Distribution of Peanut Protein in School and Home Environments of Inner-City Children

William J. Sheehan, MD, Helen A. Brough, PhD, MRCPCH, Kerry Makinson, Msc, Carter R. Petty, MA, Gideon Lack, MD, FRCPCH, Wanda Phipatanakul, MD, MS

PII: S0091-6749(17)31018-7
DOI: 10.1016/j.jaci.2017.05.042
Reference: YMAI 12883

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 19 January 2017
Revised Date: 14 April 2017
Accepted Date: 10 May 2017

Please cite this article as: Sheehan WJ, Brough HA, Makinson K, Petty CR, Lack G, Phipatanakul W, Distribution of Peanut Protein in School and Home Environments of Inner-City Children, Journal of Allergy and Clinical Immunology (2017), doi: 10.1016/j.jaci.2017.05.042.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Title: Distribution of Peanut Protein in School and Home Environments of Inner-City Children

Authors: William J. Sheehan, MD, a,b Helen A. Brough, PhD, MRCPCH, c,d Kerry Makinson, Msc, c Carter R. Petty, MA, e Gideon Lack, MD, FRCPCH, c,d and Wanda Phipatanakul, MD, MS a,b

Affiliations:
a Boston Children’s Hospital, Division of Allergy and Immunology, Boston
b Harvard Medical School, Boston
c King’s College London, Guy’s Hospital, Department of Asthma, Allergy and Respiratory Science, London
d St. Thomas’ Hospital, Children’s Allergy Service, London
e Boston Children’s Hospital, Clinical Research Center

Corresponding Author:
Wanda Phipatanakul, MD, MS, Division of Allergy and Immunology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, Telephone: 617-355-6117, Fax: 617-730-0248
Email: wanda.phipatanakul@childrens.harvard.edu

Funding:
This study was supported by grants R01AI073964, R01AI073964-02S1, K24AI106822, and K23AI104780 from the National Institutes of Health. This work was also supported in part by the Boston Children’s Hospital Division of Immunology Clinical Research Advisory Group Research Grant.

Word count: 1,021

Capsule Summary:
Peanut protein was widely detectable in dust samples from school classrooms and cafeterias, with school levels higher than home levels, suggesting that schools may be an important place of exposure to food allergens in the environment.

Keywords: Peanut, Food Allergy, Schools, Environment, Dust, Inner-City, Children
To the Editor:

Recent research on peanut allergy development has focused on the importance of exposure to peanut protein in the environment. Peanut protein has been detected in vacuumed dust from homes of young children.\(^1\) Furthermore, early life exposure to peanut in household dust has been associated with an exposure-response increased risk of peanut sensitization that is more pronounced in children with eczema or filaggrin gene mutations.\(^2,3\) These studies have focused on home environments; however, little is known about peanut protein in school environments where children spend a great amount of time. This study evaluates the distribution of peanut protein in school environments and compares these findings with levels in corresponding homes of students.

The parent trial for this study was the School Inner City Asthma Study, a comprehensive evaluation of the impact of school-specific allergen exposures on student’s asthma while adjusting for home allergen exposures.\(^4\) The enrolled participants were children with asthma, aged 4-13 years, attending inner-city public schools in northeastern United States from 2008-2013. All schools in the study allowed students to bring and eat peanut-containing foods. Written informed consent was obtained from enrolled participants. The protocol was approved by the local institutional review board and the schools.

For environmental assessment in the study, settled dust from the school cafeterias and classrooms were collected during the academic year. School dust samples were obtained by research personnel using an Oreck XL (model BB870-AD) hand-held vacuum with a special dust collector (DACI lab, Johns Hopkins, Baltimore,
MD) fitted into the inlet hose using a standardized protocol. Vacuum sampling was performed in schools as previously described and demonstrated. In accordance with the protocol of the larger parent trial, one dust sample was also collected in the student participant’s bedroom utilizing a standardized protocol. To provide comparison groups for this smaller study, samples to be analyzed for peanut protein were randomly chosen from the following known groups: (1) school classrooms, (2) school cafeterias, (3) homes of subjects without peanut allergy, and (4) homes of subjects with peanut allergy.

Dust samples were sieved and the fine dust was extracted as previously described. Peanut protein in the dust was quantified using the Veratox polyclonal ELISA (Neogen, Lansing, MI) against whole peanut protein which has a lower limit of quantification (LLQ) of 0.5 micrograms per gram of dust (µg/g). This method of analyzing whole peanut protein has been validated in measuring the amount of whole peanut protein in foods, dust, and wipe samples. Researchers performing the ELISA were blinded to the location source of the dust samples. Comparisons between the independent groups were made using the Wilcoxon rank-sum test. Statistical computations were performed using SPSS (23.0) software (IBM Corp., Armonk, NY). All tests were two-tailed and alpha was set at 0.05.

In total, 146 vacuumed dust samples were analyzed for the presence of whole peanut protein including 87 samples from 18 schools and 59 samples from 59 homes of students attending those schools. Of the school samples, 100% had detectable peanut protein with a median value of 45.3 µg/g (range 1.4 – 468.0 µg/g). There was no difference in the levels of peanut protein from the 26 samples analyzed from cafeteria
collected dust as compared to the 61 samples analyzed from classroom collected dust
(median 39.1 µg/g vs. 46.3 µg/g, p=0.941, Figure 1).

In the students’ homes, 97% of the bedroom vacuumed dust samples had
detectable peanut protein with a median value of 25.2 µg/g (range <LLQ – 404.3 µg/g).
The 16 dust samples from homes of students with peanut allergy had significantly less
peanut protein as compared to the 43 samples from homes of students without peanut
allergy (median 4.0 µg/g vs. 29.2 µg/g, p=0.005).

Peanut dust levels in school samples were higher than peanut dust levels in
home samples overall (median 45.3 µg/g vs. 25.2 µg/g, p<0.001) and also when
individually comparing only cafeteria dust samples or only classroom dust samples to
home dust samples as seen in Figure 1. After excluding samples from the homes of
peanut allergic children, the difference in peanut protein between schools and homes of
children without peanut allergy did not reach statistical significance (median 45.3 µg/g
vs. 29.2 µg/g, p=0.075); this is likely due to small sample size as peanut levels were still
over 50% greater in schools.

These findings demonstrate that peanut protein was widely detectable in dust
samples obtained from both classrooms and cafeterias of schools, with peanut in school
dust higher than levels in students’ homes. This suggests that schools may play an
important role in exposure to environmental peanut allergens.

Within the schools, it was not unexpected to find peanut protein in the samples
collected from cafeterias; however, it was surprising that peanut was detectable in
similar levels in the classrooms. All of the evaluated schools had cafeterias where all
meals where eaten. While snacks may have been eaten in classrooms, it is also
possible that peanut protein was transferred within the school on hands, clothing, or shoes. It has been documented that peanut protein can be resistant to usual cleaning methods, thus being easy to spread in the environment.\(^8\)

It was interesting that peanut levels in the schools were significantly higher than in homes. This may be expected when comparing school cafeterias to home bedrooms; however, we also found that peanut levels in classroom dust were higher than levels in bedrooms; two locations where meals would not be regularly eaten. The levels of peanut protein detected in our schools were at least comparable, if not greater than, previously reported levels in infant’s bedrooms and play-areas from homes in the United Kingdom.\(^1,8\) Perry et al. reported that peanut allergen Ara h 1, *Arachis hypogaea* allergen 1, was not widely detectable in schools by monoclonal ELISA testing.\(^9\) Our study did not measure individual peanut allergens, but instead evaluated for the presence of whole peanut protein via a polyclonal peanut ELISA that has previously been associated with clinical outcomes in children with atopic dermatitis or filaggrin gene mutations.\(^2,3\) Given the previous findings in homes, we speculate that the environmental peanut exposure in schools may also be important for at risk children. Further evaluation of the clinical implications of these school-based exposures is warranted.
Figure 1 Legend: Whole Peanut Protein Detected from Vacuumed Dust Samples in Schools and Homes. Data from homes include a combination of homes of children with and without peanut allergy. Further delineation of these 59 homes demonstrates that samples from the 16 homes of students with peanut allergy had significantly less peanut protein as compared to the samples from the 43 homes of students without peanut allergy (median 4.0 µg/g vs. 29.2 µg/g, p=0.005).
REFERENCES:


p values = Wilcoxon rank-sum test

- School (Cafeterias) n=26
- School (Classrooms) n=61
- Home (Bedrooms) n=59

p = 0.016
p = 0.941
p = 0.003