DETAILED SEARCH STRATEGY (from inception until May 30th, 2016)

Pubmed/MEDLINE

#2: ("Depression"[Mesh] OR "Depressive Disorder"[Mesh] OR "Depressive Disorder, Major"[Mesh]) Field: Title/Abstract

#3: #1 AND #2

EMBASE Classic plus EMBASE through OVID (from 1947) and PsycInfo through OVID (from 1806)

#1: (interleukin-2 or IL-2 or interleukin-1 or IL-1 or IL-4 or Interleukin-4 or IL-6 or Interleukin-6 or IL-8 or Interleukin-8 or IL-10 or Interleukin-10 or IFN-gamma or interferon gamma or TNF-alpha or tumor necrosis factor-alpha or IL-2 receptor or CCL-2 or CCL-3 or CXCL-8 or CCL-11 or CCL-10 or chemokine).ti,ab,kw

#2: (depression or major depression or depressive disorder).ti,ab,kw

#3: #1 and #2
Supplementary Table S1. Excluded studies, with reasons.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postal and Appenzeller, 2015 (1)</td>
<td>Not an original study</td>
</tr>
<tr>
<td>Oglodek, 2014 (2)</td>
<td>Insufficient data for analysis</td>
</tr>
<tr>
<td>Campos, 2014 (3)</td>
<td>Animal study</td>
</tr>
<tr>
<td>Camacho, 2014 (4)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Chocano-Bedoya, 2014 (5)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Anderson, 2013 (6)</td>
<td>Not an original study</td>
</tr>
<tr>
<td>Maes, 2014 (7)</td>
<td>Not an original study</td>
</tr>
<tr>
<td>Mitchell, 2013 (8)</td>
<td>Insufficient data for analysis</td>
</tr>
<tr>
<td>Doyle, 2013 (9)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Patas, 2014 (10)</td>
<td>Clinical or psychiatric comorbidities</td>
</tr>
<tr>
<td>Lucas, 2014 (11)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Yoshimura, 2013 (12)</td>
<td>Not diagnostic study</td>
</tr>
<tr>
<td>Poleshuck, 2013 (13)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Rotter, 2013 (14)</td>
<td>Not diagnostic study</td>
</tr>
<tr>
<td>Ranjbar, 2014 (15)</td>
<td>Insufficient data for analysis</td>
</tr>
<tr>
<td>Gazal, 2013 (16)</td>
<td>Not diagnostic study</td>
</tr>
<tr>
<td>Levandovski, 2013 (17)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Duivis, 2013 (18)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Isung, 2012 (19)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Belzeaux, 2012 (20)</td>
<td>Did not measure cytokines</td>
</tr>
<tr>
<td>Anisman and Hayley, 2012 (21)</td>
<td>Not an original study</td>
</tr>
<tr>
<td>Cattaneo, 2013 (22)</td>
<td>Did not measure cytokines</td>
</tr>
<tr>
<td>Raison, 2013 (23)</td>
<td>Not diagnostic study</td>
</tr>
<tr>
<td>Maes, 2012 (24)</td>
<td>Not an original study</td>
</tr>
<tr>
<td>Eyre and Baune, 2012 (25)</td>
<td>Not an original study</td>
</tr>
<tr>
<td>Abbasi, 2012 (26)</td>
<td>Not diagnostic study</td>
</tr>
<tr>
<td>Miller and Cole, 2012 (27)</td>
<td>Not diagnostic study</td>
</tr>
<tr>
<td>Silic, 2012 (28)</td>
<td>Insufficient data for analysis</td>
</tr>
<tr>
<td>Elomaa, 2012 (29)</td>
<td>Clinical or psychiatric comorbidities</td>
</tr>
<tr>
<td>Dome, 2012 (30)</td>
<td>Not diagnostic study</td>
</tr>
<tr>
<td>Caserta, 2011 (31)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Haastrup, 2012 (32)</td>
<td>Insufficient data for analysis</td>
</tr>
<tr>
<td>Yoon, 2012 (33)</td>
<td>Insufficient data for analysis</td>
</tr>
<tr>
<td>Martinez, 2012 (34)</td>
<td>Measured cytokines in CSF</td>
</tr>
<tr>
<td>Grassi-Oliveira, 2011 (35)</td>
<td>Insufficient data for analysis</td>
</tr>
<tr>
<td>Clark, 2013 (36)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Azar, 2012 (37)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Hennessy, 2011 (38)</td>
<td>Animal study</td>
</tr>
<tr>
<td>Rethorst, 2011 (39)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Su, 2011 (40)</td>
<td>Not major depressive disorder</td>
</tr>
<tr>
<td>Fluitman, 2011 (41)</td>
<td>Insufficient data for analysis</td>
</tr>
<tr>
<td>Janelidze, 2011 (42)</td>
<td>Clinical or psychiatric comorbidities</td>
</tr>
<tr>
<td>Lehto, 2010 (43)</td>
<td>Not major depressive disorder</td>
</tr>
</tbody>
</table>
Chen, 2010 (44) Not diagnostic study
Jazayeri, 2010 (45) Not diagnostic study
Himmerich, 2010 (46) Not diagnostic study
Hallberg, 2010 (47) Insufficient data for analysis
Zeugmann, 2010 (48) Insufficient data for analysis
Koo, 2010 (49) Not major depressive disorder
Baune, 2010 (50) Did not measure cytokines
Eisenberger, 2010 (51) Not major depressive disorder
Himmerich, 2010 (52) Not major depressive disorder
Gabbay, 2009 (53) Insufficient data for analysis
Hwang, 2009 (54) Did not measure cytokines
Lehto, 2010 (55) Not an original study
Koo and Duman, 2009 (56) Not an original study
Bob, 2010 (57) No control group
Ovaskainen, 2009 (58) Not major depressive disorder
Capuron, 2009 (59) Clinical or psychiatric comorbidities
Podlipny, 2010 (60) Not major depressive disorder
Fazzino, 2009 (61) Not diagnostic study
Milaneschi, 2009 (62) Not major depressive disorder
Dimopoulos, 2008 (63) Clinical or psychiatric comorbidities
Vaccarino, 2008 (64) Clinical or psychiatric comorbidities
Himmerich, 2008 (65) Clinical or psychiatric comorbidities
Wojciak, 2007 (66) Clinical or psychiatric comorbidities
Mesquita, 2008 (67) Animal study
Lehtimaki, 2008 (68) Small sample size (< 10)
Stewart, 2008 (69) Not major depressive disorder
Humphreys, 2006 (70) Small sample size (< 10)
Hashioka, 2007 (71) Not major depressive disorder
Rothenhausler, 2006 (72) Insufficient data for analysis
Pace, 2006 (73) Not an original study
Pucak and Kaplin, 2005 (74) Not major depressive disorder
Ushiroyama, 2005 (75) Not major depressive disorder
Fitzgerald, 2006 (76) Not diagnostic study
Miller, 2005 (77) Not major depressive disorder
Kubera, 2005 (78) In-vitro study
Hestad, 2005 (79) Not an original study
Alesci, 2005 (80) Small sample size (< 10)
Schlatter, 2004 (81) In-vitro study
Ushiroyama, 2004 (82) Not diagnostic study
Himmerich, 2004 (83) Not major depressive disorder
Andrade, 2004 (84) Not an original study
Bouhuys, 2004 (85) Clinical or psychiatric comorbidities
Merendino, 2004 (86) Small sample size (< 10)
Brambilla, 2004 (87) Insufficient data for analysis
Kubera, 2004 (88) In-vitro study
Trzonkowski, 2004 (89) Clinical or psychiatric comorbidities
Kast, 2003 (90) Not major depressive disorder
Miller, 2003 (91) Not major depressive disorder
Hestad, 2003 (92) Not major depressive disorder
Schuld, 2003 (93) Previous administration of corticosteroid
Penninx, 2003 (94) Clinical or psychiatric comorbidities
Suarez, 2003 (95) Not major depressive disorder
Miller, 2003 (96) Not major depressive disorder
Tiemeier, 2003 (97) Not major depressive disorder
Miller, 2002 (98) Not major depressive disorder
Anisman, 2002 (99) Not an original study
Benedetti, 2002 (100) Not major depressive disorder
Anisman, 2002 (101) Not an original study
Ushiroyama, 2002 (102) Not major depressive disorder
Kubera, 2001 (103) Small sample size (< 10)
Maes, 2001 (104) Not an original study
Kagaya, 2001 (105) Small sample size (< 10)
Schuld, 2001 (106) Not diagnostic study
Maes, 1999 (107) Did not measure cytokines
Miller, 1999 (108) Did not measure cytokines
Reyes-Ortiz, 1999 (109) Not an original study
Anisman, 1999 (110) In-vitro study
Brambilla and Maggioni, 1998 (111) Small sample size (< 10)
Landmann, 1997 (112) In-vitro study
Brambilla, 1997 (113) Not major depressive disorder
Frommberger, 1997 (114) Small sample size (< 10)
Seidel, 1996 (115) In-vitro study
Maes, 1995 (116) Insufficient data for analysis
Bauer, 1995 (117) Small sample size (< 10)
Weizman, 1994 (118) In-vitro study
Maes, 1993 (119) In-vitro study
Maes, 1993 (120) Did not measure cytokines
Maes, 1991 (121) In-vitro study
Maes, 1990 (122) Previous administration of corticosteroid
Fonseka, 2015 (123) Not an original study
Bahrini, 2015 (124) Abstract. Data unavailable
Beasley, 2014 (125) Abstract. Data unavailable
Muller, 2014 (126) Not an original study
Yang, 2015 (127) Not an original study
Fasick, 2015 (128) Not an original study
Hiles, 2015 (129) Not major depressive disorder
Bot, 2015 (130) Clinical or psychiatric comorbidities
Pandey, 2015 (131) Did not measure cytokines
Rapaport, 2015 (132) Not diagnostic study
Jangpangi, 2012 (133) Abstract. Data unavailable
Fonseka, 2014 (134) Not an original study
Ho, 2014 (135) Not an original study
Vogelzangs, 2014 (136) Not major depressive disorder
Brunoni, 2014 (137) Not diagnostic study
Quak, 2014 (138) Not major depressive disorder
Figueroa, 2013 (139) Not major depressive disorder
Mishra, 2015 (140) Abstract. Data unavailable
Audet, 2014 (141) Not an original study
Tully, 2015 (142) Not major depressive disorder
Duseja, 2015 (143) Animal study
Glaus, 2014 (144) Clinical or psychiatric comorbidities
Matsushima, 2015 (145) Not major depressive disorder
Grudet, 2014 (146) Not major depressive disorder
Chang, 2014 (147) Not major depressive disorder
Olajossy, 2014 (148) Clinical or psychiatric comorbidities
Kloiber, 2012 (149) Abstract. Data unavailable
Hughes, 2012 (150) Abstract. Data unavailable
Halaris, 2012 (151) Abstract. Data unavailable
Dantzer, 2012 (152) Not an original study
Thiagarajah, 2014 (153) Did not measure cytokines
McDade, 2013 (154) Not major depressive disorder
Goldschmied, 2013 (155) Abstract. Data unavailable
Bizik, 2014 (156) Insufficient data for analysis
Cho, 2014 (157) Not major depressive disorder
Arts, 2014 (158) Abstract. Data unavailable
Ajilore, 2014 (159) Abstract. Data unavailable
Halaris, 2014 (160) Insufficient data for analysis
Pallavi, 2014 (161) Abstract. Data unavailable
Toups, 2014 (162) Insufficient data for analysis
Momeni, 2014 (163) Not major depressive disorder
Raghuvanshi, 2013 (164) Not diagnostic study
Boufidou, 2014 (165) Abstract. Data unavailable
Lee, 2013 (166) Did not measure cytokines
Hennings, 2013 (167) Clinical or psychiatric comorbidities
Molteni, 2013 (168) Animal study
Ajilore, 2012 (169) Abstract. Data unavailable
Prossin, 2012 (170) Not diagnostic study
Ninan, 2012 (171) Did not measure cytokines
Lichtblau, 2013 (172) Not an original study
Ryba, 2013 (173) Abstract. Data unavailable
Yoshimura and Nakamura, 2013 (174) Abstract. Data unavailable
Schilling Panizzutti, 2013 (175) Not major depressive disorder
Hughes, 2013 (176) Abstract. Full text available.
Pavon, 2013 (177) Not major depressive disorder
Zeugmann, 2013 (178) Not major depressive disorder
Byrne, 2013 (179) Not major depressive disorder
Park and Baek, 2013 (180) Not major depressive disorder
Stelzhammer, 2013 (181) Small sample size (< 10)
Pantovic, 2013 (182) Insufficient data for analysis
Khan, 2013 (183) Not an original study
Niedzwiecki, 2013 (184) Abstract. Data unavailable
Magalhaes, 185) Abstract. Data unavailable
Iwata, 2013 (186) Not an original study
De Mello, 2012 (188) Not major depressive disorder
Ruljancic, 2011 (189) Abstract. Data unavailable
Raison, 2012 (190) Not diagnostic study
Rawdin, 2012 (191) Abstract. Data unavailable
Fagundes, 2012 (192) Not major depressive disorder
Tynan, 2012 (193) Not major depressive disorder
Groer, 2012 (194) Not major depressive disorder
Halaris, 2012 (195) Abstract. Data unavailable
Halaris, 2012 (196) Abstract. Data unavailable
Ryba, 2012 (197) Abstract. Data unavailable
Voderholzer, 2012 (198) Not diagnostic study
Fang, 2012 (199) Animal study
Fareed, 2010 (200) Abstract. Data unavailable
Lazary, 2012 (201) Did not measure cytokines
Fischer, 2012 (202) Not major depressive disorder
Leonard, 2012 (203) Not an original study
Erhardt, 2012 (204) Did not measure cytokines
Karaoulanis, 2012 (205) Clinical or psychiatric comorbidities
Einvik, 2012 (206) Clinical or psychiatric comorbidities
Behr, 2012 (207) Abstract. Data unavailable
Quinones, 2012 (208) Insufficient data for analysis
Leonard, 2012 (209) Not an original study
Bay-Richter, 2012 (210) Not major depressive disorder
Cattaneo, 2012 (211) Did not measure cytokines
Vogelzangs, 2012 (212) Not major depressive disorder
Euteneuer, 2012 (213) Clinical or psychiatric comorbidities
Leonard and Maes, 2012 (214) Not an original study
Hayley, 2011 (215) Not an original study
Kang, 2011 (216) Animal study
Yang, 2011 (217) Did not measure cytokines
Blume, 2011 (218) Not an original study
Toups, 2011 (219) Insufficient data for analysis
Kemp, 2011 (220) Not diagnostic study
Hodes, 2011 (221) Animal study
Krogh and Nordentoft, 2011 (223) Abstract. Data unavailable
Halaris, 2011 (224) Abstract. Data unavailable
Pavon, 2011 (225) Did not measure cytokines
Gibney, 2011 (226) Animal study
Henje Blom, 2011 (227) Clinical or psychiatric comorbidities
Casale, 2011 (228) Did not measure cytokines
Gilbey, 2011 (229) Did not measure cytokines
Baghai, 2011 (230) Clinical or psychiatric comorbidities
Blume, 2011 (231) Abstract. Data unavailable
Aschbacher, 2011 (233) Not major depressive disorder
Brietzke, 2011 (234) Not major depressive disorder
Chung, 2009 (236) Abstract. Data unavailable
Caruncho and Rivera-Baltanas, 2010 (237) Not an original study
Forti, 2010 (238) Clinical or psychiatric comorbidities
Himmerich, 2010 (239) Insufficient data for analysis
DellaGioia and Hannerstad, 2010 (240) Not major depressive disorder
Vogelzangs, 2010 (241) Clinical or psychiatric comorbidities
Carvalho, 2010 (242) Abstract. Data unavailable
Pace, 2010 (243) Not diagnostic study
Prossin, 2010 (244) Not diagnostic study
Rush, 2010 (245) Abstract. Data unavailable
Bay-Richter, 2010 (246) Animal study
Karrenbauer, 2010 (248) Animal study
Yoshimura, 2010 (249) Abstract. Data unavailable
Christopoulos, 2010 (250) Abstract. Data unavailable
Chang, 2010 (251) Abstract. Data unavailable
Khairova, 2009 (252) Not an original study
MacKay, 2009 (253) Not diagnostic study
Anisman, 2009 (254) Not an original study
Dantzer, 2009 (255) Not an original study
Yasui, 2009 (256) Not major depressive disorder
Sekiyama, 2009 (257) Abstract. Data unavailable
Halaris, 2009 (258) Not an original study
Wang, 2009 (259) Clinical or psychiatric comorbidities
Postolache, 2009 (260) Not an original study
Talaie, 2008 (261) Not major depressive disorder
Berthold-Losleben and Himmerich, 2008 (262) Not an original study
Kim, 2007 (263) Study sample treated with monoclonal antibody
Kim, 2007 (264) Not major depressive disorder
Schlatter, 2006 (265) In-vitro study
Tsao, 2006 (266) Did not measure cytokines
Schiepers, 2005 (267) Not an original study
Schlatter, 2004 (268) In-vitro study
Hayley, 2003 (269) Not an original study
Insufficient data for analysis
Not an original study
Clinical or psychiatric comorbidities
In-vitro study
Insufficient data for analysis
Insufficient data for analysis
Insufficient data for analysis
Insufficient data for analysis
Not major depressive disorder
Clinical or psychiatric comorbidities
Clinical or psychiatric comorbidities
Small sample size (< 10)
Not an original study
Insufficient data for analysis
Clinical or psychiatric comorbidities
Did not measure cytokines
Previous administration of corticosteroid
Clinical or psychiatric comorbidities
Insufficient data for analysis
Not an original study
Not major depressive disorder
Insufficient data for analysis
Did not measure cytokines
Did not measure cytokines
Not major depressive disorder
Not an original study
Did not measure cytokines
Not diagnostic study
Not major depressive disorder
Not major depressive disorder
Not an original study
Not major depressive disorder
Clinical or psychiatric comorbidities
Not major depressive disorder
Insufficient data for analysis
Not diagnostic study
Previous administration of corticosteroid
Not major depressive disorder
Clerici, 2009 (316) Did not measure cytokines
Su, 2009 (317) Not major depressive disorder
Dinan, 2009 (318) Not an original study
Capuron, 2008 (319) Insufficient data for analysis
Aguilar-Zavala, 2008 (320) Not major depressive disorder
Bremmer, 2008 (321) Clinical or psychiatric comorbidities
Steptoe, 2003 (322) Not major depressive disorder
Nunes, 2002 (323) Insufficient data for analysis
Darko, 1988 (324) In-vitro study
Lanquillon, 2000 (325) In-vitro study
Dentonino, 1999 (326) Not major depressive disorder
Sluzewskas, 1997 (327) Not major depressive disorder
Berk, 1997 (328) Not major depressive disorder
Eller, 2009 (329) Not an original study
Kabanchik, 2004 (330) Data unavailable
Kraus, 2002 (331) Not diagnostic study
Zubareva, 2001 (332) Small sample size (< 10)
Kubera, 2000 (333) Data unavailable
Castilla-Cortazar, 1998 (334) In-vitro study
Zhang, 2015 (335) Clinical or psychiatric comorbidities
Catena-Dell’Osso, 2013 (336) Not an original study
Catena-Dell’Osso, 2011 (337) Not an original study
Sun, 2010 (338) Not diagnostic study
Himmerich, 2009 (339) Not an original study
Cattaneo, 2008 (340) Did not measure cytokines
Adler, 2008 (341) Not an original study
Craddock and Thomas, 2006 (342) Not an original study
Qi, 2005 (343) Insufficient data for analysis
Kaminska, 2002 (344) Data unavailable
Androsova, 2001 (345) Clinical or psychiatric comorbidities
Nebbia, 2000 (346) Not an original study
West and Maes, 1999 (347) Not an original study
Jozuka, 2000 (348) Not major depressive disorder
Liu, 2015 (349) Not diagnostic study
Liu, 2015 (350) MDD diagnosis not using DSM, ICD or a validated screening instrument (CCMD-3 Chinese criteria)
Arts, 2015 (351) Not major depressive disorder
Liu, 2015 (352) MDD diagnosis not using DSM, ICD or a validated screening instrument (CCMD-3 Chinese criteria)
Hashimoto, 2015 (353) Insufficient data for analysis
Demir, 2015 (354) Did not measure cytokines
Walker, 2015 (355) Animal study
Moreira, 2015 (356) Not diagnostic study
Yu, 2015 (357) Not diagnostic study
Vinberg, 2015 (358) Abstract. Data unavailable
Nassan, 2015 (359) Abstract. Data unavailable
Sharma, 2015 (360) - Abstract. Data unavailable
Goldsmith, 2015 (361) - Abstract. Data unavailable
Haroon, 2015 (362) - Abstract. Data unavailable
Costi, 2015 (363) - Abstract. Data unavailable
Dunjic-Kostic, 2015 (364) - Abstract. Data unavailable
Mischoulon, 2015 (365) - Abstract. Data unavailable
Gazal, 2015 (366) - Clinical or psychiatric comorbidities
Maclukiewicz, 2015 (367) - Did not measure cytokines/chemokines
Becking, 2015 (368) - No control group
Rethorst, 2015 (369) - Not diagnostic study
Brown, 2016 (370) - Not major depressive disorder
Rethorst, 2015 (371) - Not diagnostic study
Schmidt, 2016 (372) - Insufficient data for analysis
Dahl, 2016 (373) - Not diagnostic study
Del Grande da Silva, 2016 (374) - Not diagnostic study
Rapaport, 2016 (375) - Not diagnostic study
Euteneuer, 2016 (376) - Not diagnostic study
Glaus, 2016 (377) - Abstract. Data unavailable
Kiraly, 2016 (378) - Abstract. Data unavailable
Oses, 2016 (379) - Not diagnostic study
Park, 2016 (380) - Clinical or psychiatric comorbidities
Goldsmith, 2016 (381) - Not major depressive disorder
Baune, 2016 (382) - Abstract. Data unavailable
Schmidt, 2016 (383) - Not diagnostic study
Lai, 2016 (384) - Not major depressive disorder
Vogelzangs, 2014 (385) - Clinical or psychiatric comorbidities
Euteneuer, 2012 (386) - Clinical or psychiatric comorbidities
Euteneuer, 2011 (387) - Clinical or psychiatric comorbidities
Pike and Irwin, 2006 (388) - Clinical or psychiatric comorbidities
Bai, 2015 (389) - Clinical or psychiatric comorbidities
Danneh, 2014 (390) - Clinical or psychiatric comorbidities
Rawdin, 2013 (391) - Clinical or psychiatric comorbidities
Wolkowitz, 2011 (392) - Clinical or psychiatric comorbidities
Marques-Deak, 2007 (393) - Clinical or psychiatric comorbidities
Shelton, 2015 (394) - Clinical or psychiatric comorbidities
Manoharan, 2016 (395) - Clinical or psychiatric comorbidities
Teunissen, 2016 (396) - Clinical or psychiatric comorbidities
Cassano, 2016 (397) - Clinical or psychiatric comorbidities
Supplementary Table S2. Characteristics of included studies.

<table>
<thead>
<tr>
<th>Reference (Country)</th>
<th>Age/ gender matched</th>
<th>Healthy controls</th>
<th>MDD</th>
<th>Diagnostic criteria (Structured interview)</th>
<th>Depression severity (Scale)</th>
<th>Sample source (Assay type)</th>
<th>Quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcocer-Gomez, 2014 (Spain)</td>
<td>Y</td>
<td>20 N 57.0 ± 3.0</td>
<td>40 N/A 54.0 ± 9.8</td>
<td>N/A 92.5/NA</td>
<td>DSM-IV (NA)</td>
<td>41.5 ± 8.3 (BDI)</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Al-Hakeim, 2015 (Iraq)</td>
<td>Y</td>
<td>30 NA 43.3/6.7</td>
<td>30 N/A 44.6 ± 1.8</td>
<td>N/A 73.8/28.8</td>
<td>DSM-IV (NA)</td>
<td>NA</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Baek and Park, 2013 (South Korea)</td>
<td>Y</td>
<td>80 N 44.5 ± 1.6</td>
<td>80 N/A 44.6 ± 1.8</td>
<td>N/A 73.8/28.8</td>
<td>DSM-IV (NA)</td>
<td>35.4 ± 0.8 (CES-D-K)</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Bahrini, 2016 (Tunisia)</td>
<td>Y</td>
<td>30 N 39.2 ± 9.2</td>
<td>65 N/A 39.7 ± 12.9</td>
<td>N/A 58.5/38.5</td>
<td>DSM-IV (MINI)</td>
<td>21.7 ± 4.7 (HAM-D 17)</td>
<td>Plasma (ELISA)</td>
</tr>
<tr>
<td>Bai, 2014 (Taiwan)</td>
<td>Y</td>
<td>126 N 41.9 ± 10.0</td>
<td>109 N 42.0 ± 13.8</td>
<td>N/A 76.1/NA</td>
<td>DSM-IV (MINI)</td>
<td>27.0 ± 12.1 (BDI-II)</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Basterzi, 2005 (Turkey)</td>
<td>Y</td>
<td>23 N 33.6 ± 12.5</td>
<td>23 N/A 33.8 ± 12.8</td>
<td>N/A 87.0/NA</td>
<td>DSM-IV (NA)</td>
<td>20.9 ± 3.8 (HAM-D 17)</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Boettger, 2010 (Germany)</td>
<td>N</td>
<td>15 N 40.3 ± 11.9</td>
<td>15 N/A 40.7 ± 12.7</td>
<td>N/A 66.7/NA</td>
<td>DSM-IV (SCID)</td>
<td>25.1 ± 6.7 (HAM-D 21)</td>
<td>Whole blood (ELISA)</td>
</tr>
<tr>
<td>Camardese, 2011 (Italy)</td>
<td>N</td>
<td>20 N 40.1 ± 11.0</td>
<td>24 N/A 46.8 ± 13.0</td>
<td>N/A 66.7/NA</td>
<td>DSM-IV-TR (MINI)</td>
<td>17.8 ± 5.5 (HAM-D 21)</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Carvalho, 2013 (United Kingdom)</td>
<td>N</td>
<td>21 N 45.9 ± 2.4</td>
<td>19 N/A 49.7 ± 3.8</td>
<td>N/A 73.7/NA</td>
<td>ICD-10 (SCID)</td>
<td>21.7 ± 2.0 (HAM-D)</td>
<td>Serum (N/A)</td>
</tr>
<tr>
<td>Study</td>
<td>N</td>
<td>Sex</td>
<td>Age Mean ± SD</td>
<td>Age Range</td>
<td>Depression Score</td>
<td>Anxiety Score</td>
<td>Suicide Score</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----</td>
<td>-----</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Crnkovic, 2012 (407) (Croatia)</td>
<td>N</td>
<td></td>
<td>36</td>
<td>44.4/NA</td>
<td>57.9/NA</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Dahl, 2014 (408) (Norway)</td>
<td>N</td>
<td></td>
<td>34</td>
<td>38.3 ± 13.9</td>
<td>55.9/NA</td>
<td>50</td>
<td>25.8 ± 5.5</td>
</tr>
<tr>
<td>Dhabhar, 2009 (409) (USA)</td>
<td>Y</td>
<td></td>
<td>11</td>
<td>38.0 ± 13.3</td>
<td>54.5/NA</td>
<td>12</td>
<td>28.6 ± 5.95</td>
</tr>
<tr>
<td>Dinan, 2009 (410) (Ireland)</td>
<td>N</td>
<td></td>
<td>24</td>
<td>66.7/NA</td>
<td>34</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Diniz, 2010 (411) (Brazil)</td>
<td>N</td>
<td></td>
<td>39</td>
<td>70.2 ± 5.3</td>
<td>84.6/NA</td>
<td>28</td>
<td>70.4 ± 4.4</td>
</tr>
<tr>
<td>Diniz, 2010 (412) (Brazil)</td>
<td>Y</td>
<td></td>
<td>44</td>
<td>69.5 ± 7.1</td>
<td>86.4/NA</td>
<td>23</td>
<td>70.2 ± 4.9</td>
</tr>
<tr>
<td>Dome, 2009 (413) (Hungary)</td>
<td>Y</td>
<td></td>
<td>16</td>
<td>40.3 ± 9.5</td>
<td>87.5/62.5</td>
<td>33</td>
<td>40.6 ± 10.6</td>
</tr>
<tr>
<td>Dunjic-Kostic, 2013 (414) (Serbia)</td>
<td>Y</td>
<td></td>
<td>39</td>
<td>49.9 ± 5.0</td>
<td>56.4/NA</td>
<td>47</td>
<td>51.0 ± 7.3</td>
</tr>
<tr>
<td>Elderkin-Thompson, 2012 (415) (USA)</td>
<td>N</td>
<td></td>
<td>45</td>
<td>69.2 ± 7.1</td>
<td>75.6/NA</td>
<td>42</td>
<td>69.7 ± 7.9</td>
</tr>
<tr>
<td>Eller, 2008 (416) (Estonia)</td>
<td>Y</td>
<td></td>
<td>45</td>
<td>32.9 ± 14.1</td>
<td>57.8/NA</td>
<td>100</td>
<td>32.1 ± 11.9</td>
</tr>
<tr>
<td>Study</td>
<td>N or Y</td>
<td>Mean Age</td>
<td>SD</td>
<td>Reference Range</td>
<td>Diagnosis</td>
<td>Scale</td>
<td>Measurement</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>-----------</td>
<td>----</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Eller, 2009 (417) (Estonia)</td>
<td>Y</td>
<td>32.9 ± 14.1</td>
<td>NA</td>
<td>57.8/NA</td>
<td>DSM-IV (MINI)</td>
<td>21.9 ± 6.0</td>
<td>Serum (Other)</td>
</tr>
<tr>
<td>Elomaa, 2012 (418) (Finland)</td>
<td>Y</td>
<td>53.2 ± 9.1</td>
<td>27.1 ± 5.0</td>
<td>69.0/6.9</td>
<td>DSM-IV (SCID)</td>
<td>12.0 ± 5.6</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Fornaro, 2011 (419) (Italy)</td>
<td>Y</td>
<td>44.0 ± 11.6</td>
<td>NA</td>
<td>56.3/NA</td>
<td>DSM-IV (SCID)</td>
<td>20.9 ± 2.8</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Fornaro, 2013 (420) (Italy)</td>
<td>Y</td>
<td>45.2 ± 11.6</td>
<td>NA</td>
<td>75.0/NA</td>
<td>DSM-IV (SCID)</td>
<td>21.6 ± 3.7</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Frodl, 2012 (421) (Ireland)</td>
<td>Y</td>
<td>37.0 ± 13.7</td>
<td>NA</td>
<td>58.1/NA</td>
<td>DSM-IV (SCID)</td>
<td>28.0 ± 6.5</td>
<td>Plasma (ELISA)</td>
</tr>
<tr>
<td>Fromberger, 1997 (114) (Germany)</td>
<td>N</td>
<td>31.0 ± 4.0</td>
<td>NA</td>
<td>50.0/NA</td>
<td>DSM-III-R (SCID)</td>
<td>34.0 ± 8.0</td>
<td>Plasma (Other)</td>
</tr>
<tr>
<td>Grassi-Oliveira, 2009 (422) (Brazil)</td>
<td>Y</td>
<td>37.4 ± 5.5</td>
<td>25.5 ± 2.5</td>
<td>100.0/NA</td>
<td>DSM-IV (SCID)</td>
<td>28.5 ± 11.1</td>
<td>Plasma (ELISA)</td>
</tr>
<tr>
<td>Grassi-Oliveira, 2012 (423) (Brazil)</td>
<td>Y</td>
<td>38.1 ± 3.9</td>
<td>25.8 ± 1.7</td>
<td>NA/NA</td>
<td>DSM-IV (SCID)</td>
<td>28.5 ± 11.3</td>
<td>Plasma (ELISA)</td>
</tr>
<tr>
<td>Hernandez, 2008 (424) (Mexico)</td>
<td>N</td>
<td>30.8 ± 6.3</td>
<td>23.6 ± 0.8</td>
<td>68.2/NA</td>
<td>DSM-IV (MINI)</td>
<td>20.3 ± 2.1</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Hernandez, 2013 (425) (Mexico)</td>
<td>N</td>
<td>32.0 ± 6.0</td>
<td>24.3 ± 0.4</td>
<td>66.7/NA</td>
<td>DSM-IV-TR (MINI)</td>
<td>20.0 ± 2.0</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Ho, 2015 (426) (Taiwan)</td>
<td>N</td>
<td>26.5 ± 3.2</td>
<td>NA</td>
<td>0.0/0.0</td>
<td>DSM-IV (NA)</td>
<td>18.5 ± 6.7</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Hocaoglu, 2012 (427) (Turkey)</td>
<td>Y</td>
<td>30.0 ± 9.0</td>
<td>NA</td>
<td>46.7/NA</td>
<td>DSM-IV (SCID)</td>
<td>NA (HAM-D 17)</td>
<td>Serum (ELISA)</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Sample Size</td>
<td>Mean Age</td>
<td>SD</td>
<td>Sex</td>
<td>Female Mean</td>
<td>Male Mean</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Hosseini, 2007 (428) (Iran)</td>
<td>Y</td>
<td>15</td>
<td>38.2 ± 12.0</td>
<td>NA</td>
<td>NA/NA</td>
<td>37</td>
<td>39.1 ± 12.3</td>
</tr>
<tr>
<td>Huang and Lee, 2007 (429) (Taiwan)</td>
<td>N</td>
<td>40</td>
<td>31.4 ± 3.9</td>
<td>23.0 ± 3.0</td>
<td>62.5/NA</td>
<td>42</td>
<td>38.0 ± 8.2</td>
</tr>
<tr>
<td>Hughes, 2012 (430) (Ireland)</td>
<td>Y</td>
<td>39</td>
<td>37.1 ± 13.1</td>
<td>23.9 ± 0.6</td>
<td>56.4/28.2</td>
<td>39</td>
<td>41.9 ± 11.2</td>
</tr>
<tr>
<td>Hung, 2007 (431) (Taiwan)</td>
<td>N</td>
<td>14</td>
<td>23.8 ± 2.2</td>
<td>22.7 ± 3.0</td>
<td>0.0/NA</td>
<td>35</td>
<td>22.7 ± 0.3</td>
</tr>
<tr>
<td>Jozuka, 2000 (348) (Japan)</td>
<td>Y</td>
<td>10</td>
<td>33.9 ± 9.8</td>
<td>NA</td>
<td>NA/NA</td>
<td>17</td>
<td>40.3 ± 15.1</td>
</tr>
<tr>
<td>Kaestner, 2005 (432) (Germany)</td>
<td>Y</td>
<td>37</td>
<td>44.6 ± 13.9</td>
<td>NA</td>
<td>70.3/NA</td>
<td>37</td>
<td>45.1 ± 14.1</td>
</tr>
<tr>
<td>Kahl, 2005 (433) (Germany)</td>
<td>N</td>
<td>20</td>
<td>26.1 ± 5.1</td>
<td>23.2 ± 4.2</td>
<td>100.0/NA</td>
<td>18</td>
<td>31.9 ± 5.8</td>
</tr>
<tr>
<td>Kahl, 2015 (434) (Germany)</td>
<td>N</td>
<td>19</td>
<td>49.0 ± 14.3</td>
<td>24.8 ± 4.7</td>
<td>47.4/15.8</td>
<td>27</td>
<td>43.4 ± 8.7</td>
</tr>
<tr>
<td>Karlovc, 2012 (435) (Croatia)</td>
<td>N</td>
<td>18</td>
<td>45.0 ± 9.5</td>
<td>NA</td>
<td>55.6/22.2</td>
<td>55</td>
<td>49.6 ± 8.2</td>
</tr>
<tr>
<td>Kim, 2008 (436) (South Korea)</td>
<td>Y</td>
<td>40</td>
<td>34.5 ± 10.2</td>
<td>21.6 ± 2.8</td>
<td>62.5/NA</td>
<td>69</td>
<td>35.0 ± 11.0</td>
</tr>
<tr>
<td>Kim, 2013 (437) (Korea)</td>
<td>N</td>
<td>28</td>
<td>35.6 ± 6.7</td>
<td>22.9 ± 2.7</td>
<td>82.1/NA</td>
<td>26</td>
<td>36.7 ± 9.4</td>
</tr>
<tr>
<td>Study</td>
<td>Gender</td>
<td>N</td>
<td>Mean ± SD</td>
<td>Min/Max</td>
<td>Age 1</td>
<td>Mean ± SD</td>
<td>Min/Max</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>----</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Krogh, 2014 (438) (Denmark)</td>
<td>Y</td>
<td>57</td>
<td>40.3 ± 13.1</td>
<td>26.2 ± 6.6</td>
<td>59.6/NA</td>
<td>112</td>
<td>41.6 ± 11.5</td>
</tr>
<tr>
<td>Lee, 2009 (439) (Korea)</td>
<td>N</td>
<td>38</td>
<td>70.9 ± 5.9</td>
<td>24.4 ± 3.6</td>
<td>71.1/NA</td>
<td>18</td>
<td>71.4 ± 4.4</td>
</tr>
<tr>
<td>Leo, 2006 (440) (Italy)</td>
<td>Y</td>
<td>46</td>
<td>34.1 ± 5.2</td>
<td>28.3 ± 2.1</td>
<td>58.7/NA</td>
<td>46</td>
<td>34.9 ± 5.9</td>
</tr>
<tr>
<td>Li, 2013 (441) (China)</td>
<td>Y</td>
<td>64</td>
<td>31.6 ± 5.9</td>
<td>21.5 ± 2.9</td>
<td>78.1/0.0</td>
<td>64</td>
<td>32.1 ± 6.8</td>
</tr>
<tr>
<td>Maes, 1995 (442) (USA)</td>
<td>N</td>
<td>38</td>
<td>33.8 ± 1.5</td>
<td>NA</td>
<td>44.7/NA</td>
<td>61</td>
<td>36.6 ± 1.3</td>
</tr>
<tr>
<td>Maes, 1995 (443) (NA)</td>
<td>N</td>
<td>34</td>
<td>31.9 ± 6.8</td>
<td>NA</td>
<td>47.1/NA</td>
<td>56</td>
<td>36.9 ± 9.8</td>
</tr>
<tr>
<td>Maes, 1995 (444) (USA)</td>
<td>N</td>
<td>28</td>
<td>34.4 ± 15.1</td>
<td>NA</td>
<td>35.7/NA</td>
<td>13</td>
<td>35.2 ± 12.2</td>
</tr>
<tr>
<td>Maes, 1997 (445) (Belgium)</td>
<td>Y</td>
<td>15</td>
<td>47.5 ± 15.0</td>
<td>NA</td>
<td>33.3/NA</td>
<td>35</td>
<td>50.3 ± 13.9</td>
</tr>
<tr>
<td>Maes, 2012 (446) (Belgium)</td>
<td>Y</td>
<td>35</td>
<td>42.5 ± 12.4</td>
<td>NA</td>
<td>65.7/NA</td>
<td>109</td>
<td>43.0 ± 11.0</td>
</tr>
<tr>
<td>Maes, 2012 (447) (Belgium)</td>
<td>N</td>
<td>26</td>
<td>42.1 ± 12.8</td>
<td>NA</td>
<td>57.7/NA</td>
<td>85</td>
<td>42.0 ± 11.0</td>
</tr>
<tr>
<td>Mikova, 2001 (448) (Bulgaria)</td>
<td>Y</td>
<td>15</td>
<td>42.0 ± 10.9</td>
<td>NA</td>
<td>53.3/NA</td>
<td>28</td>
<td>47.3 ± 11.3</td>
</tr>
<tr>
<td>Study</td>
<td>Gender</td>
<td>Sample Size</td>
<td>Mean Age</td>
<td>Median Age</td>
<td>Depression Rate</td>
<td>Diagnosis</td>
<td>Subscale</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Mota, 2013 (449) (Brazil)</td>
<td>Y</td>
<td>80</td>
<td>26.2 ± 4.7</td>
<td>26.7 ± 5.7</td>
<td>68.8/20.0</td>
<td>DSM-IV (MINI)</td>
<td>NA</td>
</tr>
<tr>
<td>Motivala, 2005 (450) (USA)</td>
<td>Y</td>
<td>18</td>
<td>40.3 ± 9.2</td>
<td>NA</td>
<td>0.0/0.0</td>
<td>DSM-IV (SCID)</td>
<td>19.3 ± 4.2</td>
</tr>
<tr>
<td>Myint, 2005 (451) (Korea)</td>
<td>Y</td>
<td>80</td>
<td>40.3 ± 13.1</td>
<td>22.0 ± 2.7</td>
<td>67.5/NA</td>
<td>DSM-IV (NA)</td>
<td>23.7 ± 6.7</td>
</tr>
<tr>
<td>O'Brien, 2007 (452) (Ireland)</td>
<td>N</td>
<td>24</td>
<td>35.6 ± 9.0</td>
<td>NA</td>
<td>58.3/NA</td>
<td>DSM-IV (SCID)</td>
<td>18.4 ± 9.4</td>
</tr>
<tr>
<td>O'Donovan, 2013 (453) (Ireland)</td>
<td>N</td>
<td>48</td>
<td>45.9 ± 2.2</td>
<td>25.1 ± 0.6</td>
<td>70.8/NA</td>
<td>DSM-IV-TR (MINI)</td>
<td>29.5 ± 3.3</td>
</tr>
<tr>
<td>Owen, 2001 (454) (United Kingdom)</td>
<td>Y</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>NA/NA</td>
<td>DSM-IV (NA)</td>
<td>20.1 ± 3.3</td>
</tr>
<tr>
<td>Papakostas, 2013 (455) (USA)</td>
<td>N</td>
<td>43</td>
<td>30.0 ± 8.6</td>
<td>24.4 ± 3.5</td>
<td>67.4/NA</td>
<td>DSM-IV (MINI)</td>
<td>21.4 ± 4.4</td>
</tr>
<tr>
<td>Pavon, 2006 (456) (Mexico)</td>
<td>Y</td>
<td>33</td>
<td>32.3 ± 10.8</td>
<td>NA</td>
<td>84.8/NA</td>
<td>DSM-IV-SCID</td>
<td>24.2 ± 1.0</td>
</tr>
<tr>
<td>Piletz, 2009 (457) (USA)</td>
<td>Y</td>
<td>17</td>
<td>39.7 ± 2.1</td>
<td>26.2 ± 1.5</td>
<td>82.4/0.0</td>
<td>DSM-IV (SCID)</td>
<td>24.2 ± 1.1</td>
</tr>
<tr>
<td>Prossin, 2016 (458) (USA)</td>
<td>N</td>
<td>15</td>
<td>NA</td>
<td>100.0/NA</td>
<td>100.0/NA</td>
<td>DSM-IV (SCID)</td>
<td>NA</td>
</tr>
<tr>
<td>Rapaport and Irwin, 1996 (459) (USA)</td>
<td>Y</td>
<td>15</td>
<td>44.2 ± 10.3</td>
<td>NA</td>
<td>0.0/NA</td>
<td>DSM-III-R (SCID)</td>
<td>19.2 ± 8.0</td>
</tr>
<tr>
<td>Study</td>
<td>Location/Year</td>
<td>Gender</td>
<td>Age Mean ± SD</td>
<td>Age SD</td>
<td>Disorder</td>
<td>Method</td>
<td>Score Mean ± SD</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>--------</td>
<td>---------------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Rothermundt, 2001 (460)</td>
<td>Germany</td>
<td>Y</td>
<td>43</td>
<td>44.5±10.0</td>
<td>NA</td>
<td>NA/NA</td>
<td>43</td>
</tr>
<tr>
<td>Rudolf, 2014 (461)</td>
<td>Germany</td>
<td>N</td>
<td>24</td>
<td>30.8±9.5</td>
<td>23.3±2.4</td>
<td>33.3/NA</td>
<td>32</td>
</tr>
<tr>
<td>Schmidt, 2014 (462)</td>
<td>Germany</td>
<td>N</td>
<td>206</td>
<td>37.8±13.0</td>
<td>36.1±12.0</td>
<td>63.6/21.8</td>
<td>64</td>
</tr>
<tr>
<td>Seidel, 1995 (463)</td>
<td>Germany</td>
<td>Y</td>
<td>39</td>
<td>37.9±10.9</td>
<td>NA</td>
<td>69.2/NA</td>
<td>39</td>
</tr>
<tr>
<td>Shen, 2010 (464)</td>
<td>China</td>
<td>N</td>
<td>40</td>
<td>40.3±10.1</td>
<td>NA</td>
<td>50.0/NA</td>
<td>34</td>
</tr>
<tr>
<td>Sluzewska, 1995 (465)</td>
<td>Poland</td>
<td>N</td>
<td>11</td>
<td>39.2±4.2</td>
<td>NA</td>
<td>72.7/NA</td>
<td>22</td>
</tr>
<tr>
<td>Sluzewska, 1996 (466)</td>
<td>Poland</td>
<td>Y</td>
<td>15</td>
<td>NA</td>
<td>NA</td>
<td>NA/NA</td>
<td>49</td>
</tr>
<tr>
<td>Song, 2009 (467)</td>
<td>China</td>
<td>N</td>
<td>30</td>
<td>33.2±11.5</td>
<td>NA</td>
<td>NA/NA</td>
<td>32</td>
</tr>
<tr>
<td>Spanemberg, 2014 (468)</td>
<td>Brazil</td>
<td>N</td>
<td>54</td>
<td>47.4±10.0</td>
<td>NA</td>
<td>74.1/NA</td>
<td>33</td>
</tr>
<tr>
<td>Sutcigil, 2007 (469)</td>
<td>Turkey</td>
<td>Y</td>
<td>25</td>
<td>34.3±7.8</td>
<td>NA</td>
<td>48.0/NA</td>
<td>23</td>
</tr>
<tr>
<td>Thomas, 2005 (467)</td>
<td>Germany</td>
<td>N</td>
<td>21</td>
<td>74.9±7.0</td>
<td>NA</td>
<td>57.1/NA</td>
<td>19</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>N</td>
<td>Continuous variable 1 ± SD 1</td>
<td>Continuous variable 2 ± SD 2</td>
<td>Continuous variable 3</td>
<td>Continuous variable 4 ± SD 4</td>
<td>Diagnostic Tool</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
<td>----</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Tuglu, 2003 (471)</td>
<td>Turkey</td>
<td>26</td>
<td>39.4 ± 14.7</td>
<td>NA</td>
<td>42.3/69.2</td>
<td>DSM-IV (SCID)</td>
<td>27.1 ± 5.4</td>
</tr>
<tr>
<td>Vetta, 2001 (472)</td>
<td>N</td>
<td>22</td>
<td>81.0 ± 10.8</td>
<td>20.9 ± 2.3</td>
<td>NA/NA</td>
<td>DSM-IV (NA)</td>
<td>14.7 ± 1.9</td>
</tr>
<tr>
<td>Yang, 2005 (473)</td>
<td>N</td>
<td>33</td>
<td>42.1 ± 13.1</td>
<td>23.11 ± 13.47</td>
<td>72.7/NA</td>
<td>DSM-IV (NA)</td>
<td>NA/NA</td>
</tr>
<tr>
<td>Yang, 2007 (474)</td>
<td>N</td>
<td>33</td>
<td>42.1 ± 2.3</td>
<td>22.8 ± 0.57</td>
<td>72.7/NA</td>
<td>DSM-IV (NA)</td>
<td>NA/NA</td>
</tr>
<tr>
<td>Yoshimura, 2009 (475)</td>
<td>Japan</td>
<td>51</td>
<td>39.8 ± 11.8</td>
<td>NA</td>
<td>58.8/NA</td>
<td>DSM-IV (MINI)</td>
<td>21.7 ± 3.7</td>
</tr>
<tr>
<td>Yoshimura, 2010 (476)</td>
<td>Y</td>
<td>20</td>
<td>39.2 ± 10.6</td>
<td>NA</td>
<td>65.0/NA</td>
<td>DSM-IV (NA)</td>
<td>19.9 ± 4.1</td>
</tr>
<tr>
<td>Zoga, 2014 (477)</td>
<td>Greece</td>
<td>40</td>
<td>51.1 ± 10.7</td>
<td>26.6 ± 5.8</td>
<td>100.0/NA</td>
<td>DSM-IV-TR (SCID)</td>
<td>35.7 ± 7.6</td>
</tr>
</tbody>
</table>

Continuous variables are presented as mean ± SD.
Supplementary Table S3. Meta-regressions of inflammatory markers in subjects with MDD versus healthy controls (HC).

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th></th>
<th>Meta-regression</th>
<th>Meta-regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studies</td>
<td>MDD</td>
<td>Controls</td>
<td>Slope</td>
</tr>
<tr>
<td>BMI mean (MDD)</td>
<td>17</td>
<td>721</td>
<td>557</td>
<td>0.050</td>
</tr>
<tr>
<td>BMI mean (HC)</td>
<td>16</td>
<td>688</td>
<td>503</td>
<td>0.075</td>
</tr>
<tr>
<td>BMI difference (MDD-HC)</td>
<td>16</td>
<td>688</td>
<td>503</td>
<td>-0.026</td>
</tr>
<tr>
<td>Publication year</td>
<td>42</td>
<td>1587</td>
<td>1183</td>
<td>-0.009</td>
</tr>
<tr>
<td>Sample size</td>
<td>42</td>
<td>1587</td>
<td>1183</td>
<td>0.004</td>
</tr>
<tr>
<td>Age mean (MDD)</td>
<td>39</td>
<td>1485</td>
<td>1093</td>
<td>0.011</td>
</tr>
<tr>
<td>Age mean (HC)</td>
<td>38</td>
<td>1436</td>
<td>1078</td>
<td>0.009</td>
</tr>
<tr>
<td>Age difference (MDD-HC)</td>
<td>38</td>
<td>1436</td>
<td>1078</td>
<td>0.013</td>
</tr>
<tr>
<td>Gender % female (MDD)</td>
<td>42</td>
<td>1587</td>
<td>1183</td>
<td>0.002</td>
</tr>
<tr>
<td>Gender % female (HC)</td>
<td>41</td>
<td>1538</td>
<td>1168</td>
<td>0.005</td>
</tr>
<tr>
<td>Gender % female difference (MDD-HC)</td>
<td>41</td>
<td>1538</td>
<td>1168</td>
<td>-0.010</td>
</tr>
<tr>
<td>Depression severity</td>
<td>33</td>
<td>1313</td>
<td>955</td>
<td>0.007</td>
</tr>
<tr>
<td>Country latitude</td>
<td>41</td>
<td>1531</td>
<td>1149</td>
<td>0.001</td>
</tr>
<tr>
<td>% Drug free</td>
<td>35</td>
<td>1325</td>
<td>959</td>
<td>0.000</td>
</tr>
<tr>
<td>Quality score</td>
<td>42</td>
<td>1587</td>
<td>1183</td>
<td>0.023</td>
</tr>
</tbody>
</table>

IL-6

Variable	N		Meta-regression	Meta-regression						
BMI mean (MDD)	22	879	930	-0.048	-0.215	0.119	0.575	1.979	0.927	0.354
BMI mean (HC)	20	818	831	-0.040	-0.177	0.097	0.563	1.879	1.067	0.286
BMI difference (MDD-HC)	20	818	831	0.053	-0.213	0.318	0.697	0.873	3.780	< 0.001
% Smokers (MDD)	10	440	506	0.020	0.004	0.037	0.017	0.194	0.647	0.518
% Smokers (HC)	10	440	513	0.020	0.002	0.038	0.032	0.282	1.194	0.233
Publication year	42	1620	1457	-0.071	-0.148	0.006	0.070	143.482	1.820	0.069
Sample size	42	1620	1457	-0.003	-0.009	0.004	0.447	0.884	2.963	0.003
Age mean (MDD)	39	1518	1367	0.027	-0.001	0.055	0.062	-0.503	-0.803	0.422
Age mean (HC)	39	1518	1367	0.028	-0.001	0.057	0.056	-0.491	-0.812	0.417
Age difference (MDD-HC)	39	1518	1367	-0.004	-0.100	0.092	0.937	0.642	3.625	< 0.001
Gender % female (MDD)	41	1598	1434	0.004	-0.008	0.015	0.506	0.355	0.883	0.377
Gender % female (HC)	39	1530	1389	0.004	-0.008	0.016	0.549	0.434	1.076	0.282
Gender % female difference (MDD-HC)	39	1530	1389	0.001	-0.019	0.021	0.928	0.660	4.969	< 0.001
Depression severity	35	1367	1235	0.004	-0.008	0.016	0.526	0.189	0.268	0.789
Country latitude	41	1598	1434	0.002	-0.008	0.013	0.637	0.524	2.368	0.018
% drug free	30	1156	1095	-0.004	-0.012	0.004	0.373	0.875	2.435	0.015

TNF-α
<table>
<thead>
<tr>
<th>Quality score</th>
<th>42</th>
<th>1620</th>
<th>1457</th>
<th>-0.241</th>
<th>-0.469</th>
<th>-0.013</th>
<th>0.038</th>
<th>1.608</th>
<th>3.433</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β</td>
<td></td>
</tr>
<tr>
<td>BMI mean (MDD)</td>
<td>10</td>
<td>407</td>
<td>354</td>
<td>0.265</td>
<td>0.054</td>
<td>0.476</td>
<td>0.014</td>
<td>-6.692</td>
<td>-2.470</td>
<td>0.013</td>
</tr>
<tr>
<td>BMI mean (HC)</td>
<td>11</td>
<td>447</td>
<td>374</td>
<td>0.225</td>
<td>-0.025</td>
<td>0.475</td>
<td>0.078</td>
<td>-5.527</td>
<td>-1.745</td>
<td>0.081</td>
</tr>
<tr>
<td>BMI difference (MDD-HC)</td>
<td>10</td>
<td>407</td>
<td>354</td>
<td>-0.040</td>
<td>-0.658</td>
<td>0.579</td>
<td>0.900</td>
<td>-0.040</td>
<td>-0.147</td>
<td>0.883</td>
</tr>
<tr>
<td>Publication year</td>
<td>22</td>
<td>779</td>
<td>727</td>
<td>-0.011</td>
<td>-0.084</td>
<td>0.062</td>
<td>0.773</td>
<td>21.715</td>
<td>0.289</td>
<td>0.772</td>
</tr>
<tr>
<td>Sample size</td>
<td>22</td>
<td>779</td>
<td>727</td>
<td>0.003</td>
<td>-0.011</td>
<td>0.018</td>
<td>0.665</td>
<td>-0.189</td>
<td>-0.350</td>
<td>0.726</td>
</tr>
<tr>
<td>Age mean (MDD)</td>
<td>21</td>
<td>759</td>
<td>707</td>
<td>0.024</td>
<td>-0.005</td>
<td>0.053</td>
<td>0.108</td>
<td>-0.999</td>
<td>-1.542</td>
<td>0.123</td>
</tr>
<tr>
<td>Age mean (HC)</td>
<td>21</td>
<td>759</td>
<td>707</td>
<td>0.027</td>
<td>-0.001</td>
<td>0.055</td>
<td>0.055</td>
<td>-1.085</td>
<td>-1.826</td>
<td>0.068</td>
</tr>
<tr>
<td>Age difference (MDD-HC)</td>
<td>21</td>
<td>759</td>
<td>707</td>
<td>-0.098</td>
<td>-0.234</td>
<td>0.038</td>
<td>0.158</td>
<td>0.177</td>
<td>0.802</td>
<td>0.423</td>
</tr>
<tr>
<td>Gender % female (MDD)</td>
<td>21</td>
<td>759</td>
<td>707</td>
<td>-0.003</td>
<td>-0.024</td>
<td>0.018</td>
<td>0.773</td>
<td>0.214</td>
<td>0.281</td>
<td>0.779</td>
</tr>
<tr>
<td>Gender % female (HC)</td>
<td>19</td>
<td>684</td>
<td>634</td>
<td>-0.006</td>
<td>-0.029</td>
<td>0.017</td>
<td>0.611</td>
<td>0.347</td>
<td>0.447</td>
<td>0.655</td>
</tr>
<tr>
<td>Gender % female difference (MDD-HC)</td>
<td>19</td>
<td>684</td>
<td>634</td>
<td>0.016</td>
<td>-0.030</td>
<td>0.061</td>
<td>0.498</td>
<td>-0.121</td>
<td>-0.491</td>
<td>0.624</td>
</tr>
<tr>
<td>Depression severity</td>
<td>19</td>
<td>636</td>
<td>594</td>
<td>-0.007</td>
<td>-0.024</td>
<td>0.010</td>
<td>0.444</td>
<td>0.712</td>
<td>0.747</td>
<td>0.455</td>
</tr>
<tr>
<td>Country latitude</td>
<td>21</td>
<td>760</td>
<td>706</td>
<td>0.000</td>
<td>-0.016</td>
<td>0.016</td>
<td>0.971</td>
<td>-0.017</td>
<td>-0.053</td>
<td>0.958</td>
</tr>
<tr>
<td>% drug free</td>
<td>18</td>
<td>661</td>
<td>627</td>
<td>-0.005</td>
<td>-0.021</td>
<td>0.010</td>
<td>0.484</td>
<td>0.366</td>
<td>0.515</td>
<td>0.606</td>
</tr>
<tr>
<td>Quality score</td>
<td>22</td>
<td>779</td>
<td>727</td>
<td>-0.138</td>
<td>-0.486</td>
<td>0.21</td>
<td>0.436</td>
<td>0.586</td>
<td>0.796</td>
<td>0.426</td>
</tr>
</tbody>
</table>

IFN-γ										
BMI mean (MDD)	11	513	606	0.207	0.013	0.401	0.037	-5.346	-2.130	0.033
BMI mean (HC)	10	480	552	0.138	0.014	0.262	0.029	-3.654	-2.227	0.026
BMI difference (MDD-HC)	10	480	552	-0.221	-0.488	0.047	0.106	-0.243	-0.839	0.401
Publication year	17	700	770	0.181	0.047	0.315	0.008	-364.147	-2.647	0.008
Sample size	17	700	770	0.011	0.004	0.018	0.002	-1.439	-3.859	< 0.001
Age mean (MDD)	17	700	770	0.062	0.005	0.120	0.034	-2.970	-2.484	0.013
Age mean (HC)	17	700	770	0.062	0.005	0.120	0.034	-2.873	-2.494	0.013
Age difference (MDD-HC)	17	700	770	0.001	-0.209	0.211	0.991	-0.484	-1.592	0.111
Gender % female (MDD)	17	700	770	-0.002	-0.026	0.023	0.891	-0.366	-0.415	0.678
Gender % female (HC)	15	632	725	-0.003	-0.030	0.024	0.822	-0.266	-0.286	0.775
Gender % female difference (MDD-HC)	15	632	725	0.001	-0.054	0.056	0.966	-0.471	-1.462	0.144
Depression severity	15	590	660	-0.004	-0.026	0.019	0.751	-0.186	-0.153	0.878
Country latitude	17	700	770	0.003	-0.011	0.018	0.670	-0.560	-1.783	0.075
% drug free	14	551	621	-0.014	-0.040	0.012	0.294	0.657	0.537	0.591
Quality score	17	700	770	-0.375	-0.870	0.120	0.138	1.001	0.976	0.329

<p>| IL-10 | | | | | | | | | | |
| BMI mean (MDD) | 10 | 371 | 481 | -0.253 | -0.542 | 0.037 | 0.087 | 7.294 | 1.870 | 0.062 |
| Publication year | 17 | 608 | 675 | 0.007 | -0.091 | 0.106 | 0.883 | -14.479| -0.143| 0.886 |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>17</td>
<td>608</td>
<td>675</td>
<td>-0.001</td>
<td>-0.010</td>
<td>0.007</td>
<td>0.775</td>
<td>0.476</td>
<td>1.160</td>
<td>0.246</td>
<td></td>
</tr>
<tr>
<td>Age mean (MDD)</td>
<td>17</td>
<td>608</td>
<td>675</td>
<td>-0.023</td>
<td>-0.089</td>
<td>0.043</td>
<td>0.491</td>
<td>1.310</td>
<td>0.957</td>
<td>0.339</td>
<td></td>
</tr>
<tr>
<td>Age mean (HC)</td>
<td>17</td>
<td>608</td>
<td>675</td>
<td>-0.036</td>
<td>-0.111</td>
<td>0.039</td>
<td>0.345</td>
<td>1.733</td>
<td>1.193</td>
<td>0.233</td>
<td></td>
</tr>
<tr>
<td>Age difference (MDD-HC)</td>
<td>17</td>
<td>608</td>
<td>675</td>
<td>0.022</td>
<td>-0.136</td>
<td>0.179</td>
<td>0.785</td>
<td>0.319</td>
<td>0.975</td>
<td>0.330</td>
<td></td>
</tr>
<tr>
<td>Gender % female (MDD)</td>
<td>17</td>
<td>608</td>
<td>675</td>
<td>0.005</td>
<td>-0.020</td>
<td>0.030</td>
<td>0.684</td>
<td>0.038</td>
<td>0.044</td>
<td>0.965</td>
<td></td>
</tr>
<tr>
<td>Gender % female (HC)</td>
<td>15</td>
<td>540</td>
<td>630</td>
<td>0.007</td>
<td>-0.020</td>
<td>0.034</td>
<td>0.629</td>
<td>0.070</td>
<td>0.080</td>
<td>0.936</td>
<td></td>
</tr>
<tr>
<td>Gender % female difference (MDD-HC)</td>
<td>15</td>
<td>540</td>
<td>630</td>
<td>-0.011</td>
<td>-0.057</td>
<td>0.036</td>
<td>0.651</td>
<td>0.532</td>
<td>1.901</td>
<td>0.057</td>
<td></td>
</tr>
<tr>
<td>Depression severity</td>
<td>16</td>
<td>578</td>
<td>645</td>
<td>-0.002</td>
<td>-0.022</td>
<td>0.018</td>
<td>0.866</td>
<td>0.585</td>
<td>0.520</td>
<td>0.603</td>
<td></td>
</tr>
<tr>
<td>Country latitude</td>
<td>17</td>
<td>608</td>
<td>675</td>
<td>0.005</td>
<td>-0.015</td>
<td>0.024</td>
<td>0.650</td>
<td>0.224</td>
<td>0.537</td>
<td>0.591</td>
<td></td>
</tr>
<tr>
<td>% drug free</td>
<td>13</td>
<td>426</td>
<td>519</td>
<td>0.003</td>
<td>-0.014</td>
<td>0.020</td>
<td>0.718</td>
<td>0.146</td>
<td>0.192</td>
<td>0.847</td>
<td></td>
</tr>
<tr>
<td>Quality score</td>
<td>17</td>
<td>608</td>
<td>675</td>
<td>-0.122</td>
<td>-0.551</td>
<td>0.308</td>
<td>0.578</td>
<td>0.818</td>
<td>0.996</td>
<td>0.319</td>
<td></td>
</tr>
</tbody>
</table>

IL-2

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication year</td>
<td>10</td>
<td>357</td>
<td>476</td>
<td>-0.104</td>
<td>-0.370</td>
<td>0.162</td>
<td>0.445</td>
<td>208.478</td>
<td>0.764</td>
<td>0.445</td>
<td></td>
</tr>
<tr>
<td>Sample size</td>
<td>10</td>
<td>357</td>
<td>476</td>
<td>-0.001</td>
<td>-0.020</td>
<td>0.018</td>
<td>0.934</td>
<td>-0.022</td>
<td>-0.021</td>
<td>0.983</td>
<td></td>
</tr>
<tr>
<td>Age mean (MDD)</td>
<td>10</td>
<td>357</td>
<td>476</td>
<td>0.041</td>
<td>-0.123</td>
<td>0.206</td>
<td>0.623</td>
<td>-1.626</td>
<td>-0.510</td>
<td>0.610</td>
<td></td>
</tr>
<tr>
<td>Age mean (HC)</td>
<td>10</td>
<td>357</td>
<td>476</td>
<td>0.057</td>
<td>-0.143</td>
<td>0.257</td>
<td>0.577</td>
<td>-2.110</td>
<td>-0.574</td>
<td>0.566</td>
<td></td>
</tr>
<tr>
<td>Age difference (MDD-HC)</td>
<td>10</td>
<td>357</td>
<td>476</td>
<td>-0.031</td>
<td>-0.503</td>
<td>0.565</td>
<td>0.909</td>
<td>-0.141</td>
<td>-0.180</td>
<td>0.857</td>
<td></td>
</tr>
<tr>
<td>Gender % female (MDD)</td>
<td>10</td>
<td>357</td>
<td>476</td>
<td>0.030</td>
<td>-0.072</td>
<td>0.013</td>
<td>0.174</td>
<td>1.611</td>
<td>1.168</td>
<td>0.243</td>
<td></td>
</tr>
<tr>
<td>Depression severity</td>
<td>10</td>
<td>357</td>
<td>476</td>
<td>0.026</td>
<td>-0.048</td>
<td>0.100</td>
<td>0.486</td>
<td>-2.777</td>
<td>-0.711</td>
<td>0.477</td>
<td></td>
</tr>
<tr>
<td>Country latitude</td>
<td>10</td>
<td>357</td>
<td>476</td>
<td>0.013</td>
<td>-0.029</td>
<td>0.054</td>
<td>0.554</td>
<td>-0.334</td>
<td>-0.446</td>
<td>0.656</td>
<td></td>
</tr>
<tr>
<td>Quality score</td>
<td>10</td>
<td>357</td>
<td>476</td>
<td>-0.190</td>
<td>-1.276</td>
<td>0.897</td>
<td>0.732</td>
<td>0.650</td>
<td>0.289</td>
<td>0.773</td>
<td></td>
</tr>
</tbody>
</table>

IL-4

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication year</td>
<td>10</td>
<td>350</td>
<td>450</td>
<td>0.172</td>
<td>-0.003</td>
<td>0.348</td>
<td>0.054</td>
<td>347.249</td>
<td>-1.930</td>
<td>0.054</td>
<td></td>
</tr>
<tr>
<td>Sample size</td>
<td>10</td>
<td>350</td>
<td>450</td>
<td>0.005</td>
<td>-0.005</td>
<td>0.015</td>
<td>0.342</td>
<td>-0.970</td>
<td>-1.738</td>
<td>0.082</td>
<td></td>
</tr>
<tr>
<td>Age mean (MDD)</td>
<td>10</td>
<td>350</td>
<td>450</td>
<td>0.024</td>
<td>-0.066</td>
<td>0.114</td>
<td>0.608</td>
<td>-1.493</td>
<td>-0.809</td>
<td>0.419</td>
<td></td>
</tr>
<tr>
<td>Age mean (HC)</td>
<td>10</td>
<td>350</td>
<td>450</td>
<td>0.031</td>
<td>-0.084</td>
<td>0.146</td>
<td>0.599</td>
<td>-1.747</td>
<td>-0.768</td>
<td>0.442</td>
<td></td>
</tr>
<tr>
<td>Age difference (MDD-HC)</td>
<td>10</td>
<td>350</td>
<td>450</td>
<td>0.086</td>
<td>-0.303</td>
<td>0.475</td>
<td>0.666</td>
<td>-0.659</td>
<td>-1.537</td>
<td>0.124</td>
<td></td>
</tr>
<tr>
<td>Gender % female (MDD)</td>
<td>10</td>
<td>350</td>
<td>450</td>
<td>0.005</td>
<td>-0.027</td>
<td>0.036</td>
<td>0.777</td>
<td>-0.838</td>
<td>-0.815</td>
<td>0.415</td>
<td></td>
</tr>
<tr>
<td>Depression severity</td>
<td>10</td>
<td>350</td>
<td>450</td>
<td>-0.034</td>
<td>-0.077</td>
<td>0.010</td>
<td>0.127</td>
<td>3.038</td>
<td>1.278</td>
<td>0.201</td>
<td></td>
</tr>
<tr>
<td>Country latitude</td>
<td>10</td>
<td>350</td>
<td>450</td>
<td>-0.002</td>
<td>-0.025</td>
<td>0.021</td>
<td>0.847</td>
<td>-0.512</td>
<td>-1.082</td>
<td>0.279</td>
<td></td>
</tr>
<tr>
<td>Quality score</td>
<td>10</td>
<td>350</td>
<td>450</td>
<td>-0.102</td>
<td>-0.633</td>
<td>0.429</td>
<td>0.706</td>
<td>-0.197</td>
<td>-0.188</td>
<td>0.851</td>
<td></td>
</tr>
</tbody>
</table>

sIL-2 receptor

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication year</td>
<td>10</td>
<td>489</td>
<td>391</td>
<td>0.021</td>
<td>-0.029</td>
<td>0.070</td>
<td>0.412</td>
<td>-40.590</td>
<td>-0.805</td>
<td>0.421</td>
<td></td>
</tr>
<tr>
<td>Sample size</td>
<td>10</td>
<td>489</td>
<td>391</td>
<td>0.000</td>
<td>-0.007</td>
<td>0.007</td>
<td>0.989</td>
<td>0.744</td>
<td>2.005</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>Gender % female (MDD)</td>
<td>10</td>
<td>489</td>
<td>391</td>
<td>0.006</td>
<td>-0.009</td>
<td>0.021</td>
<td>0.410</td>
<td>0.378</td>
<td>0.789</td>
<td>0.430</td>
<td></td>
</tr>
<tr>
<td>Quality score</td>
<td>10</td>
<td>489</td>
<td>391</td>
<td>-0.205</td>
<td>-0.606</td>
<td>0.195</td>
<td>0.315</td>
<td>1.672</td>
<td>1.763</td>
<td>0.078</td>
<td></td>
</tr>
</tbody>
</table>
Abbreviations: BMI = body-mass index; CI = confidence interval; ES = effect size; HC = healthy controls; MDD = major depressive disorder; Statistically significant results are in bold
Supplementary Table S4. Subgroup analyses of cytokines and chemokines in individuals with MDD versus healthy controls (HC).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meta-analysis</th>
<th>Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>ES</td>
</tr>
<tr>
<td>IL-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td>24</td>
<td>0.485</td>
</tr>
<tr>
<td>Plasma</td>
<td>13</td>
<td>0.850</td>
</tr>
<tr>
<td>Whole blood</td>
<td>2</td>
<td>0.608</td>
</tr>
<tr>
<td>Assay type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>36</td>
<td>0.616</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>0.622</td>
</tr>
<tr>
<td>Age/gender matched</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>22</td>
<td>0.610</td>
</tr>
<tr>
<td>Yes</td>
<td>18</td>
<td>0.631</td>
</tr>
<tr>
<td>Stimulated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>38</td>
<td>0.606</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>0.796</td>
</tr>
<tr>
<td>TNF-α</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td>27</td>
<td>0.568</td>
</tr>
<tr>
<td>Plasma</td>
<td>13</td>
<td>0.895</td>
</tr>
<tr>
<td>Assay type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>33</td>
<td>0.639</td>
</tr>
<tr>
<td>Other</td>
<td>7</td>
<td>0.852</td>
</tr>
<tr>
<td>Age/gender matched</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>22</td>
<td>0.693</td>
</tr>
<tr>
<td>Yes</td>
<td>18</td>
<td>0.656</td>
</tr>
<tr>
<td>IL-1β</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td>14</td>
<td>-0.151</td>
</tr>
<tr>
<td>Plasma</td>
<td>3</td>
<td>0.555</td>
</tr>
<tr>
<td>Whole blood</td>
<td>2</td>
<td>0.199</td>
</tr>
<tr>
<td>Age/gender matched</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>8</td>
<td>-0.142</td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>0.151</td>
</tr>
<tr>
<td>Stimulated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>18</td>
<td>0.002</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>0.199</td>
</tr>
<tr>
<td>IFN-γ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td>11</td>
<td>-0.592</td>
</tr>
<tr>
<td>Plasma</td>
<td>3</td>
<td>0.051</td>
</tr>
<tr>
<td>Assay type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>13</td>
<td>-0.688</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td>0.475</td>
</tr>
<tr>
<td>Age/gender matched</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>7</td>
<td>-0.388</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>-0.560</td>
</tr>
<tr>
<td>Sample source</td>
<td>IL-10</td>
<td>Serum</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plasma</td>
</tr>
<tr>
<td>Assay type</td>
<td></td>
<td>ELISA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>Age/gender matched</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Drug free during measures</td>
<td>Yes</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-2</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>IL-4</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>sIL-2 receptor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample source</td>
<td></td>
<td>Serum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plasma</td>
</tr>
<tr>
<td>Age/gender matched</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>CCL-2</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>sIL-6 receptor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age/gender matched</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>IL-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assay type</td>
<td></td>
<td>ELISA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>Age/gender matched</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; ES = effect size; Statistically significant results are in bold

a In Z-test of overall effect
b In Q-test of heterogeneity
Supplementary Figure S1. Forest plot of studies that investigated IL-1β.
Supplementary Figure S2. Forest plot of studies that investigated IL-2.
Supplementary Figure S3. Forest plot of studies that investigated IL-4.
Supplementary Figure S4. Forest plot of studies that investigated soluble IL-6 receptor (sIL-6 receptor).
Supplementary Figure S5. Forest plot of studies that investigated IL-8.
Supplementary Figure S6. Forest plot of studies that investigated IL-5.
Supplementary Figure S7. Forest plot of studies that investigated CCL-3.
Supplementary Figure S8. Forest plot of studies that investigated IL-17.
Supplementary Figure S9. Forest plot of studies that investigated TGF-β1.

Study	Hedges's g (95% CI)
Myint, 2005 | -1.16 (-1.69, -0.63)
Sutcigil, 2007 | -4.26 (-5.29, -3.23)
Kim, 2008 | 0.88 (0.47, 1.28)
Overall | -1.47 (-3.87, 0.93)
Supplementary Figure S10. Funnel plot of studies that investigated TNF-α.
Supplementary Figure S11. Funnel plot of studies that investigated IFN-γ.
Supplementary Figure S12. Funnel plot of studies that investigated IL-4.
Supplementary Figure S13. Funnel plot of studies that investigated CCL-2.
Supplementary Figure S14. Funnel plot of studies that investigated IL-13.
Supplementary Figure S15. Sensitivity analysis for the meta-analysis of studies that investigated IL-6.
Supplementary Figure S16. Sensitivity analysis for the meta-analysis of studies that investigated TNF-α.
Supplementary Figure S17. Sensitivity analysis for the meta-analysis of studies that investigated IFN-γ.
Supplementary Figure S18. Sensitivity analysis for the meta-analysis of studies that investigated IL-10.
Supplementary Figure S19. Sensitivity analysis for the meta-analysis of studies that investigated soluble IL-2 receptor (sIL-2 receptor).
Supplementary Figure S20. Sensitivity analysis for the meta-analysis of studies that investigated CCL-2.
Supplementary Figure S21. Sensitivity analysis for the meta-analysis of studies that investigated IL-13.
Supplementary Figure S22. Sensitivity analysis for the meta-analysis of studies that investigated IL-18.
Supplementary Figure S23. Sensitivity analysis for the meta-analysis of studies that investigated IL-12.
Supplementary Figure S24. Sensitivity analysis for the meta-analysis of studies that investigated IL-1 receptor antagonist (IL-1Ra).
Supplementary Figure S25. Sensitivity analysis for the meta-analysis of studies that investigated sTNF receptor 2.
IL-6

Supplementary Figure S26. Cumulative meta-analysis of studies that investigated IL-6.
Supplementary Figure S27. Cumulative meta-analysis of studies that investigated TNF-α.
Supplementary Figure S28. Cumulative meta-analysis of studies that investigated IFN-γ.
Supplementary Figure S29 Cumulative meta-analysis of studies that investigated IL-10.

<table>
<thead>
<tr>
<th>Study</th>
<th>g (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seidel, 1995</td>
<td>0.33 (-0.11, 0.77)</td>
</tr>
<tr>
<td>Huang, 2007</td>
<td>0.49 (0.17, 0.80)</td>
</tr>
<tr>
<td>O'Brien, 2007</td>
<td>0.34 (-0.01, 0.69)</td>
</tr>
<tr>
<td>Hosseini, 2007</td>
<td>0.38 (0.10, 0.66)</td>
</tr>
<tr>
<td>Song, 2008</td>
<td>0.08 (-0.53, 0.69)</td>
</tr>
<tr>
<td>Hernández, 2008</td>
<td>0.48 (-0.32, 1.29)</td>
</tr>
<tr>
<td>Dhabhar, 2009</td>
<td>0.30 (-0.46, 1.05)</td>
</tr>
<tr>
<td>Boettger, 2010</td>
<td>0.25 (-0.43, 0.93)</td>
</tr>
<tr>
<td>Hocaoglu, 2012</td>
<td>0.23 (-0.36, 0.82)</td>
</tr>
<tr>
<td>Fornaro, 2013</td>
<td>0.20 (-0.33, 0.72)</td>
</tr>
<tr>
<td>Carvalho, 2013</td>
<td>0.26 (-0.24, 0.75)</td>
</tr>
<tr>
<td>Hernandez, 2013</td>
<td>0.45 (-0.11, 1.00)</td>
</tr>
<tr>
<td>O'Donovan, 2013</td>
<td>0.47 (-0.03, 0.97)</td>
</tr>
<tr>
<td>Schmidt, 2014</td>
<td>0.43 (-0.02, 0.87)</td>
</tr>
<tr>
<td>Spanemberg, 2014</td>
<td>0.38 (-0.04, 0.80)</td>
</tr>
<tr>
<td>Dahl, 2014</td>
<td>0.38 (-0.01, 0.76)</td>
</tr>
<tr>
<td>Ho, 2015</td>
<td>0.38 (0.01, 0.74)</td>
</tr>
</tbody>
</table>
Supplementary Figure S30. Cumulative meta-analysis of studies that investigated soluble IL-2 receptor (sIL-2 receptor).
Supplementary Figure S31. Cumulative meta-analysis of studies that investigated CCL-2.
Supplementary Figure S32. Cumulative meta-analysis of studies that investigated IL-13.
Supplementary Figure S33. Cumulative meta-analysis of studies that investigated IL-18.
Supplementary Figure S34. Cumulative meta-analysis of studies that investigated IL-12.

IL-12

<table>
<thead>
<tr>
<th>Study</th>
<th>g (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutcigil, 2007</td>
<td>3.49 (2.58, 4.39)</td>
</tr>
<tr>
<td>Lee, 2009</td>
<td>2.01 (-0.85, 4.86)</td>
</tr>
<tr>
<td>Fornaro, 2013</td>
<td>1.36 (-0.29, 3.00)</td>
</tr>
<tr>
<td>Schmidt, 2014</td>
<td>1.23 (0.28, 2.18)</td>
</tr>
</tbody>
</table>
Supplementary Figure S35. Cumulative meta-analysis of studies that investigated IL-1 receptor antagonist (IL-1Ra).
Supplementary Figure S36. Cumulative meta-analysis of studies that investigated soluble TNF receptor 2 (sTNF receptor 2).
Supplementary references

1. POSTAL M, APPENZELLER S. The importance of cytokines and autoantibodies in depression. Autoimmun Rev. 2015 Jan;14:30-5.

44. CHEN YC, LIN WW, CHEN YJ, MAO WC, HUNG YJ. Antidepressant effects on insulin sensitivity and proinflammatory cytokines in the depressed males. Mediators Inflamm. 2010;2010:573594.

69. STEWART JC, JANICKI-DEVERTS D, MULDOON MF, KAMARCK TW. Depressive symptoms moderate the influence of hostility on serum interleukin-6 and C-reactive protein. Psychosom Med. 2008 Feb;70:197-204.

72. ROTHENHAUSLER HB, STEPAN A, KAPFHAMMER HP. Soluble interleukin 2 receptor levels, temperament and character in formerly depressed suicide attempters compared with normal controls. Suicide Life Threat Behav. 2006 Aug;36:455-66.

84. ANDRADE C. Tumor necrosis factor-alpha, depression, and ECT: toward a better understanding of the relationships. J ECT. 2004 Sep;20:197-8.

102. USHIROYAMA T, IKEDA A, UEKI M. Elevated plasma interleukin-6 (IL-6) and soluble IL-6 receptor concentrations in menopausal women with and without depression. Int J Gynaecol Obstet. 2002 Oct;79:51-2.

123. FONSEKA TM, MCINTYRE RS, SOCZYNSKA JK, KENNEDY SH. Evidence to support peripheral and central IL-6 signaling targets to treat depression. 2015;24:991-2.

129. Hiles SA, Baker AL, de Malmanche T, Mcevoy M, Boyle M, Attia J. Unhealthy lifestyle may increase later depression via inflammation in older women but not men. 2015;63:65-74.

131. Pandey G. Central and peripheral inflammation biomarkers in depression and suicide. 2015;77:296S.

132. Rapaport MH. Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder. 2015;77:1465-75.

140. Mishra KK, Pawar AA, Ryalli VSSR, Alhuwalia PS, Rathod J. Serum cytokine levels in drug naive first episode depressive patients in comparison to healthy controls and changes following treatment with antidepressants. 2015;57:S3-54.

159. AJILORE O. The neural correlates of altered immune function in major depression: The impact of age and medical co-morbidities. 2014;75:240S.

161. PALLAVI P. A randomized, single-blind, trial of yoga therapy as an adjunct to SSRI treatment for adolescent depression patients: Variations in serum cytokine and neurotrophin levels. 2014;75:118S.

162. TOUPS MSP, RETHORST C, CARMODY T, TRIVEDI MH. Cytokines in the relationship between exercise treatment and anhedonia and changes in arousal in depressed subjects. 2014;75:48S.

173. BYRKA J. HMGB1 and IL-17 are the mediators linking redox signalling and inflammation in depression. 2013;23:S414.

180. PARK Y, BAEK D. Erythrocyte levels of N-3 polyunsaturated fatty acids and biomarkers of inflammation and oxidative stress in patients with and without depression. 2013;63:1150.

189. RULJANCIC N, MIHANOVIC M, BAKLIZA A, CEPELAK I. Serum levels of cytokines in depressed patients with or without suicidal behavior. 2011;49:S854.

194. GROER M, MURPHY R, HAZLETT M, PADGETT D, RADFORD A. High C-reactive protein levels in active duty soldiers are associated with depression, PTSD and combat exposure. 2012;26:S22.

197. RYBKA J, KEDZIORA-KORNAWSKA K, KUPCZYK D, KEDZIORA J. Redox imbalance activates high mobility group box protein 1 which modulates T cells phenotype and cytokine profile in depressed patients. the impact on glucocorticoids response. 2012;53:S78.

227. HENJE BLOM E, SERLACHIUS E, LEKANDER M, MOBARREZ F, INGVAR M. Elevated levels of IL-6 is related to clinical depression and anxiety in adolescent girls. 2011;25:S212-S3.

232. GRASSI-OLIVEIRA R, BRIETZKE E, PEZZI JC, et al. Differences in chemokine levels in individuals with recurrent major depression disorder with and without suicide ideation. 2011;69:178S.

233. ASCHBACHER K, EPEL ES, WOLKOWITZ OM, PRATHER AA, DHABHAR F. Interleukin-1 beta responses to acute stress are associated with increases in depressive symptoms one year later. 2011;69:97S.

234. BRIETZKE E, BAUER ME, TEIXEIRA AL, DARUY-FILHO L, LAFER B, GRASSI-OLIVEIRA R. Interleukin-6 and verbal memory in recurrent major depressive disorder. 2011;69:47S-8S.

240. DELLAGIOIA N, HANNESTAD J. Citalopram pre-treatment does not reduce endotoxin-induced depressive symptoms. 2010;67:242S.

251. CHANG HH, YANG YK, GEAN PW, CHEN PS. Raised C-reactive protein levels associated higher HbAc1 after antidepressant treatment in major depressive patients. 2010;13:72.

255. DANTZER R. Cytokine, Sickness Behavior, and Depression. 2009;29:247-64.

257. SEKIYAMA A, KASAHARA E, INOUE M, SEKIYAMA R, OKAMURA H. Loss of association between levels of interleukin (IL)-6 and IL-1β in plasma in major depressive disorder. 2009;65:233S-4S.

263. KIM YK, NA KS, SHIN KH, JUNG HY, CHOI SH, KIM JB. Cytokine imbalance in the pathophysiology of major depressive disorder. 2007;31:1044-53.

266. TSAO CW, LIN YS, CHEN CC, BAI CH, WU SR. Cytokines and serotonin transporter in patients with major depression. 2006;30:899-905.

270. JOZUKA H, JOZUKA E, TAKEUCHI S, NISHIKAZE O. Comparison of immunological and endocrinological markers associated with major depression. 2003;31:36-41.

280. LICINIO J, WONG ML. The role of inflammatory mediators in the biology of major depression: Central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. 1999;4:317-27.

286. MAES M. Increased serum interleukin-1-receptor-antagonist concentrations in major depression. 1995;36:29-36.

289. BARON DA, HARDIE T, BARON SH. Possible association of interleukin-2 treatment with depression and suicide. 1993;93:799-800.

305. BERMUDEZ CM. Clinical applications of peripheral markers of response in antidepressant treatment: Neurotrophins and cytokines. Revista Colombiana de Psiquiatria. 2012 Jan-Apr;41:165-84.

343. QI FS, JIA FJ, GUO XS, LI HF. Relationship of sleep disorder with plasma interleukin-2 and soluble interleukin-2 receptor in patients with depression. 2005;9:244-5.

367. MACIUKIEWICZ M, MARSHE VS, TIWARI AK, et al. Genetic variation in IL-1beta, IL-2, IL-6, TSPO and BDNF and response to duloxetine or placebo treatment in major depressive disorder. Pharmacogenomics. 2015 November;16:1919-29.

369. RETHORST CD, GREER TL, TOUPS MSP, BERNSTEIN I, CARMODY TJ, TRIVEDI MH. IL-1beta and BDNF are associated with improvement in hypersomnia but not insomnia following exercise in major depressive disorder. Translational Psychiatry. 2015 04 Aug;5 (no pagination).

371. RETHORST CD, GREER TL, TOUPS MS, BERNSTEIN I, CARMODY TJ, TRIVEDI MH. IL-1beta and BDNF are associated with improvement in hypersomnia but not insomnia following exercise in major depressive disorder. Translational psychiatry. 2015;5:e611.

380. PARK M, LUCKENBAUGH DA, NEWMAN LE, et al. Change in cytokine levels is not associated with antidepressant response to ketamine in patients with treatment resistant depression. Biological psychiatry. 2016 May;1:69S-70S.

381. GOLDSMITH DR, HAROON E, WOOLWINE BJ, et al. Inflammatory markers are associated with decreased psychomotor speed in patients with major depressive disorder. Biological psychiatry. 2016 May;1:8S-9S.

382. BAUNE B, AIR T, JAWAHAR C. Inflammation impacts on social cognition in major depressive disorder. Biological psychiatry. 2016 May;1:53S.

399. AL-HAKEIM HK, AL-RAMMAHI DA, AL-DUJAILI AH. IL-6, IL-18, sIL-2R, and TNFalpha proinflammatory markers in depression and schizophrenia patients who are free of overt inflammation. 2015;182:106-14.

408. DAHL J, ORMSTAD H, AASS HCD, et al. The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. 2014;45:77-86.

418. FORNASO M, MARTINO M, BATTAGLIA F, COLICCHIO S, PERUGI G. Increase in IL-6 levels among major depressive disorder patients after a 6-week treatment with duloxetine 60 mg/day: A preliminary observation. 2011;7:51-6.

425. HO PS, YEH YW, HUANG SY, LIANG CS. A shift toward T helper 2 responses and an increase in modulators of innate immunity in depressed patients treated with escitalopram. 2015;53:246-55.

435. KARLOVIC D, SERRETTI A, VRKIC N, MARTINAC M, MARCINKO D. Serum concentrations of CRP, IL-6, TNF-alpha and cortisol in major depressive disorder with melancholic or atypical features. Psychiatry Res. 2012 Jun 30;198:74-80.

