Accepted Manuscript

Human Group 2 innate lymphoid cells do not express the IL-5 receptor

Adam K.A. Wright, PhD, Cathryn Weston, PhD, Batika M.J. Rana, PhD, Christopher E. Brightling, PhD, FRCP, David J. Cousins, PhD

PII: S0091-6749(17)30749-2
DOI: 10.1016/j.jaci.2017.04.025
Reference: YMAI 12796

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 29 July 2016
Revised Date: 5 April 2017
Accepted Date: 12 April 2017

Please cite this article as: Wright AKA, Weston C, Rana BMJ, Brightling CE, Cousins DJ, Human Group 2 innate lymphoid cells do not express the IL-5 receptor, Journal of Allergy and Clinical Immunology (2017), doi: 10.1016/j.jaci.2017.04.025.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Human Group 2 innate lymphoid cells do not express the IL-5 receptor

Adam K.A. Wright PhDa*, Cathryn Weston PhDa*, Batika M.J. Rana PhDb,c, Christopher E. Brightling PhD, FRCPa,d#, David J. Cousins PhDa,b#

a Department of Infection, Immunity and Inflammation, University of Leicester, Leicestershire UK;
b MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London.
c MRC Laboratory of Molecular Biology, Cambridge.
d Institute of Lung Health, NIHR Leicester Respiratory Biomedical Unit, University Hospitals of Leicester NHS Trust, Leicestershire

*AW and CW contributed equally to this work
#CB and DC contributed equally to this work

Corresponding author: AKA Wright, adam.wright@le.ac.uk

Capsule summary: Group 2 innate lymphoid cells (ILC2s) are upstream regulators of IL-5-dependent eosinophil function in asthma. We’ve shown that ILC2s do not express the IL-5R and thus IL-5R-dependent therapeutic interventions (e.g. Benralizumab) are unlikely to be mediated directly on ILC2s.

Key words:
IL-5R\textalpha
Basophils
Eosinophils
Group 2 innate lymphoid cells
Benralizumab

Abbreviations:
IL-5 - Interleukin-5
IL-5R\textalpha – Interleukin-5 receptor \textalpha-subunit
ILC2s – Group 2 innate lymphoid cells
GMFI – geometric mean fluorescence intensity
SED – Super enhanced Dmax
Eosinophils, cardinal effector cells of type-2 inflammation, contribute to the clinical and immunopathological manifestations of asthma \(^1\) and COPD \(^2\) inflammatory endotypes. Eosinophil biology is governed by Interleukin (IL)-5, a cytokine that binds with high affinity to a specific IL-5 receptor \(\alpha\)-subunit (IL-5R\(\alpha\)) prior to forming a heterodimeric receptor complex with the \(\beta\)-subunit (IL-5R\(\beta\c\)). IL-5 signalling promotes differentiation, maturation and survival of eosinophil committed progenitors whilst acting on mature eosinophils to enhance their migratory potential and effector responses \(^4\). IL-5 signalling also promotes alternative splicing of the IL-5R\(\alpha\) gene to generate transmembrane forms of IL-5R\(\alpha\) \(^5\). Since the IL-5-IL-5R axis appears to be restricted to eosinophils and basophils (and their progenitors) \(^6\), therapeutic regulation of these cells through the neutralisation of circulating IL-5 (e.g. mepolizumab and reslizumab) \(^1\) or IL-5R\(\alpha\) ligation (e.g. Benralizumab) \(^1, 2\), have emerged as effective strategies to deplete blood, tissue and airway eosinophils and consequently reduce exacerbation rates and improve lung function \(^1\).

Basophils and Group 2 innate lymphoid cells (ILC2s) are important innate sources of type-2 cytokines, including IL-5, in response to epithelial derived cytokines such as IL-33 \(^7, 8\). Group 2 innate lymphoid cells (ILC2s), however, have emerged as central and critical innate co-ordinators of steady state eosinophilopoiesis and epithelial cell driven, type 2 immunopathology in asthma \(^8\). As an important upstream regulator of eosinophil function we asked whether ILC2s, like their basophil counterparts, express the IL-5R\(\alpha\) sub-unit since this may have important implications for our understanding of the role of the IL-5-IL-5R axis in disease and therapeutic targeting of these rare but important innate immune cells. Detailed methods are provided in the online repository.

ILC2s are rare innate lymphocytes that lack the T cell receptor complex and all known lineage markers but, similar to other type 2 cytokine producing cells such as Th\(2\) cells, eosinophils and basophils, express the type 2 prostaglandin D\(2\) receptor, DP2/CRTh2 (CD294) \(^9\). We defined blood ILC2s as cells with singlet, lymphocyte light scatter properties (Fig 1A-B), lineage (CD2, 3, 14, 16,
but CD294⁺ (Fig 1C). A large proportion of cells within this gate were basophils, (CD123⁺ cells in Fig 1D), however, CD294⁺, CD123⁻ ILC2s were present (Fig 1D and light scatter in E). Basophils displayed a higher level of CD125-PE staining than the ILC2s (Fig 1D) that could be blocked in the presence of rhIL-5 (Fig 1F), confirming the specificity of the antibody and basophil IL-5Rα expression. In contrast to basophils, there was no change in CD125-PE signal intensity when ILC2s were incubated with rhIL-5 indicating that there was no IL-5Rα expression on these cells (Fig 1F). To confirm the reproducibility of these findings, we recruited 6 control and 13 volunteers with asthma in each group (clinical details in Table E1 of the online repository) and measured IL-5Rα expression. The total mean (SD) % of ILC2s within the lymphocyte gate for both control and asthma groups were 0.1±0.1% and 0.03±0.03%, respectively (p=0.06, Mann Whitney). In total, combining asthma and control data sets, the basophil CD125 geometric mean fluorescence intensity (GMFI) (mean±SD) in the absence or presence of rhIL-5 was 1285±614 and 401±315 respectively, representing a significant reduction in GMFI (Fig 1G and I). In contrast, the ILC2 CD125 GMFI (mean±SD) in the absence or presence of rhIL-5 were 45±45 and 42±33, respectively (Fig 1H and I). In a subset of samples (n=3), where basophils and ILC2s could be detected in whole blood, data were qualitatively similar. There were no significant differences between the control and asthma subjects for any of the flow cytometric measurements obtained.

We next sought to confirm whether the IL-5Rα data was reflected at the RNA level using real-time PCR probes spanning the exon boundaries present within IL-5Rα subunit variants (Fig E1A). For this, ILC2s were isolated from 3 additional donors and cultured in the absence or presence of cytokines known to enhance survival (IL-2 and IL-7) and activate ILC2s (IL-25 and IL-33). RNA was isolated at 6 time points (Day 0, 1, 2, 4, 7 and 14) and converted into cDNA. Eosinophil cDNA was included as a positive control. The IL-5Rα transcripts were not detected in ILC2s at any time point, however, an increase in IL-5 mRNA was observed indicating that the culture conditions were sufficient to activate the cells (Fig E1 B and C).
Finally, using a similar approach to the blood analyses (Fig 1) and utilizing surgically removed lung
tissue from 7 subjects (Table E2) we asked whether tissue-derived ILC2s and basophils expressed IL-5R\(\alpha\). Tissue-derived basophils were defined as viable, CD45\(^{-}\)Lin\(\text{CD294}\)\(\text{CD123}\)\(\text{CD127}\) cells and
ILC2s as viable, CD45\(^{-}\)Lin\(\text{CD294}\)\(\text{CD123}\)\(\text{CD127}\) cells present within the singlet lymphocyte gate
(Fig 2A-E). Basophil CD125-PE GMFI (612±327 mean±SD) could be reversed in the presence of
rhIL-5 to a mean(±SD) of 317±91 (example in Fig 2F and cumulative data in 2H). Using the super
enhanced Dmax (SED) algorithm to compare basophil populations stained in the absence or presence
of IL-5 for each of the 7 donors, revealed that 71.1±4.2% (mean±SD) basophils were CD125 positive
(Fig 2I). In contrast, ILC2 CD125 GMFI (mean±SD) was significantly lower than basophils and
showed little change in the presence of rhIL-5 (190±42 and 145±49, respectively) (example in Fig 2G
and cumulative data in 2H). SED analysis of ILC2s stained in the absence or presence of rhIL-5 for
each of the 7 donors (Fig 2I) did not reveal a CD125 positive subset (mean±SD 3.3±0.89%). Data
from these 7 subjects consistently show that tissue-derived basophils express the IL-5R\(\alpha\) whereas
tissue-derived ILC2s do not (Fig 2H).

The strength(s) of this study lies in the fact that we have measured protein IL-5R\(\alpha\) subunit expression
in a rare critical regulator of type 2 inflammation, ILC2, and in the context of rhIL-5 mediated
receptor blockade/downregulation, rather than an isotype control which is less robust. The robustness
of our data using human peripheral blood (from asthmatic donors), ex vivo activated cells and lung
tissue cells diminishes the likelihood that IL-5R\(\alpha\) expressing ILC2s are present in asthmatic tissue.
Although it would be desirable to extend our blood and tissue observations to investigate whether
ILC2s in bronchial biopsies from asthmatics express IL-5R\(\alpha\) the paucity of tissue ILCs and the need
for multiple immunological markers to positively identify them severely limits this approach. These
results extend the list of cells\(^6\) that are known not to express the IL-5R\(\alpha\) subunit, specific for the
biological activities of IL-5. Moreover, we show that rare tissue derived basophils, like their blood
counterparts, express the IL-5R\(\alpha\). Our data suggest that the success of therapeutic interventions
targeting IL-5/R are unlikely to be mediated directly on ILC2s but may function via both eosinophils
and basophils.
Adam K.A. Wright
PhD*

Cathryn Weston PhD*,

Batika M.J. Rana PhDb,c,

Christopher E. Brightling PhD, FRCPa,d#

David J. Cousins PhDa,b#

From

a Department of Infection, Immunity and Inflammation, University of Leicester, Leicestershire UK;
b MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London.
c MRC Laboratory of Molecular Biology, Cambridge.
d Institute of Lung Health, NIHR Leicester Respiratory Biomedical Unit, University Hospitals of
Leicester NHS Trust, Leicestershire

*AW and CW contributed equally to this work
#CB and DC contributed equally to this work

Corresponding author: AKA Wright, adam.wright@le.ac.uk

Acknowledgements: This work was part funded by (for CEB) Airway Disease Predicting Outcomes
through Patient Specific Computational Modelling (AirPROM) project (funded through FP7 EU
grant), Wellcome Senior Fellowship, (for DJC) Medical Research Council (MRC) and Asthma UK
(Centre Grant: G1000758), from the NIHR Biomedical Research Centre based at Guy's and St
Thomas' NHS Foundation Trust and King's College London, an equipment grant from the Midlands
Asthma and Allergy Research Association (MAARA) and (for CEB and DJC) the National Institute
for Health Research (NIHR) Leicester Respiratory Biomedical Unit. BMJR was funded by an MRC
and Asthma UK PhD studentship. This paper presents independent research funded by the NIHR. The
views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the
Department of Health. The authors wish to thank all research participants for taking part in this study
and Tracy Thornton and Marcia Soares for their assistance with volunteer recruitment and data
collection. We also wish to thank Prof Andy Wardlaw, Paige Tongue, Malgorzata Rekas, Will
Monteiro, Dr Amanda Sutcliffe, Beverley Hargadon, Sarah Parker and Hilary Marshall for their assistance in the procurement and processing of lung tissue.

Conflict of interest: AKAW and CW do not have any potential conflict of interest. CEB has received consultancy fees and/or grants via his Institution from GSK, AZ, Medimmune, Novartis, Chiesi, Boehringer Ingelheim, Pfizer, Vectura, PreP, Theravance, and Roche/Genentech.
Figure 1 CD125 protein is absent on blood ILC2s. A, total PBMCs, singlets within boxed region. B, singlet light scatter with lymphocyte gate overlaid. C, lineage-, CD294+ cells were identified (boxed region) encompassing D, CD123+ basophils and CD123− ILC2s, in the upper and lower left quadrant, respectively with GMFI values. E, ILC2 light scatter properties are shown. F, Overlay of basophil and ILC2 CD125 stained cells in the absence (red) or presence (blue) of rhIL-5. G, basophil and H, ILC2 CD125 GMFI paired data (mean±SD) from 6 healthy (open) and 13 asthma (filled) volunteers, also shown in I, unpaired on the same axes. Statistical comparisons were made using a Wilcoxon matched-pairs signed rank test.

Figure 2 CD125 protein is absent on lung derived ILC2s. A, total lung tissue cells, singlets within boxed region. B, singlet light scatter properties with lymphocyte gate overlaid. C, viable CD45+ cells (boxed region). D, shows lineage− CD294+ cells (boxed region). E, ILC2s (CD123 CD127+) and basophils (CD123−CD127+) were identified. F, depicts basophil CD125 fluorescence and G, ILC2 CD125 fluorescence in the absence (red) or presence of rhIL-5 (blue). H, Collated basophil and ILC2 CD125 GMFI (mean±SD) data (n=7). I, Proportion of CD125+ basophils and ILC2s (calculated using SED), exemplar values given in F and G. Statistical comparisons were made using a Wilcoxon matched-pairs signed rank test.
References

A

B

C

D

E

F

G

H

I

MANUSCRIPT

ACCEPTED

MANUSCRIPT

ACCEPTED

MANUSCRIPT