Are non-communicable diseases chronically communicable: a role for the human microbiota?

Ali Abbasi

PII: S0306-9877(17)30069-5
DOI: http://dx.doi.org/10.1016/j.mehy.2017.06.002
Reference: YMEHY 8582

To appear in: Medical Hypotheses

Received Date: 20 January 2017
Accepted Date: 1 June 2017

Please cite this article as: A. Abbasi, Are non-communicable diseases chronically communicable: a role for the human microbiota?, Medical Hypotheses (2017), doi: http://dx.doi.org/10.1016/j.mehy.2017.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Are non-communicable diseases chronically communicable: a role for the human microbiota?

Ali Abbasi M.D., Ph.D.¹²

1. Department of Primary Care & Public Health Sciences, King’s College London, London, United Kingdom
2. Department of Epidemiology, University Medical Center Groningen, Groningen, the Netherlands

Correspondence to: Dr Ali Abbasi at the Department of Primary Care & Public Health Sciences, King’s College London, 3rd Floor, Addison House, Guy’s Campus, London, SE1 1UL, London, United Kingdom, or at ali.abbasi@kcl.ac.uk, tel: +44 (0)20 7848 6631.
There is increasing amount of information about the role of gut microbiome composition in communicable –or infectious diseases– and antibiotic resistance, but also how the human microbiota can be involved in chronic non-communicable diseases (NCDs) like diabetes and diabetes-related endophenotypes. (1) While much interest has recently been awakened that perturbations in gut microbiota are associated with the burden of antibiotic resistance (2), recent efforts investigating the potential causal effects or predictive value of information on the composition of microbiota, or their metabolites (e.g., Trimethylamine N-oxide (TMAO) in the circulation) or their functions (like changes in the gut-blood barrier (GBB) permeability) will open new avenues of research. (3-5)

Recently, experimental studies demonstrated how administration of Akkermansia muciniphila, one of the most abundant members of the human gut microbiota, to mice can prevent the development of obesity and associated complications. (3) In other words, pasteurization of A. muciniphila enhances its capacity to reduce insulin resistance and dyslipidemia in mice. (3) These findings were in line with previous evidence that microbiota transfer from adult male to female mice yielded in protection against diabetes development. (6) Moreover, there is evidence in human adults how taking metformin can influence the several microbial populations such as an increase in A. muciniphila. (7) As such evidence in human studies provides valuable insights into our understanding of metabolic disorders, it is time to re-think about the underlying host gene-environment and host-microbiome interactions to explore missing players and predictors for the prevention and treatment of non-communicable diseases.

So far, epidemiological observations or clinical trials have been mainly focused on genes, endophenotypes and the host gene-environment interactions. (8) Research studies in humans show that the host-microbiome communication is essential to maintain vital functions
of the healthy human over the life course. (1, 8) Therefore, the effect estimates (for human genes, biomarkers or interventions) obtained in the classical settings can be modified if one could take into account the transmission of human microbiota between people within a certain population. (1, 9, 10) Given the fact that microbiome traits are considered heritable and the trait associations tend to be small (8), complementary evidence from an integrative analysis of how the host gene-environment interaction can influence diversity and structure of the human microbiome and vice versa may find right matched pieces of the puzzle in these diseases.

Another aspect of research for microbiome-disease associations is to investigate whether additional information on the composition and structure of the human microbiota is of value to improve the risk prediction for NCDs. In this context, the performance of prediction models including classical risk factors and the utility of microbiome traits needs to be formally quantified using prognostic metrics and clinical reclassification. (11, 12). Few out of several studies on microbiota metabolites or functions have conducted a formal quantification to support predictive utility of these phenotypes for NCDs. (4, 5)

So, future lines of research need to focus on two hypotheses; human microbiota or a panel of microbiota-related phenotypes would improve risk prediction or be causally associated with NCDs. Such complementary strands of evidence may demonstrate if information about human microbiota can serve as prognostic markers for predicting clinical health outcomes and behavior; or as novel targets for new therapeutic and prevention strategies in clinical or public health practice.
Conflict of Interest Disclosures:

The author has no competing interests.

Funding/Support: This work was supported by the UK National Institutes for Health Research (NIHR) Health Services and Delivery Research programme. The views expressed are those of the author and not necessarily those of the UK National Health Service, NIHR, or the Department of Health (England).

Role of the Funder/Sponsor: The funders had no role in the preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
References:


