changes in expression levels observed in RA-differentiated cells in the antioxidant network using GSEA. The role of cell-impermeable (B) and cell-permeable (D) thiol-reducing agents pre-treatment in 6-OHDA-induced cell death in undifferentiated and RA-differentiated SH-SY5Y cells. The results were expressed as a percentage of the control ± SD. Significant differences are expressed by letters, where equal letters represent no significant differences and different letters represent significant differences ($P < 0.05$) (one-way analysis of variance). (C,E) Analysis of the inhibition of 6-OHDA-induced cell death for each thiol-reducing agent in both cellular models.
Data are presented as mean ± SD of four independent experiments (n = 4), each carried out in triplicates. *P < 0.05 (Student’s t-test)

Fig. 5 Evaluation of the role of DAT in 6-OHDA-induced cell death in undifferentiated and RA-differentiated SH-SY5Y cells (A) Changes in DAT immunocontent (dopaminergic cell marker) in response to RA-differentiation was evaluated using Western blot. Representative densitometric analysis of bands and immunoblot of DAT, using GAPDH as loading control. Results were calculated and expressed as mean ± SD of densitometric units (n = 4). *P < 0.01 (Student’s t-test). (B) Superposition of DATi and 6-OHDA into the binding site of DAT, showing how 6-OHDA is spatially blocked from forming a salt bridge with Asp46. (C) Evaluation of DAT inhibition in the rate of H$_2$O$_2$ production, DAT-dependent H$_2$O$_2$ generation and (E) cell death in undifferentiated and RA-differentiated SH-SY5Y cells challenged with 6-OHDA. Cells were treated for 30 minutes with DATi prior to incubation with LD$_{50}$ concentration of 6-OHDA for 24 hours. Cell viability was evaluated using the MTT reduction assay and results were expressed as percentage of untreated cells. Significant differences are expressed by letters, where equal letters represent no significant differences and different letters represent significant differences (P < 0.05) (one-way analysis of variance). (D,F) DAT-dependent 6-OHDA-induced cell death in both cellular models. Data are presented as mean ± SD of four independent experiments, each carried out in triplicates (n=4). *P < 0.05 (Student’s t-test)
Figure 1
Figure 2
Dopaminergic phenotype

a) GSEA

Dopaminergic Synapse Gene Network

Core enrichment → Enriched genes listed in Table 2

Enrichment Score (ES)

Rank in gene list

b) Differential Gene Expression

Dopaminergic Markers

Expression values (Log2)

DDC, GCH1, TH, MAOA, MAOB, COMT, SLC6A3, SLC18A2, SLC38A5, DRD2

Synthesis, Degradation, Synapse

Undiff. RA-diff.

Figure 3
Antioxidant Gene Network

Genes from Antioxidant network enriched in RA-Diff. cells.

<table>
<thead>
<tr>
<th>Heatmap</th>
<th>Gene Symbol</th>
<th>Gene name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GPX3</td>
<td>glutathione peroxidase 3 (plasma)</td>
</tr>
<tr>
<td></td>
<td>TMX4</td>
<td>thioredoxin-related transm. protein 4</td>
</tr>
<tr>
<td></td>
<td>SRN1</td>
<td>sulfiredoxin 1 homolog</td>
</tr>
<tr>
<td></td>
<td>GLRX</td>
<td>glutaredox (thioltransferase)</td>
</tr>
<tr>
<td></td>
<td>ERP44</td>
<td>endoplasmic reticulum protein 44</td>
</tr>
<tr>
<td></td>
<td>GLRX2</td>
<td>glutaredox 2</td>
</tr>
<tr>
<td></td>
<td>MSRA</td>
<td>methionine sulfoxide reductase A</td>
</tr>
<tr>
<td></td>
<td>PDIA6</td>
<td>protein disulfide isomerase A, 6</td>
</tr>
<tr>
<td></td>
<td>CCS</td>
<td>copper chaperone for SOD</td>
</tr>
</tbody>
</table>

Cell-impermeable thiol reducing agent

b) Undiff. | RA-Diff.

<table>
<thead>
<tr>
<th>Cell death (% of control)</th>
<th>vehicle</th>
<th>TCEP</th>
<th>6-OHDA</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell-permeable thiol reducing agent
d) Undiff. | RA-Diff.

<table>
<thead>
<tr>
<th>Cell death (% of control)</th>
<th>vehicle</th>
<th>DTT</th>
<th>6-OHDA</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e) TCEP-reversible 6-OHDA cell death (%)

Undiff. RA-Diff.

- 43%
- 52%

DTT-reversible 6-OHDA cell death (%)

Undiff. RA-Diff.

- 24%
- 60%

(P < 0.0005)

Figure 4
Figure 5

a) DAT immunocontent (relative to GAPDH)

b) DAT inhibition and H$_2$O$_2$ production by 6-OHDA

c)
- H$_2$O$_2$ rate (RFU/min/cell) for Undiff. and RA-Diff.

d)
- DAT-dependent 6-OHDA H$_2$O$_2$ generation (%)

e)
- Cell death (% of control) for Undiff. and RA-Diff.

f)
- DAT-dependent 6-OHDA cell death (%)

P < 0.01