Endoplasmic reticulum (ER) stress and cAMP/PKA pathway mediated Zn-induced hepatic lipolysis

Yu–Feng Song a, Christer Hogstrand b, Chuan-Chuan Wei a, Kun Wu a, Ya–Xiong Pan a,

Zhi Luo a,c,*

a Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China

b Diabetes and Nutritional Sciences Division, School of Medicine, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK

c Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China

*Corresponding author. Prof. Zhi Luo, Tel.: +86-27-8728-2113; Fax: +86-27-8728-2114; Email address: luozhi99@mail.hzau.edu.cn; luozhi99@aliyun.com (Z. Luo).
Abstract

The present study was performed to determine the effect of Zn exposure influencing endoplasmic reticulum (ER) stress, explore the underlying molecular mechanism of Zn-induced hepatic lipolysis in a fish species of significance for aquaculture, yellow catfish *Pelteobagrus fulvidraco*. We found that waterborne Zn exposure evoked ER stress and unfolded protein response (UPR), and activated cAMP/PKA pathway, and up-regulated hepatic lipolysis. The increase in ER stress and lipolysis were associated with activation of cAMP/PKA signaling pathway. Zn also induced an increase in intracellular Ca$^{2+}$ level, which could be partially prevented by dantrolene (RyR receptor inhibitor) and 2-APB (IP3 receptor inhibitor), demonstrating that the disturbed Ca$^{2+}$ homeostasis in ER contributed to ER stress and dysregulation of lipolysis. Inhibition of ER stress by PBA attenuated UPR, inhibited the activation of cAMP/PKA pathway and resulted in down-regulation of lipolysis. Inhibition of protein kinase RNA-activated-like ER kinase (PERK) by GSK2656157 and inositol-requiring enzyme (IRE) by STF-083010 differentially influenced Zn-induced changes of lipolytic metabolism, indicating that PERK and IRE pathways played different regulatory roles in Zn-induced lipolysis. Inhibition of PKA by H89 blocked the Zn-induced activation of cAMP/PKA pathway with a concomitant inhibition of ER stress-mediated lipolysis. Taken together, our findings highlight the importance of the ER stress–cAMP/PKA axis in Zn-induced lipolysis, which provides new insights into Zn toxicology in fish and probably in other vertebrates.

Capsule abstract

Zn exposure evoked ER stress and dysregulation of Ca$^{2+}$ homeostasis, and then activated cAMP/PKA pathway and resulted in hepatic lipolysis.
Graphical abstracts

Highlights

• ER stress contributed to Zn-evoked lipolysis.

• Dysregulation of lipolytic process was partially attributable to the release of Ca^{2+} from the ER.

• PERK–eIF2α and IRE1α–XBP1 pathways played different roles in Zn-induced lipolysis.

• cAMP/PKA pathway mediated Zn-induced lipolysis after ER stress.

Keywords: Zn; Lipid metabolism; Endoplasmic reticulum stress; Unfolded protein response; cAMP/PKA pathway

1. Introduction

The endoplasmic reticulum (ER) is a multifunctional intracellular organelle that controls protein quality and is responsible for xenobiotic detoxification and Ca^{2+} homeostasis (Biwer & Isakson, 2016). Disruption in ER homeostasis creates a state defined as ER stress, and initiates a complex signaling network called as the unfolded protein response (UPR) (Volmer & Ron, 2015). Many environmental and physiological insults can disturb ER homeostasis and activate UPR.
(Han and Kaufman, 2016). UPR is an integrated intracellular signaling pathway that induces translational inhibition followed by upregulation of ER-resident chaperones, such as GRP78/BiP, GRP94, and CRT (Volmer & Ron, 2015). In addition, the UPR is mediated by three pathways, the PERK-eIF2α pathway, the IRE1α-XBP1 pathway, and the activating transcription factor 6 (ATF6) pathway (Wang & Kaufman, 2012). Each pathway has different signaling components and culminates in transcriptional regulation of different gene expression during ER stress (Bozaykut et al., 2016; Wang & Kaufman, 2012). On the other hand, as the most important intracellular calcium store, the ER plays a key role in intracellular calcium homeostasis (Biwer & Isakson, 2016). Ca²⁺ release from ER stores is mediated via the inositol 1,4,5-triphosphate (InsP3) receptor (Ferreiro et al., 2004) and the ryanodine receptor (RyR) (Taylor & Laude, 2002). Disturbance of intracellular Ca²⁺ homeostasis triggers the ER stress response (Michalak et al., 2002). Moreover, the lumenal and/or cytoplasmic side of ER membrane is the site of triglyceride (TG) synthesis and nascent lipid droplet formation. Several evidences indicated that ER stress and UPR regulated hepatic lipid metabolism via lipogenesis at transcriptional levels in mammals (Basseri & Austin, 2011; Zhang et al., 2012). In fish, our recent studies also suggested that ER stress and UPR could control hepatic lipogenic metabolism by activating SREBP-1c (Song et al., 2016a,b).

TG is an essential source of energy for many tissues, and TG lipolysis produces glycerol and free fatty acids (FFA) (Londos et al., 1999). The regulation of lipolysis is complex, and many enzymes and signaling pathways take part in the hydrolysis of TG. These lipolytic enzymes included hepatic lipase (HL), adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MGL) (Fredrikson et al., 1986; Kim et al., 2016). One of the predominant signaling pathway that activates lipolysis is the cyclic AMP (cAMP) dependent
pathway. Lipolytic stimuli increases lipolysis by activating adenylyl cyclase (ADCY) and raising intracellular levels of cAMP, with resultant activation of cAMP-dependent protein kinase (PKA) (Larsson et al., 2016). Studies also suggested that ER stress could increase lipolysis through activation of the cAMP/PKA pathway (Deng et al., 2012). At present, although the role and mechanism of ER stress and UPR in hepatic lipogenesis have been explored in mammals (Basseri & Austin, 2011; Gentile et al., 2011), the mechanisms of ER stress accelerating lipolysis remained unknown (Brasaemle & Wolins, 2012). In fish, to our best knowledge, no studies are conducted to elucidate the potential role of the ER stress and UPR in the modulation of the lipolysis.

Zinc (Zn) is an essential micronutrient required for numerous important biological functions, including enzymatic activity, protein structure and signaling (Hogstrand, 2012). However, when present in excess amounts, it can exert adverse effects (Zheng et al., 2013). In humans, Zn supplementation affects lipid metabolism (Ranasinghe et al., 2015). Our recent studies indicated that waterborne Zn exposure can induce lipid accumulation through improvement of lipogenesis in yellow catfish Pelteobagrus fulvidraco, an omnivorous freshwater fish (Zheng et al., 2013). In contrast, in javelin goby Synechogobius hasta, a carnivorous fish species, waterborne Zn exposure decreased hepatic lipid deposition (Huang et al., 2016). Moreover, even in the same fish species, differential effects on hepatic lipid deposition and metabolism were found between chronic and acute Zn exposure, and also between waterborne and dietborne Zn exposure (Zheng et al., 2013; 2015). Thus, it seems that effect of Zn on lipid deposition and metabolism might be complex, and many mechanisms may be involved in the process. Accordingly, it is important to investigate the effects and mechanism of Zn exposure on lipolysis in fish. To this end, in the present study, the effect and mechanism of Zn-induced lipolysis were investigated, and the
potential roles of ER stress, dysregulation of Ca2+ homeostasis and cAMP/PKA pathway in this processes was also determined. The results will be beneficial to elucidate the importance of the ER stress–cAMP/PKA axis in Zn-induced lipolysis, which provides new insights into Zn toxicology in fish and probably in other vertebrates.

2. Materials and methods

2.1. Drug treatment

The stock solution of ZnSO\textsubscript{4}·7H\textsubscript{2}O was prepared to a concentration of 1 M with sterile double-distilled water. 2-APB, dantrolene, PBA, GSK2656157, STF-083010 and H89 were dissolved in DMSO. All the inhibitors used in our trial were selected according to other studies: 2-APB (inhibitors of the ER Ca2+-release channels IP3 receptors, Gerasimenko et al., 2010), dantrolene (inhibitors of the ER Ca2+-release channels RyR receptors, Ferreiro et al., 2004), PBA (inhibitor of ER stress, Erbay et al., 2009; Song et al., 2016b), GSK2656157 (inhibitor against the PERK pathway, Atkins et al., 2013; Axten et al., 2013), STF-083010 (inhibitor against the IRE pathway, Tufanli et al., 2017; Tang et al., 2014) and H 89 (inhibitor against PKA pathway, Chijiwa et al., 1990). The concentrations of 2-APB (50 μM), dantrolene (30 μM), PBA (100 μM), GSK2656157 (10 μM), STF-083010 (50 μM) and H 89 (30 μM) were selected according to our pilot experiment in yellow catfish (Song et al., 2016b) and studies in mammals (Atkins et al., 2013). The maximal DMSO concentration had no discernible effect on cell viability and other biological parameters. The Zn concentrations (30 μM) in the \textit{in vitro} experiment were used based on IC50 of Zn obtained from our earlier studies (unpublished data).

2.2. Experimental treatments

Four experiments were performed. We assured that the experiments followed the guidelines...
of Institutional Animal Care and Use Committee (IACUC) of Huazhong Agricultural University, Wuhan of China.

2.2.1 Exp. 1: investigating effects of waterborne Zn exposure on hepatic lipolysis and ER stress in vivo

Yellow catfish maintenance and Zn exposure were carried out in semi-static aquarium system according to our published protocol (Song et al., 2016b; Zheng et al., 2013). Briefly, 216 uniform-sized fish (mean weight: 8.54 ± 0.36 g, mean ± SEM) were stocked in 9 fiberglass tanks (300-l in water volume), 24 fish per tank. They were exposed three different Zn concentrations, three replicates for each Zn concentration (zero, 0.25 , and 0.5 mg Zn/l, corresponding to 0, 2.5 and 5% of the 96 h LC50 of Zn for P. fulvidraco, Zheng et al., 2013). The fish were fed twice daily with commercial diets (Zn content is 17.45 mg/kg diet). During the experiment, measured waterborne Zn concentrations from three treatments were 0.007 ± 0.001, 0.253 ± 0.004, and 0.514 ± 0.070 mg Zn/l, respectively. The experiment continued for 56 days and sampling occurred on day 28 and day 56, respectively.

2.3.2. Exp. 2: investigating the involvement of the Ca^{2+} release from ER in Zn-induced ER stress in vitro

Hepatocytes were isolated from P. fulvidraco liver according to our recent studies (Zhuo et al., 2014; Song et al., 2015). Ca^{2+} measurement was performed according to the methods described in our studies (Song et al., 2016a,b). Hepatocytes were stained with 5 μM Fluo-4/AM in HBSS for 30 min at 28 °C after pretreated with 2-APB, or dantrolene for 2 h.

2.3.3. Exp. 3: Exploring the potential role and mechanism of ER stress and UPR in Zn-induced lipolysis in vitro
The primary hepatocytes were plated into 25 cm² flasks at a concentration of 2 × 10⁵ cells/ml and incubated with M199 medium containing 1 mmol/l L-glutamine, 5% (v/v) FBS, penicillin (100 IU/ml) and streptomycin (100 µg/ml), at 28 °C in the humidified air containing 5% CO₂. For signaling pathway verification experiment, eight groups were designed: control (containing 0.1% DMSO), PBA (100 µM), GSK2656157 (10 µM), STF-083010 (50 µM), Zn (30 µM), PBA (100 µM) + Zn (30 µM), GSK2656157 (10 µM) + Zn (30 µM), STF-083010 (50 µM) + Zn (30 µM), respectively. Each treatment was conducted in triplicate. The inhibitors (PBA, GSK2656157 and STF-083010) were added 2 h prior to the addition of Zn. The cells were gathered for the following analysis after 18 h.

2.3.4. Exp. 4: investigating the potential role of cAMP/PKA pathway in Zn-induced lipolysis

For the H89 treatment experiment, four groups were designed as follows: control (containing 0.1% DMSO), H89 (30 µM), Zn (30 µM), H89 (30 µM) + Zn (30 µM), respectively. Each treatment was performed in triplicate. H89 was added 2 h prior to the addition of Zn. The cells were gathered for the following analysis after 18 h.

2.3. Sample analysis

2.3.1. Ultrastructural observation and determination of Zn, TG and glycerol contents, and lipase activity

Ultrastructural analyses were performed according to our recent studies (Song et al., 2013; 2014). Zn content was assayed with the inductively coupled plasma atomic emission spectrometry (ICP-AES) (Song et al., 2014). TG and glycerol were determined following the method of Song et al. (2015). Analysis of lipase activity followed the method described in Ren et al. (2011).
2.3.2. Assay of cAMP and PKA levels, and HSL and ATGL activities

cAMP and PKA levels was performed according to the methods described previously (Newton et al., 2011), using the direct cAMP and PKA ELISA kit (Enzo Life Sciences). This assay of HSL was performed according to Frayn et al. (1993) and Reynisdottir et al. (1997). ATGL activity followed the method of Basu et al. (2011).

2.3.3. Confocal fluorescence microscopic \([Ca^{2+}]_i\) measurement

The \([Ca^{2+}]_i\) imaging acquisition was performed as described in Gazarini et al. (2003) and our studies (Song et al., 2016a, b). Experiments were performed with at least three different cell preparations, and 15–20 cells were monitored in each experiment.

2.3.4. mRNA level determination by real-time Q-PCR

Analyses on gene transcript levels were conducted by quantitative real-time PCR (RT-qPCR) method described in our studies (Zheng et al., 2013; Song et al., 2016a, b). The primer sequences used in this analysis are given in Supplementary Table 1. A set of eight housekeeping genes (β-actin, GAPDH, EF1A, 18S rRNA, HPRT, B2M, TUBA and RPL17) were selected from our transcriptome database in order to test their transcription stability. Our pilot experiment indicated that β-actin and TUBA (β-actin and TUBA, M=0.25) showed the most stable level of expression across the experimental conditions as suggested by geNorm (Vandesompele et al., 2002). Thus, the relative expression levels were normalized to the geometric mean of the combination of two genes and calculated using the \(2^{-ΔΔCt}\) method (Livak & Schmittgen, 2001).

2.4. Statistical analysis

All data were expressed as mean ± standard error of means (SEM). The normality of data
distribution and the homogeneity of variances were analyzed by the Kolmogorov–Smirnov test and Bartlett’s test, respectively. Then, data were subjected to one-way ANOVA and Tukey’s multiple range test using SPSS 17.0 software. P < 0.05 was considered significant. Differences between day 28 and day 56 for the same Zn concentrations in vivo, and between inhibitors groups and Zn groups in vitro were analyzed by Student’s T-test for independent samples.

3. Results

3.1. Chronic Zn exposure evokes ER stress and UPR, and activates lipolysis in vivo

Waterborne Zn exposure resulted in a dose-dependent increase in liver Zn concentration, but there were no effects on WG, SGR, survival, CF or VSI (Supplementary Table 2).

To study if Zn evoked ER stress and UPR, we first examined hepatic ultrastructural alteration in P. fulvidraco following Zn exposure. Chronic Zn exposure caused the ER swelling, which increased with waterborne Zn levels and with increasing exposure time (Fig. 1A). The mRNA levels of ER stress marker genes (GRP78/BiP, GRP94 and CRT) were significantly up-regulated in the Zn-exposed group, indicating the activation of ER stress (Fig. 1B and C). Zn exposure also significantly up-regulated mRNA levels of hepatic PERK, eIF2α, IRE-1α and XBP-1, but not ATF-6 mRNA level. The expression of genes involved in ER stress and UPR were higher on day 56 than those on day 28.

In the present study, Zn exposure significantly up-regulated mRNA levels of the tested genes, except for HSL1 and MGL on day 28 and for HSL1 on day 56 (Fig. 2A and B). At the protein levels, cAMP and PKA tended to increase with increasing Zn concentration although the difference in PKA level was not statistically significant on day 28 (Fig. 2C). At the enzyme levels, lipase activities on both day 28 and day 56, and HSL and ATGL activities on day 56
increased with increasing Zn levels (Fig. 2D).

3.2. The Zn-induced increases in intracellular Ca\(^{2+}\) concentration were attributable to the release of Ca\(^{2+}\) from the ER

Compared to the control, Zn addition in the incubation medium markedly increased the intracellular Ca\(^{2+}\) concentration (Fig. 3A). Compared to single Zn incubation, 2-APB, the inhibitor of IP3 receptor, reduced the [Ca\(^{2+}\)] to about 75% (Fig. 3B). Dantrolene, which inhibits RyR, reduced the intracellular Ca\(^{2+}\) concentration to about 60% (Fig. 3C, D).

3.3. Two distinct UPR pathways (PERK–eIF2\(\alpha\) and IRE1\(\alpha\)–XBP1) show differential effects on Zn-induced lipolysis in vitro

The chemical ER chaperone, 4-phenylbutyrate (PBA) was used to confirm the potential role of ER stress and UPR in Zn-induced lipolysis. PBA markedly attenuated the Zn-induced up-regulation of gene expression involved in ER stress, UPR (GRP78/BiP, GRP94, CRT, PERK and eIF2\(\alpha\)), and lipolysis (ADCY5, PKA, HSL2 and MGL) (Fig. S1A and B). At the same time, PBA also significantly attenuated the Zn-evoked elevation of cAMP and PKA levels, lipase and HSL activities, and glycerol contents (Supplementary Fig. IC, D and E). Compared to single Zn group, Zn and PBA co-incubation significantly increased TG contents (Supplementary Fig. IE).

GSK2656157 markedly alleviated the Zn-induced elevation of mRNA expression of GRP78/BiP, PERK, eIF2\(\alpha\), ADCY5, PKA and MGL (Fig. S2A and B). GSK2656157 also significantly attenuated the Zn-induced increase of cAMP and PKA levels, activities of lipase and ATGL, and glycerol contents, indicating the PERK–eIF2\(\alpha\) involved Zn-induced lipolysis (Fig. S2C, D and E). STF-083010 significantly attenuated the Zn-induced elevation of mRNA expression of GRP78/BiP, GRP94, CRT, IRE1\(\alpha\), XBP1, HSL1, HSL2 and ATGL (Fig. 4A and
B). However, unlike GSK2656157, STF-083010 did not significantly influence the Zn-induced up-regulation of cAMP and PKA levels, and activities of lipase, HSL and ATGL, and TG and glycerol contents (Fig. 4C, D and E). Interestingly, compared with the Zn + STF-083010 group, the Zn + GSK2656157 group significantly down-regulated cAMP level, and lipase, HSL and ATGL activities, and glycerol content (Fig. 4C, D and E).

3.3. The activation of cAMP/PKA signaling pathway is involved in Zn-induced hepatic lipolysis in vitro

To determine the involvement of cAMP/PKA pathway activation in Zn-induced lipolysis, primary hepatocytes from *P. fulvidraco* were pretreated with H 89 (an inhibitor against the PKA pathway) and then with Zn exposure. Compared to the Zn alone treatment, pretreatment of H 89 markedly attenuated the Zn-induced increase of mRNA expression of GRP78/BiP, ADCY5, PKA, HSL1, HSL2, ATGL and MGL (Fig. 5A and B). Furthermore, H 89 also significantly attenuated the Zn-induced elevation of cAMP and PKA levels, and lipase, HSL and ATGL activities, and glycerol contents (Fig. 5C, D and E).

4. Discussion

Lipid metabolism is sensitive to changes in Zn status in fish as well as in humans (Ranashinghe et al., 2015; Zheng et al., 2010, 2013). The present study, for the first time, explored the mechanism into Zn-induced lipolysis and provided evidence that ER stress and UPR mediated the Zn-induced hepatic lipolysis via cAMP/PKA pathway. Furthermore, using the inhibitors of UPR pathways, we also revealed the differential mechanisms of two UPR pathways (PERK–eIF2α and IRE1α–XBP1) on Zn-induced lipolysis in fish.
Our study indicated that waterborne Zn exposure activated ER stress and the UPR signaling pathway in liver of yellow catfish. First, Zn exposure significantly up-regulated hepatic mRNA expression of GRP78/BiP, GRP94 and CRT, in yellow catfish. Second, two UPR pathways, the PERK–eIF2α pathway and the IRE1α–XBPI pathway were activated by Zn exposure. A similar activation of ER stress and UPR were also been found in P. fulvidraco exposed to Cu (Song et al., 2016b). Liu et al. (2006) also indicated that CdCl2 exposure elevated the mRNA levels of Grp78 and eIF2α in LLC-PK1 cells. Qian & Tiffany-Castiglioni (2003) found that Grp78, IRE1 and ATF6 mRNA levels were upregulated by Pb exposure in the mammalian nerve cell, and IRE1/ATF6 and/or IRE1/JNK are the potential pathways during the process. Furthermore, Chen et al. (2015) demonstrated that Cd toxicity induced dramatic ER stress and may inhibit protein kinase B (AKT)/mTOR (mammalian target of rapamycin) pathway, which also play a central role in regulating lipolysis (Lamming et al., 2013). UPR pathways were activated to reduce the ER load of unfolded proteins under ER stress (Ron & Walter, 2007), which will in turn influence lipid metabolism (Oyadomari et al., 2008; Lee & Glimcher, 2009; Song et al., 2016a, b). We found that the expression of genes involved in ER stress in P. fulvidraco was higher on day 56 than on day 28, meaning the time-dependent effect on ER stress. Similar pattern was also observed in liver of P. fulvidraco following Cu exposure (Song et al., 2016b).

ER chaperones require high concentration of Ca$^{2+}$ for their activities. Accordingly, strong modification in Ca$^{2+}$ homeostasis can lead to ER stress (Xu et al., 2005). Here, the intracellular Ca$^{2+}$ concentration significantly increased after Zn exposure. Similar observation was also obtained in McNulty & Taylor (1999) and Song et al. (2016b). Moreover, dantrolene or 2-APB significantly attenuated the intracellular Ca$^{2+}$ elevation induced by Zn, suggesting the increase of intracellular Ca$^{2+}$ level induced by Zn were attributable to the release of Ca$^{2+}$ from the ER. Thus,
our present study indicated that Zn-evoked ER stress, at least in part, via Ca$^{2+}$ release from ER.

One of objectives of the current study was to explore the mechanism of waterborne Zn exposure inducing lipolysis. To this end, some lipolytic enzymes were determined. ATGL catalyzes the initial step of lipolysis, converting TGs to diacylglycerols (DGs); HSL is mainly responsible for the hydrolysis of DGs to monoacylglycerols (MGs) and MG lipase (MGL) hydrolyzes MGs (Zechner et al., 2012). Our current study found the activities and/or expression level of these enzymes were significantly up-regulated in liver of P. fulvidraco exposed to Zn, indicating the activation of lipolysis. To our best knowledge, at present, little information is available about the role of Zn in lipolysis, which made comparison rather difficult. In our earlier studies, Zheng et al. (2015) found waterborne Zn exposures significantly upregulated ATGL mRNA levels in muscle of P. fulvidraco, which implied the potential role of Zn in lipolysis in fish. Fatty acids generated by lipolysis within the ER bilayer can serve as ligands for PPARα activation and as substrates for mitochondrial β-oxidation (Erickson et al., 2013). Moreover, the current study also indicated the involvement of ER stress in Zn-induced activation of lipolysis in P. fulvidraco since PBA, the inhibitor of ER stress, markedly attenuated the Zn-induced up-regulation of gene expression involved in lipolysis (ADCY5, PKA, HSL2 and MGL), and lipase and HSL activities. Similarly, Deng et al. (2012) found ER stress involved lipolysis through up-regulation of GRP78 and activation of phosphorylation status of PERK and eIF2α in rat adipocytes. In the current study, 4-PBA markedly attenuated the Zn-induced up-regulation of GRP78/Bip and GRP94, and PERK and eIF2α, in agreement with our recent study on the effect of 4-PBA on Cu-induced activation of ER stress in P. fulvidraco (Song et al., 2016b). Taken together, these results suggest that ER stress and the UPR pathway were involved the activation of Zn-induced lipolysis.
The mechanisms into activation of lipolysis by ER stress may be multifactorial. Studies suggested that cAMP and PKA are the major signals which regulate lipolysis (Londos et al., 1999). Deng et al. (2012) pointed out that the lipolytic effect of ER stress occurred with elevated cAMP production and PKA activity, and inhibition of PKA attenuated the lipolysis. This mechanism implicates the coupling of hormone receptors in the plasma membrane to a Gs family of GTP-binding proteins. The guanine nucleotide-binding protein G(s) subunit alpha (GANS) stimulates an ADCY, which produces cAMP. The resulting increase in intracellular cAMP levels leads to the activation of PKA (Larsson et al., 2016). PKA further influences the key enzyme that catalyzes TG and diglycerides breakdown, producing the subsequent release of FFA and glycerol. Intracellular TG undergoes lipolysis via the action of three major lipases: ATGL, HSL and monoacylglycerol lipase (MGL). cAMP reduced the levels of HSL mRNA expression and lipase activity via independent mechanisms, suggesting that sustained activation of PKA pathways exerts a negative control on HSL mRNA expression (Plee-Gautier et al., 1996). In the present study, Zn exposure increased the levels of cAMP and PKA, indicating the activation of cAMP/PKA signaling pathway. Intracellular cyclic AMP increase activates lipolysis while inhibition of lipolysis is associated with the reduction of cAMP levels (Lafontan & Langin, 2009). Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis (Deng et al., 2012). Waterborne Zn exposure up-regulated mRNA expression of GANS, ADCY and PKA, which further supported the notion. Since Zn exposure activated cAMP/PKA signaling pathway in liver of *P. fulvidraco*, we next examined whether cAMP/PKA signaling pathway played a role in Zn-induced lipolysis. The involvement of PKA was further evidenced by the inhibitor H89, which suppressed the Zn induced increase in lipolysis. In the current study, H89, inhibitor of cAMP/PKA pathway, significantly blocked the Zn-induced lipolysis,
suggesting that cAMP/PKA activation was upstream of ER stress which mediated Zn-induced lipolysis. Similarly, Deng et al. (2012) suggested that the activation of cAMP/PKA is a major signaling event triggering the lipolytic cascade, and PKA inhibition by H89 inhibited the lipolysis. This protective effect was attenuated on PKA inhibition, which implicated an involvement of cAMP/PKA signals in modulating the UPR during ER stress, as suggested by Yusta et al. (2006) and Cunha et al. (2009). Therefore, these findings suggest that cAMP/PKA activation was involved Zn-induced lipolysis metabolism in *P. fulvidraco*.

Having determined the role of ER stress in Zn-induced lipolysis, we next explored the mechanisms underlying UPR pathways mediating Zn-induced lipolysis. Our current study demonstrated that GSK2656157 significantly blocked the Zn-induced activation of PERK–eIF2α pathway, in partial agreement with other studies (Gu et al., 2015; Jia et al., 2015). Most importantly, the present study indicated that blocking of PERK–eIF2α signaling was sufficient to inhibit the activation of cAMP/PKA pathway and to attenuate Zn-induced lipolysis. Similarly, Oyadomari et al. (2008) found that activation of the PERK pathway regulated lipid metabolism in the liver of mice. However, contrary to the PERK–eIF2α pathway, STF-083010 showed no markedly inhibitory effect on Zn-induced activation of cAMP/PKA pathway and lipolysis at enzymatic levels, and on contents of TG and glycerol in primary hepatocytes of *P. fulvidraco*. These findings implied that PERK–eIF2α and the IRE1α–XBPl pathways played different roles in Zn-induced lipolysis. Similarly, Lakshmanan et al. (2013) suggested that the activation of PERK pathway are the major determinant for the ER stress-mediated metabolic dysfunction, rather than the IRE-1α-XBP1 pathway. Other studies indicated the differential effects and mechanisms of three UPR branches on regulating cell function and metabolism (Bobrovnikova-Marjon et al., 2008; Miyake et al., 2016). Indeed, the significant different effects
of GSK2656157 and STF-083010 on Zn-induced activation of cAMP/PKA pathway and lipolysis at enzymatic levels were also found in our present study, further supporting the above-mentioned notion.

5. Conclusions

Our study clearly indicated that Zn exposure evoked ER stress and disturbed Ca\(^{2+}\) homeostasis. cAMP/PKA pathway mediated Zn-induced ER stress which in turn led lipolysis. Two UPR pathways (PERK–eIF2\(\alpha\) and IRE1\(\alpha\)–XBP1 pathway) played different roles in regulating Zn-induced lipolysis. These findings highlight the importance of the ER stress–cAMP/PKA axis in the regulation of lipolysis under Zn exposure, and provide new insights into Zn toxicology in fish and probably in other vertebrates.

Conflict Of Interest

The authors declare that they have no conflicts of interest with the contents of this article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 31422056), the Fundamental Research Funds for the Central Universities, China (grant nos. 2662015PY017, 2014JQ002), and by China Postdoctoral Science Foundation (grant nos. 2016M602326).

References

Figure captions

FIGURE. 1. Chronic Zn exposure caused ER stress and UPR in liver of *P. fulvidraco in vivo.* (A) Liver ultrastructure (TEM, original magnification ×10000, bars 1 µm) of *P. fulvidraco* exposed to waterborne Zn at concentrations 0 mg/l, 0.25 mg/l and 0.5 mg/l for 28 days and 56 days. Abbreviation: mitochondria (m); hepatocyte nucleus (nu); endoplasmic reticulum (er); swelling and vesiculation of mitochondria (sw); swelling of endoplasmic reticulum (ser). Liver cells of fish in the control, showing the typical appearance of mitochondria with clear cristae and ER with flat, branched cisternal spaces delimited by ribosome-bearing membranes. Hepatocytes in Zn groups showed the swelling of mitochondria and ER, and these alterations increased with increasing Zn levels. (B and C) Zn exposure up-regulated the expression of genes involved in ER stress and UPR *in vivo.* Values are mean ± SEM (n = 3 replicate tanks, three fish were sampled for each tank). mRNA expression values were normalized to β-actin and TUBA expressed as a ratio of the control on day 28 (control = 1). Different letters indicate significant differences among groups for the same exposure time. Asterisks indicate significant differences between day 28 and day 56 for the same Zn concentrations (P < 0.05).

FIGURE. 2. Chronic Zn exposure up-regulated lipolysis in liver of *P. fulvidraco in vivo.* (A and B) Chronic Zn exposure up-regulated the expression of genes involved in UPR and cAMP/PKA pathway *in vivo.* mRNA expression values were normalized to β-actin and TUBA expressed as a ratio of the control on day 28 (control = 1). (C, D and E) Effects of chronic Zn exposure on the levels of cAMP and PKA (C), the activity of lipase,
HSL and ATGL (D), and the contents of TG and glycerol (E), in liver of *P. fulvidraco in vivo*. Values are mean ± SEM (n = 3 replicate tanks, three fish were sampled for each tank). mRNA expression values were normalized to β-actin and TUBA expressed as a ratio of the control on day 28 (control = 1). Different letters indicate significant differences among groups for the same exposure time. Asterisks indicate significant differences between day 28 and day 56 for the same Zn concentrations (P < 0.05).

FIGURE. 3. Zn treatment causes disturbed Ca\(^{2+}\) homeostasis *in vitro*. (A) Cells were stimulated with (30 µM) at the designated times (60s) and fluorescence ratio (\(F/F_0\)) intensity was plotted as a function of time. (B and C) Cells were treated with 30 µM Zn in the presence of 30 µM dantrolene or 50 µM 2-APB. (D) Summary of Zn-induced increase in fluorescence ratio. Each column represents the mean ± SEM. Data summarize three independent experiments. Different letters indicated significant differences among groups (Control = DMSO treatment, data not shown) (P < 0.05). The experiments were repeated three times with similar results and a representative experiment is shown. Zn was applied as indicated by upward arrows. Representative fluorescence measurements are shown at different designated time points (10s, 120s and 240s).

FIGURE. 4. Differential effects of PERK-eIF2α and IRE1α-XBP1 on Zn-induced hepatic lipolysis *in vitro*. (A and B) STF-083010 alleviates the activation of IRE1α-XBP1 pathway induced by Zn, and influences the expression of genes involved in lipolysis. The genes’ expression involved in PERK-eIF2α pathway are denoted by a dotted lines box. mRNA expression values were normalized to β-actin and TUBA expressed as a ratio of
the control (control = 1). (C, D and E) Effects of STF-083010 on the levels of cAMP and
PKA (C), the activity of lipase, HSL and ATGL (D), and the contents of TG and glycerol
(E) in primary hepatocytes from *P. fulvidraco* in vitro. Differential effects of
GSK2656157 and STF-083010 on the Zn-induced hepatic lipolysis denoted by a solid
lines box. Values are mean ± SEM (n= 3 independent biological experiments). Different
letters indicated significant differences among groups. Asterisks indicate significant
differences between Zn groups and Zn + STF-083010 groups, and also between Zn +
GSK2656157 groups and Zn + STF-083010 groups (P < 0.05).

FIGURE. 5. ER stress and UPR up-regulated lipolysis via the activation of cAMP/PKA
signaling pathway *in vitro*. (A and B) H 89 alleviated the Zn-induced activation of
cAMP/PKA pathway, and influenced the expression of genes involved in ER stress and
lipolysis. The genes’ expression involved in cAMP/PKA pathway are denoted by a dotted
lines box. mRNA expression values were normalized to β-actin and TUBA expressed as a
ratio of the control (control = 1). (C, D and E) Effects of H 89 on the levels of cAMP and
PKA (C), the activity of lipase, HSL and ATGL (D), and the contents of TG and glycerol
(E) in primary hepatocytes from *P. fulvidraco* in vitro. Values are mean ± SEM (n= 3
independent biological experiments). Different letters indicated significant differences
among groups. Asterisks indicate significant differences between Zn groups and Zn + H
89 groups (P < 0.05).
Fig. 1
Fig. 2

A) Bar graph showing relative mRNA expression of genes involved in cAMP/PKA Pathway and Lipolysis on Day 28.

B) Bar graph showing relative mRNA expression of genes involved in cAMP/PKA Pathway and Lipolysis on Day 56.

C) Bar graph showing protein levels of cAMP, PKA, Lipase, HSL, and ATGL on Day 28.

D) Bar graph showing protein levels of cAMP, PKA, Lipase, HSL, and ATGL on Day 56.
Fig. 3

(A) Zn

(B) 2-APB + Zn

(C) dantrolene + Zn

(D) Graph showing fluorescence ratio (F/F0) with treatments:
- Control
- Zn
- 2-APB + Zn
- dantrolene + Zn

Bars labeled with letters: a, b, c, d.
Fig. 5

A

B

C

D

E