Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Approximating Private Set Union/Intersection Cardinality with Logarithmic Complexity

Changyu Dong, Grigorios Loukides

Abstract—The computation of private set union/intersection cardinality (PSU-CA/PSI-CA) is one of the most intensively studied problems in Privacy Preserving Data Mining (PPDM). However, existing protocols are computationally too expensive to be employed in real-world PPDM applications. In response, we propose efficient approximate protocols, whose accuracy can be tuned according to application requirements. We first propose a two-party PSU-CA protocol based on Flajolet-Martin sketches. The protocol has logarithmic computational/communication complexity and relies mostly on symmetric key operations. Thus, it is much more efficient and scalable than existing protocols. In addition, our protocol can hide its output. This feature is necessary in PPDM applications, since the union cardinality is often an intermediate result that must not be disclosed. We then propose a two-party PSI-CA protocol, which is derived from the PSU-CA protocol with virtually no cost. Both our two-party protocols can be easily extended to the multiparty setting. We also design an efficient masking scheme for \((\binom{n}{2}) \text{-} OT \). The scheme is used in optimizing the two-party protocols and is of independent interest, since it can speed up \((\binom{n}{2}) \text{-} OT \) significantly when \(n \) is large. Last, we show through experiments the effectiveness and efficiency of our protocols.

1 INTRODUCTION

We are in an era where data becomes increasingly important. On one hand, data drives scientific research, business analytics, and government decision making. Advanced technologies for discovering interesting knowledge from large amounts of data have become an indispensable part of nearly everything. On the other hand, data privacy becomes of paramount importance as evidenced by the increasingly tighter legal obligation imposed by legislation (e.g. HIPAA, COPPA, and GLB in the US, European Union Data Protection Directive, and more specific national privacy regulations). Driven by both, recently we have seen a significant advancement in privacy preserving data mining (PPDM). In many scenarios, mining the union of data held by two or more parties could deliver a clear benefit. For example, online retailers want to find correlations between products bought by their common customers to boost sales, policy makers want to link healthcare data held by public and private healthcare providers to develop better public policies, and geneticists want to associate mutations in human genomes with diagnoses in medical records to identify genetic causes of cancers. In all these scenarios, privacy concerns and/or privacy regulations prohibit the sharing of data between parties. Thus, the application of conventional data mining methods is not possible, and PPDM methods are needed to perform data mining in a distributed fashion, without disclosing or pooling the data of any party.

This paper investigates a long-established problem in PPDM: how to securely compute the cardinality of the union or the intersection of some private sets (PSU-CA/PSI-CA). More formally, consider two parties each holding a private set \(S_i \). The PSU-CA problem is to securely compute the union cardinality \(|S_1 \cup S_2| \), and the PSI-CA problem is to securely compute the intersection cardinality \(|S_1 \cap S_2| \). At the end, parties should obtain the cardinality of the union/intersection but nothing else about other parties’ sets. PSU-CA and PSI-CA can be defined similarly in the multiparty (> 2) case. PSU-CA and PSI-CA are closely related: often solving one problem leads to an easy solution to the other problem. Thus they can be treated as one problem. The problem is of practical importance because protocols for solving the problem are important building blocks in PPDM. For example, PSU-CA/PSI-CA protocols have been used as subroutines in privacy preserving association rule mining [1], privacy preserving classification (e.g. decision trees [2] and Support Vector Machine [3]), and privacy preserving mining of social network data [4].

The PSU-CA/PSI-CA problem can be solved by using generic secure computation protocols (e.g. garbled circuits [5], GMW [6]). However those protocols have high computational and communication costs and are difficult to scale to large sets that are required in real-world data mining applications. Thus several custom protocols have been proposed to solve the PSU-CA/PSI-CA problem. Many of them aim to compute the exact cardinality [7], [8], [9], [1], [10], [11], [12]. Yet, their high computational cost makes their application to PPDM infeasible. For example, let us consider a scenario in which two social network providers need to find out the total number of friends of each user that has registered in both networks. For each such user, the two providers can locally construct a set that contains all friends of the user in their own social network. Then the two providers can run a PSU-CA protocol to find the union cardinality of the two sets, which is equal to the total number of friends of the user. The input to the protocol can be large because a user may have thousands of friends. Even with the most efficient protocol to date, finding the union cardinality would need tens or even hundreds of seconds. Furthermore, there are millions of users registered in both social networks. Thus, the protocol needs to run millions of times, and the task may take months or even years. This is clearly impractical.
Recently, there has been much interest in approximate PSU-CA and PSI-CA protocols [13, 14, 15]. It is well-known that in data mining, a close approximation is often as good as the exact result [16]. Approximation is widely used in data mining to handle extremely large datasets when the exact answer is hard to compute [17]. With a bounded loss of accuracy, it is possible to make the whole data mining process much more efficient. The same principle applies to PPDM. That is, approximation can simplify protocol design and reduce the size of input to the protocol which both could help making the protocol more efficient. Unfortunately, the current approximate PSU-CA and PSI-CA protocols are either insecure ([13], [14]) or not very efficient ([15]), as we discuss in Section 2.

A more subtle problem of most of existing protocols ([7], [8], [1], [11], [14], [9], [10], [13], [15], [12]) is that they output the intersection/union cardinality directly to one or all parties. This is perfectly fine as per the definition of the problems. However, the cardinalities may not be the end result the parties want. Especially in PPDM, these protocols are often used as subroutines and the cardinalities are only intermediate results. Outputting cardinalities increases the leakage of the PPDM protocol; ideally intermediate results should be hidden and the only output should be the data mining result. For instance, in the social network example above, the two providers want to find out the k most influential users. The union cardinality that represents the number of friends is only a feature to be used in finding such users. It is too excessive if the total number of friends of every user has to be revealed in the mining process. Often what we need is, rather than outputting the cardinalities directly, to keep the cardinalities secret and run a secure sorting protocol on the secret cardinalities to output the users who have the most friends, or run a secure comparison protocol to output the users who have more friends than a pre-defined threshold. Avoiding this leakage is not easy, due to the design of the protocols. To find the cardinalities, those protocols all depend on a party (or all parties) in the protocol to count either the number of matches among some ciphertexts ([7], [8], [1], [11], [14], [15]) or the occurrences of a specific value (e.g. 0) ([9], [10], [13], [15], [12]). Then the party that does the counting inevitably learns the cardinalities.

Contributions
Our main contribution is a secure two-party approximate PSU-CA protocol. The protocol is based on the Flajolet-Martin (FM) sketch [18], which is a space efficient data structure for cardinality estimation. The parties use their FM sketches as inputs to the protocol and compute the union cardinality. At the end each party gets a share that can be used to reconstruct the cardinality, but none of them learns the cardinality directly. The protocol has the following important features:

- **Highly efficient and accurate.** The protocol is efficient for two reasons. First, unlike all existing protocols, our protocol has computational and communication complexities logarithmic in \tilde{N}, the maximum possible cardinality of the private sets. This is achieved by using FM sketches. Second, our protocol is mainly based on symmetric key operations, while most existing protocols (except generic protocols) are based on much slower public key operations. The accuracy of the estimation of our protocol is adjustable with a public parameter m. In practice, larger m values improve the estimation accuracy. More precisely, by setting m to a large enough value, the protocol can guarantee the relative error $|\tilde{N} - N|/N$ is at most ϵ with probability at least $1 - \delta$ for any arbitrary $\epsilon, \delta \in (0, 1)$, where N is the true cardinality and \tilde{N} is the estimated cardinality. The minimum allowable value for m depends on the parameters δ and ϵ, as it will be explained in Section 4.1. We evaluated the protocol based on the prototype implementation and found that, to compute the union cardinality of two sets with size up to 1 million, it only needed 2.97 seconds when $\epsilon = 1\%$ and $\delta = 0.001$. In contrast, the state-of-the-art two-party approximate protocol [15] took 488.48 seconds to do the same computation with the same accuracy.

- **Eliminates unwanted information leakage.** We design the protocol such that by default, no party learns the cardinality at the end of the protocol. The result is split into secret shares and each party holds one share. The shares leak no information about the result. If the cardinality is the final result, the parties can reconstruct it from the shares easily and reveal the cardinality. Or if the protocols are used as subroutines in a larger PPDM protocol, the shares can be fed into the next step of the PPDM protocol without leaking the cardinality. We decided to output the result as secret shares for three reasons: (1) it is simple and incurs virtually no cost to produce the shares; (2) it allows local computation on the shares (e.g. summing the output of Protocol 1); (3) the shares can be easily converted into other encrypted forms using existing techniques (e.g. to Boolean shares or garbled bit strings [19], to ciphertexts of homomorphic encryption schemes [20], and to ciphertexts of other encryption schemes [21]). The last reason is important because the subsequent protocol that will use the cardinality is dependent on the application and may require input other than secret shares. Being able to convert shares into other encrypted form makes our protocol flexible in such a situation.

- **Extensible.** We extend the PSU-CA protocol into a PSI-CA protocol with virtually no cost using the inclusion-exclusion principle. This is similar to the approach in [11], where the authors extend a PSI-CA protocol into a PSU-CA protocol using the same principle. We also extend the two-party PSU-CA and PSI-CA protocols to the multiparty setting. The multiparty extensions retain the good properties and can be implemented easily using generic secret-sharing based multiparty secure computation frameworks.

A second contribution is the design of a fixed-key masking scheme for $\binom{n}{k}$-OT. In the past, the computation cost of $\binom{n}{k}$-OT was dominated by the log(n) invocations of $\binom{2}{2}$-OT. Now since $\binom{2}{2}$-OT can be obtained by OT extension, the cost of masking the n strings becomes dominating. The idea of the fixed-key masking scheme is similar to previous work in fixed-key garbling schemes [22]. That is, we use a block cipher with a fixed key as a random permutation, and apply the fixed-key block cipher to mask the strings. The benefit of the fixed-key masking is significant: it reduces the number of invocations of the encryption function from log(n) per string to 1 per string; it can take advantage of the AES-NI set that is widely available on recent X86 CPUs; and using fixed-key avoids costly key scheduling so the encryption can be fully pipelined. The efficiency of masking is improved by more than one order of magnitude compared to the previous masking scheme.
2 Related Work

Since the groundbreaking work of [23], [24], there has been extensive research in PPDM. Much research focuses on the development of a few primitive protocols. This is because there are many data mining techniques, and it is infeasible or not cost-effective to develop solutions for individual ones. One observation is that data mining techniques often perform similar computations at various stages. Therefore a more viable strategy [7] is to build a “toolkit” of primitive protocols that can be assembled to solve specific real-world problems. PSI-CA/PSU-CA is one of the primitive protocols identified in [7] and is widely used in PPDM.

Exact Protocols There are several exact PSI-CA/PSU-CA protocols. However they all require at least $O(N)$ public key operations, where N is the maximum possible cardinality of the private sets. Thus they are less efficient than our protocol.

Both [7] and [8] proposed a PSI-CA protocol based on commutative encryption. The ideas of the two protocols are very similar. The main difference is that [7] was presented in the multiparty setting and [8] in the two-party setting. Both protocols require $O(N)$ public key operations. In [9], a PSI-CA protocol was proposed based on oblivious polynomial evaluation. The computation requires $O(N \log \log N)$ public key operations.

In [1], a multiparty PSI-CA protocol was proposed based on commutative one-way hash functions that can be constructed from public key encryption schemes such as Pohlig-Hellman. Each party needs to hash $\tau \cdot N$ times where τ is the number of parties. In [10], a multiparty PSI-CA protocol was proposed based on oblivious polynomial evaluation. The computation requires $O(N^2)$ public key operations. In [11] a PSI-CA protocol based on an ElGamal like encryption was proposed. The protocol requires $O(N)$ public key operations and can be trivially extended to a PSI-CA protocol. In [12], the authors proposed PSI-CA/PSU-CA protocols based on Bloom filter and homomorphic encryption. These protocols also require $O(N)$ public key operations.

Approximate Protocols In data mining, approximation is widely used when mining extremely large datasets. Approximate PSI-CA/PSU-CA protocols were proposed in the hope that they can be more efficient. However, unlike our protocol, they are either insecure or have still complexity $O(N)$.

In [13] a multiparty PSI-CA protocol was designed but it is not secure. Adversaries can easily guess any other party’s set elements, as explained in [15]. In [14], a two-party PSI-CA protocol was proposed. The protocol uses [11] as a subprotocol and is based on Minwise sketches [25]. The protocol estimates Jaccard index from Minwise sketches and then approximates the intersection cardinality from Jaccard index. However, this protocol is not secure because party 2 in the protocol leaks the cardinality of its private set to party 1. Our multiparty PSI-CA protocol also estimates intersection cardinality from Jaccard index. The differences are: (1) We use the Min-Max sketch [26], which is more efficient than the Minwise sketch. The use of Min-Max sketches also reduces the offline computation by a factor of 2 compared to Minwise sketches [26]. (2) The parties do not need to reveal the cardinality of their own sets. In [15] the authors proposed PSU-CA/PSI-CA protocols that use Bloom filters to estimate the cardinalities. However, the protocols in [15] need $O(N)$ time. The reason is that Bloom filters were originally designed for set membership queries, and thus they have to encode much more information than needed to estimate cardinality.

From PSI to PSI-CA A related line of work is on Private Set Intersection (PSI) which requires computing the intersection of private sets (see e.g. [9], [10], [27], [28], [29], [30]). Intersection cardinality can be obtained from PSI output, but PSI also reveals the elements in the intersection. Thus PSI protocols cannot be used as a replacement for PSI-CA in applications where only the cardinality of a set must be revealed.

It is possible in some cases to extend PSI to PSI-CA. For example, the PSI-CA protocols in [8], [9], [10], [11], [12] we mentioned earlier are all extended from PSI protocols. However, their underlying PSI protocols are public key based, which makes the above protocols inefficient. There are PSI protocols that require mostly symmetric key operations ([31], [27], [28], [29]). Specifically [31], [28], [29], [30] propose Boolean circuits for the PSI function that can be evaluated securely using generic secure computation protocols. It is always possible to extend the PSI Boolean circuits to support PSI-CA. The extended circuits would have similar complexity as the PSI circuits, which is at least $O(N)$. On the other hand, the garbled Bloom filter [27] and OT based [28], [29], [30] PSI protocols cannot be easily extended to PSI-CA because one party always learns the intersection due to the way the intersection is obtained. In the garbled Bloom filter based PSI protocol, one party receives a garbled Bloom filter that encodes the intersection and allows set membership query. The party then queries the garbled Bloom filter using every element in its own set. If the element is in the intersection, the query returns a fixed string, otherwise it returns a random string. Similarly in the OT-based PSI protocols, one party first gets some random-looking strings for each element in its set by running OT. Then the other party sends a set of strings that are mapped from its set elements. Next, the first party checks, for each element, whether there is a string associated with it in the set. If so this element is in the intersection. The only obvious solution to extend [27], [28], [29], [30] to support PSI-CA is to interactively blind and randomly permute the set (of the party who obtains the intersection) at the start of the protocol, so that at the end the party can query to check whether a blinded element is in the intersection, without knowing which element is being queried. This however seems to require at least $O(N)$ public key operations and cannot hide the cardinality from the party.

3 Preliminaries

3.1 Notation

For a set X, we denote by $x \overset{R}{\leftarrow} X$ the process of choosing an element x of X uniformly at random. For a vector V, we denote by $V[i]$ the ith element in the vector. The index of all vectors in the paper starts from 0. For an integer a, we denote by $[a]$, the secret share of a held by party i. In a loop or a multi-round protocol, we use superscript in angle brackets to differentiate variables with the same name in different iterations, e.g. $r^{(i)}$ means variable r in the ith iteration. All logarithms in this paper are base 2.

3.2 Oblivious Transfer (OT)

Oblivious transfer [32], [33] is a protocol between a sender and a receiver. The most basic type of OT is 1-out-of-2 OT, which will be denoted as $(\frac{1}{2})$-OT. In $(\frac{1}{2})$-OT, the sender holds a pair of strings (x_0, x_1) and the receiver holds a bit b. The goal is for the receiver to receive x_b such that the receiver learns nothing about the other string and the server learns nothing about b. The idea can be extended naturally to 1-out-of-n OT, denoted as $(\frac{1}{n})$-OT.
3.3 Secret Sharing

Secret sharing is widely used in secure computation protocols. In general, in a \((t, n)\) secret sharing scheme, a dealer splits a secret \(s\) into \(n\) shares. The scheme is correct if \(s\) can be reconstructed efficiently with any subset of \(t\) or more shares. The scheme is secure if given any subset of less than \(t\) shares, the secret is unrecoverable and the shares give no information about the secret. Some secret sharing schemes have homomorphic properties, i.e. certain operations on the secret can be performed with the shares as input. For example, Shamir’s secret sharing scheme \([41]\) is additively homomorphic.

In our two-party protocols, we will use a simple additively homomorphic \((2, 2)\)-secret sharing scheme. In this scheme, the secret and shares are integers in the additive group \(Z_q\) for some integer \(q \geq 2\). Note \(q\) can be any integer and does not need to be a prime number. To share a secret \(s\), choose a uniformly random \(r\) from \(Z_q\), and the two shares are \([s]_1 = r\) and \([s]_2 = s - r\). To reconstruct the secret, simply add the two shares together \(s = [s]_1 + [s]_2\). The correctness of the scheme is easy to verify and the scheme is unconditionally secure if \(r\) is chosen uniformly at random.

The homomorphic property is obvious: let \([a]_1, [a]_2\) be the two shares of \(a\) and \([b]_1, [b]_2\) be the two shares of \(b\), then \([ac]_1 = [a]_1 [c]_1 + [b]_1 [c]_2\) and \([ac]_2 = [a]_2 [c]_1 + [b]_2 [c]_2\) are the two shares of \(c\) such that \(c = a + b\).

3.4 Security Model

All protocols in this paper are secure in the semi-honest model \([42]\). In this model, adversaries are honest-but-curious, i.e. they will follow the protocol specification but try to get more information about the honest party’s input. The semi-honest model is weaker than the malicious model, in which the adversaries can deviate from the protocol in arbitrary ways. However, designing protocols in the semi-honest model is still very meaningful as it captures many realistic scenarios. For example, when the parties’ behaviors are monitored or audited. Also, protocols for the semi-honest setting are often the stepping-stones towards protocols with stronger security guarantees. There exist generic ways of obtaining full security against malicious adversaries from protocols for the semi-honest setting, e.g. by using zero-knowledge proofs. The formal definitions can be found in Appendix B.
where \tilde{N} is the cardinality estimate from m sketches, and $\kappa = 1.75$ is a correcting factor. Equation (1) gives very good estimates for both small sets and large sets [43].

In Theorem 1, we show that the relative error between the true and estimated cardinality does not exceed ϵ with probability at least $1 - \delta$, when m is sufficiently large. This implies that the accuracy of the estimation can be adjusted to the desired level, by choosing a suitable m. The proof of Theorem 1 is in Appendix A.

Theorem 1. Let S_1, S_2 be two sets and $N = |S_1 \cup S_2|$. Let \tilde{N} be the estimate obtained from computing using Equation (1). For any $\epsilon, \delta \in (0, 1)$, it holds that:

$$Pr\left[\frac{|\tilde{N} - N|}{N} \leq \epsilon \right] \geq 1 - \delta$$

(2)

when $m \geq 2.5088 \cdot \left(\frac{\epsilon}{\max(1 - \epsilon, \log(1 + \epsilon))}\right)^2$, where erf$^{-1}$ is the inverse error function3.

An important property of FM sketches that we use in the design of our algorithms is that they can be merged. If we have two FM sketches F_{S_1} and F_{S_2}, built with the same hash function, then bit-wisely ORing the two sketches produces a new FM sketch $F_{S_1 \cup S_2}$ that counts the union of the two sets S_1 and S_2. This process is lossless: $F_{S_1 \cup S_2}$ is exactly the same as the sketch built using the union from the scratch. This extends to the union of multiple sets easily. However, an FM sketch of set intersection cannot be obtained by combining sketches. This is because there are no known estimators for the intersection cardinality of two sets that can be applied to a combined FM sketch, which is derived from the two sketches by any bit-wise operation. In other words, the bit patterns that appear in the combined sketch cannot be used to derive an estimate of the set intersection cardinality. In fact, union is the only supported set operation that can be performed by combining FM sketches [44].

4.2 Secure Estimator Computation

To securely compute the cardinality of the union of two private sets using FM sketches, the first step is to securely compute the estimator of the union cardinality. The two parties each hold F_{S_1} and F_{S_2} that are FM sketches built from their private sets using the same hash function and same sketch size w. As we have seen in Section 4.1, the union sketch $F_{S_1 \cup S_2}$ can be then computed by bit-wisely ORing F_{S_1} and F_{S_2} in a secure way. However, how to securely extract the estimator from $F_{S_1 \cup S_2}$ is a non-trivial task.

4.2.1 Data Oblivious Algorithm

Recall that the estimator z is the index of the first 0 bit in the sketch $F_{S_1 \cup S_2}$. When computing in the clear, z can be trivially obtained by checking whether $F_{S_1 \cup S_2}[i] = 0$ from $i = 0$ and return the index i when hits the first 0 bit in the sketch. However, this algorithm is not data oblivious (i.e., the control flow and access pattern are dependent on the data). Thus the algorithm execution leaks information about the data and cannot be used in secure computation. In fact this is one of the biggest challenges when porting data structures to secure computation: most data structure based algorithms are not data oblivious and generic approaches for achieving data obliviousness incur a substantial cost.

To solve this problem, we design a data oblivious algorithm to combine the sketches and extract the estimator. The algorithm is shown in Algorithm 1 and a small example is shown in Figure 1. Conceptually, the algorithm does 3 things: (1) it creates $F_{S_1 \cup S_2}$ by bitwise ORing F_{S_1} and F_{S_2}; (2) it sets all bits in $F_{S_1 \cup S_2}$ after the first 0 bit to 0; (3) it then adds up all bits. The sum equals the estimator z.

Algorithm 1: Combine-then-sum(F_{S_1}, F_{S_2}, w)

input: Two w-bit FM sketches F_{S_1}, F_{S_2} and the size w
output: the index of the first 0 bit in $F_{S_1 \cup S_2}$

1. $F_{S_1 \cup S_2} = \text{new } w\text{-bit FM sketch}$;
2. $F_{S_1 \cup S_2}[0] = F_{S_1}[0] \lor F_{S_2}[0]$;
3. sum = 0;
4. for $i = 1$ to $w - 1$ do
5. \hspace{1em} $\hat{F}_{S_1 \cup S_2}[i] = (F_{S_1}[i] \lor F_{S_2}[i]) \land \hat{F}_{S_1 \cup S_2}[i - 1]$;
6. \hspace{1em} sum = sum + $\hat{F}_{S_1 \cup S_2}[i]$;
7. end;
8. return sum;

Fig. 1: Example of Combine-then-sum algorithm

The correctness of the algorithm is easy to prove. Let $F_{S_1 \cup S_2} = F_{S_1} \lor F_{S_2}$ and z be the estimator. If $z > 0$, then by the definition of z, for all $0 \leq i < z$ we have $F_{S_1 \cup S_2}[i] = 1$. In Algorithm 1, $F_{S_1 \cup S_2}[0] = F_{S_1}[0] \lor F_{S_2}[0] = 1$ and for $1 \leq i < z$, $F_{S_1 \cup S_2}[i] = (F_{S_1}[i] \lor F_{S_2}[i]) \land \hat{F}_{S_1 \cup S_2}[i - 1] = F_{S_1 \cup S_2}[i] \land \hat{F}_{S_1 \cup S_2}[i - 1]$. By induction, for all $0 \leq i < z$, we have $F_{S_1 \cup S_2}[i] = 1$ as well. Therefore, $\sum_{i=0}^{z-1} F_{S_1 \cup S_2}[i] = z$. For $i \geq z$, since $F_{S_1 \cup S_2}[z] = 0$, we have $F_{S_1 \cup S_2}[z+1] = F_{S_1 \cup S_2}[z+1] \land \hat{F}_{S_1 \cup S_2}[z] = 0$, and similarly all the bits after are 0. Then the sum of the whole $\hat{F}_{S_1 \cup S_2}$ is still 0. If $z = 0$, then all bits in $\hat{F}_{S_1 \cup S_2}$ are 0 and the sum equals $z = 0$.

It is also easy to verify that the algorithm is data oblivious: for any two input tuples (F_{S_1}, F_{S_2}, w) and (F_{S_1}, F_{S_2}, w), the memory access pattern and the control flow are exactly the same when executing the algorithm.

4.2.2 Efficient Protocol

The protocol is presented as Protocol 1. In the protocol, P_1 and P_2 jointly compute $\hat{F}_{S_1 \cup S_2}$ and share each bit in it, then they use the homomorphic property to sum their shares locally to get a share of $\sum_{i=0}^{w-1} F_{S_1 \cup S_2}[i]$, i.e., z. The key idea in the protocol design is to fully utilize P_1's local knowledge to generate correlated secret shares, and to base computation on the correlated shares. By using secret sharing, the result can be obtained but is kept secret at the end of the protocol.

In the following, we explain the protocol. Let’s start from step 1 which computes $F_{S_1 \cup S_2}[0] = F_{S_1}[0] \lor F_{S_2}[0]$, the first bit in $F_{S_1 \cup S_2}$. In this step, P_1 generates the shares for 0 and 1 in a correlated way. Observe that $r^{(1)} + r^{(0)} = 0$ and $r^{(0)} + r^{(0)} = 1$, therefore $(r^{(0)}, r^{(0)})$ is a pair of shares for bit 0 and $(r^{(1)}, r^{(1)})$ is a pair of shares for bit 1. Although the shares are correlated, this does not affect security because P_2 can only get one of $r^{(0)}$, $r^{(1)}$.
Protocol 1 Secure Estimator Computation Protocol

Inputs The private inputs of P_1 and P_2 are the FM sketches F_{S_1} and F_{S_2} respectively. Each sketch encodes the party’s private set. The auxiliary inputs include the security parameter λ, the sketch size w and a group \mathbb{Z}_q where $q = m(w - 1) + 1$ for some integer m.

Outputs Let z be the index of the first 0 bit in the union sketch $F_{S_1 \cup S_2}$ that will be used later to estimate the union cardinality (see Section 4.1). P_1 and P_2 obtain $[z]_2$, $[z]_2 \in \mathbb{Z}_2$ respectively. Each party’s output is a secret share of z such that $[z]_2 + [z]_2 = z$.

1. In round 0, P_1 chooses a random number $r(0)^i \in \mathbb{Z}_q$, then sets $r(0)^i = -r(0)^i$ and $r(1)^i = 1 - r(0)^i$. Then P_1 and P_2 run a $(\frac{1}{2}, \delta)$-OT in which P_2 uses $F_{S_2}[i]$ as the selection bit and P_1 uses $(r(0)^i, r(1)^i)$ as input if $F_{S_2}[i] = 0$ or $(r(1)^i, r(0)^i)$ if $F_{S_2}[i] = 1$.

2. Then in round i ($1 \leq i < w$), the two parties do the following:
 a. P_1 chooses a random number $r(i)^i \in \mathbb{Z}_q$, then sets $r(i)^0 = -r(i)^0$ and $r(i)^1 = 1 - r(i)^0$.
 b. Prepare 4 strings to send:
 \[
 (r(0)^i, r(0)^i, r(0)^i, r(1)^i) \text{ if } r(0)^i \text{ is even } \wedge F_{S_1}[i] = 0 \\
 (r(0)^i, r(0)^i, r(1)^i, r(1)^i) \text{ if } r(0)^i \text{ is even } \wedge F_{S_1}[i] = 1 \\
 (r(0)^i, r(1)^i, r(0)^i, r(0)^i) \text{ if } r(0)^i \text{ is odd } \wedge F_{S_1}[i] = 0 \\
 (r(1)^i, r(1)^i, r(1)^i, r(1)^i) \text{ if } r(0)^i \text{ is odd } \wedge F_{S_1}[i] = 1
 \]
 c. Let $x(i-1)$ be the string received by P_2 in round $i - 1$. Let bit $b(i) = 0$ if $x(i-1)$ is even and $b(i) = 1$ if $x(i-1)$ is odd, let bit $b(i+1) = F_{S_2}[i]$, P_2 gets a 2-bit integer $j = b(i) b(i+1)$.
 d. P_1 and P_2 run a $(\frac{1}{2}, \delta)$-OT in which P_2 uses the 4 strings prepared in step 2b as input and P_1 uses j obtained in step 2c as input.

3. P_1 outputs $[z]_2 = \sum_{i=0}^{w-1} x(i)^i$, P_2 outputs $[z]_2 = \sum_{i=0}^{w-1} x(i)^i$ where $x(i)^i$ is the string (an integer) received in round i.

The parity of $r(0)^0$ through OT. In any case, P_1 always keeps $r(0)^0$ and the actual shared value then is determined by which share P_2 receives. Now if $F_{S_1}[0] = 1$ then P_1 knows the value $F_{S_1}[0] \lor F_{S_2}[0] = 1$ regardless of whether $F_{S_2}[0] = 0$ or 1. Thus in the OT, P_1 can use $(r(1)^0, r(1)^0)$ as input so that P_2 always gets the share of bit 1. If $F_{S_1}[0] = 0$ then the value of $F_{S_1}[0] \lor F_{S_2}[0]$ depends on $F_{S_2}[0]$. So in the OT, P_1 uses $(r(0)^0, r(1)^0)$ as input so that P_2 always gets the share of bit 0 if $F_{S_2}[0] = 0$ or the share of 1 if $F_{S_2}[0] = 1$. Take the example in Fig. 1: $F_{S_1}[0] = 1$ so in the protocol P_1 sends $(r(1)^0, r(1)^0)$ and P_2 always gets $r(1)^0$ that is the share of bit 1.

Step 2, the two parties compute $F_{S_1 \cup S_2}[i] = (F_{S_1}[i] \lor F_{S_2}[i]) \wedge F_{S_1 \cup S_2}[i - 1]$. At the end of each round in this step, P_2 should receive a share $x(i)^i$. If $F_{S_1 \cup S_2}[i] = 0$, P_2 should receive a share of bit 0, i.e. $x(i)^i = r(0)^i$; otherwise P_2 should receive a share of bit 1, i.e. $x(i)^i = r(1)^i$. This step is much more difficult than ORing two bits because $F_{S_1 \cup S_2}[i - 1]$ is required in the computation but may not be known by any party. Our insight is that we can solve this problem by utilizing the parity of the correlated shares. The two shares $r(0)^i$, $r(1)^i$ always differ by 1, therefore it is guaranteed that one of the shares is even and the other is odd. Thus the two parties can carry out the computation by matching parities of some shares which they can observe locally.

In step 2b of the protocol, P_1 prepares strings to send by observing the parity of the share of bit 0 generated in the last round ($x(i-1)^i$) and its current sketch bit $F_{S_1}[i]$, and later P_2 receives a string by observing the parity of the share received in the last round ($x(i-1)^i$) and its current sketch bit $F_{S_2}[i]$. Again take the example in Fig. 1: for the second bit, $F_{S_1}[1] = 0$, thus if $r(0)^0$ is even, P_1 will send $(r(0)^1, r(0)^1, r(1)^1, r(1)^1)$. Now since $F_{S_1}[1] = 1$ and P_2 received $x(i)^i = r(1)^i$ in the last round that must be odd (because $r(0)^0$ is even), then $j = (1||1)_b = 3$. So in this round P_2 will receive the last string $r(1)^i$ that is a share of bit 1. If $r(0)^0$ is odd, P_1 will send $(r(1)^1, r(1)^1, r(0)^1, r(0)^1)$. Now $r(0)^0$ must be even, then $j = (0||1)_b = 1$. So in this round P_2 will receive the second string $r(1)^i$ that is a share of bit 1.

The parity of $r(0)^1 - r(1)^1 - x(i-1)^i$ and $x(i-1)^i$ have the same parity then $x(i-1)^i$ must equal $r(0)^1 - r(1)^1$, which is a share of bit 0, thus $F_{S_1 \cup S_2}[i - 1] = 0$. Otherwise $F_{S_1 \cup S_2}[i - 1] = 1$. $F_{S_1 \cup S_2}[i] = (F_{S_1}[i] \lor F_{S_2}[i]) \wedge F_{S_1 \cup S_2}[i - 1]$ can be computed along the branch and the leaf nodes are the share that P_2 receive. For example, in the leftmost branch $r(0)^1$ and $x(i-1)^i$ have the same parity (even) so $F_{S_1 \cup S_2}[i - 1] = 0$ and $F_{S_2}[i]$, $F_{S_2}[i]$ both are 0, so $F_{S_1 \cup S_2}[i] = (0 \lor 0) \wedge 0 = 0$. Corresponding to this branch, in the protocol step 2b P_1 prepares four strings in case 1 because $r(0)^1$ is even and $F_{S_2}[i] = 0$, and P_2 receives the first of the four strings because $x(i-1)^i$ is even and $F_{S_2}[i] = 0$. The string received by P_2 is $r(0)^i$ which is a share of $F_{S_1 \cup S_2}[i] = 0$.

\[\text{Fig. 2: All cases in step 2}\]

In step 3, P_1 and P_2 locally sum the shares. Each $x(i)^i$ held by P_1 and each $x(i)^i$ held by P_2 are the two shares of $F_{S_1 \cup S_2}[i]$. By the homomorphic property, the sums $\sum_{i=0}^{w-1} x(i)^i$ and $\sum_{i=0}^{w-1} x(i)^i$ are the shares of z.

Our final remark is regarding the choice of q, which is $m \cdot (w - 1) + 1$. The reason is that in order to increase accuracy, we need to average estimators extracted from m sketches. The value of $z(i)^i$ is at most $w - 1$, then the sum of m estimators is at most $m \cdot (w - 1)$. We need \mathbb{Z}_q to be large enough to accommodate this sum. Then q needs to be at least $m \cdot (w - 1) + 1$. For efficiency, we choose q to be exactly $m \cdot (w - 1) + 1$.

4.2.3 Efficiency Comparison to the Generic Approach

It is possible to implement Algorithm 1 using generic techniques such as garbled circuits (GC). The cost of the GC protocol consists of two parts:

1. Transferring input wires: This requires w invocations of $\frac{1}{2}$-OT, which can use the C-OT optimization in [37].
2. Building, transferring and evaluating a garbled Boolean circuit: The circuit consists of w OR-gates, $w - 1$ AND-gates and a circuit to compute the Hamming weight of a w-bit
string. The most efficient Hamming weight circuit [45] requires $w - \text{HW}(w)$ AND-gates, where HW(w) is the Hamming weight of the binary representation of the integer w. In total, the number of non-free gates is $3w - 1 - \text{HW}(w)$. However, the w OR-gates can be evaluated at the wire transferring step using OT (similar to what we do in step 1 of Protocol 1), thus the number of non-free gates can be reduced to $2w - 1 - \text{HW}(w)$.

In comparison, our protocol (Protocol 1) requires 1 invocations of $\binom{1}{2}$-OT and $w - 1$ invocations of $\binom{1}{2}$-OT. We can use the C-OT optimization for the $\binom{1}{2}$-OT and the R-OT optimization (also from [37]) for the $\binom{1}{2}$-OT (See Appendix D for details).

Fig. 3: Efficiency comparison

Computational Cost: We estimate the computational cost by counting the number of cryptographic operations. Each $\binom{1}{2}$-OT requires 3 symmetric key operations when obtained from OT extension. The cost of each non-free gate is dependent on which optimization technique is used. At present, the most popular strategy for optimizing GC is to make the XOR gates free. To do so, one can use either the Free XOR [46] with point-and-permute [47] and garbled row reduction [48] technique (Free XOR for short) or the Half Gates technique [49]. Free XOR requires 4 symmetric key operations to garble and 1 symmetric key operations to evaluate a non-free gate, while Half Gates requires 4 and 2 symmetric key operations respectively.

The total number of symmetric key operations required by the GC protocol is then $3w + 5 \cdot (2w - 1 - \text{HW}(w)) = 13w - 5 - 5 \cdot \text{HW}(w)$ when using Free XOR or $3w + 6 \cdot (2w - 1 - \text{HW}(w)) = 15w - 6 - 6 \cdot \text{HW}(w)$ when using Half Gates. The total number of symmetric key operations in our protocol is $3 \cdot (2w - 1) + 4 \cdot (w - 1) = 10w - 7$. In practice, w is a small integer and the computational cost of our protocol is about 80% of that of the GC protocol if it uses Free XOR, or about 70% if it uses Half Gates. Fig. 3(a) plots the number of symmetric key operations in each protocol when w varies from 1 to 64.

Communication Cost: The total communication cost of the GC protocol again depends on the optimization technique. Using Free XOR, each non-free gate has 3 entries. Using Half Gates, each non-free gate has 2 entries. The size of each entry is λ bits, where λ is the security parameter. The cost for transferring input wires is 2λ bits per wire (using C-OT) in both cases.

In total, the communication cost of the GC protocol is $(2w - 1 - \text{HW}(w)) \cdot 3\lambda + w \cdot 2\lambda = 8w\lambda - 3\lambda - 3 \cdot \text{HW}(w)\lambda$ bits if Free XOR is used, or $(2w - 1 - \text{HW}(w)) \cdot 2\lambda + w \cdot 2\lambda = 6w\lambda - 2\lambda - 2 \cdot \text{HW}(w)\lambda$ bits if Half Gates is used. The total communication of our protocol is $\lambda + \log q$ bits for the first $\binom{1}{2}$-OT (using C-OT), and $(2w - 2) \cdot \lambda + (4w - 1) \cdot \log q$ bits for the following $w - 1$ invocations of $\binom{1}{2}$-OT (using R-OT), where $q = m \cdot (w - 1) + 1$. Roughly, for reasonable λ (128 or 256), w (1 to 64) and m (4,096 to 1,048,576), the communication cost of our protocols is about 35% of that of the GC protocol if it uses Free XOR, or 45% if it uses Half gate. Fig. 3(b) plots the communication cost in each protocol when fixing $\lambda = 128$, $m = 65,536$ and varying w from 1 to 64.

4.3 Secure Cardinality Estimation

4.3.1 The Protocol

In Section 4.2.2, we showed how to compute the estimator z of the union cardinality from a pair of FM sketches. As mentioned in Section 4.1, in order to increase accuracy, we need to compute m estimators from m different pairs of sketches. This requires m executions of Protocol 1. As illustrated in Fig. 4, in the ith run, \mathcal{P}_1 and \mathcal{P}_2 each obtains a share $[z]_1^{(i)}$, $[z]_2^{(i)}$ respectively. Then the two parties can locally sum the shares to get $[Z]_1 = \sum_{i=0}^{m-1} [z]_1^{(i)}$ and $[Z]_2 = \sum_{i=0}^{m-1} [z]_2^{(i)}$, where $[Z]_1$ and $[Z]_2$ are shares of $Z = \sum_{i=0}^{m-1} z^{(i)}$. The two parties can then use Protocol 2 to compute Equation 1 and estimate the union cardinality.

![Fig. 4: Connection between Protocol 1 to Protocol 2](image-url)

Our idea is to use a lookup table. A lookup table is a data structure that encodes a function with a small input domain to speed up computation. As we can see, in Equation 1, m, κ, ϕ are all public constants. So the equation is a function with a single point computation. Each \mathcal{P}_1 will receive $[Z]_1$ which is an integer from \mathbb{Z}_2 which is small enough for a lookup table. Our lookup table based estimator from a pair of FM sketches. As mentioned in Section 4.1, in order to increase accuracy, we need to compute m estimators from m different pairs of sketches. This requires m executions of Protocol 1. As illustrated in Fig. 4, in the ith run, \mathcal{P}_1 and \mathcal{P}_2 each obtains a share $[z]_1^{(i)}$, $[z]_2^{(i)}$ respectively. Then the two parties can locally sum the shares to get $[Z]_1 = \sum_{i=0}^{m-1} [z]_1^{(i)}$ and $[Z]_2 = \sum_{i=0}^{m-1} [z]_2^{(i)}$, where $[Z]_1$ and $[Z]_2$ are shares of $Z = \sum_{i=0}^{m-1} z^{(i)}$. The two parties can then use Protocol 2 to compute Equation 1 and estimate the union cardinality.

In the protocol, \mathcal{P}_1 first computes Equation 1 for each possible value of Z, and stores the result in the lookup table. So $T[i]$ stores the estimated cardinality when $Z = i$. Note this computation is all in plaintext, thus we avoid entirely the expensive secure floating point computation. Each $T[i]$ is an integer after rounding and is in \mathbb{Z}_{2^w} because the way we choose w ensures that 2^w is larger than any possible cardinality. Then \mathcal{P}_1 picks a single r and creates correlated shares of all entries in T. Again, since later the protocol uses OT and \mathcal{P}_2 is guaranteed to receive only one share, this is secure. The next thing \mathcal{P}_1 does is to ensure that \mathcal{P}_2 can receive the correct entry $T'[Z]$. None of the parties knows Z but each holds a share. The combined effect of shifting and OT is that \mathcal{P}_2 will receive $T''[[Z]_2] = T'[[[Z]_2 + [Z]_1] = T'[Z]$, and
Protocol 2 Secure Cardinality Estimation Protocol

Inputs The private input of \mathcal{P}_1 is a secret share $[Z]_1$ and the private input of \mathcal{P}_2 is a secret share $[Z]_2$ such that $[Z]_1 + [Z]_2 = Z = \sum_{i=0}^{m-1} z[i]$, i.e. Z is the sum of m union cardinality estimators. The auxiliary inputs include the security parameter λ, the public parameters $m, w, \kappa, \phi, q = m(w-1) + 1$, and Z_{2w}.

Outputs Let \tilde{N} be the estimate to be computed, \mathcal{P}_1 and \mathcal{P}_2 obtain $[\tilde{N}]_1, [\tilde{N}]_2 \in \mathbb{Z}_{2w}$ respectively. Each party's output is a secret share of \tilde{N} and satisfies $[\tilde{N}]_1 + [\tilde{N}]_2 = \tilde{N}$.

1. \mathcal{P}_1 computes a lookup table T which is a vector that has q entries. \mathcal{P}_1 first computes for $0 \leq i \leq q - 1$

$$T[i] = \left\lfloor \frac{2^\frac{w}{\kappa} - 2^{-\kappa}}{\phi} \right\rfloor$$

\mathcal{P}_1 then picks a single $r \in \mathbb{Z}_{2w}$ and for all $0 \leq i \leq q - 1$ computes $T'[i] \equiv T[i] - r \mod 2^w$. \mathcal{P}_1 then circularly shifts T' to the left $[Z]_1$ places, i.e. let $T''[i] = T'[j]$ where $j \equiv i + \lfloor [Z]_1 \mod q \rfloor$.

2. \mathcal{P}_1 and \mathcal{P}_2 run a $(\frac{1}{n})$-OT in which \mathcal{P}_1 uses T'' as input, \mathcal{P}_2 uses $[Z]_2$ as input and receives $T''([Z]_2)$.

3. \mathcal{P}_1 outputs $[\tilde{N}]_1 = r$ and \mathcal{P}_2 outputs $[\tilde{N}]_2 = T''([Z]_2)$.

$T''([Z]_2) + r = T'[Z] + r = T[Z]$. So each party indeed obtains a share of the estimated cardinality.

4.3.2 Efficiency Comparison to the Generic Approach

The computation of Equation 1 needs to be done in floating point numbers. More concretely, Equation 1 requires 2 divisions, 2 exponentiations and 1 subtraction operations in floating point numbers. In the past, secure floating point computation was both complex and inefficient [50], [51], [52]. Recently, it has been shown that optimized floating point circuits can be generated using hardware circuits synthesis tools [53] and the GC protocol using the optimized circuits can be quite efficient. We now compare the efficiency of Protocol 2 against that of the GC protocol.

Computational Cost: The sizes of the floating point operation circuits are dependent on the bit size of the floating point number. For 32-bit single precision floating point operations, the addition circuit has 1,820 AND-gates, the division circuit has 5,395 AND-gates and the base 2 exponentiation gate has 9,740 AND-gates. For 64-bit double precision floating point operations, the gate numbers are 4,303, 22,741 and 21,431 respectively. For building and evaluating a 32-bit circuit to compute the estimation, the total number of symmetric key operations is 160,450 if the circuit uses Free XOR, or 192,540 if it uses Half Gate. For building and evaluating a 64-bit circuit to compute the estimation, the total number of symmetric key operations is 463,235 if the circuit uses Free XOR, or 555,882 if it uses Half Gate. There will also be some other costs, e.g. converting the arithmetic shares from Protocol 1 to Boolean shares [20], and OT for transferring input wires. However the additional costs are small (a few hundreds symmetric key operations) and can be safely omitted. Our protocol requires one invocation of $(\frac{1}{n})$-OT, in which the computation is dominated by the q symmetric key operations for masking the strings. The number of output functions $m \cdot (w - 1) + 1$. Therefore depending on the value of the parameters m and w, one can decide whether to use Protocol 2 or the GC protocol. In Table 1, we show some concrete examples. In Table 1, each row corresponds to a fixed value for m, and each cell in the row shows the largest value of w, for which Protocol 2 is computationally more efficient than the GC protocol based on Free XOR or Half Gates. For example, if $m = 4096$ and single precision (32-bit) is enough, then we should use Protocol 2 whenever $w \leq 40$ (or equivalently if the set cardinality will not exceed 2^{36}); but if $m = 65536$, we should use a GC protocol in almost all cases because $w \leq 3$ is too small to be useful.

<table>
<thead>
<tr>
<th>m</th>
<th>32-bit</th>
<th>64-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Free XOR</td>
<td>Half Gates</td>
</tr>
<tr>
<td>4096</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>16384</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>65536</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

TABLE 1: Each cell contains the largest value of w for which Protocol 2 is computationally more efficient than the GC protocol with Free XOR or with Half Gates.

Communication Cost: For the GC protocol that uses a circuit of c gates, the communication cost is $c \cdot 3\lambda$ bits if Free XOR is used, or $c \cdot 2\lambda$ bits if Half Gates is used. For Protocol 2, the communication cost is dominated by transferring the q masked strings, which is in total $q \cdot \ell$ where ℓ is the bit-size of the floating point numbers. Then which one is more efficient depends on the parameters and the optimization technique. Again we worked out the largest value of w for which Protocol 2 is more efficient than the GC protocol with Free XOR and the GC protocol with Half Gates (see Table 2).

<table>
<thead>
<tr>
<th>m</th>
<th>32-bit</th>
<th>64-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Free XOR</td>
<td>Half Gates</td>
</tr>
<tr>
<td>4096</td>
<td>95</td>
<td>63</td>
</tr>
<tr>
<td>16384</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>65536</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

TABLE 2: Each cell contains the largest value of w for which Protocol 2 is more efficient than the GC protocol with Free XOR or with Half Gates, in terms of communication cost.

4.4 Fixed-key Masking

The efficiency of Protocol 2 depends on the underlying $(\frac{1}{n})$-OT ($n = q$ in our protocol). As we have already shown in Section 3.2, the cost of $(\frac{1}{n})$-OT consists of two parts: $\log(n)$ invocations of $(\frac{1}{n})$-OT and $n \log(n)$ pseudorandom function invocations for masking the sender’s strings. In the past when $(\frac{1}{n})$-OT had to be based on public key operations, the first part dominated the cost. But now we can obtain $(\frac{1}{n})$-OT through OT extension, then the second part becomes dominating. A more efficient masking scheme then implies more efficient $(\frac{1}{n})$-OT.

In this section, we present an efficient fixed-key masking scheme. Our design is in line with the fixed-key garbling schemes that have led to a significant improvement in the computation of garbled circuits [22]. In the new masking scheme, the cost of masking in $(\frac{1}{n})$-OT is reduced to n invocations of a random permutation. The random permutation can be instantiated using a block cipher such as AES with a public and fixed key. This allows further efficiency improvement by taking advantage of the AES-NI set [54] and avoiding the cost caused by frequent key scheduling.

Let $(\mathcal{E}, \mathcal{D})$ be a block cipher where \mathcal{E}, \mathcal{D} are the encryption and decryption algorithms respectively. Let ck be a key generated for the cipher and is public. We will model $\mathcal{E}_{ck}(\cdot)$ as a random permutation π and $\mathcal{D}_{ck}(\cdot)$ as the inverse permutation π^{-1} [55].

The masking scheme has four algorithms:

- **Gen**(n, λ): given n the algorithm uniformly generates a $l \times 2$ key matrix K where $l = \lceil \log(n) \rceil$ and each cell $K_{i,j}$ is a uniformly random λ-bit key. Without loss of generality, we assume the block size of the cipher is also λ bits.

- **Key**(K, i): given the key matrix K and an integer $0 \leq i \leq n - 1$, return the ith masking key. Let the binary representation
of i be b_0b_1, \ldots, b_{l-1}, the masking key $mk = \bigoplus_{j=0}^{l-1} K_{j,b_j}$, where b_j is the jth bit of i.

- Mask(K, P): Mask an n-vector P such that each element in P is a bit string of λ-bit. For each element $P[i]$, compute $mk_i = Key(K, i)$. The masked element $\pi(P[i]) = \pi(mk_i) \oplus mk_i \oplus P[i]$

- Unmask($\pi(P)$, i): given the masked vector $\pi(P)$ and an index i, unmask $P[i] = \pi(P[i]) \oplus \pi(mk_i) \oplus mk_i$

This masking scheme is to be used with (\frac{1}{n})-OT. The sender runs Gen, Key, Mask to mask the n strings that will be sent to the receiver. The receiver will use its selection number to reconstruct mk_i but not the other masking keys. With mk_i, the receiver can unmask the sender’s i-th string $P[I]$. The formal security definition and proof can be found in Appendix C. At a high level, the masking scheme is secure if an adversary who knows the $log(n)$ keys corresponding to I and P can learn $P[I]$ but nothing about other vectors $P[j], j \neq I$, even if the adversary has oracle access to π and π^{-1}.

A remark on (\frac{1}{n})-OT extension In our paper, we implement (\frac{1}{n})-OT by invoking (\frac{1}{n})-OT extension $log(n)$ times and masking the n strings to be sent. Alternatively, one can use (\frac{1}{\lambda})-OT extension with the masking scheme to implement (\frac{1}{n})-OT.

In [38], a (\frac{1}{n})-OT extension protocol was presented such that one invocation of (\frac{1}{n})-OT extension can replace any 2 of (\frac{1}{n})-OT extension (the masking part remains the same). This protocol works when $n \leq 2 \cdot \lambda$, where λ is the security parameter. The cost of one invocation of (\frac{1}{n})-OT extension is about the same as 2 invocations of (\frac{1}{\lambda})-OT extension. In [56], a new protocol for (\frac{1}{\lambda})-OT extension based on pseudorandom code was presented. The new protocol works for arbitrary n. The cost of one invocation is about the same as the cost of 4 invocations of (\frac{1}{\lambda})-OT extension.

We present some analysis regarding whether (\frac{1}{n})-OT extension could improve the efficiency of our protocols:

- The (\frac{1}{n})-OT extension protocol requires an additional 2\lambda (\simeq \lambda^2) or 3λ to 4λ ([56]) base OTs to setup. Since we use OT extension already, these base OTs can be obtained through OT extension.
- In Protocol 1, we need (\frac{1}{n})-OT. If we use [38], the cost of 1 invocation is the same as 2 invocations of (\frac{1}{\lambda})-OT extension. If we use [56], the cost of 1 invocation is actually higher. Thus, using (\frac{1}{n})-OT extension will not improve the efficiency of Protocol 1.
- In Protocol 2, we need (\frac{1}{\lambda})-OT. The parameter λ is too large for [38]. We can use [56] in this case. If so, we will use 1 invocation of the (\frac{1}{\lambda})-OT extension instead of $log(\lambda)$ invocations of (\frac{1}{\lambda})-OT extension. However, since Protocol 2 is only invoked once in the PSU-CA protocol, this improvement will be offset by the increased number of base OT. Recall that λ is the order of $10^4 - 10^5$. Therefore, $log(\lambda)$ is usually no more than 20. In comparison, when $\lambda = 128$, the (\frac{1}{\lambda})-OT extension in [56] requires at least 384 more invocations of base OT (that can be obtained using the same (\frac{1}{\lambda})-OT extension). Thus, using (\frac{1}{n})-OT extension will not improve the efficiency of Protocol 2.

4.5 PSU-CA and PSI-CA Protocols

We now present the PSU-CA and PSI-CA protocols. As we mentioned earlier, the PSI-CA protocol can be obtained from the PSU-CA protocol. The PSU-CA protocol is presented in Protocol 3 and the security analysis of the protocol can be found in Appendix B.

Building sketches does not involve cryptographic operations and can be done offline, as this does not require interacting with the other party. Thus we assume the parties have pre-computed the sketches before running the protocol and they use the sketches as the input to the protocol.

Protocol 3 PSU-CA Protocol

| Inputs | The private inputs of P_1 and P_2 are the m FM sketches $F_{S_1}^{(0)}, \ldots, F_{S_1}^{(m-1)}$ and $F_{S_2}^{(0)}, \ldots, F_{S_2}^{(m-1)}$ respectively. Each pair of sketches $(F_{S_1}^{(i)}, F_{S_2}^{(i)})$ encodes the private sets of the parties, using the same hash function h_i. The auxiliary inputs include the security parameter λ, the sketch size $w = \log(N) + 4$ where N is the maximum possible cardinality of the private sets, the parameter m that controls accuracy, and constants κ, ρ.

| Outputs | P_1 and P_2 obtain $\hat{N}_1, \hat{N}_2 \in \mathbb{Z}_2$ respectively. Each party’s output is a secret share of \hat{N} and satisfies $\hat{N}_1 + \hat{N}_2 = \hat{N}$, where \hat{N} is the estimated union cardinality.

1. P_1 and P_2 run Protocol 1 exactly m times. In the ith run, they use $(F_{S_1}^{(i)}, F_{S_2}^{(i)})$ and obtain $\hat{z}_1^{(i)}$, $\hat{z}_2^{(i)}$ respectively.

2. P_1 and P_2 compute locally $\hat{Z}_1 = \sum_{i=0}^{m-1} \hat{z}_1^{(i)}$ and $\hat{Z}_2 = \sum_{i=0}^{m-1} \hat{z}_2^{(i)}$.

3. P_1 and P_2 run Protocol 2 with \hat{Z}_1 and \hat{Z}_2 as input and obtain \hat{N}_1 and \hat{N}_2 respectively.

4. P_1 outputs \hat{N}_1, P_2 outputs \hat{N}_2. |

For the PSI-CA protocol, the only difference is that in the last step, P_1 outputs $\hat{N}_1 = |S_1| - |\hat{N}_1|$, P_2 outputs $\hat{N}_2 = |S_2| - |\hat{N}_2|$. In this step each party converts its own share of the union cardinality to a share of the intersection cardinality using the cardinality of its own set. This step is done locally and the parties do not need to know the cardinality of the other party’s set. The output of P_1 and P_2 in PSI-CA extends up to $|S_1| - |\hat{N}_1| + |S_2| - |\hat{N}_2| = |S_1| + |S_2| - \hat{N} \approx |S_1| + |S_2| - |S_1 \cup S_2| = |S_1 \cap S_2|$.

Complexity: In both the PSU-CA and PSI-CA protocols, the parties first run m times of Protocol 1, whose cost is $2w - 1$ invocations of (\frac{1}{\lambda})-OT. Then the parties run Protocol 2 whose cost is one (\frac{1}{\lambda})-OT and $q = m \cdot (w - 1) + 1$. The parameter m is a constant once the desirable error bound is fixed. The parameter $w = \log(N) + 4$ where N is the maximum possible cardinality of the private sets. So the computational and communication complexities are both $O(\log(N))$. Note that N is the maximum possible cardinality instead of the actual cardinalities of the private sets. This is because the parties do not and should not know the cardinality of the other party’s private set. They can set a large enough w so that the sketches can encode any set that is smaller than 2^{w-4}. For example, to encode any sets with size up to 1 million, we set $w = 24$.

Relative Error of PSI-CA: In the PSI-CA protocol we obtain the intersection cardinality from the estimated union cardinality. The relative error then is in terms of the union cardinality (\frac{|S_1 \cap S_2|}{|S_1 \cup S_2|\cdot |S_1 \cup S_2|})

We can adjust m to control the relative error if $|S_1 \cap S_2|$ is not very small compared to $|S_1 \cup S_2|$. In many data mining applications the condition often holds and intersection cardinality can be estimated fairly well based on the inclusion-exclusion principle [57], [58].

5 Multiparty Protocols

Since Protocol 1 and Protocol 2 require OT, they cannot be directly migrated to the multiparty setting. However, the protocols can be re-implemented with standard secret sharing-based multiparty secure computation schemes e.g. [59], [60], [61]. Computing the estimator requires bitwise OR and AND protocols, and an integer
addition protocol. Those are standard building blocks that are readily available in all schemes mentioned above. We use a lookup table in estimating union cardinality, and secure lookup tables are also available [62]. Then the PSU-CA protocol can be easily built after the two building blocks are built. Note here our intention is to show feasibility. More efficient protocols are possible but we do not intend to do any optimization now and leave this for future investigation. Working with standard secure computation building blocks implies that the protocol is secure (by the composition theorem [63]), thus the security proof for the multiparty protocols is omitted.

However, migrating the PSI-CA protocol to multiparty setting is not easy. This is because computing the intersection cardinality of \(\tau \) sets using the inclusion exclusion principle requires exponential time in \(\tau \). For example, in the three-parties setting, \(|S_1 \cap S_2 \cap S_3| = |S_1 \cup S_2 \cup S_3| - |S_1| - |S_2| - |S_3| + |S_1 \cap S_2| + |S_1 \cap S_3| + |S_2 \cap S_3|\). Therefore in the multiparty setting we do not use the inclusion and exclusion principle. Instead we use Min-Max sketches [26] to compute the intersection cardinality from shared union cardinality. This reduces the complexity to linear in \(\tau \). In the following, we introduce Min-Max sketches and then present the protocol.

5.1 Min-Max Sketches

A Min-Max sketch is a summary of a set that can be used for estimating Jaccard index of sets. In this paper, we use it to obtain the cardinality of the intersection of multiple sets.

A Min-Max sketch consists of 2 vectors of \(k \) hash values. Let \(S \) be a set and \(h_0, \ldots, h_{k-1} \) be \(k \) independent collision resistant hash functions that map inputs uniformly to \(\binom{k}{t} \) bit integers. We define \(h_{\min}^i(S) \) as the element in \(S \) that has the lowest hash value, i.e. \(h_{\min}^i(S) = x \) such that \(x \in S \) and \(\forall y \in S \land y \neq x, h_i(x) < h_i(y) \). Similarly, we define \(h_{\max}^i(S) \) as the element in \(S \) that has the highest hash value. A k-Min-Max sketch of \(S \) (denoted by \(M_S \)) consists of two vectors: \(M_{\min}^S = (h_{\min}^0(S), \ldots, h_{\min}^{k-1}(S)) \) and \(M_{\max}^S = (h_{\max}^0(S), \ldots, h_{\max}^{k-1}(S)) \).

For two sets \(S_1 \) and \(S_2 \), the Jaccard index is defined as \(J = |S_1 \cap S_2| / |S_1 \cup S_2| \). Given two k-Min-Max sketches \(M_{S_1} \) and \(M_{S_2} \) built with the same set of \(k \) hash functions, it is clear that \(Pr[h_{\min}^{\min}(S_1) = h_{\min}^{\min}(S_2)] = J \) since \(h_{\min}^{\min}(S_1) = h_{\min}^{\min}(S_2) \) only happens when the element is in the intersection and the probability that this element is the minimal is \(1 / \binom{n+S}{2} \). Similarly, \(Pr[h_{\min}^{\max}(S_1) = h_{\min}^{\max}(S_2)] = J \) follows the same line of reasoning.

Thus we have an unbiased estimator of \(J \):

\[
\hat{J} = \frac{1}{2k} \sum_{i=0}^{k-1} (eq(M_{\min}^i[S_1], M_{\min}^i[S_2]) + eq(M_{\max}^i[S_1], M_{\max}^i[S_2]))
\]

where \(eq \) is the equality function such that \(eq(x, y) = 1 \) if \(x = y \) and \(eq(x, y) = 0 \) otherwise. The standard deviation of \(\hat{J} \) is

\[
\sqrt{\frac{J(1-J)}{2k} - \frac{J^2}{k(1-k) \binom{n+S}{2}}} \leq \sqrt{\frac{1-J}{2k}} \leq \sqrt{\frac{1}{2k}}
\]

This can be generalized to \(\tau \) sets case where the generalized Jaccard index is defined as \(J_\tau = |\bigcap_{i=1}^{\tau} S_i| / |\bigcup_{i=1}^{\tau} S_i| \). Now \(J_\tau \) with \(\tau \) sketches \(M_{S_1}, \ldots, M_{S_\tau} \), is defined similarly as:

\[
\hat{J}_\tau = \frac{1}{2k} \sum_{i=0}^{k-1} (eq(M_{\min}^i[S_1], \ldots, M_{\min}^i[S_\tau]) + eq(M_{\max}^i[S_1], \ldots, M_{\max}^i[S_\tau]))
\]

where \(eq \) now is the equality function over multiple values such that \(eq(x_1, \ldots, x_\tau) = 1 \) if \(x_1 = \ldots = x_\tau \) and \(eq(x_1, \ldots, x_\tau) = 0 \) otherwise. The accuracy of the estimation using Min-Max sketches can be adjusted by changing \(k \). More specifically:

Theorem 2. Let \(S_1, \ldots, S_\tau \) be sets and \(J_\tau \) be the generalized Jaccard index. Let \(J_{\tau} \) be the estimate obtained from computed using Equation (4). For any \(\epsilon, \delta \in (0, 1) \), it holds that:

\[
Pr[|\hat{J}_\tau - J_\tau| / J_{\tau} \leq \epsilon] \geq 1 - \delta
\]

where \(k \geq \frac{(\text{err}^{-1}(1-\delta))^2}{2\epsilon^2} \) where \(\text{err}^{-1} \) is the inverse error function.

The proof of Theorem 2 is similar to that of Theorem 1 and is omitted. As we can see, the threshold for \(k \) depends on \(J_\tau \). For example, if we fix \(\delta = 0.001 \), then when \(\epsilon = 0.04 \), \(k \) should be at least \(\frac{364}{J_{\tau}^2} \); when \(\epsilon = 0.01, k \) should be at least \(\frac{5817}{J_{\tau}^2} \).

5.2 Multiparty PSI-CA Protocol

Given the generalized Jaccard index (GJI) over \(\tau \) sets and the union cardinality of the \(\tau \) sets, we can compute the intersection cardinality \(|\bigcap_{i=1}^{\tau} S_i| = J_\tau \cdot |\bigcup_{i=1}^{\tau} S_i| \). We can estimate the union cardinality using FM sketches, then what is left is to estimate the GJI over the sets. To estimate GJI and then compute the intersection cardinality, we only need secure equality test, integer multiplication and floating point division protocols, which are also basic building blocks in secret sharing-based multiparty schemes (e.g. [64], [65]). We can just use them as black boxes. The protocol is shown in Protocol 4.

Protocol 4 MultiParty PSI-CA Protocol

Inputs The private inputs of \(P_1, \ldots, P_\tau \) are the Min-Max sketches \(S_1, \ldots, S_\tau \) and shares of estimated union cardinality \(\{\lambda_1, \ldots, \lambda_\tau\} \) respectively. The sketches are generated using the same set of hash function \(h_0, \ldots, h_{k-1} \). The auxiliary inputs include the security parameter \(\lambda \), the sketch size \(k \).

Outputs \(P_1, \ldots, P_\tau \) obtain the shares \(\{\lambda_1, \ldots, \lambda_\tau\} \) respectively, where \(\lambda \) is the estimated intersection cardinality, i.e. \(\{\lambda_1, \ldots, \lambda_\tau\} = \frac{J_\tau}{k} \).

1) For \(0 \leq i \leq k-1, P_1, \ldots, P_\tau \) run the equality test protocol to compute \(eq(M_{S_1}^{\text{min}}[i], \ldots, M_{S_\tau}^{\text{min}}[i]) \) and \(eq(M_{S_1}^{\text{max}}[i], \ldots, M_{S_\tau}^{\text{max}}[i]) \). The two equality test results are output as shares to each party and the party can sum the shares locally. At the end of each iteration, each party holds a share \([t_1^{(i)}], \ldots, [t_{\tau}^{(i)}] \) of the result of \(eq(M_{S_1}^{\text{min}}[i], \ldots, M_{S_\tau}^{\text{min}}[i]) + eq(M_{S_1}^{\text{max}}[i], \ldots, M_{S_\tau}^{\text{max}}[i]) \).

2) For each \(P_i \), the party computes the sum of shares locally \(u = \sum_{i=0}^{k-1} eq(M_{S_1}^{\text{min}}[i], \ldots, M_{S_\tau}^{\text{min}}[i]) + eq(M_{S_1}^{\text{max}}[i], \ldots, M_{S_\tau}^{\text{max}}[i]) \).

3) \(P_1, \ldots, P_\tau \) run the multiplication protocol and the floating point division protocol to compute \(\hat{\lambda} = \frac{u}{2k} \), using their shares \([u_1], \ldots, [u_\tau] \) and \([S_1], \ldots, [S_\tau] \). The output is shares \(\{\hat{\lambda}_1, \ldots, \hat{\lambda}_\tau\} \).

Note if the cardinality is the final output, then in the last step the multiparty division can be omitted. The parties can compute just \(u \cdot N \) using their shares and output the result. Then each party can locally compute \(u / k \) since \(k \) is public. This makes the protocol more efficient.

6 Performance Evaluation

In this section, we show performance figures for our two-party protocol. We implemented the two-party protocol. We did not
implement the multiparty protocols because the performance relies largely on the implementation of the underlying secret sharing-based multiparty secure computation framework. Our prototype is written in C and uses TCP sockets for communication between two distributed parties. We used OpenSSL for the underlying cryptographic operations. We implemented the OT extension protocol in [36] with the C-OT and R-OT optimizations from [37]. The base OT protocol is the Naor-Pinkas OT [34]. In all experiments, we set the security parameter to 128 and chose key size and cryptographic functions accordingly as recommended by NIST [66]. This should provide adequate security for most applications in median and long term (2031 and beyond) [66]. All experiments were run on two commodity computers: party 1 ran on a Ubuntu PC with an Intel Core i7 3.4 GHz CPU (i7-3770) and 8 GB RAM, party 2 ran on a Macbook pro (2011) with an Intel Core i7 2.2 GHz CPU (i7-2720QM) and 16 GB RAM. Switching computers for the parties did not cause significant difference in performance. The two computers are connected by switched 1 Gbit Ethernet. Our prototype is single-threaded, although the computation is fairly easy to parallelize.

We first show the accuracy of the estimates obtained from FM sketches. The sketches were built using Murmur3 hash 3 that has been widely used in large systems like Hadoop and Cassandra. Our initial tests showed that the difference in accuracy using sketches built from Murmur3 hash and SHA-1 is negligible and Murmur3 is much faster (3.3 ns per hash) than SHA-1 (170 ns per hash). We used random sets with cardinality ranging from 10 to 10^6 (1 million). For each union size, we tested with different m = 4096, 16384, and 65536 to guarantee that the relative error does not exceed ε = 4%, 2%, and 1% respectively with a probability at least 1 − δ = 0.999. All experiments were repeated 100 times. Figure 5 shows the mean and the ranges of the estimation errors measured from our experiments. The accuracy is good for both small and large sets. In all cases the mean of estimation error is less than 0.3% and falls within the desired range (±4%, ±2%, and ±1%). For extremely small sets (union cardinality = 10), we observed no errors. This shows that the formula with correction (Equation 1) is very effective.

![Fig. 5: Mean and range for estimation error \(\frac{N - \hat{N}}{N} \). For \(m = 4096, 16384, 65536 \), the estimation error is in [-4%,4%], [-2%, 2%], [-1%,1%] with probability 0.999.](image)

Then we show the pre-computation performance, i.e. the time for generating sketches. The result is shown in Table 1. The time for generating \(m = 4096, 16384 \) and 65536 sketches from it. Note that sketch generation does not require cryptographic operations. Thus the sketches can be generated once and reused many times. This is often not possible in protocols that take sets as input. Although parties may be able to encrypt the sets before engaging in such protocols, the encrypted sets cannot be re-used because fresh randomness is needed to keep the protocol secure. Our pre-computation is also different from offline computation in some protocols that generate data independent values, which will be consumed in protocol execution and need to be regenerated for each protocol execution. We consider pre-computation as a one-off cost and do not include it in the protocol running time that will be shown later.

Next, we compare the performance of our protocol to existing protocols. The result is shown in Table 2. All numbers in the table are obtained by averaging 100 executions, except for the test of the exact protocol with 10^6-element private sets which was too slow (an execution took about 1 hour). The protocols we compared to are the two-party exact PSI-CA protocol in [11] and the two-party approximate PSU-CA protocol in [15], the state-of-the-art in each kind. We implemented these two protocols in C and use OpenSSL for the cryptographic operations. For the ease of implementation, we did not implement socket communication for these two protocols. Instead, we simply ran both parties on the Linux PC and let the two parties communicate through shared memory. This clearly favors [11] and [15] in terms of running time. In the experiment, both parties’ private sets have the same cardinality. The running time of the approximate protocol in [15] does not include the time for building Bloom filters (as they can be pre-computed). Adding this time, as well as the times from Table 1 for our protocol, does not change the results qualitatively (our protocol is still faster). In the experiment, we use random sets with cardinality ranging from 10 to 10^6. For our protocol we set \(w = \lceil \log(N) \rceil + 4 \), so that the sketches are large enough for the cardinality \(N \), e.g. \(w = 24 \) for \(N = 10^6 \). As we can see in Table 2, for small sets (cardinality in the order of 10^2 or less), the exact protocol in [11] is a better choice. But for larger sets (cardinality \(\geq 10^3 \)) which are commonly encountered in PPDM, the approximate protocols are better and the difference becomes larger when the sets get larger. We tested with \(m = 4096, 16384 \) and 65536 so that the relative error bounds are \(\epsilon = 1\%, 2\% \) and \(4\% \) respectively (\(\delta = 0.001 \)). In all cases, the performance of our protocol is much better than the protocol in [15]. The difference is about 1 - 2 orders of magnitude.

![TABLE 1: Performance: FM sketches generation (in seconds).](image)
remove the noise. To ensure robustness of the mining results, data
pre-processing can remedy the problem, it cannot completely
handle noise. To ensure robustness of the mining results, data
mining algorithms are often designed to tolerate noise to some
level. Thirdly, in cases such as mining extremely large data and
data streams, approximation is more commonly used than exact
algorithms. In these cases, computing exact answers is usually not
possible because of limited computational resources such as RAM,
CPU and disk space. Fourthly, as we have already mentioned,
exact PPDM protocols often fail to deliver timely answers due to
their huge computational cost. With time constraints, approximate
but timely answers are often preferable.

8 CONCLUSION AND FUTURE WORK

The secure computation of the union or intersection cardinality
of sets belonging to different parties is a fundamental primitive
in PPDM. However, the existing protocols are too inefficient
for practical use in PPDM and may cause unwanted information
leakage when used as subroutines. Thus, in this paper, we
proposed novel protocols for the PSU-CA/PSI-CA problems. Our
two-party protocols are very efficient and accurate, substantially
outperforming the existing state-of-the-art protocols as shown in
our experimental evaluation. The protocols compute the resulting
PSI-CA and PSU-CA in a secret-shared form before disclosing
them, which makes them more flexible and thereby more suitable
for PPDM. The protocols can be extended to multiparty settings
while retaining the good properties. A by-product of the protocol
optimization is a fixed-key masking scheme that can significantly
speed up \((\frac{1}{2})\)-OT when \(n\) is large.

Efficiency and scalability are already big challenges for data
mining in the clear, and even bigger challenges for PPDM that
requires more computation on the data in order to preserve data
privacy. To this end, we would like to investigate the following
directions: (1) protocols with sub-linear complexities which would
greatly improve the efficiency; (2) protocols that are secure in
a concurrently composable model. In this paper the protocols
guarantee sequential composability. This could be a limitation
because parallelization is another key tool to improve scalability
and concurrent composability is necessary to ensure security in
parallel protocol executions.

List of Appendices

The appendices of this paper are downloadable as supplementary
material at http://ieeexplore.ieee.org. The appendices include:

A Proof of Theorem 1
B Security Analysis of the Two-party PSU-CA protocol (and its
sub-protocols)
C Security of Fixed-key masking
D Optimized OT Extension in Our Protocols
E Estimation Error Distribution

<table>
<thead>
<tr>
<th>Cardinality</th>
<th>(10^3)</th>
<th>(10^4)</th>
<th>(10^5)</th>
<th>(10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([11]) (exact)</td>
<td>0.035</td>
<td>0.35</td>
<td>3.54</td>
<td>35.35</td>
</tr>
<tr>
<td>(\epsilon = 4%) ([13]) (approximate)</td>
<td>0.65</td>
<td>0.71</td>
<td>1.50</td>
<td>6.92</td>
</tr>
<tr>
<td>Ours ((m = 4096))</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
<td>0.35</td>
</tr>
<tr>
<td>(\epsilon = 2%) ([13]) (approximate)</td>
<td>2.33</td>
<td>2.42</td>
<td>3.37</td>
<td>10.19</td>
</tr>
<tr>
<td>Ours ((m = 16384))</td>
<td>0.46</td>
<td>0.54</td>
<td>0.62</td>
<td>0.73</td>
</tr>
<tr>
<td>(\epsilon = 1%) ([13]) (approximate)</td>
<td>9.06</td>
<td>9.17</td>
<td>10.22</td>
<td>18.69</td>
</tr>
<tr>
<td>Ours ((m = 65536))</td>
<td>1.17</td>
<td>1.51</td>
<td>1.84</td>
<td>2.29</td>
</tr>
</tbody>
</table>

TABLE 2: Performance comparison: computation time (in seconds, \(\delta = 0.001\) for approximate protocols)

Table 5. We compare it against non-fixed masking. The experiment
ran on the Linux PC. As we can see the fixed-key masking scheme
is more than one order of magnitude faster. In our implementation,
we used the AES-NI set indirectly through the OpenSSL EVP
engine. The performance can be further improved by writing code
that directly uses the AES instructions.

7 DISCUSSION

A limitation of our protocols is that they are not suitable for
applications requiring exact computation of the cardinality of set
union or intersection. However, in PPDM, this is often not a
problem, as long as the approximation accuracy can be tuned
according to the requirements of the PPDM algorithm. Firstly,
data mining is about extracting useful information from data such
as finding frequent patterns or finding similar regions or clustering
the data. To some degree approximation is inherent in all mining
algorithms that seek to approximate the unknown ground truth
from data. Secondly, real world data is never perfect. For example
past research suggested that the average error rate of a dataset in
a data mining application is around 5%-10% \([67], [68]\). Although
pre-processing can remedy the problem, it cannot completely
remove the noise. To ensure robustness of the mining results, data

Total Traffic (Mbytes)

<table>
<thead>
<tr>
<th># of pairs</th>
<th>(10^3)</th>
<th>(10^4)</th>
<th>(10^5)</th>
<th>(10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-fixed Key</td>
<td>0.28</td>
<td>3.90</td>
<td>44.50</td>
<td>489.638</td>
</tr>
<tr>
<td>Fixed Key</td>
<td>0.009</td>
<td>0.14</td>
<td>1.23</td>
<td>9.92</td>
</tr>
<tr>
<td>Improvement</td>
<td>28\times</td>
<td>28\times</td>
<td>36\times</td>
<td>49\times</td>
</tr>
</tbody>
</table>

TABLE 5: Fixed-key vs non-fixed key masking (time in ms)
Acknowledgements
We would like to thank the anonymous reviewers. The first author is supported in part by an EPSRC research grant (EP/M013561/2).

References

APPENDIX A

PROOF OF THEOREM 1

Proof. \(\bar{N} \) is computed using Equation 1 from
\[
\frac{Z}{m} = \frac{\varepsilon^{(0)} + r \cdots + r^{(m-1)}}{r^{(m)}}.
\]
Let \(X \) be the random variable representing the value of
\(\frac{Z}{m} \). \(X \) has mean \(\mu = \log(\phi N) \) and standard deviation \(\sigma = \frac{1}{\sqrt{m}}. \) We denote \(\bar{N} \) with \(Y \) and Equation 1 with a function \(g() \). We have \(Y = g(X) \). The distribution of \(X \) is approximately normal by the central limit theorem. So its Cumulative Distribution Function (CDF) is
\[
\frac{1}{2} \left(1 + \text{erf} \left(\frac{Z}{\sqrt{m}} \right) \right), \text{ where erf is the error function.}
\]
Since \(g \) is continuous and there is always positive, \(g \) is invertible. Therefore the CDF of \(Y \) is \(CDF_y(y) = \Pr[g(x) \leq y] = \Pr[X \leq g^{-1}(y)] = CDF_x(g^{-1}(y)). \)

The range \(|\bar{N} - N| \leq \epsilon \cdot N \) is equivalent to \(N - \epsilon N \leq \bar{N} \leq N + \epsilon N \), thus we have:
\[
\Pr[|\bar{N} - N| \leq \epsilon \cdot N] = \frac{CDF_x(g^{-1}(N + \epsilon N)) - CDF_x(g^{-1}(N - \epsilon N))}{1}.
\]

\[
= \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \text{erf} \left(\frac{g^{-1}(N + \epsilon N) - \mu}{\sqrt{2}\sigma} \right) \right) - \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \text{erf} \left(\frac{g^{-1}(N - \epsilon N) - \mu}{\sqrt{2}\sigma} \right) \right)
\]

\[
= \frac{1}{2} \text{erf} \left(\frac{g^{-1}(N + \epsilon N) - \mu}{\sqrt{2}\sigma} \right) - \frac{1}{2} \text{erf} \left(\frac{g^{-1}(N - \epsilon N) - \mu}{\sqrt{2}\sigma} \right)
\]

\[
\geq \frac{1}{2} \text{erf} \left(\frac{k_1}{\sqrt{2}} \right) - \frac{1}{2} \text{erf} \left(\frac{k_2}{\sqrt{2}} \right)
\]

\[
\geq \text{erf} \left(\frac{\min(\log(1+\epsilon),\log(1+\epsilon))}{\sqrt{2}} \right)
\]

where \(k_1 = \frac{g^{-1}(N + \epsilon N) - \mu}{\sigma} \) and \(k_2 = \frac{g^{-1}(N - \epsilon N) - \mu}{\sigma} \).

Now Equation 2 holds if
\[
\text{erf} \left(\frac{\min(\log(1+\epsilon),\log(1+\epsilon))}{\sqrt{2}} \right) = 1 - \delta.
\]

Since \(\text{erf} \) is strictly increasing, then for any \(\epsilon, \delta \), we can always ensure a probability at least \(1 - \delta \) by setting a large enough \(m \geq 2 \cdot \left(\frac{\text{erf}^{-1}(1-\delta)}{\min(\log(1+\epsilon),\log(1+\epsilon))} \right)^2 = 2.5088 \cdot \left(\frac{1}{\sqrt{2}} \right)^2. \)

\[\square\]

APPENDIX B

SECURITY ANALYSIS OF THE TWO-PARTY PSU-CA PROTOCOL

B.1 Security Definitions

A function \(\mu() \) is negligible in \(n \), or just negligible, if for every positive polynomial \(\rho() \) and any sufficiently large \(n \) it holds that \(\mu(n) \leq 1/\rho(n) \). A probability ensemble indexed by \(I \) is a sequence of random variables indexed by a countable index set \(I \). Namely, \(X = \{X_i\}_{i \in I} \) where each \(X_i \) is a random variable. Two distribution ensembles \(X = \{X_n\}_{n \in \mathbb{N}} \) and \(Y = \{Y_n\}_{n \in \mathbb{N}} \) are computationally indistinguishable, denoted by \(X \equiv Y \) if for every probabilistic polynomial-time (PPT) algorithm \(D \), there exists a negligible function \(\mu() \) such that for every \(n \in \mathbb{N} \),
\[
\left| \Pr[D(X_n, 1^n) = 1] - \Pr[D(Y_n, 1^n) = 1] \right| \leq \mu(n)
\]

All our security definitions and proofs are based on computational indistinguishability. Thus we will omit “computational” and just use “indistinguishability” and “indistinguishable” for short.

A two-party protocol \(\Pi \) computes a functionality that maps a pair of inputs to a pair of outputs \(f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^* \times \{0,1\}^* \), where \(f = (f_1, f_2) \). For every pair of inputs \(x, y \in \{0,1\}^* \), the output-pair is a random variable \((f_1(x, y), f_2(x, y))\). The first party obtains \(f_1(x, y) \) and the second party obtains \(f_2(x, y) \). The security of two-party protocols is captured by the simulation paradigm. Loosely speaking, in the semi-honest model, a protocol \(\Pi \) is secure if whatever can be computed by a party in the protocol can be obtained from its input and output only. This is formalized by requiring a party’s view in a real protocol execution to be simulatable by a simulator in an ideal model that gets only the party’s input and output. The view of the party \(i \) during a real execution of \(\Pi \) on \((x, y) \) is denoted by \(\text{view}_i^\Pi(x, y) \) and equals \((w, r_i, m'_1, \ldots, m'_t)\) where \(w \in \{0,1\}^* \) is the input of \(i, r_i \) is the outcome of \(i \)'s internal random coin tosses and \(m'_j \) represents the \(j \)th message that it received. We also denote the \(i \)th party’s output during an execution of \(\Pi \) on \((x, y) \) by \(\text{output}_i^\Pi(x, y) \). The joint output is denoted by
\[
\text{output}^\Pi(x, y) = (\text{output}_1^\Pi(x, y), \text{output}_2^\Pi(x, y))
\]

The security of two-party protocols is formalized in Definition 1, which requires the joint distribution of the simulated view and the functionality output must be indistinguishable from the joint distribution of the real view and joint output in the real execution.

Definition 1. Let \(f = (f_1, f_2) \) be a functionality. We say that a protocol \(\Pi \) securely computes \(f \) in the presence of static semi-honest adversaries if there exist probabilistic polynomial-time algorithms \(S_1 \) and \(S_2 \) such that for every \(x, y \in \{0, 1\}^* \) and a security parameter \(\lambda \), we have
\[
\{S_1(x^\lambda, f_1(x^\lambda, y)), f(x, y)\}_{x,y} \equiv \{\text{view}_1^\Pi(x, y), \text{output}_1^\Pi(x, y)\}_{x,y}
\]
\[
\{S_2(x^\lambda, y^\lambda, f_2(x^\lambda, y^\lambda)), f(x, y)\}_{x,y} \equiv \{\text{view}_2^\Pi(x, y), \text{output}_2^\Pi(x, y)\}_{x,y}
\]

B.2 \(\mathcal{F} \)-Hybrid Model

It has been proven that if a protocol is secure in the stand-alone model against semi-honest adversaries, then it remains secure under sequential composition [63]. The sequential composition theorem allows us to prove the security of protocols in the so called \(\mathcal{F} \)-Hybrid Model. That is, if a functionality \(\mathcal{F} \) can be securely computed by a protocol \(\rho \), then for a protocol \(\Pi \) that uses \(\rho \) as a subroutine, we can prove that \(\Pi \) is secure by proving the security of a hybrid version of \(\Pi \). In the hybrid protocol, every invocation of \(\rho \) is replaced by an “ideal call” to a trusted party. Now instead of showing a simulator that simulates the execution of the real protocol \(\Pi \), we only need to show a simulator that simulates the execution of the corresponding hybrid protocol.

In the \(\mathcal{F}_1, \ldots, \mathcal{F}_t(x^\lambda) \)-hybrid model, there is a trusted party that computes \(\mathcal{F}_1, \ldots, \mathcal{F}_t(x^\lambda) \). For a real protocol \(\Pi \), if it makes subroutine calls to protocols \(\rho_1, \ldots, \rho_t(x^\lambda) \) that securely compute \(\mathcal{F}_1, \ldots, \mathcal{F}_t(x^\lambda) \), then we can define a hybrid protocol \(\Pi^1, \ldots, \Pi_t(x^\lambda) \) by replacing each invocation of \(\rho_i \) with an ideal call to \(\mathcal{F}_i \) and keeping other parts unchanged. The ideal calls are just messages containing the inputs to the functionalities. The trusted party will compute and return the output. Upon receiving the output, the protocol continues. We require sequential composition, i.e. ideal calls are executed sequentially without overlapping. The view of party \(i \) during an execution of \(\Pi^1, \ldots, \Pi_t(x^\lambda) \) in the hybrid model contains standard messages that are sent between the parties and ideal messages that are sent between the party and the trusted party. We say the protocol \(\Pi^1, \ldots, \Pi_t(x^\lambda) \) in the hybrid model is secure if its execution can be simulated as in Definition 1. The sequential composition theorem says that if the protocol \(\Pi^1, \ldots, \Pi_t(x^\lambda) \) in the hybrid model is secure then the protocol \(\Pi \) in the real model which uses \(\rho_1, \ldots, \rho_t(x^\lambda) \) is also secure. Formally:
Theorem 3. [63] Let $p(\lambda)$ be a polynomial, let $\mathcal{F}_1, \ldots, \mathcal{F}_{p(\lambda)}$ be two-party probabilistic polynomial-time functionalities and let $\rho_1, \ldots, \rho_{p(\lambda)}$ be protocols such that each ρ_i securely computes \mathcal{F}_i in the presence of semi-honest adversaries. Let Π be a real protocol and $\Pi^{\mathcal{F}_1, \ldots, \mathcal{F}_{p(\lambda)}}$ be a hybrid protocol that is obtained from Π by replacing $\rho_1, \ldots, \rho_{p(\lambda)}$ with ideal calls to $\mathcal{F}_1, \ldots, \mathcal{F}_{p(\lambda)}$. If $\Pi^{\mathcal{F}_1, \ldots, \mathcal{F}_{p(\lambda)}}$ securely computes a two-party functionality γ in the presence of semi-honest adversaries, then Π securely computes γ in the presence of semi-honest adversaries.

B.3 Security Analysis

Now we give the security proof of our two-party PSU-CA protocol. The security of the two-party PSI-CA follows easily from our proof, because the PSI-CA protocol requires only an additional local computation using a local input and thus parties gain no more information than in the PSI-CA protocol.

Our proofs are in the \mathcal{F}-Hybrid model. We work in a hybrid model which allows ideal calls to the OT functionalities. Once we prove the hybrid protocol is simulatable, the security of the real protocol can then be established by applying the sequential composition theorem. To make our proofs generic and not dependent on a particular OT protocol, in the Lemma and Theorem statements, we simply assume the existence of protocols that securely realize the ideal OT functionalities, without explicitly state the assumptions that made the OT protocols secure. When instantiating our protocols using some particular OT protocols, we implicitly inherit their assumptions. In this way our proofs can work with any secure OT protocols. In our implementation we use OT extension schemes and the fixed key masking scheme to implement the OT protocols. The security of this instantiation will follow from our proofs, the security proofs of building blocks, and the assumptions on which the security proofs of OT extension schemes [37] and the masking scheme are constructed.

We start by proving the security of the sub-protocols (Protocol 1 and Protocol 2).

Lemma 1. Assuming the existence of protocols that securely compute the $\frac{1}{2}$-OT and $\frac{1}{4}$-OT functionalities, Protocol 1 (Protocol 2) securely computes the functionality $f_{S_1}(F_{S_1}, F_{S_2}) = ([z]_1, [z]_2)$, where $F_{S_1}, F_{S_2}, [z]_1, [z]_2$ are defined as in the protocol description.

Proof. Let $\mathcal{F}_{\frac{1}{2}}$-OT and $\mathcal{F}_{\frac{1}{4}}$-OT be the $\frac{1}{2}$-OT and $\frac{1}{4}$-OT functionalities. We obtain a hybrid protocol $\Pi'_{\frac{1}{2}}$-$\mathcal{F}_{\frac{1}{2}}$-OT-$\mathcal{F}_{\frac{1}{4}}$-OT by replacing all invocations of the $\frac{1}{2}$-OT and $\frac{1}{4}$-OT protocols with ideal calls to $\mathcal{F}_{\frac{1}{2}}$-OT and $\mathcal{F}_{\frac{1}{4}}$-OT. We show that there exist simulators S_1 and S_2 that simulate the execution of the hybrid protocol.

\mathcal{P}_1’s part. \mathcal{P}_1’s view in the hybrid protocol contains its input, its random tape, and one ideal call to $\mathcal{F}_{\frac{1}{2}}$-OT followed by $w - 1$ ideal calls to $\mathcal{F}_{\frac{1}{4}}$-OT. \mathcal{P}_1 acts as the sender in OT, so the ideal calls have no output. Thus in the view there are only the input strings (2 or 4 depending on the functionality) to be sent by \mathcal{P}_1. Given \mathcal{P}_1’s input F_{S_1} and output $[z]_1$, the simulator S_1 simulates the view as follows:

1) Put F_{S_1} and a uniform random tape in the simulated view.
2) Choose $r^{(0)}, \ldots, r^{(w-2)}$ uniformly at random, and then set $r^{(w-1)} = [z]_1 - \sum_{i=0}^{w-2} r^{(i)}$. Then generate $r^{(i)}_0, r^{(i)}_1$ for each round such that $r^{(i)}_0 = -r^{(i)}$ and $r^{(i)}_1 = 1 - r^{(i)}$.

If for round 0, put in the simulated view $r^{(0)}_0, r^{(0)}_1$ to simulate the ideal call to $\mathcal{F}_{\frac{1}{2}}$-OT.

3) For round 1 to $w - 1$, generate 4 strings according to $r^{(a)}_0$ and $F_{S_2}[i]$ as described in Protocol 1, step 2b. Put the 4 strings into the view to simulate the ideal call to $\mathcal{F}_{\frac{1}{4}}$-OT.

We now argue the joint distribution of the simulated view and the output of the functionality is indistinguishable from the joint distribution of the view and the output of the hybrid protocol. The functionality $f_{S_1}(F_{S_1}, F_{S_2}) = ([z]_1, [z]_2)$ outputs two shares that satisfy $[z]_1 + [z]_2 = z$ where z is the estimator, i.e., the index of the first 0 bit in $F_{S_1} \oplus F_{S_2}$. It is clear from Section 4.1 that z is deterministically computed from F_{S_1}, F_{S_2}. We have shown in Section 4.2.2 that Protocol 1 is correct, which means the hybrid protocol is also correct since we just replace protocol invocations with ideal calls to equivalent functionalities. Thus, given the input (F_{S_1}, F_{S_2}), the output of the hybrid protocol is a pair of shares $[z]_1, [z]_2$ such that $[z]_1 + [z]_2 = z$.

Put together, the random variables in the simulated view and the output of the functionality are correlated in the following way:

$$[z]_1 + [z]_2 = z \implies [z]_2 = \sum_{i=0}^{w-1} r^{(i)}_1 + \sum_{i=0}^{w-2} r^{(i)}.$$
The random variables in the simulated view and the output of the functionality are correlated in the following way:

\[F_{S_2} \text{ and uniform random tape } \\
\{ r^{(0)}, \ldots, r^{(w-2)} \} \notin Z_q \\
\{ r^{(w-1)} \} = [z]_2 - \sum_{i=0}^{w-2} r^{(i)} \]

in round \(1 \leq i \leq w - 1 \), \(j = 0 \) if \(F_{S_2}[i] \), if \(r^{(i-1)} \) is even \(j = 1 \) if \(F_{S_2}[i] \), if \(r^{(i-1)} \) is odd.

\([z_1] + [z_2] = z \implies [z_1] = \sum_{i=0}^{w-1} (1 - r^{(i)}) + \sum_{i=1}^{w-1} (-r^{(i)})\)

The random variables in the view and the output of the hybrid execution are correlated in exactly the same way as above except with \([z_1], [z_2] \). The joint distribution in both cases is taken over \(F_{S_2} \), the random tape and \(z \). Since these three are identical in both cases, the joint distributions are indistinguishable.

Summing up, since the hybrid execution can be simulated, \(\Pi_1 \) is secure by applying the sequential composition theorem.

Lemma 2. Assuming the existence of a protocol that securely computes the \((1/\varepsilon)\)-OT functionality, Protocol 2 (\(\Pi_2 \)) securely computes the functionality \(f_{\Pi_2}(\{z_1], [z_2]\}) = ([\bar{N}]_1, [\bar{N}]_2) \), where \([z_1], [z_2], [\bar{N}]_1, [\bar{N}]_2 \) are defined as in the protocol description.

Proof. Let \(F_{\Pi_1, \text{OT}} \) be the \((1/\varepsilon)\)-OT functionality. We obtain a hybrid protocol \(\Pi_2, \Pi_3 \) by replacing the invocation of the \((1/\varepsilon)\)-OT protocol with an ideal call to \(F_{\Pi_1, \text{OT}} \). We show that there exist simulators \(S_1 \) and \(S_2 \) that simulate the execution of the hybrid protocol.

\(\Pi_1 \)'s part. \(\Pi_1 \)'s view in the hybrid protocol contains its input, its random tape, and one ideal call to \(F_{\Pi_1, \text{OT}} \). \(\Pi_1 \) acts as the sender in OT, so the ideal call contains the strings to be sent in the OT. Given \(\Pi_1 \)'s input \([Z]_1\) and output \([\bar{N}]_1\), the simulator \(S_1 \) simulates the view as follows:
1) Put \([Z]_1\).
2) Compute the lookup table \(T \) as described in Protocol 2, step 1.
3) Then compute \(T'[i] = T[i] - [\bar{N}]_1 \). Circularly shift \(T'[i] \) to the left \([Z]_1 \) places to get \(T'' \). Put \(T'' \) in the view to simulate the ideal call to \(F_{\Pi_1, \text{OT}} \).

We now argue that the joint distribution of the simulated view and the output of the functionality is indistinguishable from the joint distribution of the view and the output of the hybrid protocol. The output of the functionality is \(f_{\Pi_2}(\{z_1], [z_2]\}) = ([\bar{N}]_1, [\bar{N}]_2) \) where the two shares satisfy \([N]_1, [N]_2 = \bar{N} \) and \(\bar{N} \) is the estimated cardinality. The computation is deterministic meaning that once \(z=[z_1] + [z_2] \) is fixed, \(\bar{N} \) is fixed. In Section 4.3, we showed that Protocol 2 is correct, thus the hybrid protocol is also correct. The output of the hybrid protocol is a pair of shares \(([\bar{N}]_1], [\bar{N}]_2 \) such that \([\bar{N}]_1, [\bar{N}]_2 = \bar{N} \).

The random variables in the simulated view and the output of the functionality are correlated in the following way:

\([Z]_1 \) and uniform random tape
\[T''[i] = \left[\frac{z_1 - z_2 \cdot \frac{\pi}{\sigma}}{\sigma} \right] - [\bar{N}]_1, \text{ where } j \equiv i + [Z]_1 \mod q \]
\([\bar{N}]_1 + [\bar{N}]_2 = \bar{N} \implies T''[2Z][2] = [\bar{N}]_2 \]

The random variables in the view and the output of the hybrid execution are correlated in exactly the same way as above except with \([\bar{N}]_1, [\bar{N}]_2 \). The joint distribution in both cases is taken over the random choices of \([Z]_1, [Z]_2, [\bar{N}]_1 \) and \(\bar{N} \). Since they are identical in both cases, the joint distributions are indistinguishable.

\(\Pi_2 \)'s part. \(\Pi_2 \)'s view in the hybrid protocol contains its input, its random tape, and one ideal call to \(F_{\Pi_1, \text{OT}} \). \(\Pi_2 \) acts as the receiver in OT, so the ideal call contains the selection integer and the string received in the OT. Given \(\Pi_2 \)'s input \([Z]_2\) and output \([\bar{N}]_2\), the simulator \(S_2 \) simulates the view as follows:
1) Put \([Z]_2\) and a uniformly random tape in the simulated view.
2) Put \([Z]_2\) and \([\bar{N}]_2\) in the view to simulate the ideal call to \(F_{\Pi_1, \text{OT}} \).

Since in the simulated view there is nothing created by \(S_2 \) itself, it is straightforward to see that the joint distribution of the simulated view and the output of the functionality is indistinguishable from the joint distribution of the view and the output of the hybrid protocol.

To sum up, because the hybrid execution can be simulated, by applying the sequential composition theorem, Protocol 2 is secure.

After proving the security of the sub-protocols, the security of the PSU-CA protocol is straightforward: the simulators are given the input (FM sketches) and output (a share of \(N \)) of a party to produce indistinguishable views, and since Protocol 3 involves only calling secure sub-protocols and local computation, it leaks no more information and its security can be easily proved by applying the composition theorem.

Theorem 4. Assuming the existence of protocols that securely compute the \((1/\varepsilon)\)-OT, \((\ell/\varepsilon)\)-OT, \((\ell/\varepsilon)\)-OT functionalities, Protocol 3 is a protocol that securely compute the approximates set union cardinality functionality \(f_{\Pi_3}(F_{\Pi_1}, F_{\Pi_2}) = ([N]_1, [N]_2) \), where \([N]_1, [N]_2 \) are defined as in the protocol description.

Proof. Let \(\Pi_1, \Pi_2 \), if there exist protocols that securely compute the \((1/\varepsilon)\)-OT, \((\ell/\varepsilon)\)-OT, \((\ell/\varepsilon)\)-OT functionalities, then we can construct a hybrid protocol from Protocol 3 by replacing Protocol 1 and Protocol 2 with ideal calls to \(f_{\Pi_1} \) and \(f_{\Pi_2} \). The hybrid protocol can be simulated as follows:

\(\Pi_3 \)'s part. \(\Pi_3 \)'s view in the hybrid protocol contains its input, its random tape, and \(m \) ideal calls to \(f_{\Pi_1} \) and one ideal call to \(f_{\Pi_2} \).

In the \(i \)th call to \(f_{\Pi_1} \), the input is \(F_{\Pi_1}^{(i)} \) and the output is a random share \([z_1]^{(i)}\). In the call to \(f_{\Pi_2} \), the input is \(\sum_{i=0}^{m-1}[z_1]^{(i)} \) and the output is \([\bar{N}]_1\). Given the input and output \(F_{\Pi_3}^{(i)}([N]_1) \), the simulator \(S_3 \) simulates the view as follows:
1) Put in the simulated view all \(F_{\Pi_1}^{(i)} \) \((0 \leq i \leq m - 1) \) and a uniform random tape.
2) For \(0 \leq i \leq m - 1 \), choose \([z_1]^{(i)} \rightarrow R Z_q \). Put \(F_{\Pi_3}^{(i)}([z_1]^{(i)}) \) to simulate the \(i \)th ideal call to \(f_{\Pi_1} \).
3) Compute \([Z]_2 = \sum_{i=0}^{m-1}[z_1]^{(i)} \). Put \([Z]_2\) and \([\bar{N}]_1\) in the view to simulate the ideal call to \(f_{\Pi_2} \).

We now argue the joint distribution of the simulated view and the output of the functionality is indistinguishable from the joint distribution of the view and the output of the hybrid protocol. The output of the functionality is \((\{[N]_1, [N]_2\}) \) where the two shares satisfy \([N]_1 + [N]_2 = \bar{N} \) and \(\bar{N} \) is the estimated cardinality. The computation is deterministic meaning that once \([N]_1, [N]_2 \) is fixed, \(\bar{N} \) is fixed. In Section 4.3, we showed that Protocol 2 is correct, thus the hybrid protocol is also correct. The output of the hybrid protocol is a pair of shares \(([\bar{N}]_1, [\bar{N}]_2) \) such that \([\bar{N}]_1 + [\bar{N}]_2 = \bar{N} \). The random variables in the view and the output of the hybrid execution are correlated in exactly the same way as above except with \([N]_1, [N]_2 \). The joint distribution in both cases is taken over the random choices of \([Z]_1, [Z]_2, [\bar{N}]_1 \) and \(\bar{N} \). Since they are identical in both cases, the joint distributions are indistinguishable.
of other random variables in the view and output. Therefore the joint distribution of the simulated view and the output of the functionality is indistinguishable from the joint distribution of the view and the output of the hybrid protocol.

\(\mathcal{P}_2 \)'s part. \(\mathcal{P}_2 \)'s view in the hybrid protocol contains its input, its random tape, and \(m \) ideal calls to \(f_{\Pi_1} \) and one ideal call to \(f_{\Pi_2} \).

In the \(i \)th call to \(f_{\Pi_1} \), the input is \(F_{\Pi_1}^{(i)} \) and the output is a random share \(\left\lfloor z \right\rfloor_2^{(i)} \). In the call to \(f_{\Pi_2} \), the input is \(\sum_{i=0}^{m-1} \left\lfloor z \right\rfloor_2^{(i)} \) and the output is \([\tilde{N}]_2 \). Given the input and output \(F_{\Pi_2}^{(i)} \) from \([\tilde{N}]_2 \), the simulator \(S_2 \) simulates the view as follows:

1. Put in the simulated view all \(F_{S_2}^{(i)} \) (\(0 \leq i \leq m - 1 \)) and a uniform random tape.
2. For \(0 \leq i \leq m - 1 \), choose \(\left\lfloor z \right\rfloor_2^{(i)} \overset{R}{\rightarrow} \{0, 1\}^n \). Put \(F_{S_2}^{(i)} \) and \(\left\lfloor z \right\rfloor_2^{(i)} \) to simulate the \(i \)th ideal call to \(f_{\Pi_1} \).
3. Compute \(\left\lVert Z \right\lVert_2 = \sum_{i=0}^{m-1} \left\lfloor z \right\rfloor_2^{(i)} \). Put \(\left\lVert Z \right\lVert_2 \) and \([\tilde{N}]_2 \) in the view to simulate the ideal call to \(f_{\Pi_2} \).

We can see that the behavior of \(S_2 \) is identical to \(S_1 \) and the argument of the indistinguishability of the joint distributions is essential the same (by substituting variable names). Therefore we omit the rest of the proof.

Summing up, the hybrid protocol is simulatable thus by applying the sequential composition theorem, Protocol 3 is secure.

Security of the sets. In Protocol 1 (and Protocol 3), the parties use the sketches as input to the protocol. A question arises as to whether the sets are adequately protected. The fact that Protocol 1 is secure only guarantees that the adversary learns nothing more about the honest party’s sketches than it can infer from its own input and output. It is not obvious about whether the protocol hides the sets that produce the sketches. We show here that the sets are indeed hidden from the adversary.

We start by constructing a variant of Protocol 1. Let us call it \(\Pi_1' \). In \(\Pi_1' \), both parties use their sets as input and then locally process the sets into sketches. Note that the hash functions are public, therefore this step does not require any interaction. Then the two parties run Protocol 1 using the sketches. The difference is that Protocol 1 computes the functionality \(f_{\Pi_1}(F_{\Pi_1}, F_{\Pi_2}) = (\left\lfloor z \right\rfloor_1, \left\lfloor z \right\rfloor_2) \) using the sketches, and \(\Pi_1' \) computes the functionality \(f_{\Pi_1'}(S_1, S_2) = (\left\lfloor z \right\rfloor_1, \left\lfloor z \right\rfloor_2) \) using the sets \((S_1, S_2) \) as input directly. Note that the interaction in \(\Pi_1' \) is exactly as in Protocol 1. Intuitively the adversaries in \(\Pi_1' \) gain exactly the same amount of information as in Protocol 1. We now prove the following theorem, which says an adversary learns nothing about the honest parties set (other than what is allowed to be inferred by the adversary).

Theorem 5. Given that Protocol 1 securely computes

\[f_{\Pi_1}(F_{\Pi_1}, F_{\Pi_2}) = (\left\lfloor z \right\rfloor_1, \left\lfloor z \right\rfloor_2), \text{ then } \Pi_1' \text{ securely computes } f_{\Pi_1'}(S_1, S_2) = (\left\lfloor z \right\rfloor_1, \left\lfloor z \right\rfloor_2). \]

Proof. By Lemma 1, Protocol 1 securely computes \(f_{\Pi_1}(F_{\Pi_1}, F_{\Pi_2}) \). We can construct a hybrid protocol from \(\Pi_1' \) by replacing the invocation of Protocol 1 with an ideal call to \(f_{\Pi_1}(F_{\Pi_1}, F_{\Pi_2}) \). The hybrid protocol can be simulated as follows:

\(\mathcal{P}_1 \)'s part. \(\mathcal{P}_1 \)'s view in the hybrid protocol contains its input set \(S_1 \), its random tape, and an ideal call to \(f_{\Pi_1}(F_{\Pi_1}, F_{\Pi_2}) \). The input to \(f_{\Pi_1}(F_{\Pi_1}, F_{\Pi_2}) \) is \(F_{\Pi_1} \) and the output is \(\left\lfloor z \right\rfloor_1 \). Given the input \(S_1 \) and the output \(\left\lfloor z \right\rfloor_1 \), the simulator \(S_1 \) simulates the view as follows:

1. Put in the simulated view \(S_1 \) and a uniform random tape.
2. Compute the sketch \(F_{S_1} \) from \(S_1 \). Put \(F_{S_1} \) and \(\left\lfloor z \right\rfloor_1 \) into the view to simulate the ideal call.

We now argue the joint distribution of the simulated view and the output of the functionality is indistinguishable from the joint distribution of the view and the output of the hybrid protocol.

\[
\begin{align*}
\{ \text{simulated : } & (S_1, R, (F_{S_1}, \left\lfloor z \right\rfloor_1, (\left\lfloor z \right\rfloor_1, \left\lfloor z \right\rfloor_2))) \} \\
\{ \text{Hybrid : } & (S_1, R, (F_{\Pi_1}, (\left\lfloor z \right\rfloor_1, \left\lfloor z \right\rfloor_2))) \}
\end{align*}
\]

As we can see in the above probability ensemble, \((\left\lfloor z \right\rfloor_1, \left\lfloor z \right\rfloor_2) \) and \((\left\lfloor z \right\rfloor_1, \left\lfloor z \right\rfloor_2) \) have the same distribution that is taken over \(z \) and \(R \) (the uniform random tape). The ensembles have identical \(S_1 \) and \(F_{\Pi_1} \). Therefore the joint distribution of the simulated view and the output of the functionality is indistinguishable from the joint distribution of the view and the output of the hybrid protocol.

\(\mathcal{P}_2 \)'s part. \(\mathcal{P}_2 \)'s view in the hybrid protocol contains its input set \(S_2 \), its random tape, and an ideal call to \(f_{\Pi_2}(F_{\Pi_1}, F_{\Pi_2}) \). The input to \(f_{\Pi_2}(F_{\Pi_1}, F_{\Pi_2}) \) is \(S_2 \) and the output is \(\left\lfloor z \right\rfloor_2 \). Given the input \(S_2 \) and the output \(\left\lfloor z \right\rfloor_2 \), the simulator \(S_2 \) simulates the view as follows:

1. Put in the simulated view \(S_2 \) and a uniform random tape.
2. Compute the sketch \(F_{S_2} \) from \(S_2 \). Put \(F_{S_2} \) and \(\left\lfloor z \right\rfloor_2 \) into the view to simulate the ideal call.

Essentially, the simulator \(S_2 \) is the same as \(S_1 \) and we can use the same argument for the indistinguishability of the joint distribution of the simulated view and the output of the functionality and the joint distribution of the view and the output of the hybrid protocol, which we omit here.

Summing up, the hybrid protocol is simulatable, thus by applying the sequential composition theorem, \(\Pi_1' \) is secure.

Therefore running Protocol 1 will not leak information about the parties’ sets. Similarly, for Protocol 3, we can construct the variant \(\Pi_3' \) that uses sets as input direct, and have the following theorem:

Theorem 6. Given that Protocol 3 securely computes

\(f_{\Pi_3}(F_{\Pi_3}, F_{\Pi_2}) = ([N], [\tilde{N}]) \)

then \(\Pi_3' \) securely computes

\(f_{\Pi_3'}(S_1, S_2) = ([N], [\tilde{N}]). \)

The proof is very similar to the proof of Theorem 5, thus we omit it here.

Appendix C Security of Fixed-key Masking

We analyze the security of the fixed-key masking scheme and show it is secure in the Random Permutation Model (RPM) [55], in which all parties including the adversary have oracle access to a single fixed random permutation, and its inverse. The permutation can be realized by a blockcipher (e.g. AES) with a fixed and publicly known key. Because we work in the random permutation model, we replace \(E_{ck}(\cdot) \) and \(D_{ck}(\cdot) \) with a random permutation oracle \(\pi \) and its inverse oracle \(\pi^{-1} \). The oracles work by sharing a table \(T \) which stores pairs \((x_i, y_i) \in \{0, 1\}^\lambda \times \{0, 1\}^\lambda \) and initially is empty. When querying \(\pi(x) \), if there is \((x_i, y_i) \in T \) such that \(x = x_i \) then return \(y_i \), otherwise put a new entry \((x, y) \in T \) such that \(y \overset{R}{\rightarrow} \{0, 1\}^\lambda \setminus Ran(\pi) \), where \(Ran(\pi) \) is the set of all \(y_i \) currently in \(T \). When querying \(\pi^{-1}(y) \), if there is \((x_i, y_i) \in T \) such that \(y = y_i \) then return \(x_i \), otherwise put a new entry \((x, y) \in T \) such that \(x \overset{R}{\rightarrow} \{0, 1\}^\lambda \setminus Dom(\pi) \), where \(Dom(\pi) \) is the set of all \(x_i \) currently in \(T \). The security of the masking scheme is captured by the following game:
• Setup Phase: The challenger runs \(\text{Gen}(n, \lambda) \) and keeps \(K \) output by \(\text{Gen} \) privately.
• Query phase: the adversary queries \(\pi \) and \(\pi^{-1} \) with any chosen messages in \(\{0, 1\}^\lambda \) up to poly(\(\lambda \)) times.
• Challenge phase: the adversary chooses a vector of \(n \) \(\lambda \)-bit strings \(P \) and an index \(0 \leq i \leq n - 1 \), and sends \((P, i) \) to the challenger. The challenger prepares \(P_0, P_1 \) such that \(P_0 = \text{Mask}(K, P) \), \(P_1[i] = P_0[i] \) and for all \(j \neq i \) \(P_1[j] \in \{0, 1\}^\lambda \). Then the challenger chooses \(b \) at uniformly random and sends \(P_b \) to the adversary. The adversary also releases \(K_j, h_j \) to the adversary where \(0 \leq j \leq l \) and \(b_j \) is the \(j \)th bit in the binary form of \(i \).
• Query phase II: same as the query phase.
• Guess phase: the adversary output \(b' \), and wins iff \(b' = b \).

Theorem 7. The masking scheme is secure, i.e. for all probabilistic polynomial time adversary \(A \), there is a negligible function \(\text{negl}(\lambda) \) such that:

\[
\text{Adv}_{A, \pi^{-1}}(n, \lambda) = Pr[b' = b] - \frac{1}{2} \leq \text{negl}(\lambda)
\]

Proof. We prove by a sequence of games. Let the original game be \(\text{Game}_0 \).

Game_1: We first define \(\text{Game}_1 \) that is identical to \(\text{Game}_0 \) except that in the challenge phase, the challenger generates \(P_0 \) as follows:

• Given \((P, i) \), the challenger first gets the \(i \)th masking key \(mk_i = \text{Key}(K, i) \), sets \(P_0[i] = \pi(mk_i) \oplus mk_i \oplus P[i] \). Then for all \(0 \leq j \leq n - 1 \) \(j \neq i \), choose \(s_j \in \{0, 1\}^\lambda \) and set \(P_0[j] = s_j \oplus mk_j \oplus P[j] \) where \(mk_j = \text{Key}(K, j) \).

In \(\text{Game}_1 \), all will remain the same as \(\text{Game}_0 \) to the adversary unless \(\pi(mk_j) \) or \(\pi^{-1}(s_j \oplus mk_j) \) is queried by the adversary at some point of time, i.e. when \(mk_j \in \text{Dom}(\pi) \) or \(s_j \oplus mk_j \in \text{Range}(\pi) \). In this case, the adversary will be able to spot some inconsistency. Let’s name this event BAD.

Because \(s_j \) is chosen uniformly at random, thus \(s_j \oplus mk_j \) is uniformly random. Therefore the probability of \(s_j \oplus mk_j \in \text{Range}(\pi) \) is \(\frac{2^\lambda}{2^\lambda} \), where \(q_\pi \) is the total number of queries the adversary made in the game. There are \(n - 1 \) such strings \(s_j \oplus mk_j \). Thus by the union bound, the total probability is less than \(\frac{(n-1)q_\pi}{2^{\lambda}} \).

Now let’s consider the distribution of \(mk_j \in \text{Dom}(\pi) \), since \(mk_j = \text{Key}(K, j) \) is obtained by XORing \(l \) \(\lambda \)-bit strings generated independently and randomly and it is guaranteed there that is at least one string that is not known by the adversary since \(i \) and \(j \) differ in at least one bit. Thus \(mk_j \) is uniformly random and similarly we have the probability less than \(\frac{(n-1)q_\pi}{2^{\lambda}} \).

Since the two games only differ when BAD happens, we have:

\[
|\text{Adv}_{A, \pi^{-1}}(n, \lambda) - \text{Adv}_{A, \pi^{-1}}(n, \lambda)| \leq Pr[\text{BAD}]
\]

The probability \(Pr[\text{BAD}] = \frac{2(n-1)q_\pi}{2^{\lambda}} \) which is negligible.

Game_2: This game is identical to \(\text{Game}_1 \) except that in the challenge phase, the challenger generates \(P_0 \) as follows:

• Given \((P, i) \), the challenger first gets the \(i \)th masking key \(mk_i = \text{Key}(K, i) \), sets \(P_0[i] = \pi(mk_i) \oplus mk_i \oplus P[i] \). Then for all \(0 \leq j \leq n - 1 \) \(j \neq i \), choose \(s_j \in \{0, 1\}^\lambda \) and set \(P_0[j] = s_j \oplus P[j] \).

Now the two games only differ when \(s_j \in \text{Range}(\pi) \), and since \(s_j \) is uniformly random, then \(Pr[s_j \in \text{Range}(\pi)] = \frac{1}{2^\lambda} \) after \(q_\pi \) queries. And the total probability is \(\frac{(n-1)q_\pi}{2^{\lambda}} \). Then we have

\[
|\text{Adv}_{A, \pi^{-1}}(n, \lambda) - \text{Adv}_{A, \pi^{-1}}(n, \lambda)| \leq \frac{(n-1)q_\pi}{2^{\lambda}}
\]

The probability \(\frac{(n-1)q_\pi}{2^{\lambda}} \) is also negligible.

Note in \(\text{Game}_2 \) the adversary’s advantage is 0 since the distribution of \(P_0 \) is exactly the same as that of the distribution of \(P_1 \). Then we have

\[
\text{Adv}_{A, \pi^{-1}}(n, \lambda) \leq 3\frac{(n-1)q_\pi}{2^{\lambda}}
\]

which is negligible.

APPENDIX D

OPTIMIZED OT EXTENSION IN OUR PROTOCOLS

Our two-party protocols are compatible with the optimized OT extension protocols presented in [37]. In this section, we show how to use our protocols with correlated-OT (C-OT) and random-OT (R-OT).

D.1 OT Extension Optimizations

To make the paper self-contained, we include the protocol descriptions from [37]. More details can be found in the original paper. The OT extension protocols are run between a sender \(S \) and a receiver \(R \). We first show the general OT extensions protocol (Protocol 5).

Protocol 5 General OT extension Protocol [37]

Inputs \(S \) holds \(m \) pairs \((x_0^i, x_1^i) \) of \(l \)-bit strings, for every \(1 \leq i \leq m \). \(R \) holds \(m \) selection bits \(r = (r_1, \ldots, r_m) \). There is also a security parameter \(\lambda \).

Outputs \(R\) outputs \((x_0^1, \ldots, x_0^m) \), \(S \) outputs nothing.

Initial OT Phase (Base OTs):

1. \(S \) chooses a random string \(s = (s_1, \ldots, s_\lambda) \) and \(R \) chooses \(\lambda \)-bits seeds \(\{ (k_0^i, k_1^i) \} \).
2. The parties invoke the \(\lambda \times \lambda \) function, where \(S \) plays the receiver with input \(s \) and \(R \) plays the sender with inputs \((k_0^i, k_1^i) \) for every \(1 \leq i \leq \lambda \).
3. For every \(1 \leq i \leq \lambda \), let \(t^i = G(k_0^i) \), let \(T = [t^1, \ldots, t^\lambda] \) denote the \(m \times \lambda \) bit matrix where the \(i \)-th column is \(t^i \), and let \(t_\lambda \) denote the \(j \)-th row of \(T \) for \(1 \leq j \leq m \).

OT extension Phase:

4. \(R \) computes \(t^i = G(k_0^i) \) and \(u^i = t^i \oplus G(k_1^i) \) and sends \(u^i \) to \(S \) for every \(1 \leq i \leq \lambda \).
5. For every \(1 \leq i \leq \lambda \), define \(q^i = (s_i \cdot u^i) \oplus G(k_1^i) \). (Note that \(q^i = (s_i \cdot u^i) \oplus t^i \).)
6. Let \(Q = [q^1, \ldots, q^\lambda] \) denote the \(m \times \lambda \) bit matrix where the \(i \)-th column is \(q^i \). Let \(q_\lambda \) denote the \(j \)-th row of the matrix \(Q \). (Note that \(q_\lambda = (r_j \cdot s) \oplus t_j \).
7. \(S \) sends \((y_0^j, y_1^j) \) for every \(1 \leq j \leq m \), where:

 \[
 y_0^j = x_0^j \oplus H(j, q_\lambda), \quad y_1^j = x_1^j \oplus H(j, q_\lambda + s)
 \]

8. For \(1 \leq j \leq m \), \(R \) computes \(x_0^j \rightarrow y_0^j \oplus H(j, t_\lambda) \).

C-OT: If the \(S \)'s strings \((x_0^0, x_1^0) \) are not prescribed and correlated in a way such that \(x_0^0 \in \{0, 1\}^l \), and \(x_1^0 = f(x_0^0) \) for some function \(f : \{0, 1\}^l \rightarrow \{0, 1\}^l \), then we can use C-OT.

C-OT works by changing steps 7 and 8 in the general OT extension protocol (Protocol 5). Since \((x_0^0, x_1^0) \) are not prescribed, \(S \) can choose them on-the-fly when executing the OT extension
protocol. More specifically, S sets $x_0^0 = H(q_j)$, and then $x_1^0 = f(x_0^0)$. In step 7, S sends only one string $y_j = x_1^0 \oplus H(q_j \oplus s)$. If Rs bit $r_j = 0$, then R outputs $H(t_j)$, or if $r_j = 1$, then R outputs $H(t_j) \oplus y_j$.

The computational cost of each C-OT is 3λ symmetric key operations. The communication cost of each C-OT is $l\lambda$ bits, where l is the bit length of y_j.

R-OT: If the S's strings (x_0^0, x_1^0) are not prescribed and are two random strings, then we can use R-OT.

R-OT also changes steps 7 and 8 in the general OT extension protocol. The idea is still to let S generate its strings (x_0^0, x_1^0) on-the-fly when executing the OT extension protocol. In R-OT, S set $x_0^0 = H(q_j)$ and $x_1^0 = H(q_j \oplus s)$. S skips 7 and sends nothing. In step 8, R simply outputs $H(t_j)$, which always matches the string to be received.

The computational cost of each R-OT is 3λ symmetric key operations. The communication cost of each R-OT is $l\lambda$ bits

D.2 Use C-OT and R-OT in Our Protocols

Protocol 1 In step 1 of the protocol, we can use C-OT. In step 2 of the protocol we can use R-OT.

Note that in step 1, P_1 acts as the sender S and P_2 acts as the receiver R. P_1 sends a pair of strings that is either $(r_0^{(0)}, r_1^{(0)})$ or $(r_1^{(0)}, r_0^{(0)})$, and P_2 receives the first string if $F_{S_1}[0] = 0$ or the second string if $F_{S_1}[0] = 1$. The two strings are correlated so that C-OT can be used. We can change this step as the following:

1) In round 0, P_1 and P_2 run a C-OT. Upon receiving q_0 in the the C-OT, P_1 computes $H(q_0)$. Then:

- If $F_{S_1}[0] = 0$, P_1 sets $r_0^{(0)} = H(q_0)$ and $r_1^{(0)} = 1 + r_0^{(0)}$. Then P_1 sends $y_0 = r_1^{(0)} \oplus H(q_0 \oplus s)$ to P_2 in C-OT and stores $r_0^{(0)} = -r_0^{(0)}$.
- If $F_{S_1}[0] = 1$, P_1 sets $r_1^{(0)} = H(q_0)$, then sends $y_0 = r_1^{(0)} \oplus H(q_0 \oplus s)$ to P_2. P_1 stores $r_0^{(0)} = 1 - r_1^{(0)}$.
- If $F_{S_1}[0] = 0$, then P_2 outputs $H(t_0)$, or if $F_{S_1}[0] = 1$, outputs $y_0 \oplus H(t_0)$.

The correctness can be easily checked.

In step 2, P_1 sends 4 strings in each round by invoking a $\binom{1}{q}$-OT. Recall that $\binom{1}{q}$-OT can be implemented using $\lceil \log n \rceil$ invocations of $\binom{1}{2}$-OT extensions, each sends a pair of random keys. We can build $\binom{1}{n}$-OT on top of R-OT since in each $\binom{1}{2}$-OT extension, both keys are random and can be chosen on-the-fly. Step 2 in Protocol 1 does not need to be changed because it just invokes the $\binom{1}{n}$-OT as a subroutine. Below we show how the $\binom{1}{n}$-OT can be implemented using R-OT with the fixed-key masking scheme.

1) The sender S holds a vector of messages $P = (x_0, ..., x_{n-1})$ and the receiver R holds an index $0 \leq l \leq n - 1$.

2) S and R run $l = \lceil \log n \rceil$ R-OTs. For the i-th R-OT ($0 \leq i \leq l - 1$), the parties do the following:

 a) Upon receiving q_i in the the R-OT, S computes and stores $k_{i,0} = H(q_i)$ and $k_{i,1} = H(q_i \oplus s)$.
 b) R computes $H(t_i)$ that equals k_{i,l_i}.

3) Treating H as a random oracle, S now has l pairs of uniformly random keys $K = (k_{0,0}, k_{0,1}), \ldots, (k_{l-1,0}, k_{l-1,1})$. S skips the Gen function of the fixed-key masking scheme, and invoke $\text{Mask}(K, P)$ to mask the strings, and sends the vector of masked strings P.

4) The receiver has $k_{0,l_0}, ..., k_{l-1,l_{l-1}}$ that are received from S. The receiver can compute the masking key corresponding to its index $mk_I = \bigoplus_{j=0}^{l-1} k_{j,l_j}$, then calls $\text{Unmask}(P, I)$ to unmask and output $P[I] = x_i$.

Protocol 2 In step 2 of Protocol 2, the parties runs a $\binom{1}{q}$-OT. The $\binom{1}{q}$-OT can be based on R-OT as described above.

APPENDIX E

Estimation Error Distribution

We show the estimation error distribution in Fig. 7. For each (m, \hat{N}) pair, we executed the protocol 100 times. Each execution was run with two random set with the union cardinality N. The estimation error is calculated $\frac{\hat{N} - N}{N}$ where \hat{N} is the estimated cardinality output by the protocol. The histograms were produced by counting the number of estimates falling in each specific range.
Fig. 7: Estimation Error Distribution