Driver Genes in CTCL
A Genomic Approach for Screening and a Detailed Analysis of a Candidate Gene

Woollard, Wesley Jackson

Awarding institution:
King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.

END USER LICENCE AGREEMENT

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to:
• Share: to copy, distribute and transmit the work

Under the following conditions:
• Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work).
• Non Commercial: You may not use this work for commercial purposes.
• No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above.

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Driver Genes in CTCL: A Genomic Approach for Screening and a Detailed Analysis of a Candidate Gene

Wesley J. Woollard

Genetics and Molecular Medicine PhD
Table of Contents

1 Introduction ... 12
1.1 Cutaneous T-cell lymphoma overview .. 12
1.2 Mycosis fungoides background .. 12
1.3 Sézary Syndrome background ... 16
1.4 Similarities and differences between MF and SS ... 18
1.5 Treatment of MF and SS .. 22
1.6 Early genomic studies of MF and SS .. 23
1.7 The driver mutation model of cancer .. 24
1.8 Molecular processes and signalling networks affected in MF and SS ... 26
1.8.1 NF-κB .. 26
1.8.2 JAK-STATs ... 29
1.8.3 PI3K-PKB/AKT .. 31
1.8.4 RAS/RAF ... 33
1.8.5 Phospholipase C gamma pathways ... 34
1.8.6 Programmed cell death ... 35
1.8.7 Global epigenetic regulation ... 41
1.8.8 Cell cycle control ... 44
1.8.9 DNA repair and genome maintenance processes ... 49
1.9 Case study of a common focal deletion: driver genes on chromosome 9p21.3 56
1.9.1 CDKN2A and CDKN2B ... 57
1.9.2 MTAP ... 57
1.10 The application of next generation sequencing to the study of cancer .. 61
1.10.1 Overview of NGS .. 61
1.10.2 NGS as a discovery tool ... 62
1.10.3 NGS as a molecular diagnostic tool ... 63
1.10.4 Challenges presented by NGS .. 64
1.11 Identifying cancer driver genes .. 65
1.11.1 Preparing libraries for next generation sequencing ... 65
1.11.2 Upstream bioinformatic analysis .. 66
1.11.3 Bioinformatic approaches and the interpretation bottleneck ... 68
1.11.4 Challenges for current methods of identifying cancer drivers .. 74
1.11.5 Functional approaches .. 75
1.12 Hypothesis ... 77
1.13 Aims of this thesis .. 77
 1.13.1 Investigating the role of MTAP in CTCL: A candidate gene based approach 77
 1.13.2 Identification of driver events in CTCL: A high throughput global approach 77

2 Materials and Methods .. 79
 2.1 Collections and Processing of Samples ... 79
 2.2 Isolation of PBMCs from Whole Blood .. 80
 2.3 Enrichment of CD4+ T-Cells from PBMCs ... 80
 2.4 Isolation of Fibroblasts .. 80
 2.5 Mycoplasma testing .. 80
 2.6 DNA Extraction ... 80
 2.7 RNA Extraction ... 81
 2.8 Synthesis of cDNA .. 81
 2.9 PCR .. 81
 2.10 QPCR ... 82
 2.11 Whole Exome Capture and Sequencing ... 83
 2.12 Targeted Capture and Sequencing ... 83
 2.13 Preparation of Whole Cell Lysates .. 84
 2.14 Immunoblotting .. 84
 2.15 Stripping Membranes for Re-probing ... 85
 2.16 Detection of Proteins .. 85
 2.17 Thawing Frozen Cells .. 85
 2.18 SeAx culture and passage .. 86
 2.19 HEK293 culture and passage .. 86
 2.20 Freezing Cells .. 86
 2.21 Nucleofection .. 86
 2.22 Transfection with Lipofectamine 2000 .. 87
 2.23 Micro-dissection ... 88
 2.24 Variant calling .. 88
 2.25 Selection of minimum allele frequency ... 89
 2.26 Mutational pattern analysis ... 89
 2.27 Identification of SNV drivers ... 90
 2.28 Gene copy number analysis .. 90
 2.29 Pathway analysis .. 90

3 Independent loss of methylthioadenosine phosphorylase (MTAP) in Primary Cutaneous T-cell Lymphoma .. 92
List of Figures

Figure 1.1 MF stages of progression ... 13
Figure 1.2 Pautrier micro-abscess. ... 14
Figure 1.3 A Sézary cell ... 14
Figure 1.4 Erythroderma in a Sézary syndrome patient. 17
Figure 1.5 The lineage of mitotic cell division leading to neoplastic transformation. 24
Figure 1.6 Hallmarks of Cancer ... 25
Figure 1.7 NF-κB pathway .. 27
Figure 1.8 JAK-STAT pathways ... 30
Figure 1.9 Signal transduction through RTKs and GPCRs 32
Figure 1.10 PLCγ1 signal transduction ... 35
Figure 1.11 Apoptosis ... 37
Figure 1.12 Loss of MTAP may inhibit autophagy. 40
Figure 1.13 G1/S Regulation. ... 46
Figure 1.14 G2/M Regulation .. 48
Figure 1.15 Summary of DNA damage and repair mechanisms 53
Figure 1.16 The structure of human telomeres ... 55
Figure 1.17 Schematic of genes in 9p21.3. ... 57
Figure 1.18 How MTAP may act as a tumour suppressor 59
Figure 1.19 Summary of Library preparation for NGS. 66
Figure 1.20 Calling variants in NGS data. ... 67
Figure 1.21 Distribution of mutations in two oncogenes (PIK3CA and IDH1) and two tumor suppressor genes (RB1 and VHL). 71
Figure 1.22 Inter and intra-heterogeneity of mutational patterns across different cancer types. ... 73
Figure 3.1. Tukey’s HSD for probe sets 1 and 2 for gene copy number analysis ... 95
Figure 3.2. Linear Regression analysis to determine MTAP/CDKN2A Copy Number 96
Figure 3.3. Micro-dissection of tumour rich tissue and epidermal regions from FFPE sections. ... 97
Figure 3.4. Determination of CDKN2A and MTAP Copy Number in DNA from micro-dissected tissue .. 99
Figure 4.1 Expression of PRMTs in SeAx and Jurkat. 102
Figure 4.2 Nucleofection of SeAx cells .. 103
Figure 4.3 Transfection of SeAx by Lipofectamine2000. 103
Figure 4.4 Expression of PRMTs in HEK293 cells. 104
Figure 4.5 HEK293 cells transfected with pmaxGFP. 105
Figure 4.6 Expression of MTAP and PPIA by RT-PCR in HEK293 106
Figure 4.7 MTAP expression in HEK293 cells analysed by RT-QPCR. 107
Figure 4.8 Immunoblot analysis of MTAP, Asymmetric dimethyl arginine methylation and β-actin. 108
Figure 5.1. Heatmap of tumours affected by perturbations in gene families. 112
Figure 5.2. Summary heatmap showing targeted capture gene alterations... 113
List of Tables

Table 1. Summary of features of MF and SS .. 20
Table 2. Common chromosomal changes associated with MF and SS 21
Table 3. Genes reported as mutated in NF-KB in CTCL... 27
Table 4. Genes with reported mutations in the JAK/STAT pathway in CTCL............... 30
Table 5. Genes with mutations in RTK and GPCR pathways in CTCL......................... 32
Table 6. Genes involved in DNA methylation reported as mutated in CTCL................ 43
Table 7. Genes with roles in chromatin regulation with mutations reported in CTCL 44
Table 8. Genes reported as mutated or deleted in CTCL which affect the cell cycle and
checkpoint activation. ... 48
Table 9 Taqman QPCR probes ... 82
Table 10 List of antibodies and optimized conditions for use. 85
Table 11 List of siRNAs. ... 87
Acknowledgements

I would like to express my greatest thanks to my supervisors Tracey Mitchell and Sean Whittaker for the mentoring and guidance you have both shown throughout my time at King’s. I feel I have made much progress in my development as a scientist and particularly in my skills as a writer. I would also like to thank you both for the patience, flexibility, understanding and support you have shown as I have faced testing challenges in the adjustment from life as a first year PhD student living in halls to where I am now as a proud father, homeowner and (soon to be) post-doctoral researcher at UCL. I feel that just three years is a very short time for such a transition and I owe you my deepest gratitude for making sure my focus stayed fixed on the target.

I am very grateful to the British Skin Foundation for funding the project and in doing so, giving me the opportunity to pursue this PhD. I would also like to thank numerous other friends and colleagues at King’s especially our group members including Silvia, Carl, Vidyha, Varsha and Rosie who have been invaluable sources of advice, information, research materials, social chit-chat and everything in between. I would also like to extend a great deal of gratitude to Bill Grey for giving me an essential leg up with western blotting. It is fair to say I would have been very lost without your clear guidance.

Analysing big genomic datasets is still far from being standardized. Developing creative ways to extract as much information as possible from an experiment requires a particular way of thinking. It is to that end that I would like to thank Michael Simpson as well as the BRC team for your input towards evolving an appropriate methodology for analysing our data. But more importantly, much of my insight into bioinformatics would probably never have developed without your inspiration. Before starting my PhD it hadn’t occurred to me that I could one day program in python, make beautiful plots in R or analyse genomic data on a high performance computing cluster. These are life-long skills that have opened up numerous doors for me, thank you for giving me a new perspective.
Finally, I would like to thank my parents and siblings who have been there since the start and always embraced by choice of career. But most of all I would like to express my love and thanks to my more recent family members; my girlfriend Nicola and our daughter Aurelia for putting up with my constant absence and always reminding me that I have a beautiful life to come home to away from the lab and the computer. We have kept it together despite what has seemed at times to be an unrelenting and never ending pressure and now the extra time is ours to enjoy.
Abstract

The cutaneous T-cell lymphomas (CTCLs) mycosis fungoides (MF) and Sézary syndrome (SS) are T-cell malignancies affecting the skin. The heterogeneous genomic landscape of CTCL has hindered the identification of driver genes. However, maturing sequencing technologies and candidate gene studies of chromosomal hotspots such as 9p21 can be used to identify putative driver events. The aims of this thesis were to investigate: (i) if MTAP (found on 9p21) undergoes selective loss; (ii) if MTAP loss affects dimethyl-arginine status; and (iii) identify putative driver genes of CTCL. Tumour samples from 280 CTCL patients were analysed by QPCR for copy number changes across 9p21. There is a high propensity for MTAP loss (34%) occurring independently of CDKN2A loss (12%) across all CTCL stages. Expression of MTAP mRNA was measured by QPCR in 20 tumours, reduced MTAP mRNA coincides with MTAP loss. However, reduced mRNA also occurs in tumours without MTAP loss indicating selective pressure to silence MTAP. Genomic screening indicates that mutations are rare in CDKN2A and MTAP in CTCL suggesting that epigenetic mechanisms may be repressing MTAP expression. Promoter methylation studies in CTCL cell lines suggest aberrant methylation inhibits MTAP expression. Knock-down of MTAP by RNAi in HEK293 cells suggested protein-arginine methylation maybe reduced in MTAP absence; though further confirmation is required. A genomic screen of 101 tumours and 32 healthy controls, including 10 germline matched whole exomes and 91 tumours undergoing targeted sequencing was used to probe for driver events. Novel putative drivers identified include: genes which maintain genome integrity; POT1 (14%) and BRCA2 (14%), master epigenetic regulators; ASXL3 (8%) and KDM6A (6%), and programmed cell death regulators; PDCD11 (35%) and TRPM3 (11%). In conclusion, putative driver events of CTCL have been identified using; (i) targeted analysis of a candidate region to identify selective pressure silencing MTAP; and (ii) a genomic sequencing approach to define a shortlist of genes.
Abbreviations

BCNU – Bis-chloroethylenitrosourea
BER – Base excision repair
CTCL – Cutaneous T-cell lymphoma
CNV – Copy number variations
DDR – DNA damage response
DISC – Death inducing signalling complex
DSB – Double stranded break
ECM – Extra-cellular matrix
ECP - Extracorporeal photophoresis
FP – False positive
FN – False negative
HC – Healthy control
HDAC – Histone deacetylase
HR – homologus recombination
INDEL – Insertion or deletion
LOH – Loss of heterozygosity
MCC – Mathews correlation coefficient
MF – Mycosis fungoides
MMR – Missmatch repair
MPS – Massively parallel sequencing
MSP – Methylation specific PCR
MTA – Methylthioadenosine
NER – Nucelotide excision repair
NHEJ – Non-homologus end joining
NGS – Next generation sequencing
PBMC – Peripheral blood mononucleocyte
PBS - Phosphate buffered saline
PCD – Programmed cell death
PCR – Polymerase chain reaction
PUVA – Psoralen and UVA
ROS – Reactive oxygen species
RPMI – Roswell Park Memorial Institute
SNV – Single nucleotide variation
SS – Sézary syndrome
TBST – Tris buffered saline and 1% tween
TC – Targeted capture
TCR – T-cell receptor
TN – True negative
TP – True positive
VAF – Variant allele frequency
WES – Whole exome sequencing
WT – Wild type
1 Introduction

1.1 Cutaneous T-cell lymphoma overview

Cutaneous T-cell lymphomas (CTCL) are a rare group of extra nodal, non-Hodgkin lymphomas (1). There are a variety of subgroups of CTCL which exhibit wide phenotypic heterogeneity varying by their histopathological, clinical, immunophenotypic and genetic features (1, 2). Though a heterogeneous disease group, all CTCLs are a malignancy of mature, skin homing T-lymphocytes which maintain a persistent effect on the skin (2). The overall incidence of CTCLs has been observed at 4.1/1,000,000 people per year (3), though discrepancies may appear in the literature which are likely due to differences in patient cohorts used to assess the incidence, as well as the demographic and genetic background of the population from which the cohort was described. The most common CTCL subgroups are mycosis fungoides (MF) and Sézary syndrome (SS) (4) which together will be the focus of this PhD thesis.

1.2 Mycosis fungoides background

The name ‘mycosis fungoides’ is related to the mushroom like appearance of the nodules in the tumour stage of the disease (Figure 1.1)(2) and was first recognized over 2 centuries ago by Alibert and Bazin (2, 4). The incidence of MF is estimated to be between 0.36-0.90 cases per 100,000 people per year (5, 6). The median age of patients at diagnosis is 57 years although MF can occur in children and adolescents (2, 4). There is a higher incidence in people of African descent (1) and a gender bias in MF with males at greater risk than females (2:1)(7). The clinical course of MF is generally indolent with a disease specific 5 year survival of 88% (4), although this is dependent on disease stage; patients with stages IA, IB and IIA typically survive over 15 years whereas IIB and more advanced stages have median survival less than 5 years (3). A small subset of MF patients progress to develop advanced stage disease which will be discussed in later sections. (See table 1 for summary of disease features)
The early phenotype of MF presents scaly patches and plaques which occur in multiple sun protected regions of the skin such as the proximal extremities and the trunk (8) (Figure 1.1). Early MF bears a resemblance to benign skin disorders such as psoriasis, eczema or contact dermatitis and these features, in combination with its low incidence, means MF can remain undiagnosed for many years (2). Progression from stage I or II MF to stage III or IV disease occurs in 20% of patients (9). Those MF patients who show disease progression show a significantly reduced survival with median typically less than five years (3). The later stages of MF present with multiple patches and plaques as well as ulcerated tumours, erythroderma and leukemic involvement, with some patients showing involvement of the visceral organs and lymph nodes (4, 7).

Histological features of MF are dependent on disease stage, with the earlier patch stage showing band-like infiltrates of histiocytes and lymphocytes (4). The tumour cells are atypical, with a characteristic ceribreform nucleus and are restricted to the epidermis (epidermotrophism) colonizing the basal layer (10). In plaques, intra-epidermal aggregates of tumour cells form around Langerhans cells in a classic feature of MF known as Pautrier microabsesses (Figure 1.2)(2, 11). Though Pautrier microabsess formation does not occur in all cases, epidermotrophism is generally more pronounced (4).
A marked increase in the size and number of tumour cells occurs in tumour stage MF (12). In addition a range of cells with cerebriform nuclei may be present in the lesion along with blast cells with prominent nuclei (4). Cells with cerebriform nuclei are also known as Sézary cells and are a feature shared with Sézary syndrome (Figure 1.3). Epidermotrophism may be lost as aggregates of tumour cells become more diffuse (4).
The immunophenotype of MF tumour cells is somewhat variable but broadly consistent with a mature memory T-cell phenotype presenting CD2+, CD3+, CD5+ and either CD4+/CD8- or CD4-/CD8+ (4, 13). Neoplastic cells often lack the expression of T-cell markers such as CD7 and CD26 (14, 15). In MF plaques and tumours the normal CD4+/CD8+ T-cell ratio may become elevated from 2:1 to >4:1 (2). Large cell transformation with CD30+ or CD30- can occur and is associated with worse prognosis for life expectancy with median survival for those diagnosed with large cell transformation being 37 months verses 163 months for the untransformed group (12, 16).

A diagnosis of MF is dependent on a range of criteria and varies according to disease stage. Clinically, the presence of asymmetrical, persistent, irregular erythematous lesions on sun-protected areas must be observed along with failure to respond to conventional treatments (13). Histopathologically, superficial lymphoid infiltrates with epidermotropism, without spongiosis and/or hyperchromatic, cerebriform nuclei and the accompanied detection of a T-cell clonal rearrangement (10, 17).

CTCLs express CD4 in the majority of cases (18). Other immunopathological diagnostic criteria include, CD2, 3, 5 expression in <50% T-cells, or CD7 expression in <10% T-cells, or epidermal discordance from expression of CD2, 3, 5 or 7 on dermal T-cells (3, 17). Reduction or loss of CD7 is often the first CD marker to lose expression in CTCL (19). Diagnosis can be guided histologically by the presence of pautrier microabscesses which are strong criteria for diagnosis, however these occur infrequently (4). For cases of erythrodermic MF, multiple skin biopsies are usually required and additionally where progression has advanced to a leukemic state, biopsies of enlarged lymph nodes are often used as support (20, 21) with the detection of an identical T-cell clone in the circulating blood (10).

The genotype of MF is heterogeneous with complex karyotypes. The composite of gains and losses from studies investigating structural variation in MF indicate that large regions of the genome have been affected (22-26). (See table 2 for summary of common chromosomal
alterations in MF) These alterations overlap between studies and chromosomal ‘hotspots’
appear between cohorts but the foci and specific sites of structural alteration are somewhat
variable. This indicates that there is no single underlying structural variation driving the disease
and that genomic instability is a general characteristic. Chromosomal regions affected by CNVs
often contain genes known to play a prominent role in cancer such as TP53 and members of
the JAK/STAT family on chromosome 17 (22, 24, 26), CDKN2A on chromosome 9 (22, 23, 25-
27) and MYC on chromosome 8 (22, 23, 26) to name some of the better known candidates.
However, numerous other genes, including many of unknown function can be found within MF
structural genomic alterations.

Recent next generation sequencing (NGS) studies have confirmed and extended the earlier
work and identified key mutations as well as CNVs (28-30) involved in MF. Heterogeneity is
consistent and the most plausible explanation for how MF manifests is at the pathway level
where alterations in key gene regulatory networks and signalling cascades drive the T-cell
towards an MF phenotype. Considerable discussion will be devoted to signalling cascades and
pathways later in the thesis.

1.3 Sézary Syndrome background

The French dermatologist Albert Sézary was the first to recognize SS in 1938 (31). This variant
of CTCL has a significantly lower incidence than MF, occurring at a rate of just 0.3 cases per
100,000 (32). However, the age of onset is similar at 55-60 years and the higher risk of
development in males is skewed similarly to MF at 2:1 (32). The prognosis of SS patients is
considerably worse than MF with a median survival of just 3.13 years after diagnosis (3) and
only 24% surviving more than 5 years (4). (See table 1 for summary)

A widespread, red, inflammation affects the entire skin in SS patients and is known as
erythroderma (Figure 1.4) (4). This often co-occurs with exfoliation and lichenification and is
intensely pruritic (4). Other common phenotypic features include; alopecia, onychodystrophy,
palmoplantar hyperkeratosis, lymphadenopathy and edema (33).
A hallmark feature of SS is that the entire skin is involved. A key feature of SS is that, as a leukaemic tumour type, the neoplastic cells are present in the circulating blood (3, 4). However, the skin histopathology of SS shares considerable overlap with MF with both presenting atypical, hyperchromatic, ceribiform nuclei of T-cell origin (4). However, SS can show more monotonous cellular infiltrates and absent epidermotropism (4). Biopsies from SS patients can be non-specific in up to 1/3 of cases (34, 35). Lymph node biopsies from affected nodes show effaced architecture with high numbers of infiltrated Sézary cells (36). Additionally, some patients present with sparse, interstitial infiltrates in the bone marrow (37).

Much like MF, the immunophenotype of SS tumour cells can be inconsistent but often show a CD3+ and CD4+ antigens but are CD8- (4). Furthermore the neoplastic cells usually do not express CD7 and CD26 (38). Expression of many common markers can vary although subsets of SS cells that express PLS3 are consistently associated with loss of CD26 expression (39).

For a diagnosis of SS, patients must present with erythroderma, generalized lymphadenopathy and an identical neoplastic T-cell clone in the peripheral blood, skin and lymph nodes (33). More recently additional criteria have been added to guide diagnosis including; a Sézary cell

Figure 1.4 Erythroderma in a Sézary syndrome patient.
A hallmark feature of SS is that the entire skin is involved.
count in the peripheral blood of >1000 cells per mm³; a T-cell population with a CD4/CD8 of >10; loss of normal T-cell antigen expression including CD2, CD3 and CD5 (38).

Much like MF, complex and heterogeneous chromosome alterations are a hallmark genetic feature of SS (26, 40). (See table 2 for summary of common chromosomal alterations in SS)

Some karyotypes are more common than others such as 8q gain (25, 41-43), 9p21 losses (27, 44), 10q losses (25, 26, 40-42, 45-47), 17p losses (25, 26, 41, 42, 47, 48) and 17q gains (25, 26, 40-42, 48). Studies have shown alterations are common in these key chromosomal regions but a predictive pattern that is clearly driving disease is lacking. Recent NGS studies have shown that both CNVs and mutations affect genes that are likely drivers of the disease (16, 29, 49-51). However, these recent high resolution studies confirm that, much like MF, considerable heterogeneity occurs between different SS tumours, implying that there are multiple possible genetic routes that converge on an SS phenotype. It seems plausible that at the level of gene regulatory networks and signalling pathways, the diverse genotype seen in the disease group consolidates and manifests itself as perturbations in key pathways controlling the phenotype of the T-cell. Considerable discussion will be devoted to gene regulatory networks and signalling cascades later in the thesis.

1.4 Similarities and differences between MF and SS

Both MF and SS are both subgroups of CTCL (4) and between them represent 65% of CTCL cases (4). Both tumour types are of mature T-cell origin and express CD4 and CD5RO but have lost expression of other markers associated with mature T-cells (4, 52). Currently SS is regarded as a distinct erythrodermic disease entity to MF (34) and is leukaemic by definition (38). Later stages of MF can become leukaemic as well and meet clinical criteria to meet a diagnosis of SS but are classified separately (4, 52). A prior diagnosis of MF leading to leukaemic involvement is known as ‘secondary SS’ or ‘SS preceded by MF’ (53). There is some evidence that different cell surface markers can be expressed between MF and SS which appear to be consistent with different tissues of origin. One study demonstrated MF clones
lacked expression of CCR7, CD62L and the differentiation marker CD27 but strongly express CCR4 and CLA which is suggestive of cells derived from skin resident effector memory T-cells.

In contrast clonal cells from SS patients universally expresses CCR7, CD62L and CD27 suggesting they are more likely to be derived from central memory T-cells (54). (Summarised in table 1)

It has been established that at the genomic level both MF and SS tumour cells feature complex chromosomal rearrangements (25, 28, 31, 50). Similar rearrangements are shared by both disease groups (26) although some rearrangements appear to be more common in MF than SS and vice versa. The heterogeneity at the genetic level of both diseases is ironically the most consistent feature, however genes rarely function as single entities and gene regulatory networks are commonly perturbed in both disease groups.
<table>
<thead>
<tr>
<th>Type of feature</th>
<th>Disease feature</th>
<th>Disease</th>
<th>Co-Occurences</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>0.36-0.9 / 100,000</td>
<td>MF</td>
<td>NA</td>
<td>Chuang et al 1990, Weinstock et al 1999</td>
</tr>
<tr>
<td></td>
<td>0.3 / 100,000</td>
<td>SS</td>
<td>NA</td>
<td>Cuneo et al 2005</td>
</tr>
<tr>
<td>Physical</td>
<td>Patches/plaques/tumours on skin</td>
<td>MF</td>
<td>NA</td>
<td>Kazakov et al 2004</td>
</tr>
<tr>
<td></td>
<td>Erythroderma</td>
<td>Leukemic MF, SS</td>
<td>NA</td>
<td>Willemze et al 2005</td>
</tr>
<tr>
<td></td>
<td>Cerebiform nuclei</td>
<td>MF, SS</td>
<td>NA</td>
<td>Smoller et al 2003</td>
</tr>
<tr>
<td></td>
<td>Pautrier microabsces</td>
<td>MF</td>
<td>NA</td>
<td>Nickoloff et al 1988</td>
</tr>
<tr>
<td></td>
<td>Epidermotrophism</td>
<td>MF</td>
<td>NA</td>
<td>Smoller et al 2003</td>
</tr>
<tr>
<td></td>
<td>CCR7-, CD62L-, CD27-, CCR4+,CLA+</td>
<td>MF</td>
<td>Skin resident phenotype</td>
<td>Campbell et al 2010</td>
</tr>
<tr>
<td></td>
<td>CCR7+, CD62L+, CD27+</td>
<td>SS</td>
<td>Central memory phenotype</td>
<td>Campbell et al 2010</td>
</tr>
<tr>
<td></td>
<td>Identical T-Cell clone</td>
<td>MF, SS</td>
<td>NA</td>
<td>Olsen et al 2007</td>
</tr>
<tr>
<td></td>
<td>Identical T-Cell clone in circulating blood</td>
<td>Leukemic MF, SS</td>
<td>NA</td>
<td>Vonderheid et al 2002</td>
</tr>
<tr>
<td>Chromosome</td>
<td>Implicated genes</td>
<td>Maximum incidence</td>
<td>Disease</td>
<td>Co-Occurences</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>1q gain</td>
<td>MCL1, CLK2</td>
<td>41%</td>
<td>MF</td>
<td>Shorter survival</td>
</tr>
<tr>
<td>7q gain</td>
<td>AP1S1</td>
<td>59%</td>
<td>MF</td>
<td>NA</td>
</tr>
<tr>
<td>13q loss</td>
<td>RB1</td>
<td>25%</td>
<td>SS, MF</td>
<td>Shorter survival</td>
</tr>
</tbody>
</table>
1.5 Treatment of MF and SS

In MF, if disease is confined only to the skin then the most commonly used therapies are photochemo-therapy such as PUVA (psoralen and UVA), topical application of carmustine (BCNU) or nitrogen mustard, or radiotherapies such as total skin electron bean irradiation (55, 56). For patch stage MF treatment can include bexarotene gel or topical steroids, biological treatment including interferon alpha or IL12 or receptor targeted cytotoxic fusion proteins such as DAB389 IL2 (55, 57, 58). Multi-agent chemotherapy is generally used for later stage disease but not in early stages (59).

In SS treatment is of limited use but some patients respond to treatment such as extracorporeal photophoresis (ECP), often in combination with interferon alpha (60, 61). Other treatments used include PUVA, low dose chlorambucil, prednisone, methotrexate, bexarotene, alemtuzumab (55, 58, 62) but none appears to be of great benefit.

Other treatments for CTCL include HDAC inhibitors such as Romidepsin (63) and Vorinostat (64) which attempt to alter the epigenetic landscape and hence gene expression patterns. The most effective treatment option for late stage CTCLs to date remains to be allogenic haematopoietic stem cell transplantation (65). Whilst often effective, this approach tends to be reserved for younger patients due to risk factors involved.

As our understanding of the biological mechanisms underlying CTCL grows, there has been an increasing shift toward the use of targeted biological therapies; the development of HDAC inhibitors is an example of this. This approach is currently in its infancy in all malignancies but holds much promise. However, in order to maximise success, an increased understanding of malignancies at the molecular level must be sought including an understanding of genes, their normal functions and expression patterns and how CNVs and mutations can drive cancer.
1.6 Early genomic studies of MF and SS

Much of the constellation of genomic structural alterations in CTCL was observed prior to the more recent NGS studies. Lower resolution array based studies, including studies from our research group began to establish regions of gain and loss in a number of key regions such as chromosomes 1p, 4, 6q, 7, 8q, 9p21, 10, 13q, 17 and 19 (24, 26, 41, 42, 44, 66). Further studies using array based methods confirmed existing data (25, 48) demonstrating that losses and gains in these regions were reproducible between datasets and therefore fairly common.

Some of the early work was able to correlate specific chromosomal alterations with prognosis such as 8q gain, 6q loss and 13q loss with shorter survival (42) and 9p21 loss and 1q21-1q22 gain with worse prognosis in MF (23). A more recent study was able to further refine the genomic regions that correlate with poor survival to 8q24.21, 9p21.3 and 10q26qter (22).

Though array based studies highlighted many regions of structural alterations and CNVs, what was predominantly lacking was resolution to identify individual genes as large regions contain far too many to all be considered a definitive list driving tumourigenesis, the large scale changes often observed on chromosome 17 are a good example of where it can be challenging to identify specific genes. Some areas are an exception to this and minimal affected regions were identified such as cMYC on chromosome 8q24, loss of MNT on 17p13 and loss of MXI1 on 10q25 (25, 41). Another important area that seems to be regularly compromised in CTCL by a minimally affected region is 9p21 which was first reported in CTCL in 2002 (44). This region has been reduced to a minimal region of 9p21.3 and includes the genes MTAP, CDKN2A and CDKN2B and has come up in several major CTCL genomic studies since it was first connected to the disease (22, 23). The small number of genes in these regions, which are also linked to prognosis, is intriguing and highlights the importance of further investigation. The 9p21 region will be a key focus of investigation and discussion in this thesis.
1.7 The driver mutation model of cancer

The development of CTCLs, like all cancers seem to involve the accumulation of multiple rate limiting steps (67), progression through each step is similar in principle to Darwinian evolution. In this model surpassing each step is supported by the acquisition of genetic events which confer a selective growth advantage upon its host cell over neighbouring cells in an increasingly heterogeneous population. The genetic events range from simple point mutations to whole chromosome duplications (68). This process, like Darwinian evolution is more often passive or detrimental to the cell but occasionally an event will increase the viability of the cell and in this instance is known as a driver mutation (Figure 1.5)(68).

![Diagram of mitotic cell division leading to neoplastic transformation](image)

Figure 1.5 The lineage of mitotic cell division leading to neoplastic transformation. Somatic mutations are acquired throughout all cell lineages. Some will confer a selective growth advantage and are known as driver mutations. Passenger mutations do not contribute to the process. Often during therapeutic intervention Darwinian processes shift the selection pressure towards mutations that protect the neoplasia from treatment effects. Illustration from Stratton et al (2009).

Events that contribute to the enhancement of several cellular processes known as the hallmarks of cancer (Figure 1.6A)(68, 69) are termed driver mutations. These hallmark processes include; Sustaining proliferative signalling, evading growth suppressors, activating invasion and metastasis, enabling replicative immortality, resisting cell death and in the case of solid tumours inducing angiogenesis (68, 69). Several additional emerging features are also
likely contributors to tumourigenesis including; the ability to avoid immune-response mediated destruction, deregulated cellular energy metabolism, the presence of tumour promoting inflammation and general genomic instability (Figure 1.6B) (69).

Figure 1.6 Hallmarks of Cancer.
(A) Original hallmarks of cancer Hanahan and Weinberg 2000. (B) Additional hallmarks of cancer highlighted in the revised hallmarks of cancer Hanahan and Weinberg 2011.

Identifying the genomic events that contribute to these hallmarks and features is a priority in all cancer related research, including CTCL. Identifying the genes will highlight targets for drug development and have important implications for the development of novel therapeutics and translational medicine. The challenge remains in separating driver events from the myriad of passenger events that co-occur in CTCL and other cancers.
1.8 Molecular processes and signalling networks affected in MF and SS

Driver events by definition, will contribute to the hallmarks of cancer, but different driver events can contribute to the same hallmark in ways which can be independent of each other as well as cumulative. Many genes contribute to each molecular process that takes place within a cell. Processes such as signalling cascades and gene regulatory networks are examples of multi-gene processes. As an example, driver events could occur within the same network or signalling cascade but in different genes and still produce very similar phenotypes. In this section, well known tumourigenic processes will be reviewed and examples of events contributing to CTCL in each molecular process will be highlighted. In many of these processes several genes have been discovered to be defective, highlighting the genetic heterogeneity of CTCL. Furthermore, it is important to consider that many of these processes exhibit considerable crosstalk and it remains an arduous challenge to fully elucidate their interactions.

Information from several large sequencing studies has been included in this section to show alterations in many of these pathways and it would be desirable to analyse co-occurrences of genes across CNV and SNV events. However, these studies do not report co-occurrences and this analysis would require a large meta-study which is beyond the scope of the work contributing to this thesis. For this reason, events have been presented as individual events though I would like the reader to consider that co-occurrences of both CNVs and SNVs are a likely feature of the pathways presented in this section.

1.8.1 NF-κB

The nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) pathway is a well-studied signalling network involved in inflammatory and innate immune responses (Figure 1.7) (70). Downstream targets of the NF-κB pathway include regulation of a number of cellular processes that function during tumourigenesis such as; cell survival, proliferation, differentiation, angiogenesis and metastasis (71). It therefore comes as no surprise that the
NF-κB pathway is dysregulated in numerous tumour types including leukaemic neoplasms (70) such as CTCL where the pathway is constitutively active (41, 71-73).

Figure 1.7 NF-κB pathway.

In the canonical NF-κB pathway IκB proteins bind NF-κB family members in the cytoplasm until IκB is phosphorylated by the IKK complex. IκB is then targeted for ubiquitin mediated degradation allowing NF-κB homo and heterodimers to enter the nucleus where they act as transcription factors. Some members of the NF-κB family such as p100 are not bound by IκB and require cleavage, after which the NF-κB dimmers can translocate to the nucleus and act as transcription factors. This is known as the non-canonical NF-κB pathway.

<table>
<thead>
<tr>
<th>Genes with mutations MF and SS</th>
<th>Reference</th>
</tr>
</thead>
</table>

Table 3. Genes reported as mutated in NF-κB in CTCL

The NF-κB pathway (Figure 1.7) is a complicated gene regulatory network, the core components are the NF-κB proteins which are bound by IκB proteins in the cytoplasm and sequestered preventing activation of target genes (70, 74). To activate the pathway, the IκB
component is phosphorylated by the IKK complex which consists of IKKa, IKKB and IKKy (75, 76). The NF-κB family members consist of 5 known members (RelA/p65, RelB, c-Rel, p50/p105/NF-κB1 and p52/p100/NF-κB2) (74). The IκB family consists of 7 known members (IκBα, IκBβ, IκBγ, IκBζ, Bcl3, p50/p105/NF-κB1 and p52/p100/NF-κB2)(74). Both p50 and p52 fit into both families. Upon activation, the NF-κB family members form up to 15 homo and hetero dimers in a cell type and context dependent manner (74). In addition, only the RelA, RelB and c-Rel have transcriptional activation potential via a domain called the TAD (carboxy-terminal transactivation domain) (74), RelB requires further addition of an amino-terminal leucine zipper to become fully active (77). Furthermore, the NF-κB family members are regulated by an array of post-translational modifications which allow the pathway to regulate different groups of target genes (78).

The NF-κB pathway has previously been shown in a study of 30 CTCL patient samples to be constitutively active in 100% of cases and cause resistance to apoptosis(79). In CTCL the NF-κB pathway directly regulates 3 sets of genes (70); survival genes (cIAP1, cIAP2, Bcl2), pro-inflammatory genes (IL-1β, IL-8, IL-17, TNFα, CCL2, CXCL5) and anti-inflammatory genes (IL-10, TGFβ) (70). The NF-κB mediated activation of inflammatory and survival genes contributes to inhibition of apoptosis and enhanced proliferation (70). This would lead to an increase in the T-cell pool. Activation of anti-inflammatory genes however, seems somewhat contradictory, especially as IL-10 and TGFβ are thought to repress the pro-inflammatory genes (70). There is speculation that this contributes to the immunosuppressive nature of CTCL. It is possible that different targets of the pathway are activated/repressed in different stages of the disease which may be at least partially facilitated by changes in the microenvironment, however it seems more plausible that specific subtleties of this complex network are yet to be fully established. Interestingly, mutations in CARD11, a positive mediator of NF-κB signalling have been identified in SS in 6% (50), 8% (51) and 15% (16) of cases. Focal copy number gains in the CARD11 activator PRKCQ have also been reported in 32% of SS tumours which would likely have a positive effect on the pathway if they are transcribed (49). Mutations in other
regulators of the pathway have also been detected such as CD28 in 10% of SS cases (49) and a CD28-CTLA4 fusion caused by chromosome alteration in 2 MF cases (29), the same study also reported alterations in 16 genes involved in NF-κB signalling, with 8 genes affecting just 1 tumour each across MF and SS cases which adds weight to the argument that alterations in pathways are more relevant to CTCL than alterations in individual genes. Together these findings highlight a selection pressure for mutagenesis of components of the NF-κB pathway.

1.8.2 JAK-STATs

Members of the JAK-STAT family play roles in a number of cellular processes and have well studied roles in inflammation and cancer (80, 81), including haematological malignancies (82). The Janus tyrosine kinase (JAK) family consists of 4 members (JAK1, JAK2, JAK3, Tyk2) (80) which form hetero and homodimers in the cell membrane (81). JAK family members transduce signals through several cytokine receptor types; type I receptors include the granulocyte colony stimulating factor (G-CSF) and the erythropoietin receptor (81), type II receptors are subdivided into type IIa and type IIb receptors such as granulocyte-macrophage colony stimulating factor (type IIa) and the IL2/6 and leukaemia-inhibitory factor (type IIb) (81). Upon activation of the receptor, JAK family members become active tyrosine kinases capable of phosphorylating members of the STAT family (83).

The Signal transducers and activators of transcription (STAT) family is made up of 7 members (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, STAT6)(80). Upon phosphorylation, the STATS form dimers which translocate to the nucleus and act as transcription factors, this is known as the canonical JAK-STAT pathway (81). The JAKs and STATs can also act through a non-canonical method (84) where each has direct effects within the nucleus on the regulation of heterochromatin (85)(Figure 1.8).
Figure 1.8 JAK-STAT pathways.
Cytokine receptors including type IIb, transduce signals though the JAK-STAT pathway. Upon ligand binding to the receptor, JAKs become activated and recruit and phosphorylate STATs. The STATs form homo and heterodimers before translocating to the nucleus to act as transcription factors or the receptors can themselves translocate. Signal transduction can be inhibited by the SOCS family. STATs can also act non-cannonically affecting or maintaining the state of hetero and euchromatin.

<table>
<thead>
<tr>
<th>Genes with mutations MF and SS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAK1, JAK3, STAT3, STAT5B, SOCS5</td>
<td>Kiel et al 2015, Choi et al 2015, Vaque et al 2015</td>
</tr>
</tbody>
</table>

Table 4. Genes with reported mutations in the JAK/STAT pathway in CTCL.

Perturbations in JAKs and STATs are well documented in numerous blood born neoplasms (82) as well as in MF and SS at the genetic level with recent studies identifying mutations in up to 11% of SS (50) and up to 20% of MF cases with low variant allele frequency (VAF) (28, 30, 50), single JAK1 and JAK3 variants have also been identified in MF and SS tumours in another study (30). Gains of STAT5B were also reported in 25/40 SS tumours and a mutation in 1 further patient in a recent NGS study (49). Some variants were found to make the pathways constitutively active (86-88). Differences in their activity state have also been reported in the absence of genetic variants (89). In SS, a study published by our lab has also indicated that
overactive STAT3 is driven by constitutive aberrant activation of JAK family members rather that by loss of inhibition (90). Earlier work from our group also suggests that alternate transcripts of STAT5 are preferentially driving gene expression in SS compared with healthy controls (91). Overall perturbations in JAK-STAT signalling seem to affect a high proportion of CTCL tumour cells and likely constitute key driver events of the disease.

1.8.3 PI3K-PKB/AKT

A particularly well studied gene regulatory network is the PI3K-PKB/Akt pathway which is known to have a key role in regulating proliferation, survival and growth, reviewed in (92, 93). In this pathway growth and proliferation factors bind receptor tyrosine kinases (RTKs) such as; PDGFRs and FGFRs or G-protein coupled receptors (94). These receptors in turn activate class IA or class IB PI3Ks (respectively) in coordination with groups of co-factor molecules such insulin receptor substrates (IRS) and/or Ras (95). Active class I PI3Ks can then catalyse the conversion of phosphatidylinositol (3,4)-bisphosphate (PIP2) lipids into phosphatidylinositol (3,4,5)-trisphosphate (PIP3) (93) (Figure 1.9). There are additional class II and class III PI3Ks, but to date these have not been implicated in cancer (95).
Figure 1.9 Signal transduction through RTKs and GPCRs.
Activated receptors can trigger transduction through the class I PI3K which promotes the conversion of PIP2 to PIP3 activating the AKT signalling hub. Signals can also be transduced through the RAS/RAF pathway, activating one or more of the MAP-kinase pathways. This network activates numerous oncogenic processes when active and is constitutively activated in many neoplasms.

<table>
<thead>
<tr>
<th>Genes with mutations MF and SS</th>
<th>Reference</th>
</tr>
</thead>
</table>

Table 5. Genes with mutations in RTK and GPCR pathways in CTCL.

The availability of PIP3 is highly controlled by its reconversion to PIP2 by the phosphatase and tensin homolog (PTEN), which acts as the primary negative regulator of PI3K (92). PIP2 and PIP3 are both bound to the cells outer membrane but PIP3 is the active form which transduces signals by binding via a pleckstrin homology (PH) domain (92). A key downstream target of PIP3 is PKB/AKT which is a central signalling node of numerous core cellular processes (95). Direct targets of PKB/AKT include FOXO and TSC2 (95). PKB/AKT retains FOXO in the cytoplasm which can increase survival and proliferation by preventing FOXO from regulating apoptotic machinery such as FASL and BIM and cell cycle regulators such as p27Kip1 (92). The effects of
PKB/AKT on TSC2 lead to activation of the mTOR complex which acts as a growth promoter by increasing protein synthesis via 4E-BP1 (96).

The PTEN gene is located on the long arm of chromosome 10, a region shown by our group and others to be deleted in up to 23% MF tumours (46) and up to 68% of SS tumours (48) (46, 97). PTEN is a known tumour suppressor gene and its loss leads to an increase in activity through the PI3K-PKB/AKT pathway (95). Furthermore, PTEN has been shown to be down-regulated in most SS tumours by a group of regulatory RNAs (miR-106b, miR-486, miR-21) which also leads to over-activation of AKT (97). The PI3K and PI3KR genes themselves have also been altered in 5-10% of MF and SS tumours (29). Miss-regulation of gene expression in the PI3K/AKT pathway has also been reported in both MF and SS in a transcriptome sequencing study (98).

1.8.4 RAS/RAF

Proliferative signals can be transduced by RTK receptors through a cascade which starts at the receptor by the recruitment of a multi-protein complex (99). The complex includes Src homology 2 domain containing protein (SHC) and the RAS-GTPase Son of sevenless (SOS), which together activate membrane bound RAS family members (100). The cascade progresses with the recruitment of RAF family members to the membrane, which themselves becomes activated and target one or more of the 4 major MAP-kinases (101) (Figure 1.9).

Several components of this signalling cascade are members of multi-gene families which show some degree of redundancy (102) as well as cell and context dependent functionality (99), i.e the downstream targets of members of the pathway may vary depending on the cell type or the ‘state’ it is currently in (stressed or dividing etc). The RTKS which have been discussed in the previous section are the first variable component, RAS-GTPases are another (94, 102). The RAS family has 3 members (K-RAS, N-RAS, H-RAS)(99), as does RAF (B-RAF, RAF-1/C-RAF, A-RAF) (103, 104). The 4 core MAP-kinase pathways include the MEK1/2 pathway which acts through ERK1/2, and MAP3K which acts through the remaining 3 pathways; JNK1/2 via
MKK4/7, p38 via MKK3/6 and ERK5 via MEK5 (101). The MAPK pathways have numerous upstream and downstream targets (over 60 are known for ERK1/2 alone) and their activity is under tight intrinsic and extrinsic control (99), i.e. internal feedback loops maintain fine tuning of the intracellular environment via the transcriptome and the proteome as well as other processes, these are further tuned and fed into by extracellular cues such as nutrient levels or signalling events. Broadly the pathway regulates (and is to some extent regulated by) processes involved in proliferation, cell transformation, stress responses and cell survival and apoptosis (105).

Mutations in KRAS and NRAS have been reported in CTCL, including SS and MF although at frequencies of less than 1% (106). However, targeting this pathway with antagonists in CTCL cell lines induced apoptosis which has implications for translational medicine (106). A recent study also reported activating mutations in a single patient in BRAF in SS (49) and another reported 2 mutations in RHOA in SS (16, 49). Further down the cascade, the p38 MAP kinase pathway has also shown promise as a therapeutic target in SS as its inhibition lead to cell death in CTCL cell lines and patient samples (107).

1.8.5 Phospholipase C gamma pathways

Phospholipase-C gamma 1 (PLCγ1) is involved in several signalling pathways activated by receptor tyrosine kinases including those that signal through PI3K (108) and several of the ras-activated MAP-kinase pathways (101). Upstream activators include EGFRs, FGFRs, VEGFRs, IGF-1R and PDGFRs (108). Activation of PLCγ1 activates second messengers DAG and IP3 which cooperate in the activation of protein kinase-C (PKC) and intracellular calcium mobilisation amongst other targets (108) (Figure 1.10). Mutations in PLCγ1 have been identified in numerous cancers and are thought to primarily be activating mutations including several in CTCL in a host of recent publications (16) (30, 49, 50). The incidence of PLCγ1 mutations has been reported at 9% (50), 10% (49), 13.5% (16) and 19% in recent studies looking SS tumours (30) and at 27% in MF tumours (30). Mutations in PLCγ1 are of particular interest because they
likely effect transduction through several known tumourigenic signalling networks previously discussed.

Figure 1.10 PLCγ1 signal transduction.
Signalling through this pathway is transduced by receptor tyrosine kinases and converges on several networks known to be perturbed in CTCL. These include MAP-kinase pathways, NF-κB, NFAT and AKT. Mutations have also been reported in PLCγ1 itself in CTCL and other lymphoid neoplasms.

1.8.6 Programmed cell death

Programmed cell death (PCD) is essential for normal developmental processes and homeostasis as it plays a key role in maintaining the equilibrium between cell survival and death (109). The breakdown of this process is a well-known contributing factor to the initiation and progression of all known cancers (69). The term PCD was originally used synonymously with apoptosis but has more recently been understood to encompass at least 3 varieties;
apoptosis, autophagy and programmed necrosis (110, 111). Each of these processes is morphologically distinct (112, 113).

1.8.6.1 Apoptosis

Apoptosis was first described microscopically in 1972 by Kerr et al (114), cells show shrinkage combined with nuclear compartmentalization and fragmentation and detachment from the surrounding cells and extracellular matrix (ECM). A process called blebbing orchestrates the controlled breakup of the cell into membrane bound compartments (115) and ultimately phagocytosis by surrounding cells (109).

Apoptosis can be induced by 2 main methods which both converge on activation of caspase 3, the penultimate step in the execution pathway (109). The extrinsic method requires membrane bound FAS receptors (including TNFR-α, FAS and TRAIL) (116) to bind an extracellular ligand (TNF-α, FAS-L), bound receptors recruit further members including FADD, TRADD and RIP (117, 118), then pro-caspase-8 to form the death inducing signalling complex (DISC). This complex then activates caspase 3 to trigger the execution pathway (114). Inducing apoptosis via the FAS pathway is the primary method of maintaining homeostasis in the immune system and is also used by cytotoxic T-cells to induce apoptosis in virally infected cells and other target cells (119) (Figure 1.11).

The other major apoptotic pathway is known as the intrinsic pathway (Figure 1.11) and is primarily induced by pathological levels of stress from a variety of sources including; hypoxia, toxins, high levels of reactive oxygen species (ROS) and irreparable DNA damage (109, 111). Under these conditions, pro-apoptotic members of the BCL2 gene family (such as BAX and BAK) become active (120, 121) and form pores in the mitochondrial outer membrane facilitating the release of cytochrome-c, amongst other apoptotic factors, into the cytosol (110). Cytosolic cytochrome-c combines with APAF1 and pro-caspase-9 to generate a large protein complex called the apoptosome which induces the execution pathway via caspase-3 (122).
Figure 1.11 Apoptosis.
Extrinsic induction of apoptosis is mediated by signalling through FAS, TNFR-α and TRAIL. Further proteins TRADD, FADD and RIP are recruited through the intercellular domains along with pro-caspase-8 to produce the death inducing signalling complex (DISC). DISC signals through caspase-3 to switch on apoptotic genes. The intrinsic apoptosis pathway is activated by ROS, toxicity, irreversible DNA damage or other mechanisms which compromise the cell. BLC2 family members such as BAX and BAK cause the release of cytochrome-C from the inner mitochondrial membrane to the cytoplasm which are detected by APAF1. Pro-caspase-9 is then cleaved and binds APAF1 before activation of caspase-3 and induction of apoptosis.

T-cell mediated apoptosis can also be induced via the perforin/granzyme pathway. This is a special case pathway whereby perforin secreted by the T-cells forms pores in the target cell through which the T-cell releases cytoplasmic granules containing granzymes A and B which ultimately cause DNA cleavage, activation of caspase-10 and can even cleave BID to activate the intrinsic mitochondrial apoptosis pathway (109).

In CTCL there is evidence to suggest that a high proportion of tumours lack the ability to initiate apoptosis through the FAS pathway. Specifically, the presence of the FAS receptor has been shown to be down-regulated (123-126), in many cases as a result of deletion of all or part of chromosome 10q up to 68% in SS tumour cells (48) (26, 31, 40, 41, 127). Furthermore, point
mutations have been reported in a number of cases (128-130) alongside reduced sensitivity to FAS-L (128, 129). Downregulation of the FAS gene has also been shown by our group to be associated with promoter hypermethylation (131). These examples highlight the FAS pathway as a striking example of a pathway that is heavily compromised by selective pressure acting against several components of the pathway.

1.8.6.2 Autophagy

The process of autophagy is highly conserved by a core set of ~30 genes discovered in yeast termed the ATG genes (132). These genes function as part of several interrelated signalling cascades that regulate autophagy (133). In brief, autophagy is mediated by the formation of relatively large, double membraned organelles called autophagosomes which essentially assimilate other cell components that are damaged or otherwise need recycling (134, 135). The mature autophagosomes fuse with lysosomes and the components are reduced into building blocks for de-novo biosynthesis or used to generate ATP (134, 135).

Our understanding of the link between autophagy and tumourigenic processes has grown considerably in recent years. Autophagy was once considered to be primarily a survival function that becomes active in response to both extra and intracellular stress, it is now known to have complicated effects that vary depending on the circumstances (133, 136). Evidence is accumulating that over-activation of autophagy can have a tumour suppressive role by inducing a form of programmed cell death that is distinct from apoptosis and necrosis (113, 136, 137). Conversely, autophagy can also play an oncogenic role by regulating a number of other molecular signals involved in oncogenic processes such as BLC2, beclin-1, class I and III PI3K, mTORC1/C2 and P53 (138).

To date, little work has been carried out linking autophagy directly to MF or SS. However, several histone deacetylase (HDAC) inhibitors including Vorinostat and Romidepsin, which are used in the treatment of CTCL including MF and SS (139) are thought to act at least partly by
facilitating transcription of genes involved in caspase-independent, autophagy mediated cell death (139, 140).

Another possible link between autophagy and CTCL relates to the adenine biosynthesis pathway (141) Autophagy is known to be promoted by spermidine and increasing the bioavailability of spermidine promotes longevity and prevents necrosis (142). Interestingly, spermidine production has been shown to be inhibited in-vitro by Methyl-thioadenosine (MTA) (141) (Figure 1.12). Tumour cells of both SS and MF often have deletions of chromosomal region 9p21 (27, 44), a region where the Methyl-thioadenosine-phosphorylase (MTAP) gene is found. MTAP is the only known enzyme capable of degrading MTA (143, 144) and tumours cells lacking the MTAP gene show highly altered levels of spermidine and its downstream product spermine (141) suggesting a possible link between loss of MTAP and alterations in the regulation of autophagy. Loss of 9p21 will be discussed in more detail in later sections.
Figure 1.12 Loss of MTAP may inhibit autophagy.
MTAP is lost in a high number of CTCL tumours allowing MTA to accumulate. High concentrations of spermidine promote autophagy, however increased concentrations of MTA inhibit the production of spermidine suggesting that loss of MTAP may indirectly inhibit autophagy. The effect this may have on tumourigenic processes is not yet clear.

1.8.6.3 Programmed necrosis and inflammation
The hallmark feature that differentiates necrosis from other forms of cell death is the destruction of the plasma membrane (145). Necrosis has historically been considered as an unregulated, pathological process but more recently several genes have been shown to promote or inhibit necrosis suggesting that necrosis can be a programmed event (145). Several of these signals also promote apoptosis and autophagy but the intensity of the signal, as well as subtleties of the context can alter the balance and it has been speculated that programmed necrosis may be a last ditch attempt to induce cell death in cells that could otherwise cause catastrophic problems such as tumourigenesis (145).
Activation of several receptors including; TNF-R1, FAS, TOL-like receptors and TRAIL activated death receptors have been shown to converge through a necrosis signalling hub centred around the protein kinase RIP1 (146). RIP1 is an activator of NF-κB and can inhibit apoptosis, but under normal circumstances caspase-8 cleaves RIP1 allowing apoptosis if necessary (147). However, if apoptosis is suppressed or caspase-8 is disabled, RIP1 has been shown to induce a cascade of events that results in necrosis, it has been suggested that this may serve as a backup to more controlled forms of PCD (145, 148).

Necrosis is generally thought to elicit harmful effects through the tumour microenvironment whereby the break-up of cells causes tumour promoting effects by inducing or enhancing general inflammatory processes (149). Indeed, numerous cancers are associated with chronic inflammation (150) and inflammatory processes, such as those mediated by IL-17 are thought to play a role in the development of CTCL (151, 152). Inflammation also contributes to the proliferation and survival of malignant cells and mediates genomic instability, creating an environment that can accelerate the evolution of tumour cells (153). There are several mechanisms of how this occurs; reactive oxygen species are increased in regions of inflammation and are known to be a factor contributing to DNA damage, the other key reason is that sites of inflammation require cells to undergo division to repair damaged tissue (154). This double edged sword underlies the association between inflammation and cancer. There is also increasing evidence that inflammation may promote tumourigenesis by altering the epigenetic landscape of cells which endure chronic inflammation as a feature of their microenvironment (155, 156).

1.8.7 Global epigenetic regulation

Epigenetics is an umbrella term for heritable changes to the regulatory machinery of DNA that do not alter the sequence of bases in the genome (157). Epigenetic changes can be a direct downstream consequence of driver events, or other processes such as inflammation (155) and can result in altered transcriptional patterns of many genes, including those involved in
tumourigenic processes (157). This section will summarize well studied global epigenetic regulatory mechanisms and discuss their relevance to CTCL.

1.8.7.1 DNA Modifications

There are 4 known epigenetic modifications that occur on mammalian DNA, of which methylation is by far the most widely studied and best understood (157). DNA Methylation occurs on cytosine bases when a methyl group is covalently added to the 5’ carbon to produce 5-methylcytosine (5mC) (158). Methylated cytosine is found predominantly on cytosine-guanosine dinucleotides (CpGs) spanning ~4% of the genome (159). The CpG sites occur less than would be expected by chance but are generally clustered into small groups near gene promoters where they are known as CpG islands (160). The methyl groups generally have an inhibitory effect on transcription by projecting into the major groove of DNA and likely reducing the binding efficiency of the transcriptional machinery, however methylation is not enough to repress transcription by itself (159). Furthermore, methylation has been reported within the gene body of highly transcribed genes suggesting that the spatial distribution and context of methylation are important additional factors regulating transcription and it seems very plausible that these modifications are involved in the alternate splicing of genes (161).

Methylation is regulated in higher eukaryotes by the DNA-methyl-transferase family of genes. Making sure inheritance of DNA methylation occurs correctly during replication is the function of DNMT1 (162). DNMT3A and DNMT3B are mostly responsible for de novo DNA methylation although can reportedly maintain existing methylation as well (163), whereas DNMT2, despite the name, does not seem to be involved in DNA methylation (164).

Cytosine methylation can be further altered to produce 5-hydroxymethylcytosine (5hmC), a distinct epigenetic modification to 5mC (157). The TET family of DNA hydroxylases (TET1, TET2, TET3) are known to be responsible for this process as well as further oxidation of the residues (157). The purpose of these modifications appears to be complex with modifications in gene bodies and promoters of both transcribed and repressed genes mediated by TET genes (165).
In CTCL the DNA methyltransferase genes *DNMT3A* has been reported as both deleted in 14/66 and mutated in 5/66 (50) and *DNMT3B* which was deleted in 9/80 and mutated in 5/66 cases (50), another study reported 15 deletions and 4 mutations in DNMT3A (49, 50). Furthermore, recent NGS work has discovered focal deletions overlapping the *TET1* gene in 50% of SS tumours as well as nonsense mutations in SS tumours in 4/66 in *TET1* and 6/66 in *TET2* (50, 51). Perturbations in global DNA epigenome regulators would likely have significant effects on the epigenetic landscape of the disease and affect the regulation of many genes. Indeed, hypermethylation has been reported to affect several genes involved directly in key tumourigenic processes such as FAS (131) and T-plastin (39).

<table>
<thead>
<tr>
<th>Genes with mutations MF and SS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNMT3A, DNMT3B, TET1, TET2</td>
<td>Kiel et al 2015, Choi et al 2015,</td>
</tr>
</tbody>
</table>

Table 6. Genes involved in DNA methylation reported as mutated in CTCL.

1.8.7.2 Histone modifications

Post-translational modifications to histones are both diverse and dynamic mechanisms regulating the structure and function of chromatin. Different modifications show both repressive and activating effects on transcription, furthermore they are not necessarily mutually exclusive which can lead to so called ‘bivalent domains’ (157). Modifications across several histones exert a local combinatorial influence on transcription and other process, including signals which can lead to further modifications of other histones, this has been dubbed ‘histone crosstalk’ and is of great biological significance (166). The list of documented modifications to histones and their effects is extensive and detailed coverage is beyond the scope of this thesis; however, perturbations in several histone modifying genes have been identified in CTCL and are described below.

The chromatin modifiers *ARID1A* and *ARID5B* were found to be deleted or mutated in 25/62 and 23/80 SS tumours respectively in a recent study (50). Deletions and mutations in *ARID1A* have been observed in SS in 23/40 tumours by others as well (49). *SMARCC1*, an interacting
partner of the ARID family has also been reported as deleted 17/80 SS tumours (50). Members of several histone methyletransferase families including genes from SETD (SETD1A, SETD1B, SETD6) and MLL2 have also been shown to be deleted or mutated in SS tumours (50), with MLL2 deleted in 11/80 and mutated in 7/66 tumours, MLL3 mutated in 39/66 tumours and MLL4 mutated in 12/66 tumours (50). The SETD1A and SETD1B genes were deleted in 14/80 and 12/80, and mutated in 4/66 and 11/66 respectively (50) Numerous other histone modifiers including the lysine-demethylase KDM6B and the histone deacetylase NCOR1 were reported as deleted in the same study (50). Overall, a large variety of chromatin modifiers have been reported as mutated or deleted in CTCL, table 7 lists recurrent genes reported in recent studies.

<table>
<thead>
<tr>
<th>Genes with mutations MF and SS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARID1A, ARID1B, SMARCC1, SETD1A, SETD1B, SETD6, MLL2, MLL3, NCOR1, NCOR2, SMARCA4, CREBBP, CHD3, BRD9, ZEB1</td>
<td>Choi et al 2015, Kiel et al 2015, da Silva-Almeida et al 2015, Wang et al 2015</td>
</tr>
</tbody>
</table>

Table 7. Genes with roles in chromatin regulation with mutations reported in CTCL.

1.8.8 Cell cycle control

The cell cycle of all eukaryotes can be divided into 4 main sections; Growth 1/0 (G1/0), Synthesis (S), Growth 2 (G2) and Mitosis (M) (167). The most well studied mechanism which drives progression through the cell cycle is involves interactions between 2 key groups of genes; the cyclin-dependent kinases (CDKs) which are constitutively expressed, and the corresponding cyclins which are expressed in a specific temporal pattern (168). Without the presence of the corresponding cyclins, the CDKs remain inactive but when the cyclins are expressed, different cyclin-CDK complexes form and activate CDKs is a specific spatio-temporal manor driving progression through the cell cycle (168). A less well studied pathway
that can also push the cell through the cycle involves activation of the C-MYC gene by growth stimuli, C-MYC is thought to bypass the default cell cycle process and directly drive expression of cyclin-E and CDC25 (168).

In G1, cyclin D’s are the first cyclins to be expressed (168). The binding of cyclin-D family members (D1,D2,D3) to CDK4 or CDK6 activates the complex which can then phosphorylate retinoblastoma (RB), RB can then dissociate from a complex containing members of the E2F transcription factor family, as well as DP1 and RB (168). Once released, E2F members become active which results in the transcriptions of cyclin E, cyclin A, CDC25A and many other genes associated with the transition from G1 to S where DNA replication takes place (168). When the DNA has been completely replicated the cell is said to have completed S phase and be in G2 (168) (Figure 1.13).
Figure 1.13 G1/S Regulation.
Progression from G1 to S phase is driven by increasing expression of CDC25 and Cyclin D/E combining with CDK4/6. The cyclin CDK complex formation can be inhibited by the INK4 genes and the CDK activity is negatively regulated by CIP/KIP genes. Sufficient cyclin/CDK activity phosphorylates RB, releasing E2F and DP1 to drive increased expression of Cyclin A/E and pushing the cell from G1 to S. This mechanism can be bypassed by C-MYC activity which can drive expression of CDC25 and Cyclin E by itself. Further negative regulation is controlled by ATR signalling which can prevent progression through S-phase in response to replicative stress. Several layers of tight regulation control the balance of active cyclin/CDK complexes which promote G1/S transition. Green indicates cell cycle drivers, red genes indicate cell cycle repressors, genes in yellow are neutral.

The G1/S transition is negatively regulated by many factors; well-studied inhibitors include the INK4 family which interfere with the cyclin-D binding CDKs (CDK4 and CDK6). P16INK4B is transcribed by the \textit{CDKN2B} gene (169). P16INK4A is also a product of the \textit{CDKN2A} gene (170), the remaining members include P18INK4C and P19INK4D (171). The other CDK inhibitors are the CIP/KIP family; P21CIP, P27KIP1 and P5KIP2, which inhibit all CDKs (171, 172). Many further factors can inhibit cell cycle progression through different mechanisms; the \textit{CDKN2A} gene produces a functionally and structurally distinct transcript called P14ARF which mediates TP53.
induced cell cycle arrest, reviewed in (173). Furthermore, the G1/S transition can be halted under replicated stress by ATR signalling (174).

Progress from G2 to M is dependent on the accumulation of active CDK1 (also called CDC2) bound by cyclin-B or cyclin-A (175, 176). CDK1 is initially rendered inactive by WEE1 and MYT1 phosphorylation, so to achieve full activation of the complex, further de-phosphorylation by CDC25 family members is necessary (177, 178). The B and A cyclins are degraded as the cell progresses from metaphase to anaphase during mitosis thus removing the activity of CDK1 (176). Further negative regulators of the G2/M transition include; GADD45, P21 and 14-3-3-sigma, all of which are targets of TP53 (175). In addition, the ATM/ATR genes can negatively regulate progression by directly activating CHK1 and CHK2 which themselves inactivate CDC25 (175) (Figure 1.14).
Figure 1.14 G2/M Regulation.

CDK1 activation by Cyclin A/B drives the G2/M transition. CDK1 is rendered inactive by phosphorylation via WEE1 and MYT1, however CDC25 activity reverses this phosphorylation allowing CDK1 to form active complexes with Cyclin A/B. CDC25 can itself be activated by PLK1 or inactivated by the ATM/ATR pathway via CHK1/2. TP53 can also prevent G2/M transition by activating GADD45, P21/CIP and/or 14-3-3-SIGMA. As with G1/S a series of tightly orchestrated events facilitate or inhibit the build-up of cyclin/CDK complexes which drive cell cycle progression. Green indicates cell cycle drivers, red genes indicate cell cycle repressors, genes in yellow are neutral.

<table>
<thead>
<tr>
<th>Genes with mutations MF and SS</th>
<th>Reference</th>
</tr>
</thead>
</table>

Table 8. Genes reported as mutated or deleted in CTCL which affect the cell cycle and checkpoint activation.
In CTCL several core components of the cell cycle have been reported as disrupted, most prominent among these is loss of chromosomal region 9p21 in up to 41% of MF and SS tumours (16, 22, 23, 25, 27, 44, 48) which includes the genes CDKN2A and CDKN2B (Table8). Both of these genes express potent cell cycle inhibitors of the INK and ARF family (171).

Members of the CIP/KIP family of cell cycle inhibitors also show loss of expression in CTCL (179). Cyclin-E has also been reported as constitutively expressed in CTCL cell lines (180). PLK1 is a serine/threonine kinase that is crucial in regulating the G2/M transition by initially activating CDC25 (181, 182). It has been reported as over-expressed in advanced CTCL and CTCL cell lines, RNAi knockdown resulted in increased cell cycle arrest and apoptosis suggesting that this gene may be a good target for translational investigation (181, 182).

1.8.9 DNA repair and genome maintenance processes

As previously discussed, complex chromosomal rearrangements and genomic instability are key features of MF and SS. Non-tumourigenic cells repair damaged DNA on an ongoing basis and remain healthy (183). Therefore, a sensible line of inquiry would be to examine how pathological DNA damage manifests and accumulates in CTCL cells. The DNA damage response (DDR) is the most obvious candidate network and includes ATM, TP53 and the checkpoint activation network (184). Problems with DNA repair processes themselves are also highly plausible candidates and problems with either or both would have catastrophic effects on genome maintenance.

1.8.9.1 Repair activation

Ataxia telangiectasia mutated (ATM) and the closely related ATR (ATM and RAD3-related) are protein kinases which become activated in response to DNA damage (185, 186). They have numerous targets and similar substrate specificity (187), with differing substrates depending on the phase of the cell cycle. ATR responds mainly to DNA damage caused by replication stress and DNA cross-linking whereas ATM is a principle activator of double stranded break (DSB) repair, cell cycle checkpoint induction and responses to radiation (188). ATM has been
shown to phosphorylate TP53, MDM3 and CHK2 and activate the G1 checkpoint (189-192). The S-phase checkpoint can be activated by ATM phosphorylation of NBS1, FANCD2, and BRCA1 (193-195). In G2, the checkpoint can be initiated by ATM phosphorylation of BRCA1 and RAD17 (195, 196). Numerous studies show that ATM can utilize cell cycle checkpoints in all phases to elicit the DDR. ATM has been reported as lost in 12/40 or mutated in 1/40 SS tumours (49) and this would likely result in problems initiating the DDR and contribute to problems relating to genome maintenance. See table 8 for a list of genes affected in CTCL involved in the cell cycle and checkpoint activation.

Tumour protein 53 (TP53) is one of the most widely studied tumour suppressors implicated in cancer. It operates as a master controller of many biological processes and activates genes involved in arrest of the cell cycle, activation of DNA repair, senescence and if necessary programmed cell death pathways (197). TP53 is part of a family of related genes which includes TP63 and TP73, which have separate roles but may also play a part in tumour suppression (188). Under normal conditions, TP53 is held in an inactive cytoplasmic complex with MDM2, MDM4, DAXX and HAUSP where it is targeted for ubiquitinylation and subsequent degradation by the proteasome complex (188). The complex is extremely sensitive to disruption by small molecules, stress stimuli and other activator pathways which release and activate TP53 (188). TP53 is directly activated and released from its cytosolic complex by ATM and ATR (188), the cell cycle regulator ARF also indirectly activates TP53 by sequestering its main binding partner MDM2 (198). Increasing activity in oncogenic signalling cascades, including MAPK pathways, can also raise the level of free TP53 by disrupting is sequestration by MDM2 (188). TP53 can then be activated by residual levels of ATR which is regarded as the classical route by which TP53 responds to hyper-proliferation (188, 199).

TP53 is located on the short arm of chromosome 17, a region frequently lost in CTCL in up to 45% of tumours (22, 24, 31, 46, 127). In addition, loss of function mutations have been recently reported in large sequencing studies in SS in 7/40, 7/37, and 4/25 tumours (16, 49, 51,
See table 8 for a list of genes affected in CTCL involved in the cell cycle and checkpoint activation. Loss of key tumour suppressor genes such as TP53 is likely to contribute significantly to the progression of CTCL as it causes reduced functionality of many tumour suppressing processes, key among them is the ability to initiate DNA repair or PCD. In addition, the 9p21 locus, which contains several tumour suppressor genes including \(CDKN2A \), is often deleted in CTCL as has been previously discussed. \(CDKN2A \) produces several transcripts including P14\(^{ARF} \), which normally sequesters MDM2 when cell cycle arrest is necessary. Loss of P14\(^{ARF} \) indirectly leads to reduced active TP53 by increasing the availability of MDM2 to retain TP53 in its inactive state (188, 199).

1.8.9.2 DNA repair

There are several known mechanisms of DNA repair, each used to repair different types of damage (Figure 1.15). The main mechanisms include:

1. **Base excision repair (BER).** This mechanism is used for repairing DNA lesions that do not alter the structure of the helix and involve the creation of scaffolding proteins and a single stranded DNA break as an intermediate step, reviewed in (201). Many of the same enzymes involved in the initial stages of the pathway are also involved in the repair of single stranded breaks that occur as a result of damage (202).

2. **Mismatch repair (MMR).** The most common use of MMR is to replace mismatched bases after DNA replication that have not been corrected by the polymerase complex’s initial proofreading, reviewed in (203). In addition, MMR also corrects INDEL loops that arise from polymerase slippage (203). The process is highly conserved between organisms as distant as humans and E.coli (204) and involves a recognition step, an excision step where a gap is generated, and finally a repair synthesis step to fill in the gap (205-207). Problems with the MMR process causes cells to be highly mutatable and display characteristic microsatellite instability (208), interestingly up to 27% of CTCL patients demonstrate microsatellite instability (209, 210). Promotor hyper-
methylation has been demonstrated in HMLH1 which is involved in MMR (210) suggesting a link between loss of MMR functionality and CTCL.

(3) Nucleotide excision repair (NER). DNA lesions that distort the helical structure are mainly repaired by NER. An example of such damage includes UV-induced cyclobutane pyrimidine dimers. Although NER is mechanistically similar to BER, it involves many steps and ~30 genes are known to play a role (211-213). The steps include; recognising the damaged DNA, unwinding ~30bp of the helix surrounding the lesion, excising a single-stranded DNA segment surrounding the lesion, repair synthesis and finally ligation of the repaired strand (183). A key gene involved in binding the unwound single-stranded helix prior to endonuclease cleavage is known as replication protein A (RPA), this gene is found on the short arm of chromosome 17 which is deleted in up to 45% of CTCL patients (25, 26, 41, 42, 47, 48). This suggests that loss of function of NER may contribute to genomic instability in CTCL.

(4) Homologous recombination (HR). Double stranded breaks (DSBs) are repaired in one of 2 ways, HR is the less error prone method because it uses the sister chromosome as a template (214). It occurs in several phases, the first of which is presynapsis which involves the conversion of both of the DSB ends into 3’ overhangs. The synopsis phase involves aligning the 3’ DSB ends to homologous regions on the sister chromosome and the formation of Holiday junctions. The postsynapsis phase involves elongation of the 3’ end and subsequent re-joining of the DSB ends to form 2 separate chromosomes again (214). The HR method of DSB repair is mainly active during the late-S and G2 phases of the cell cycle (183, 215). The RPA gene, is involved in binding the 3’ ends to stabilise the structure prior to binding by the RAD51 recombinase, BRCA2 and several other members of the HR repair process (183). Loss of the RPA gene from chromosome 17p is likely to affect HR in CTCL cells.

(5) Non-homologous end joining (NHEJ). NHEJ is the other method by which DSB repair occurs. It is considered an error prone process compared to other mechanisms of DNA
repair (216) but is able to act throughout all phases of the cell cycle (215). As the name suggests it involves the direct ligation of DSBs (217). A relatively small number of components facilitate the process by first identifying DSB termini, encapsulating it and recruiting additional components. These encapsulated ends are then able to form a synapase with other DSBs and allow the repair process to take place (218). The breaks may be of varying complexity and require clean-up steps to allow ligation to take place. Components involved in this process may vary according to the type of DSB but are thought to include components from other repair mechanisms such as lesion specific base excision repair (BER) enzymes including APEX1, TDP1 and PNKP (219). The final end processing is likely responsible for the error prone nature of NHEJ (220). A reduced level of Ku70/Ku80 has been reported in CD4+ T-cells in CTCL tumour sites (221). This heterodimer is an important component involved in the initial recognition and binding of DSBs in the NHEJ process which may confer a reduced ability to respond to DSBs in CTCL cells.

Figure 1.15 Summary of DNA damage and repair mechanisms.
Known sources of DNA damage are shown (top) with examples DNA lesions caused by each mutagen (middle). The relevant repair mechanism used for amending the damage is listed below (Adapted from Mathews and Dexheimer 2013).
1.8.9.3 Telomere maintenance

The structure of DNA and chromatin at the ends of the chromosomes is different from the rest of the chromosome arms and is known as a telomere (222, 223). Healthy telomeres are stable structures that differ to the standard DNA double-helix, predominantly being arranged in a formation known as a G-quadruplex (224). Telomeric sequences consist of repetitive ‘5 to 3’ TTAGGG sequences ranging from a few Kb to >100Kb in length (222). The terminus of the telomere is separated into a complex single-stranded arrangement involving a large loop known as a T-loop and a smaller inner triple stranded loop known as a D-loop (222). The complex structure is coated by a 6-protein compound known as shelterin which consists of TRF1, TRF2, TIN2, RAP1, POT1 and TPP2 and serves to protect the telomere from being recognized by the DDR system and targeted for repair (225)(Figure 1.16).

Polymerase enzymes generally replicate DNA in a 3’ to 5’ direction and are initiated by an RNA primer (226). Replicating DNA in this way means that the 3’ end cannot be fully replicated so the long repeated regions in telomeres are a solution to the problem, as small sections of the telomere are lost with each mitotic cycle (222). In terminally differentiated cells a division limit called the Hayflick limit (227) is reached when enough cell cycles have passed so that the telomere reaches a critically short size, upon which replicative senescence and exit from the cell cycle are triggered (228). The telomeres are maintained by a retrotranscriptase called telomerase which can elongate the repeat elements in the telomeres as it does in gametes, stem cells and many cancer cells (229), but is inactive in most cells that have undergone terminal differentiation (230, 231).

Paradoxically in CTCL, short telomeres have been observed in aggressive subgroups in parallel with active telomerase (232, 233), it has been suggested that telomerase may exert additional functions in CTCL besides telomere maintenance (232).
Figure 1.16 The structure of human telomeres.
Human telomers contain long repeats of TTAGGG with a 3’ overhang. At the terminus, the telomere loops back on itself to form a protective structure coated in a protein complex called shelterin. This structure prevents the telomere from being recognised by ATM and components of the double-stranded break response. Shelterin is composed of the proteins TRF1, TRF2, TIN2, RAP1, POT1 and TPP2 and perturbations in these proteins are likely to compromise the structure of telomeres and hence the integrity of the chromosome ends. Illustration from (O’Sullivan and Karlseder 2010).
1.9 Case study of a common focal deletion: driver genes on chromosome 9p21.3

CTCL tumours show a relatively high level of structural variation. This was detected in the earlier studies by us and others using low resolution genomic approaches (22-24, 26, 27, 31, 41, 48, 127, 234) and subsequently confirmed in recent NGS papers (16, 28, 29, 49-51). Many structural variations encompass large sections of chromosomes, most notably chromosome 17 which carries many known cancer driver genes such as TP53 and likely even more passenger genes. However, some recurrently deleted chromosomal regions are much smaller and therefore one hypothesis is that these so called focal deletions are more likely to contain predominantly driver genes. One such region is chromosome 9p21.3 which sits ~500kb centromeric from the interferon-α cluster and contains the genes (from centromeric to telomeric) CDKN2B-AS1, CDKN2B, CDKN2A and MTAP (Figure 1.21). This region has been reported as deleted in many malignancies such as cutaneous B-cell lymphoma (235), non-melanoma skin cancer (236) and melanoma (237). Whilst CDKN2A and CDKN2B have well known roles in tumourigenesis, as has been previously discussed, the contribution of MTAP is less well known. In this section a recap of CDKN2A and CDKN2B and their established roles in cancer will be briefly reviewed, followed by a discussion of MTAP and evidence that MTAP may also act as a tumour suppressor.
This small region on chromosome 9 is deleted or otherwise inactivated in many malignancies. The CDKN2A and CDKN2B genes express cell cycle regulators of the INK4 and ARF families (Figures 1.13-1.14) which have well known roles in tumourigenesis. The CDKN2B-AS1 gene is a non-coding RNA involved in the regulation of CDKN2B. The MTAP gene is also selectively deleted in several malignancies but the mechanism by which it contributes to tumourigenesis is currently undefined.

1.9.1 CDKN2A and CDKN2B

There is a great deal of evidence to suggest that CDKN2A and CDKN2A have prominent roles in tumourigenesis. The genes encode several alternatively transcribed tumour suppressor proteins with functionally distinct roles named p14ARF, P16INK4A, p15INK4B. The function of these genes has been previously discussed and they are known to have roles in cell cycle control and DNA repair activation (Figures 1.13-1.14). Further evidence for a tumour suppressing role includes; correlative deletion of the loci in tumour cells (235-237) and aberrant promoter hypermethylation leading to loss of expression (238-240), including in CTCL (44).

1.9.2 MTAP

MTAP, or 5’-methylthioadenosine phosphorylase is the only known enzyme responsible for the breakdown of 5’-methylthioadenosine (MTA) (241). MTAP phosphorylates MTA which then
degrades into adenine and 5-methylthioribose-1-phosphate (MTR-1-P) (242). Adenine can then be further degraded into AMP whilst MTR-1-P is metabolized into methionine (242)\textbf{(Figure 1.12, 1.22).} Loss of MTAP expression is reported in a range of solid (243-245) and haematological malignancies (246-252) and it has been suggested that changes in MTA concentration and its downstream effects could cause a selective growth advantage which may explain the high frequency of MTAP deficiency in tumour cells (242).

There is increasing functional evidence that MTAP may act as a tumour suppressor. One of the strongest lines of evidence comes from an MTAP loss mouse model (253). Homozygous loss of MTAP is embryonic lethal in the mouse which highlights an essential developmental role. Perhaps more interestingly, mice heterozygous for MTAP loss are highly susceptible to developing mature T-cell lymphoma (253). Further evidence of MTAP acting as a tumour suppressor comes from the MCF-7 MTAP(-/-) cell line where reintroduction of MTAP inhibits tumour formation in xenografted in-vitro mouse models (141), the mechanism appears to be related to the enzymatic function of MTAP and its effect on intracellular polyamine pools as constructs engineered with defective catalytic regions show similar effects to MTAP loss (141).
Figure 1.18 How MTAP may act as a tumour suppressor.
MTA is usually broken down by MTAP as the first step in the adenine and methionine salvage pathways. In the absence of functional MTAP, MTA is known to accumulate. High concentrations of MTA is thought to inhibit the PRMT family of methyltransferases. Several members of the PRMT family are known to reduce activity of the JAK/STAT and MAPK/ERK oncogenic pathways. It is possible that inhibition of PRMTs by increased MTA may lead to over-activity of these pathways and contribute to tumourigenesis.

Correlative genetic studies provide further support that MTAP is an active participant in tumourigenesis. In non-small cell lung cancer and astrocytomas MTAP loss has also been shown to occur without loss of CDKN2A indicating a possible selective pressure specifically for loss of MTAP in the development of these malignancies (254). Loss of MTAP is also recognized as a factor contributing to the difference between superficial spreading melanoma and nodular melanoma implying MTAP exerts a phenotypic effect on tumour subtype (255). In malignant melanoma, functional MTAP is established as a positive prognostic factor and its expression is predictive of response to adjuvant interferon therapy (238, 256-259). MTAP is also known to be silenced epigenetically via promoter methylation in gastric (260) and lung (261) cancers as well as hepatocellular carcinoma (262, 263) and melanoma (238).

The mechanism by which MTAP deficiency contributes to oncogenesis is likely to be via accumulation of MTA. Functional MTAP is essential for MTA breakdown and increased MTA is directly linked to increased tumourigenicity in several malignancies including hepatocellular
carcinoma (262, 263), melanoma (264) and head and neck cancers (265). In addition MTA has been shown to influence numerous critical cellular functions including regulation of gene expression, proliferation, differentiation and apoptosis (144).

How MTA affects these critical cellular functions is unclear but one possible mechanism is by inhibiting a key class of enzymes called protein-arginine methyltransferases (PRMTs). There are 9 of these enzymes and they are responsible for methylation of arginine and lysine residues on numerous target proteins which can have activating or repressive activity depending on the specific target (266). Importantly, STATs 1, 3 and 6 require methylation of the arginine-31 residue by PRMTs in order for dephosphorylation to occur, dephosphorylation is an essential step in the deactivation of activated STATs (267-269) suggesting that increased MTA as a result of MTAP loss may contribute to the constitutive activation of STAT family members (Figure 1.22). MTA has been shown to inhibit PRMT1 and thus prevent arginine methylation of STAT1 (267). Whilst activating mutations and copy number gains have been documented in JAKs and STATs in CTCL (16, 28, 30, 49, 50), JAK-STAT pathways are also known to be over-active in the absence of genetic anomalies, for example constitutive activation of STAT3 (90). High concentrations of MTA may contribute to inactivation of further PRMT family members and have downstream effects on STAT3 and/or others such as STAT5A/B.

A study in melanoma demonstrated loss of both symmetric and asymmetric arginine methylation correlated with loss of MTAP and increased MTA levels. In cell line models, restoring MTAP expression was able to restore protein methylation (270). Protein methylation by PRMT5 is also known to modulate ERK signalling (271). Interestingly, MTA levels also correlate with MAPK/ERK activity and restoration of MTAP expression was able to restore PRMT function and reduce ERK activity (270) suggesting another key cancer pathway may be indirectly attenuated by MTAP (Figure 1.22).

A recent study of MTAP in fibrosarcoma cells suggested the possibility that MTAP has tumour suppressing properties unrelated to its enzymatic function (272). Reintroducing MTAP into
MTAP negative cells resulting in loss of tumourigenic properties, however reintroducing a catalytically inactive version of MTAP also resulted in a similar loss of tumourigenic properties suggesting MTAP has other functions besides MTA metabolism (272), though it is not clear how this may work. Intriguingly, this is in contrast to earlier work which suggested the enzymatic function was responsible for the tumour suppressing properties of MTAP (141).

From a translational perspective, MTAP could be targeted therapeutically (242) as cells that lack MTAP cannot salvage adenine and methionine from MTA making them sensitive to de-novo purine biosynthesis inhibitors and methionine starvation (246, 252). Further work that supports a tumour suppressing role for MTAP will add weight to therapeutic strategies which target MTAP.

1.10 The application of next generation sequencing to the study of cancer

1.10.1 Overview of NGS

Next generation sequencing (NGS), also referred to as massively parallel sequencing, is a maturing technology that has kick-started a revolution in the way we can interrogate sequences of nucleic acids, primarily in terms of how many bases we can sequence per unit cost but also in how rapidly a genome can be sequenced. It expands on the earlier sequencing methodologies created in the late 1970s by Fred Sanger (273, 274). Whilst Sanger sequencing is still used as a gold standard, reliable method for detecting variants at known locations, its main limitation is the cost per base which currently stands at approximately $2400 per MB ($1 per 400-900bp read). The other key limitation is that it can only be used to interrogate specific target sites of the genome in any practical sense. The first NGS platform was the 454 pyrosequencing method which was developed commercially by Roche in 2005 and reduced costs and turnaround time considerably, allowing a full genome to be sequenced for between $10-25,000,000 (depending on size) in a matter of weeks (275). To give some perspective of the rate of improvement, the first complete publication of the human genome was published
in 2003 and took approximately 10 years to complete at an estimated cost of $2.7 billion (276). Since then the year on year reduction in price has drawn comparison to Moore’s law (277), currently the Illumina HiSeq X10 is said to deliver sequencing at approximately $10 per Gb making it the first commercially available platform capable of sequencing a human genome for under $1000 (278). The emerging, so called third generation sequencing technologies such as Pacific Biosciences RS have several novel advantages over previous systems as they utilize a sequencing by synthesis approach that can read sequences in excess of 20,000bp, enabling the detection of complex structural variants and reducing error from duplicate PCR reads (278). The fall in price will undoubtedly mark the start of an era of personalized medicine from which society will greatly benefit.

1.10.2 NGS as a discovery tool

Over the past 10 years NGS has been used increasingly in genetic studies of malignancy. It has been used primarily in the discovery of variants and genes that are affected by mutations and copy number variations (CNVs). Recently a flurry of publications has discovered many genes perturbed in CTCL that were not previously known to be implicated. These studies used NGS as the main investigative tool and have galvanized some already known signalling and genomic perturbations as well as some which appear in other malignancies that were not previously implicated in CTCL. The Full list of genes is too numerous to list here but important groups include; the JAK-STAT pathway (28, 50), global epigenetic regulators (49, 50), PLCG1 and related pathways in SS and MF (29, 30, 49), the ATM DNA repair initiation pathway (49).

Rapid and cost effective discovery of numerous genes implicated in CTCL has confirmed the genetic heterogeneity of the tumours but also brought to light some commonalities. Gene families, signalling pathways, as well as genome maintenance and regulatory mechanisms are commonly perturbed and at this level some homology starts to emerge in terms of functional effects. A good example of this is that most tumours seem to show perturbations in global epigenetic regulators (50). In addition some signalling pathways appear to be shared with
other blood born malignancies including PLCG1 pathways which are dysfunctional in adult T-cell lymphoma (ATL) (279). This is particularly important as it raises the possibility of using treatment options that were originally developed for other malignancies. Whilst NGS has highlighted many genes as implicated in the disease, a massive amount of functional work is now needed in order to confirm these genes as driver genes, as well as characterisation of their roles in the initiation, maintenance and/or progression.

1.10.3 NGS as a molecular diagnostic tool

Whilst initial use of NGS has been predominantly restricted to research, it has begun to be used in a clinical setting as a molecular diagnostic tool and will undoubtedly feature more prominently in this area in the coming years. Haematological malignancies have historically been diagnosed using a combination of cytogenetics, immunology and PCR based methods (280). Histological criteria have also been used to guide diagnosis, including in CTCL (4). However, NGS will likely supersede many of these methods in the near future as it combines the ability to detect specific variants with single base resolution as well as structural variants for an entire tumour in a single experiment (281).

Characterizing the entire genome of a tumour has implications well beyond diagnosis, indeed it is likely to change the way that diagnosis and classification of tumours occurs in general. The reason for this is because accumulating whole genomic data of a tumour type will likely at some point allow that tumour type to be categorized, very accurately, into distinct tumour subtypes which can be treated differently if necessary and given different prognostic outcomes using multivariate models. This has already started to happen in other cancer types such as breast cancer (282) and glioblastoma where over 500 tumours have undergone NGS studies and been separated into proneural, neural, classical and mesenchymal subtypes (283-285).

In a further somewhat unexpected development it seems that underlying genetic similarities can even be drawn between different tumour types suggesting that the biology of some tumours may in some cases be more similar to completely different tumour types than to
superficially related sub-categories (278). An example of this is squamous cell lung cancer, which has a similar mutation and variant profile to non-HPV head and neck carcinomas (286). Overall this implies that NGS will be a necessary tool in the design of targeted therapies as tumours initially thought of as similar may require radically different treatment between different patients.

1.10.4 Challenges presented by NGS

NGS studies produce massive amounts of data, often on the order of gigabytes to terabytes per sample for deep whole genome sequencing (278). The vast majority of this data is not likely to be relevant to the disease and storage of large data sets remains one of the major challenges of NGS studies.

Another major drawback is the large start-up costs associated with NGS sequencing, ranging from the ION torrent PGM which is currently the cheapest at $80,000 plus reagents, up to the illumina HiSeqX10 currently priced at $10 million (278). However, the large start-up costs can be mostly offset by the cost per base of sequencing.

Resolving different subclones within the same tumour sample will remain a challenge for some time, although this is not strictly an NGS problem as it is equally related to tumour sample collection. The Pacific Biosciences platform is currently the only platform capable of long read sequencing but has a relatively high operational cost, improving the cost effectiveness of long read sequencing should contribute to improving the ability of NGS to resolve subclones in a single sample.

High performance computing infrastructure is currently required to analyse NGS datasets with a minimum of 8 quad core, 32 gig RAM and 10 terabytes of hard disk space (280). Additional costs of dedicated ICT and bioinformatics staff required to operate and maintain the computing infrastructure can be prohibitive for most research and diagnostic labs (287). However modest improvements to IT and bioinformatics training for bioscience graduates
should make this challenge easily surmountable in the near future. This coupled with cloud based analysis pipelines will likely generate considerable advancement in the field (288).

1.11 Identifying cancer driver genes

The first mutation identified as a bona-fide cancer driver was a single base G>T which converts a glycine to a valine in codon 12 of the HRAS gene (289, 290). The confirmation that genetic events cause tumourigenesis motivated the race to find more genes and events that contribute. This enthusiasm continues today and many more have been discovered with 518 driver genes confirmed through functional studies and a further 1053 strong candidate genes identified through bioinformatic approaches (291). As previously discussed, NGS has been widely applied to the study of cancer, particularly in the pursuit of identifying cancer driver genes. In this section an overview of the general workflow and initial analysis pipeline and will be presented. Then the different bioinformatic approaches used downstream to screen for driver variants will be discussed. Finally, a brief general discussion of functional methods that can be used to validate candidates will be mentioned.

1.11.1 Preparing libraries for next generation sequencing

Staring from genomic DNA, libraries are prepared for sequencing by a series of steps beginning with fragmentation by ultrasound to uniform lengths. Fragments are then processed to repair the ends and ligate universal adaptors to each fragment. At this stage samples can be sequenced if whole genome sequencing is required of further target enrichment can be undertaken such as whole exome capture. A popular method of target enrichment is to hybridize the libraries with streptavidin coated RNA probes which are complimentary to the target region. Various biotinylated surfaces can be used to capture and isolate the target regions from the non-target regions (292)(Figure 1.17).

The universal adaptors ligated previously are used to anneal the ends of the remaining fragments to a solid platform where the sequential addition of fluorescent dNTPs, followed by image capture is performed. This is the mechanism used in current Agilent and Illumina
technologies which make up the bulk of large scale sequencing studies and were used to generate sequence data for experiments contributing to this thesis.

Figure 1.19 Summary of Library preparation for NGS.
Genomic DNA is sheared by ultrasound to 170-190bp. Fragments can have overhangs on the 5’ and 3’ ends or can be blunt ended, all fragments are repaired to be blunt ended. After repair, 3’-‘A’ overhangs are ligated followed by universal adaptors which can be used to amplify the successfully ligated fragments. Libraries are then ready for whole genome sequencing if required, or additional target enrichment can be carried out to select exomes or other parts of the genome that may be of interest. Target regions are isolated by hybridization with streptavidin coated RNA probes, followed by subsequent binding to biotinylated magnetic beads. Non-target regions can then be simply washed away and the bound targets amplified by low cycle PCR and finally sequenced.

1.11.2 Upstream bioinformatic analysis
After FASTQ reads have been retrieved from the sequencing platform, initial analysis steps are typically performed by bioinformatic pipelines. These steps generally include; quality checks, removal of duplicates and low quality reads, trimming of reads, alignment/mapping, SNP and small indel calling, the removal of common variants and the identification of structural variants. The choice of QC thresholds, alignment and variant calling software can strongly influence the final output. Common aligners used include BWA, Novoalign, Bowtie2, and SOAP (293). The more commonly used variant callers include SAMtools m-pileup, and GATK (294).
Functional understanding about the algorithms behind aligners and variant callers encompass bioinformatic and mathematical disciplines beyond the scope of this thesis so discussion will be limited to some of the more superficial analytical choices that can be applied to variant calling. The most obvious filter that can be applied relates to the depth of the sequence, i.e. the number of reads covering a given base and the proportion of wild-type to mutant calls represented throughout the depth. For example, to call standard germline variants it is typical to require a minimum depth of 20 reads and ~50% of those reads should show the mutant allele to call a heterozygote. Analysis of impure tumour samples can be much more complicated due to the presence of tumour sub-clones as well as healthy host tissue contaminating the sample (Figure 1.18). As a result, variants are often called if only represented by a few reads and require validation by follow-up experiments. It stands to reason that the greater the depth is then the higher confidence one has in accurately calling potential variants.

Figure 1.20 Calling variants in NGS data.
Standard heterozygous variants, such as many of those detected in healthy germline DNA, are relatively easy to call because contigs from each allele make up approximately 50% of reads. In contrast, variants from impure tumour DNA or tumour sub-clones can be much more dilute within a sample leading to lower confidence when calling variants. Sequencing target genes in more depth can partially address this, as can enriching tumour populations wherever possible.

Variants can also be filtered based on strand bias, during pair-end sequencing the reads are sequenced from both the 5’ and 3’ ends. If a variant is called and most of the non-wild type
(WT) reads appear to only occur on one strand (often referred to as the forward or reverse strands) then it is often reasonable to exclude this variant as the bias has likely arisen due to a sequencing artefact or a mistake arising from low complexity sequence.

Calling structural variants is considerably more developed and reliable for whole genome data as libraries are less biased by the target enrichment process and coverage tends to be more uniform. WES or targeted capture studies tend to be limited to calling losses or gains of genes or exons rather than mapping the exact location of structural variants. Usually additional software is required to call structural variants and these are technically more challenging and often ambiguous to detect but strategies fit into several main approaches. These include; read-count methods - whereby detection is based on the number of reads at a given location relative to control samples, read-pair based methods - where differences between reads and sections of the reference genome are visible during alignment, split-read approaches which tether part of a read to the reference genome and then allow the other part of the read to the align independently. De-novo assembly based methods can also in principle be used to detect structural variation independently of a reference genome (295).

1.11.3 Bioinformatic approaches and the interpretation bottleneck

Once a list of variants has been generated the challenge remains to identify true driver variants from the myriad of passenger events. A human exome contains ~12,500 non silent coding variants, excluding structural variation (296). It has been estimated that between 2 and 8 driver events are required to cause a malignancy (297). If we accept these estimates then mere superficial observation of most NGS cancer datasets would suggest that most of the variants in a dataset are passenger events. However, there are some exceptions with relatively low numbers of mutations such as cancers that occur in children (298). Several approaches have been developed in order to identify driver events and are discussed in this section.
1.11.3.1 Frequency based methods

As the name implies, this method simply looks for the genes that contain the highest number of novel mutations in a dataset. This is a relatively crude approach that can easily be confounded by several factors. The most obvious confounding factor is that the larger a gene is then just by probability the gene is more likely to harbour a mutation in any given sample. However, this method requires little bioinformatics expertise and can be useful for quickly identifying recurrent variants or candidate genes that had been previously hypothesized as being drivers.

1.11.3.2 Enrichment methods

Beyond basic frequency approaches, more sophisticated methods have been developed that model the expected mutation rate and look for enrichment. Genes that appear to be mutated above the background rate are more likely to be drivers because a selection pressure must be driving a rate of mutation above what would be expected. These methods rely on empirical Bayesian statistics and various methodologies have been developed which rank genes according to the number and nature of mutations (299).

Synonymous and non-synonymous mutations can be calculated to occur at a certain ratio at each given codon. This can be used as a type of enrichment method to calculate if a selection pressure is occurring by observing whether or not non-synonymous mutations are occurring at a rate higher than expected by chance. Similar approaches have been widely used to identify selection during studies of evolution (299-301). The selection pressure that drives mutagenesis in cancer can be thought of as a similar process to Darwinian selection as previously mentioned (68, 69).

The frequency of non-synonymous coding mutations has been shown to be approximately half of that found in non-coding regions (302, 303). This can be used as a guide to identify selection pressure and therefore aid in identifying driver genes (299). To make full use of this approach
it is important to correct for (or exclude) regions where loss of heterozygosity (LOH) has occurred (299).

1.11.3.3 Mutation clustering as a predictor

Cancer driver genes are often classified as oncogenes or tumour suppressor genes, the former can also be thought of as dominant and the latter recessive. Each are known to be positioned non-randomly throughout their respective genes with oncogene mutations often clustering to specific regions and tumour suppressor genes more likely to be truncating or spread throughout the gene (297) (Figure 1.19), although it is noteworthy that some cancer driver genes can be oncogenes or tumour suppressors depending on the tumour type (297), for example NOTCH1 can function as a tumour suppressor gene in solid tumours but in lymphomas tends to be an oncogene (304-306). Several bioinformatic software packages have been developed in order to predict cancer driver genes based on these mutation localization differences including SomlnaClust (307) and OncodriveCLUST (308).
Figure 1.21 Distribution of mutations in two oncogenes (*PIK3CA* and *IDH1*) and two tumor suppressor genes (*RB1* and *VHL*).
The distribution of missense mutations (red arrowheads) and truncating mutations (blue arrowheads) in representative oncogenes and tumor suppressor genes are shown. The data were collected from genome-wide studies annotated in the COSMIC database (release version 61). For *PIK3CA* and *IDH1*, mutations obtained from the COSMIC database were randomized by the Excel RAND function, and the first 50 are shown. For *RB1* and *VHL*, all mutations recorded in COSMIC are plotted. aa, = amino acids. *(Vogelstein et al 2013)*.

Ratio and spatiometric methods have been applied to the Catalogue of Somatic Mutations in Cancer (COSMIC) database (309, 310) in a recent large study in order to identify and classify mutation driver genes (297). The COSMIC database is a large composite bank of mutations reported in numerous cancer types. At the time of the original analysis COSMIC contained 404,863 mutations across 18,306 different genes (297). In this study the so called 20/20 rule was proposed whereby genes are classified as oncogenes if over 20% of mutations occur at recurrent sites and are missense. Alternatively genes are classified as tumour suppressor genes if over 20% of mutations are inactivating (297). This study reported 125 mutation based driver genes of which 71 are tumour suppressors and 54 are oncogenes (297). Whilst it is clear that there are likely many more cancer driver genes mutated less frequently such as those reported in the network of cancer genes (291), this serves are a useful approach that can be improved upon with more recent builds of COSMIC and on individual datasets.
1.11.3.4 Composite methods

The enrichment methods of identifying driver genes discussed earlier in this section rely on the assumption that as sample sizes grow, so will the power to detect driver genes that occur less frequently. However, there have been growing signs that the picture is more complicated than this as many genes which are implausible as candidates, such as olfactory receptors, show enrichment.

False positives largely stem from mutational heterogeneity across different samples within a cohort as most enrichment methods use assumptions about the expected rates of different types of mutations (298). Individual samples within a cohort which carry more passenger mutations will contribute to the enrichment of a pool of false positives if the heterogeneity between the samples is not accounted for (311). This is particularly important for cancers which show a higher range of mutations across samples such as melanoma and lung cancers where the sample specific mutation rate can vary by several orders of magnitude (0.1-100/Mb) (298) (Figure 1.20). Recent NGS studies have reported mutation ranges approaching the higher end for CTCL (49-51), indicating that inter-sample heterogeneity may partially confound simple methods for calling drivers in this cancer type.
Figure 1.22 Inter and intra-heterogeneity of mutational patterns across different cancer types.
Somatic mutation frequencies observed in exomes from 3,083 tumour-normal pairs. Each dot corresponds to a tumour-normal pair, with vertical position indicating the total frequency of somatic mutations in the exome. Tumour types are ordered by their median somatic mutation frequency, with the lowest frequencies (left) found in haematological and paediatric tumours, and the highest (right) in tumours induced by carcinogens such as tobacco smoke and UV light. Mutation frequencies vary more than 1000-fold between lowest and highest mutation rates across cancer and also within several tumor types. The lower panel shows the relative proportions of the six different possible base-pair substitutions, as indicated in the legend on the left. (Lawrence et al 2013).

Another type of mutational heterogeneity contributing to false positives is the occurrence of mutational hotspots across the genome which can vary by up to five fold (298). Several factors seem to account for most of this heterogeneity the first being expression level. Highly expressed genes tend to be less prone to mutations most likely as a result of transcription coupled nucleotide excision repair (312). The other main contributor appears to be the time during S-phase that replication occurs for a particular gene. Late replicating genes are known to be more prone to germline mutations (313-315), possibly as a result of depletion of free dNTPs (313). The increased rate of mutation in late replicating genes has been shown to extend to cancer cells (298).
Any method of identifying driver genes that doesn’t account for each of these areas of heterogeneity will inevitably be flawed at least to some extent and will call some false positives as well as overlook some genes that only affect a modest number of tumours (311), the so called hills (297). One method that attempts to take account of differing mutations rates within a cohort as well as expression and timing of replication is MutSigCV (298). Whilst it is not possible to fully implement without coupled transcriptomic data as well as mutational data MutSigCV accounts for many sources of variation that standard enrichment techniques do not and could therefore act as a very effective screening tool.

Another method that uses multiple factors to predict driver mutations in a dataset is MuSic (mutational significance in cancer) (316). This algorithm applies a number of statistical methods as well as making predictions based on the known pathway interactions that potential drivers are involved in, furthermore clinical data associated with the individual tumours can also be used by the algorithm (316).

1.11.4 Challenges for current methods of identifying cancer drivers

One key challenge for current methods are that they show little in terms of overlap with each other (317). Whilst it would be unreasonable to expect any algorithm to flawlessly predict all drivers in a dataset, it is of some concern that predictions vary by a significant margin with less than 25% overlap in some composite approaches applied to the same datasets (317, 318). Although selection of the features that are used to identify drivers will play a large role in how each algorithm will perform (317) the research community has yet to reach consensus about what these features should be, furthermore it is likely to vary between different malignancies.

Another significant challenge relates to the changing roles of driver genes throughout the development of a cancer. Some drivers may be passengers in the early development of a cancer but play a significant role in later stages of the disease (or vice-versa), or when the environment changes, for instance in response to treatment (317). No strategies currently exist to address this, however sequencing efforts tend to concentrate on late stage diseases.
efforts were made to collect samples and sequence tumours from all disease stages in the same patients then identifying drivers that operate at different disease stages may be feasible. However, it’s acknowledged that it may be challenging to isolate enriched tumour tissue from early stage tumours in many cancers.

The cumulative effect of multiple small-effect or rare drivers is a challenge that is very difficult to measure or investigate algorithmically with current datasets. These genes/variants are the so called hills that are infrequently affected in small proportions of tumours or have a very small effect on tumour progression (298). By far the most effective way to identify them is to increase the size of the datasets which will increase statistical power whilst also considering the caveats identified in the previous section. The next generation of machine learning algorithms, particularly deep learning neural networks, may also prove to be an excellent tool for identifying small effect or rare driver genes.

1.11.5 Functional approaches

Hypothesis driven, functional investigations are the traditional approach in experimental genetics. Whilst bioinformatic approaches are a powerful tool for short listing candidate genes for consideration as cancer driver genes, they are essentially screening tools and candidates need to be followed up by functional studies. This section will describe in general the main experimental approaches that can be taken to discern gene function.

1.11.5.1 Correlative studies

These are the first step towards functional characterisation; they are theoretically not dissimilar to bioinformatic screening. The main difference is that a range of methods can be used and analyzing single genes is often considerably more cost effective than analyzing large numbers of genes. The main disadvantage is that a good rational or hypothesis is required to investigate specific genes. Approaches such as QPCR can be used to analyze both gene copy number changes and changes in expression. Sanger sequencing can be used to investigate SNVs and/or small indels and methylation specific PCR (MSP) can be used to investigate
differentially methylated nucleotides in comparison with control samples. If significant differences are seen between cases and controls then further experiments can be designed around modelling the differences.

1.11.5.2 Loss and gain of function experiments

Often the most straightforward experiment that can be undertaken in order to investigate a gene of interest is a loss of function experiment, i.e. knock out the gene entirely or aim to reduce its expression. The opposite of this is a gain of function experiment, whereby the aim is to add extra copies of a gene or otherwise increase its expression. After the desired effect is conferred on the gene of interest then observations can be made about the effects (of either losing or gaining the gene) on the model system being used. In cancer studies loss of function is likely to be more appropriate for studies of tumour suppressor genes whereas gain of function is likely to be more appropriate for studying oncogenes. In the case of some SNVs the change may well be ambiguous prior to investigation but emerging tools such as the CRISPR-Cas9 system (319) are well placed to design studies investigating such variants. Both gain and loss of function experiments can be conducted in stable cell lines, model organisms such as mice or in wild type or tumour derived cells, although the latter two models are often technically challenging.
1.12 Hypothesis

The highly heterogeneous genomic landscape of CTCL contains a mix of driver and passenger events, recurrent genomic events are more likely to contain driver genes. In addition, driver events may occur in different genes in different tumours but affect related gene regulatory networks.

1.13 Aims of this thesis

1.13.1 Investigating the role of MTAP in CTCL: A candidate gene based approach

An initial aim of this thesis is to analyse the chromosome 9p21.3 focal deletion in CTCL patients. The CDKN2A and CDKN2B loci are well established cancer driver genes whose function is under selective pressure in numerous malignancies. Therefore, it is important to establish if the MTAP gene, which is often co-deleted, is also under a selection pressure in CTCL as this would support a role for MTAP as a driver of CTCL. The main focus of this section is to determine if MTAP is lost independently of CDKN2A in CTCL. Independent loss would indicate a selective pressure against MTAP, supporting the hypothesis that MTAP is a driver gene in CTCL. Other mechanisms of inactivation will also be investigated such as the presence of SNPs using the NGS data generated from the other section of the project. Furthermore, the presence or absence of promoter hypermethylation will also be investigated. In addition to genetic and epigenetic characterization of the MTAP status in CTCL patient samples, a preliminary study of the functional effect of MTAP loss will be undertaken. Specifically, characterization of the effect of MTAP loss on protein-arginine methylation by the PRMT family of genes will be sought.

1.13.2 Identification of driver events in CTCL: A high throughput global approach

A major aim of this thesis aims to examine CTCL using a genomic approach to screen for driver events in CTCL. NGS is a maturing technology which enables the detection of a large number and variety of genetic perturbations, including SNVs and CNVs, simultaneously in one large experiment. As SS is the most severe form of the disease with the worst prognosis, this section
of the project will focus on SS. CTCLs are an incredibly heterogeneous malignancy and whilst similarities are likely to be detected at the level of single genes, it is important to consider that genetic perturbations may be more common at the level of gene families, gene regulatory networks and signalling pathways. Therefore, particular attention will be focused on identifying these higher level genomic patterns and features to identify common themes that appear in the disease. Validation will be sought for biological processes that are commonly perturbed and are likely to be key contributors to the disease such as mechanisms that effect genome stability. Work in this area has important implications from the perspective of translational medicine as it will aim to identify targets for possible therapeutic intervention and as a long term objective; foundations will be laid for personalized therapeutic strategies.
2 Materials and Methods

2.1 Collections and Processing of Samples

All patients fulfilled the WHO-EORTC diagnostic criteria for SS (4). A dominant clonal T-cell receptor (TCR) gene rearrangement was detected in all samples using PCR based methods (320). Furthermore, in matched samples (skin and PBMC) from SS patients an identical T-cell clone was demonstrated. Patient samples were obtained from the nationally approved CTCL research tissue bank (National Research Ethics Committee: 07/H10712/111+5); healthy control samples were obtained with the approval of the Guy's and St Thomas' Hospital Research Ethics Committee (EC01/301). Written and informed consent was obtained from all patients/volunteers.

Whole exome sequencing discovery samples: DNA was extracted from CD4+ enriched peripheral blood mononuclear cells (PBMCs) using RosetteSep (Stemcell Technologies, Cambridge, UK) and matched primary fibroblasts from skin explants obtained from 10 untreated SS patients at diagnosis. Targeted capture samples: DNA was extracted from PBMCs of 101 SS and 32 healthy control samples.

MTAP targeted study: Samples from 280 CTCL patients were used in this study (319 total samples), 234 of these patients were analyzed by Q-PCR (273 samples), 77 patients were analyzed by NGS, of which 31/77 were also analysed by QPCR. This cohort of 77 were a subset of the 101 prevalence screen patients that underwent targeted capture during the genomic screening study and were used alongside the 32 healthy controls (HCs) also used in this part of the study to call mutations as well as CNVs across the 9p21 region with the exome depth package (See section 2.28 for further detail of this). DNA samples from PBMCs of 84 HCs were obtained from the Human Random Control DNA Panel 4 (ECACC, Sailsbury, UK) for use as controls in the QPCR gene copy number analysis, a further cohort of 14 age matched HCs were recruited at King’s College London to analyse gene expression of MTAP, CDKN2A and control
genes by QPCR in CD4+ T-cells for comparison with SS tumour CD4+ T-cells. The CTCL cell lines, HuT78 and SeAx were gifts from Dr S John (King’s College London) and Professor M Vermeer (Leiden University Medical Centre) respectively. Jurkat and MyLa cells were obtained from the ECACC (Sailsbury, UK).

2.2 Isolation of PBMCs from Whole Blood

Whole blood samples were made up to 20ml with PBS and then layered on top of lymphoprep before centrifuging to separate PMBCs from erythrocytes. PBMCs were then harvested, washed with PBS, RCLB (red cell lysis buffer) and RPMI medium (Roswell Park Memorial Institute) before re-suspending in ‘RNAlater’ (Qiagen, Manchester, UK).

2.3 Enrichment of CD4+ T-Cells from PBMCs

Whole blood samples were made up to 20ml with PBS (phosphate buffered saline) and incubated at room temperature with Rossettesep (1ml per 20ml blood) for 20 minutes. Samples were then layered on top of lymphoprep and CD4+ T-cells were isolated using the same method as for PBMCs.

2.4 Isolation of Fibroblasts

Fibroblasts were obtained from primary skin explants. Cultures were maintained in RPMI containing 10% fetal calf serum and 1% penicillin/streptomycin (Invitrogen, Paisley, UK)

2.5 Mycoplasma testing

Mycoplasma testing was carried out monthly. Cell media was collected from a minimum of 24 hours after passage. Testing was carried out using the ‘Mycoplasma detection kit-quick test’ (B39032, Biotool) according to manufacturer’s instructions.

2.6 DNA Extraction

Frozen or fresh cell pellets were treated with nuclei lysis buffer (Promega, Southampton) and digested with proteinase K (Qiagen, Manchester, UK) for up to 24 hours before removing
proteins with protein precipitation solution (Promega, Southampton, UK). DNA was then precipitated in isopropanol and washed in 70% ethanol before re-suspension in MilliQ or low TE. Alternatively, where high yields were not necessary the DNeasy blood and tissue kit (Qiagen, Manchester, UK) was used according to manufacturer’s instructions.

2.7 RNA Extraction

RNA was extracted from cell pellets using the RNeasy mini kit (Qiagen, Manchester, UK) as instructed by the manufacturer’s guidelines.

2.8 Synthesis of cDNA

High capacity cDNA reverse transcription kit (Applied Biosystems, Paisley, UK) was used to convert RNA into cDNA from 1000ng of RNA per 20ul reaction according to instructions supplied by the manufacturer.

2.9 PCR

PCR primers were designed using the Primer3 online software and assessed in-silico using the NCBI online primer design tools before optimization. PCR was performed in 25µl reactions containing 0.1-0.1-0.2mM of each primer, 0.06-0.08mM of each dNTP and 1.0-2.0 Units of AmpliTaq Gold DNA polymerase (Applied Biosystems, Paisley, UK). The concentration of MgCl2 was 1.5-2.5mM. Primer-pair annealing temperatures were optimised in parallel starting at the theoretical melting point and decreasing in 1°C decrements to 5°C below the theoretical melting point. PCR cycles were fixed at 35 cycles for end point experiments and ranged down to 25 cycles for semi-quantative experiments.

PCR products were electrophoresed through a 2% agarose gel supplemented with 0.005% ethidium bromide for visualization of PCR products. A negative control containing water was run with each master mix preparation. Appropriate cell line DNA was used as a positive control where possible.
2.10 QPCR

Real-time quantitative PCR (qPCR) reactions were carried out on an ABI 7900 (Applied Biosystems, Paisley, UK). Reactions continued for 40 cycles with an initial denaturation at 95°C for 10 minutes with a 60°C, 60 second annealing and extension phase. Probes/primer sets (Table 1) were combined with TaqMan gene expression mastermix (Applied Biosystems, Paisley, UK). Reaction volumes were 25ul and samples were analyzed in triplicate for both probes and with 3 wells of water per probe as a negative control. The ddCT method was used for the analysis with standard deviation of healthy samples used to calculate normal distribution. The ddCT method quantifies the amount of nucleic acid by measuring the number of cycles it takes for the reaction to progress to the log phase. This number of cycles (CT-value) can then be compared to housekeeping genes to quantify relative abundance of target nucleic acid sequences and then compared to healthy controls or other experimental samples to measure relative expression or copy number. In order to determine the normal range of ddCT for each experiment, the mean and standard deviation of the ddCT of the HC group was calculated and 3 standard deviations was set as the boundary for normal copy number or gene expression. Samples with ddCT lower than 3 standards deviations of the HC mean were said to have reduced gene copy number or gene expression for the respective experiments. ANOVA and Tukeys HSD was used to assess differences between groups used in QPCR for gene CN assays.

<table>
<thead>
<tr>
<th>Target</th>
<th>Catalogue Number</th>
<th>Manufacturer</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDKN2A</td>
<td>Hs00923894_m1</td>
<td>Applied Biosystems</td>
<td>Expression</td>
</tr>
<tr>
<td>PPIA</td>
<td>Hs99999904_m1</td>
<td>Applied Biosystems</td>
<td>Expression</td>
</tr>
<tr>
<td>MTAP</td>
<td>2.10.1.1_Hs00559618_m1</td>
<td>Applied Biosystems</td>
<td>Expression</td>
</tr>
<tr>
<td>RnaseP</td>
<td>4404631</td>
<td>Applied Biosystems</td>
<td>Copy number</td>
</tr>
<tr>
<td>TERT</td>
<td>4401663</td>
<td>Applied Biosystems</td>
<td>Copy number</td>
</tr>
<tr>
<td>MTAP P1</td>
<td>Custom (M’Soka et al 2000)</td>
<td>Applied Biosystems</td>
<td>Copy number</td>
</tr>
<tr>
<td>CDKN2A P1</td>
<td>Custom (M’Soka et al 2000)</td>
<td>Applied Biosystems</td>
<td>Copy number</td>
</tr>
<tr>
<td>MTAP P2</td>
<td>Hs06918311_cn</td>
<td>Applied Biosystems</td>
<td>Copy number</td>
</tr>
<tr>
<td>CDKN2A P2</td>
<td>Hs03721302_cn</td>
<td>Applied Biosystems</td>
<td>Copy number</td>
</tr>
</tbody>
</table>

Table 9 Taqman QPCR probes.
2.11 Whole Exome Capture and Sequencing

Whole exome capture was performed by ‘in-solution hybridization’ using the Agilent SureSelect XT target enrichment system for Illumina paired-end sequencing Libraries according to manufacturer’s instructions (Agilent, Sureselect-XT). Subsequent massively parallel sequencing (MPS) was performed on an Illumina HiSeq 2000.

DNA was extracted from enriched CD4+ tumour cells of 10 SS patients. Libraries were prepared from patient CD4+ tumour cells and from corresponding patient fibroblasts individually prior to exome capture. Patient matched fibroblasts were chosen as a control source of DNA for subsequent MPS analysis in order to distinguish between germline mutations and somatic mutations detected in the CD4+T-cell population. Fibroblasts and CD4+T-cell reads were distinguished post-sequencing by the use of separate index-tags ligated during the post capture PCR amplification stage of the library preparation. A total of 10 PCR cycles was selected as the optimum cycle number used to increase the post capture library DNA concentration whilst maintaining fragment diversity in the library.

2.12 Targeted Capture and Sequencing

Capture probes were designed based on the exons of genes found to carry variants fitting three criteria: non-synonymous, novel, somatic tumour mutations from patients who had undergone whole exome sequencing. Novel was defined as a mutation not found in the 1000 genomes, dbSNP or in house exome databases’ and non-synonymous also included all exonic stop, frameshift, INDELs and splice site variants. Somatic tumour mutations are variants that were found only in the tumour DNA and not in the fibroblast control DNA. Probes were also designed to cover recurrent regions of LOH (loss of heterozygousity). In addition, probes were designed to capture the JAK, STAT and TET family of genes as well as to cover all coding exons, all CpG islands and all multi-transcription factor ChIP sites from the encode project within 5kb of coding exons within the chromosomal region of 9p21. See Appendix ‘Final targeted capture BED list.txt’ for complete list of target regions.
Targeted capture library preparation was performed according to manufacturer’s instructions (Agilent, Sureselect-XT) as for whole exome library preparation (Figure 23). Sequencing was performed on an Illumina Highseq-2000 in the BRC genomics core facility.

2.13 Preparation of Whole Cell Lysates

Fresh RIPA buffer was prepared prior to lysing (sc24948A, Santa-Cruz Biotech). Cells were initially washed in PBS to remove excess freezing medium or growth medium and cell pellets produced by centrifuging at 1500rpm for 5 minutes. The supernatant was then decanted and 1ml of complete RIPA buffer was added per 2x10^7 cells. Cells were then disrupted by pippeting and incubated at 4°C for 20-30 minutes. Supernatent was then decanted and protein concentration quantified by BCA (Thermoscientific, UK) and diluted to appropriate concentrations and denaturing at 95°C with 4x Laemmli buffer (161-0747, Biorad, UK) for 5 minutes.

2.14 Immunoblotting

Whole cell lysates containing 15-40ug of total protein were loaded onto 5-15% PAGE gels (BioRad, UK). Following electrophoresis proteins were transferred to nitrocellulose or PVDF. Blocking was carried out in with 3-5% BSA or 3-5% fat-free milk in Tris-buffered saline and 1% tween (TBST) depending on antibody for 1 hour minimum. Antibodies were diluted to optimized concentrations in 3-5% BSA or 3-5% milk in TBST and incubated overnight under agitation at 4°C (primary antibody) (Table 2). Membranes were washed in TBST from between 20 minutes and 2 hours to remove residual primary antibody and blocked again before being incubated with secondary antibody for 2-4 hours.
Table 10 List of antibodies and optimized conditions for use.

2.15 Stripping Membranes for Re-probing

Stripping buffer was prepared using 20ml of 10% SDS, 12.5ml of 0.5M Tris HCL, 67.5ml of milli-Q water and 0.8ml of β-mercaptoethanol. Membranes were incubated in a fume hood at 50°C for up to 45 minutes with stripping buffer. Membranes were then rinsed for 1-2 hours with running water to remove residual β-mercaptoethanol, then washed in TBST before blocking for re-probing.

2.16 Detection of Proteins

Detection was performed using the ECL plus Western blotting system (RPN2232, GE Healthcare UK Ltd) combined with exposure to X-ray film (12705325, FUJI, Fisher Scientific Ltd, UK).

2.17 Thawing Frozen Cells

Cells were thawed at 37°C for 2-3 minutes before re-suspending in fresh medium. Cells were then briefly centrifuged again before further re-suspending in fresh medium to remove excess DMSO. Growth media was replaced again after 24 hours and cells were assessed for growth and viability.
2.18 SeAx culture and passage

SeAx cells were maintained in RPMI medium (21875-034, Gibco) supplemented with 10% FBS (51800-500, Biosera, UK) and 1% penicillin/streptomycin (15140-122, Gibco, UK). Media was also supplemented with 25U/ml IL-2 (PHC0026, Gibco, UK). Cells were passaged at a confluency of 1 x10^6 cells/ml to 1/5 or 1/10.

2.19 HEK293 culture and passage

HEK293 cells were maintained in DME M medium (61965-026, Gibco, UK) supplemented with 10% FBS (51800-500, Biosera, UK) and 1% penicillin/streptomycin (15140-122, Gibco, UK). Cells were washed in sterile PBS and then passaged at a confluency of 90-95% to 1/5 to 1/20 depending on requirements.

2.20 Freezing Cells

Log phase cells were prepared for long term storage by suspending up to 10 x 10^6 cells in 1ml of freshly prepared freezing medium (50% DMSO, 50% FBS) (sc358801, Santa-Cruz Biotechnology). Cryovials were stored at -80°C for 24 hours in a controlled rate freezing device before being transferred to liquid nitrogen.

2.21 Nucleofection

Transfection of SeAx cells was performed using the Amaxa human T-cell nucleofector kit (VPA-1002, Lonza, UK) optimized for unstimulated human T-cells according to manufacturer’s instructions. Between 5-10x10^6 cells were transfected in each cuvette. One siRNA (table 3) or plasmid was transfected per cuvette unless specifically stated. 2µg of a GFP expressing control plasmid (pmaxGFP, supplied with the kit) was transfected in 1 cuvette as a positive control to ensure transfection took place successfully with each batch of nucleofection. Between 30-300nM of siRNA was transfected per 100µl cell suspension.
Table 11 List of siRNAs.

<table>
<thead>
<tr>
<th>Transfected siRNA 5’->3’</th>
<th>Transfected siRNA 3’->5’</th>
<th>Target</th>
<th>Manufacturer and Catalogue Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCGAUAUGUCAUUAUGAtt</td>
<td>UCAAUAUGACAAUAUCGcg</td>
<td>MTAP</td>
<td>Ambion-s9021</td>
</tr>
<tr>
<td>CGAGAGGAGGUCUUAUGAtt</td>
<td>UCUAUAAGAACCUCUCGtt</td>
<td>MTAP</td>
<td>Ambion-s9022</td>
</tr>
<tr>
<td>GCUGGAAUUGUUACGCAAtt</td>
<td>UUGCGUAACAAAUUCCAGct</td>
<td>MTAP</td>
<td>Ambion-s9023</td>
</tr>
<tr>
<td>Not provided</td>
<td>Not provided</td>
<td>Scrambled control</td>
<td>Ambion-AM4611</td>
</tr>
</tbody>
</table>

2.2.22 Transfection with Lipofectamine 2000

Transfection of Seax cells using Lipofectamine2000 (11668-030, Invitrogen) was attempted using 1-4x10⁵ cells per ml in 24 well plates as suggested by the manufacturers but was ineffective at all concentrations of siRNA (5-300pmol, final concentration when combined with cells) and lipofectamine (0.5-3.55µl/50ml) attempted. Serum free and antibiotic free media were also attempted but no difference was observed. Transfection of pGFPmax plasmid was attempted (100-1500ng/ml final concentration) but observation using florescence microscope (Zeiss Axio Observer Z1) showed very few cells had undergone transfection (20-30 cells per 4x10⁵ cells in any given well).

HEK293 cells were seeded in 24 well plates at 50% confluency at least 24 hours prior to transfection in antibiotic free media. Lipofectamine2000 was mixed with Optimem (61965-026, Gibco) in a range of concentrations between 0.5-2.5µl/50ml as suggested by manufacturers (Thermofisher Scientific). Media was mixed with siRNA (table 3) at concentrations between 5-50pmol (final concentration when combined with cells).

Media/Lipofectamine and media/siRNA were incubated for 5 minutes before being gently combined and further incubated for 20 minutes to allow formation of complexes containing nucleic acid and Lipofectamine2000. After incubation, the solution was added dropwise to the
cell cultures and incubated for at least 24 hours before extraction of protein lysates and nucleic acids.

2.23 Micro-dissection

Sections were cut 9μm thick and mounted on glass slides. After drying for 24 hours the sections were dewaxed in Xylene and rehydrated. Sections were then stained with CD3+ and H/E. Target tissues were then removed and dissolved in lysis buffer. DNA was extracted using the QIAamp DNA micro kit (Qiagen, Manchester, UK) whilst the remaining areas of the sections were dehydrated and cover slipped.

2.24 Variant calling

Paired-end sequencing library preparation was performed according to manufacturer’s instructions (Agilent, Sureselect-XT) and sequenced on an Illumina Hi-Seq2000 with reads aligned to Hg19 using Novoalign v2.07.11 and post-alignment processing performed by picard tools 1.114.

For WES, Varscan2 Somatic (v2.3.5) was used to separate tumour variants from patient matched fibroblasts. ANNOVAR was used for variant annotation (version available in January 2013) (321) (WES annotation was carried out with ANNOVAR in April 2013). Somatic and non-synonymous variants were selected based on exclusion of variants in dbSNP, the 1000 genomes project, exome variant server, in-house exome database and genes reported to be error prone in NGS analysis due to sequence repeats and high GC content (322).

For targeted capture Varscan2 and ANNOVAR were also used but the threshold on the minimum allele frequency for calling tumour variants was calibrated to account for the heterogeneity of tumour samples derived from PBMCs (see selection of minimum allele frequency). Mpileup2cns was used for SNV and INDEL identification with >=20x depth, >=15 phred score, >=6% minimum variant frequency and read frequency <=90% in either direction. Variants from 32 non-matched healthy controls were used to identify tumour specific variants.
and exclude sequencing artefacts. Variants selected from WES and targeted capture data were validated by Sanger sequencing on original tumour and additional skin, lymph node and tumour derived cDNA samples from the same patients.

2.25 Selection of minimum allele frequency

A low allele frequency of 6% was chosen to apply for the targeted capture (TC) samples based on the empirical data obtained from 10 WES samples that were also included in TC. The list of high quality variants from 10 WES samples was used to identify the variants in each of the TC samples with WES. In the comparison of variants between WES and TC samples, variants that were identified from both WES and TC were considered to be True Positives (TP), while those identified in TC and not in WES as False Positives (FP). Variants identified in WES and not in TC were considered False Negatives (FN) and variants not present in both WES and targeted capture were considered True Negatives (TN). Information was obtained from TC samples at various thresholds starting from 1 to 60% and calculated Matthew’s Correlation Coefficient score (MCC: 0 to 1) at each threshold. A threshold with highest MCC score was considered as optimal threshold for calling variants in the targeted capture data. Individual samples resulted in a range of thresholds (5% to 30%) optimal for each sample, although combined analysis of all the samples has resulted in a maximum MCC score of 0.271 at a threshold of 6%.

2.26 Mutational pattern analysis.

Several types of mutational pattern analysis were conducted, custom in-house Python scripts were used to assess SNV base changes and the proportions of different types of variant (Synonymous, Non-synonymous etc). Analysis of SNV base change patterns and mutation context (motif) analysis upstream and downstream at 3bp was assessed using the 'R' Bioconductor package ‘Somatic Signatures’ (time of analysis: September 2015).
2.27 Identification of SNV drivers

Several parallel criteria were used to identify genes affected by SNVs. These included MutSigCV version 1.3 (298), the 20/20 rule as described by Vogelstein et al (297) and simple frequency filtering of over 5% after removing genes previously identified as problematic (322). We also compared the list of candidate driver genes to those present in the network of cancer genes version 4.0 (291).

2.28 Gene copy number analysis

Tumour specific CNVs were identified through integrative analysis of discovery and targeted capture data generated using exome/targeted sequencing and SNP array technologies. Data from WES was analyzed by Excavator v2.2 in matched pairs. HumanOmini5Exome arrays were analyzed using OncoSNP v1.4. Raw data (BAF and LRR) required for OncoSNP was extracted using Illumina Genome Studio software v1.9.4. Data from WES and SNP array were combined for final analysis (n=16). Remaining prevalence samples (n=91) were analysed with ExomeDepth software (323) using the targeted capture data and 32 healthy controls. This analysis was restricted to targeted capture genes (n=549) but allowed deeper resolution.

2.29 Pathway analysis

To investigate significant perturbations at the pathway level, gene set enrichment analysis was performed on WES and TC SNVs using the MSigDB repositories (date of analysis was January 2015). MSigDB is a collection of a curated gene sets including gene sets from pathways in KEGG, REACTOME, BIOCARTA and PID. Initially the list of genes used for targeted capture was used to look for enriched pathways with a Fisher’s exact test P.value <= 0.05.

Next, enriched pathways in each tumour sample were selected using all the Non-Synomymous variants from that sample. To perform this task, the list of genes from each tumour sample was searched against MSigDB for a significant overlap. All the samples with a significant enrichment of genes in a pathway were counted and the pathway(s) with highest number of tumour samples
were reported. In this analysis, the background and the size of the pathways in MSigDB used to calculate the Fisher’s exact test P-value were corrected to represent the priory selected and small size of the genes in the targeted capture. A background of 598 genes were used and resulted in the decrease of number of genes in a pathway which corresponds to the genes seen in 598 genes background.

Pathway-level perturbations were quantified using two inter-related metrics. One metric, “fraction of pathway genes mutated”, captures the proportion of pathway genes involved in non-synonymous SNV’s or indels across all patients. The second metric, “pathway perturbation frequency score”, captures how often each pathway is perturbed as a proportion of all samples (both uncorrected and corrected for pathway size), assuming perturbation occurs if at least one of the pathway’s genes is mutated. As this analysis was predominantly qualitative, i.e.a hit was counted if any gene in the pathway was found to harbour a mutation, we therefore did not consider it appropriate to calculate a false discovery rate.
3 Independent loss of methylthioadenosine phosphorylase
(*MTAP*) in Primary Cutaneous T-cell Lymphoma
3.1 Candidate contributions to chapter 3.

The chapter is a publication that several members of a research team contributed work towards. My personal contributions were as follows: initial draft and subsequent revisions to the manuscript with oversight of my supervisors, collating the data and producing final figures 1-3, producing the data for figures 1b, 2a, 2d, 3, producing all tables, design of targeted capture experiment used in the NGS work, library preparations for the NGS work, downstream analysis of mutation data, producing and calculating normalized depth plots from ExomeDepth R-objects.

3.2 Additional statistical tests for chapter 3.

Correlation between QPCR CN assay probes 1 and 2 (Figure 1e and 1f). Probes were compared for correlation between P1 and P2 using Pearson’s correlation. Disease samples assayed using both MTAP probes were highly correlated (PCC=0.79, P<0.01). Disease samples assayed using both CDKN2A probes were also correlated, but with weaker correlation (PCC=0.37, P<0.01). As discussed in the published work, the reason for the discrepancy is likely to be due to the different locations of the probes corresponding to sites of focal deletion in some cases, and the other probe being located outside of the boundary of the focal deletion. Another source of variation could be differences in the efficiency of PCR reactions for each different probe.

MTAP expression correlated with loss of MTAP CN in SS samples. To clarify this statement; ‘concordance’ is a more accurate description as these data were assigned into qualitative categories based on being within or below a threshold of 3 standard deviations of the healthy control mean. All samples where a loss of MTAP was detected also showed reduced expression that was <= -3 standard deviations of the mean expression in the healthy control group. Interestingly, 9 patient samples that did not demonstrate copy number changes in MTAP also showed expression lower than 3 standard deviations of the healthy control mean. There were no healthy samples that showed expression lower than 3 standard deviations. In total, 20
tumours were analysed for expression. To further test for concordance between MTAP CN loss and reduced MTAP expression, samples with reduced MTAP CN (MTAP CN less than 3 standard deviations below HC mean) were assigned a categorical variable ‘CN loss’. Samples with MTAP expression below 3 standard deviations below the HC expression mean were assigned a categorical value ‘reduced EXP’. These categorical variables were compared using a Chi-squared test which resulted in a P<0.01.
Independent Loss of Methylthioadenosine Phosphorylase (MTAP) in Primary Cutaneous T-Cell Lymphoma

Wesley J. Woollard1, Nithyha P. Kalaivani1, Christine L. Jones1, Catherine Roper1, Lam Tung1, Jae Jin Lee1, Bjorn R. Thomas1, Isabella Tosi1, Silvia Ferreira2, Carl Z. Beyers2, Robert C.T. McKenzie1, Rosie M. Butler1, Anna Lorenc3, Sean J. Whittaker1 and Tracey J. Mitchell1

Methylthioadenosine phosphorylase (MTAP) and the tumor suppressor genes CDKN2A-CDKN2B are frequently deleted in malignancies. The specific role of MTAP in cutaneous T-cell lymphoma subgroups, mycosis fungoides (MF) and Sézary syndrome (SS), is unknown. In 213 skin samples from patients with MF/SS, MTAP copy number loss (34%) was more frequent than CDKN2A (12%) in all cutaneous T-cell lymphoma stages using quantitative reverse transcription PCR. Importantly, in early stage MF, MTAP loss occurred independently of CDKN2A loss in 37% of samples. In peripheral blood mononuclear cells from patients with SS, codeletion with MTAP loss detected with quantitative reverse transcription PCR. In a cutaneous T-cell lymphoma cell line, promoter hypermethylation was shown to downregulate MTAP expression and may represent a mechanism of MTAP inactivation. In conclusion, our findings suggest that there may be selection in early stages of MF for MTAP deletion within the cutaneous tumor microenvironment.

Received 5 January 2015; revised 7 December 2015; accepted 20 January 2016; accepted manuscript published online 9 February 2016; corrected proof published online 30 March 2016

INTRODUCTION

Primary cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of extranodal lymphomas that arise from skin homing T cells. Mycosis fungoides (MF) accounts for more than 50% of CTCL cases (Agar et al., 2010; Willemze et al., 2005) and responds well to skin-directed therapy. In contrast, a related CTCL subtype Sézary syndrome (SS) is an aggressive leukemic variant with no treatment options proven to prolong overall survival.

In both MF and SS, no disease specific translocations have been identified although genomic instability, illustrated by recurrent “hotspots” of chromosomal structural and numerical abnormalities, is a consistent feature. Studies from our own group and others using multiple genomic platforms have identified chromosome 9p21 as a region of frequent deletion (Laharanne et al., 2010; Mao et al., 2003; Salgado et al., 2010; van Doorn et al., 2009). The 9p21 locus includes CDKN2A/CDKN2B, which encode the well-characterized tumor suppressor genes p14ARF, p16INK4A, and p15INK4B.

The MTAP gene lies 110 kb telomeric to CDKN2A and encodes the metabolic enzyme 5'-methylthioadenosine phosphorylase. MTAP metabolizes 5'-methylthioadenosine, a byproduct of polyamine biosynthesis, to almost undetectable levels (Kamatani et al., 1981). This occurs in all normal cells as part of the adenine nucleotide salvage and methionine biosynthesis pathways and is considered a housekeeping function. Loss of MTAP expression has been described in a range of solid malignancies, including melanoma (Behrmann et al., 2003; Garcia-Castellano et al., 2002; Hellerbrand et al., 2006; Watanabe et al., 2009), and hematological malignancies (Batova et al., 1996). MTAP-deficient tumor cells exhibit specific alterations in polyamine metabolism induced by elevated 5'-methylthioadenosine levels that could drive a selective growth advantage (Kamatani and Carson, 1980). Melanoma cells with elevated 5'-methylthioadenosine levels show increased expression of matrix metalloproteinase and growth factor genes (Stevens et al., 2009).

Emerging evidence supports a role for MTAP as a tumor suppressor gene independent from CDKN2A/CDKN2B...
In mice, homozygous deletion of MTAP is embryonically lethal, whereas mice heterozygous for germ-line MTAP knockout are viable but die prematurely of a mature T-cell lymphoma (Kadariya et al., 2009). A meta-analysis of genetic association studies in cutaneous melanoma highlights an association between single nucleotide polymorphisms in MTAP and cutaneous melanoma risk (Antonopoulou et al., 2014). In addition, copy number (CN) alterations in eight genes including MTAP differentiate superficial spreading melanoma from nodular melanoma (Rose et al., 2011).

In common with other genes (CDKN2A/CDKN2B) on chromosome 9p21, epigenetic silencing of MTAP via promoter methylation is also recognized as an alternative mechanism for MTAP inactivation in human malignancy. Studies of melanoma (Behrmann et al., 2003) and a range of other malignancies (Berasain et al., 2004; Leal et al., 2007; Watanabe et al., 2009) have all demonstrated loss of MTAP expression is associated with inactivation of MTAP by aberrant promoter hypermethylation.

Our aim was to investigate genetic aberrations of MTAP in CTCL. Analysis of tumor DNA derived from MF and SS skin and blood samples demonstrated that loss of MTAP CN is common and frequently occurs independently of CDKN2A deletion. Furthermore, in SS CD4+ -enriched tumor cells derived from PBMCs, reduced MTAP mRNA expression is associated with MTAP CN loss. Studies of CTCL cell lines identified aberrant MTAP promoter hypermethylation as an alternative mechanism of MTAP silencing and that methylation reversal can restore MTAP expression. In contrast, we demonstrate that mutational events in MTAP, CDKN2A, and CDKN2B are rare in SS and are unlikely to contribute significantly to the disease. In conclusion, our findings suggest that loss of MTAP is an early event in MF and further investigation is now justified to establish whether MTAP loss may have a role in disease initiation.

RESULTS

MTAP and CDKN2A gene copy number loss in mycosis fungoides and Sézary syndrome

It is well established that chromosome 9p21 is a region of frequent deletion in advanced stage CTCL (Laharanne et al., 2010; Scarisbrick et al., 2002; van Doorn et al., 2009). We sought to establish if MTAP loss occurs simultaneously with CDKN2A/CDKN2B as part of a larger region of deletion, or if loss of these genes occurs independently.

Previously published quantitative reverse transcriptase in real time (Q-PCR) CN assays for MTAP and CDKN2A were performed with the two control genes PKL and BCMA (M’Soka et al., 2000). CN status for MTAP and CDKN2A was determined in the CTCL cell lines Hut78, MyLa, SeAx, and the leukemic T-cell line Jurkat. Homozygous loss of MTAP and CDKN2A was detected in both Hut78 and Jurkat, but not in MyLa or SeAx cells (data not shown).

MTAP and CDKN2A gene CN was then assessed in 84 healthy controls (HCs) and 273 tumor DNA samples from CTCL subgroups comprising MF IB-IIA, 101 samples; MF IIb-IV, 73 samples; and SS III-IV, 99 samples (including 78 samples from matched skin lesions and PBMCs from 39 patients, and 21 unmatched samples from PBMCs).

Loss of MTAP occurred in all disease stages and was statistically significant compared with HC samples (P < 0.05). Whereas loss of CDKN2A compared with HCs was only significant in advanced stages of patients with MF (IIb-IV) and SS (P < 0.05). Gain of MTAP or CDKN2A was an infrequent event across all of the patient samples. The distribution of CN variation for MTAP and CDKN2A is shown in Figure 1a and b, respectively, within patient and HC groups.

CN gains and losses were then compared between skin and blood and disease stage (Table 1). Strikingly, in the skin compartment, loss of MTAP was more frequent than CDKN2A alone or combined loss in all disease stages, this was particularly prominent in early stage MF (IB-IIA). In contrast, loss of CDKN2A was more frequent than MTAP in the tumor cells derived from the blood in advanced stage disease. Furthermore, data from matched skin and blood samples in the SS (III-IV) group (Table 2) also showed loss of MTAP CN in the skin but independent loss of MTAP in blood was infrequent.

To confirm the CN analysis, additional probes were used (probe set 2) for both genes on a subset of 94 DNA samples comprising 32 matched skin and PBMCs (64 samples) from stage SS III-IV, 14, MF IB-IIA skin; and 16, MF IIb-IV skin (Figure 1e and f). Overall concordance between CN probes was 75.0% and 58.3% for MTAP and CDKN2A, respectively, with some losses detected with each probe that were not detected on the other. Differences between probe sets are consistent with a pattern of focal deletions across the region rather than large structural variations.

To further investigate the pattern of CN variations across MTAP and CDKN2A, we applied next generation sequencing (NGS) depth analysis using previously published methods (Plagnol et al., 2012) to 31 SS PBMC-derived DNA samples that had also been analyzed by Q-PCR and 32 HCs (Figure 2). Of the 31 samples analyzed, the ExomeDepth package predicted CN variation with 90.3% concordance to at least one probe. Normalized exome depth was plotted as a heat map to highlight deviations in the depth of coverage consistent with focal deletions (Figure 2).

Reduced MTAP mRNA expression in SS CD4+ -enriched tumor cell populations correlates with copy number loss

Next, we sought to determine if MTAP and CDKN2A CN loss was associated with reduced gene expression at the RNA level using cDNA derived from peripheral blood CD4 + -enriched tumor cell populations from 20 patients with SS.

A significant difference in MTAP mRNA expression was observed between SS and HC samples (P < 0.01). Furthermore, reduced MTAP expression correlated with loss of MTAP CN in all SS samples (Figure 3). In contrast, no decrease in CDKN2A expression was detected despite eight cases showing CDKN2A CN loss.

Aberrant MTAP promoter hypermethylation as an alternative mechanism of MTAP gene inactivation

We then examined promoter methylation as a possible regulatory mechanism of MTAP expression using the CTCL cell lines MyLa and SeAx. SeAx cells had normal MTAP CN and abundant expression of MTAP, whereas although MyLa cells had normal MTAP CN, MTAP expression was not detectable (Figure 4). The methylation status of the entire
Figure 1. Gene CN analysis for MTAP and CDKN2A in MF and SS. (a) MTAP and (b) CDKN2A CN was determined by Q-PCR in 84 HCs, 52 MF IB-IIA, 73 MF IIB-IV, and 101 SS III-IV samples (64 PBMC samples and 39 skin samples). Horizontal lines represent 3 standard deviations from the HC mean. Schematic representations of (c) MTAP and (d) CDKN2A showing positions of Q-PCR probe sets 1 and 2. Gene CN of (e) MTAP and (f) CDKN2A determined by probe sets 1 (y-axis) and 2 (x-axis). Red lines represent 3 standard deviations from the HC mean for the corresponding probe set. Probe set 2 shows 75.0% and 58.3% concordance with probe set 1 for MTAP and CDKN2A, respectively. CN, copy number; MF, mycosis fungoides; MTAP, methylthioadenosine phosphorylase; SS, Sézary syndrome.
CpG island, containing three discrete regions of CpG sites, termed CG1, CG2, and CG3, was analyzed by direct sequencing of bisulfite-converted DNA. In SeAx cells complete methylation of all CpG sites in CG1 and CG2 was observed, whereas the CG3 region was completely unmethylated (Supplementary Figure S1a online). In contrast, MyLa cells were found to be completely methylated at all CpG sites within the three regions (Supplementary Figure S1b). This suggests that differential methylation of CG3 may be regulating MTAP expression.

Promoter hypermethylation and loss of MTAP expression is reversible
To determine if the observed differential methylation of the CG3 region regulates MTAP expression, methylation reversal experiments using the demethylating agent 5′-aza-2′-deoxycytidine were performed. MyLa and SeAx cells were treated with 5′-aza-2′-deoxycytidine for up to 72 hours. After treatment, MTAP expression levels were measured by reverse transcriptase-PCR (Figure 4a) and intracellular flow cytometry (Figure 4b) to assay cDNA and protein levels, respectively. These studies demonstrated a strong induction of MTAP expression in 5′aza-treated MyLa cells and consistent MTAP expression before and after treatment in SeAx. This supports a role for methylation of the CG3 region regulating MTAP expression.

Polymorphisms of MTAP, CDKN2A, and CDKN2B are rare in Sézary syndrome
Finally, we sought to determine if rare variants in the genes MTAP, CDKN2A, and CDKN2B are present in SS tumor DNA samples. We defined rare variants as those not observed in the “1,000 genomes” database or dbSNP (build 138). Only one rare nonsynonymous variant was discovered in a coding region and only very few variants were discovered in non-coding regions, none of which were predicted to affect transcription (Supplementary Table S1 online). Although functional analysis has not been performed, these results suggest that somatic mutational events in MTAP, CDKN2A, and CDKN2B rarely contribute to the pathogenesis of SS.

Discussion
This study of a large cohort of 280 patients with MF/SS (319 samples) demonstrates that MTAP gene deletion is common and can occur independently of CDKN2A gene deletion in early stage MF and skin-derived tumor cells from patients with SS. Loss of MTAP CN also correlates with reduced MTAP expression, but significantly reduced MTAP expression can also occur in the absence of MTAP loss. In CTCL-derived cell lines, aberrant promoter hypermethylation of one of the MTAP CpG islands (CG3) leads to loss of MTAP expression. Epigenetic mechanisms such as promoter hypermethylation may therefore be an alternative mechanism of MTAP gene inactivation in CTCL as demonstrated in other malignancies (Behrmann et al., 2003; Hellerbrand et al., 2006; Ishii et al., 2005; Leal et al., 2007). In contrast to loss of CN, somatic mutations in CDKN2A/B or MTAP are rare in SS.

Loss of MTAP has been reported in association with deletion of CDKN2A/CDKN2B in advanced disease stages of CTCL (Laharanne et al., 2010; Salgado et al., 2010; Scarsbrick et al., 2002; van Doorn et al., 2009) and has been shown to be an independent prognostic marker for survival. However, recent studies using mouse models have begun to define a role for MTAP as an independent tumor suppressor gene (Kadariya et al., 2009, 2013). MTAP-heterozygous mice show reduced MTAP expression levels compared with wild-type mice and die prematurely because of the development of mature T-cell lymphomas. Furthermore, reduced MTAP expression has been reported in several rare lymphomas (Bertino et al., 2012). These data suggest that MTAP loss alone may be a contributing factor in the development of T-cell lymphomas. Our data support a role for MTAP loss in CTCL pathogenesis as we show significant

Table 1. Frequencies of copy number variation in MTAP and CDKN2A in CTCL

<table>
<thead>
<tr>
<th></th>
<th>MTAP loss only</th>
<th>MTAP and CDKN2A loss</th>
<th>CDKN2A loss only</th>
<th>MTAP gain only</th>
<th>MTAP and CDKN2A gain</th>
<th>CDKN2A gain only</th>
<th>No loss or gain of copy number</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-IIA MF (101)</td>
<td>38S</td>
<td>13S</td>
<td>2S</td>
<td>0</td>
<td>1S</td>
<td>3S</td>
<td>44S</td>
</tr>
<tr>
<td>II-BV MF (73)</td>
<td>19S</td>
<td>13S</td>
<td>10S</td>
<td>0</td>
<td>15S</td>
<td>2S</td>
<td>28S</td>
</tr>
<tr>
<td>III-IV SS (39s/39b + 21b)</td>
<td>0b/16S</td>
<td>11b/15S</td>
<td>13b/15S</td>
<td>0</td>
<td>0</td>
<td>1b/0S</td>
<td>35b/75</td>
</tr>
<tr>
<td>Total</td>
<td>73S</td>
<td>(52) 11b/41b</td>
<td>(26) 13b/15S</td>
<td>0</td>
<td>25S</td>
<td>(6) 1b/0S</td>
<td>(114) 3b/79S</td>
</tr>
</tbody>
</table>

Abbreviations: B/S, blood/skin; MF, mycosis fungoides; MTAP, methylthioadenosine phosphorylase; PBMCs, peripheral blood mononuclear cells.

Tumor DNA was analyzed in 273 samples comprising MF lesional skin samples from 101 stage II-IIA and 73 II-BV; and in SS (III-IV), 78 matched skin and PBMCs (39 patients) and an additional 21 from PBMCs. The number of samples of each disease stage harboring each type of copy number variation is shown.

Table 2. Concordance of gene copy number between matched skin and PBMCs in SS

<table>
<thead>
<tr>
<th></th>
<th>Copy number loss in skin but not blood</th>
<th>Normal copy number in skin and blood</th>
<th>Copy number loss in blood but not skin</th>
<th>Copy number loss in blood and skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTAP</td>
<td>21</td>
<td>8</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>CDKN2A</td>
<td>2</td>
<td>20</td>
<td>3</td>
<td>14</td>
</tr>
</tbody>
</table>

Abbreviations: MTAP, methylthioadenosine phosphorylase; PBMCs, peripheral blood mononuclear cells; SS, Sézary syndrome.

Gene copy number of MTAP and CDKN2A was analyzed in both blood and skin tissue in 39 patients with SS stage III-IV (78 samples) and concordance compared between the two tissues.
MTAP CN loss in all disease stages. Importantly, in early stage of MF, MTAP CN loss is independent of CDKN2A suggesting MTAP loss precedes CDKN2A loss, which in contrast only becomes significant in advanced stages. Furthermore, our results suggest that MTAP CN loss is more frequent in lesional skin than in the peripheral blood of patients with SS. Discordant loss of MTAP and CDKN2A in different tumor compartments and stages likely reflects tumor heterogeneity and subclonal evolution. Although overall numbers studied are small, multilineage progression of genetically unstable tumor subclones has been reported in CTCL (Rubben et al., 2004) and may contribute to these. However, the apparent selection pressure for subclones with loss of MTAP in skin and retention of MTAP in the peripheral blood of patients with SS is intriguing and remains to be explained but could reflect a role for the skin microenvironment that is not present in the peripheral blood. Interestingly, a recent study suggested that MTAP may act as a tumor suppressor independently of its enzymatic function (Tang et al., 2014); however, the precise mechanism remains unclear.

Analysis using additional Q-PCR probes demonstrated 75% and 58.3% concordance for MTAP and CDKN2A, respectively, between probe sets 1 and 2. The probe sets were located in different gene regions that are likely to account for these differences and these data are consistent with a genomic landscape in SS and MF, which is shaped by a series of focal deletions. ExomeDepth analysis from the NGS data of 9p21 was 90.3% concordant with at least one probe set that confirms this interpretation. In addition, recent NGS studies examining late stage CTCL (Choi et al., 2015; da Silva Almeida et al., 2015; Kiel et al., 2015; Ungewickell et al., 2015; Wang et al., 2015) indicate that structural alterations and CN variations frequently involve 9p21. Losses commonly affect 9p21 and include MTAP and CDKN2A (Choi et al., 2015; da Silva Almeida et al., 2015; Kiel et al., 2015; McGirt et al., 2015; Wang et al., 2015) in many cases. However, the size and position of the deletions show considerable variation. Our data relating to advanced stage disease are consistent with these reports but currently no NGS study has addressed early stage CTCL.

Reduced MTAP expression has previously been reported in SS and tumor stage MF and shown to correlate with gene CN loss and reduced survival (van Doorn et al., 2009). Our findings confirm SS tumor samples with MTAP CN loss show a significant reduction in MTAP mRNA expression; however, reduced MTAP expression was also observed in the absence of a detectable loss in MTAP CN. This indicates that other mechanisms are disrupting expression such as mutations, polymorphisms, or epigenetic events. We did not detect any rare mutations that are likely to affect MTAP transcripts in a
MTAP identifies lymphoma (Ishii et al., 2005), hepatocellular carcinoma and cell lines of other malignancies including histiocytic. Specifically, reexpression of MTAP (Behrmann et al., 2003), and malignant melanoma (Behrmann et al., 2003). These studies in melanoma have indicated that reduced expression of MTAP is a prominent feature of SS and can be attributed to more than one mechanism. This adds weight to the mounting evidence that MTAP acts as an independent tumor suppressor gene. The functional impact of MTAP gene inactivation in CTCL has yet to be defined, but may yield potential novel therapeutic possibilities.
MATERIALS AND METHODS

Patient samples and cell lines
Samples from 280 patients with CTCL were used in this study (319 total samples); 234 of these patients were analyzed by Q-PCR (273 samples), 77 patients by NGS, and 31 patients by both methods. Patients were classified according to the TNM staging system. Of the 280 patients, 174 were MF including 101 stage 1B-IIA and 73 stage IIB-IV and 106 stage III-IV SS. All patients fulfilled the WHO-EORTC diagnostic criteria for either MF or SS (Willemze et al., 2005). A dominant clonal TCR gene rearrangement was detected in all samples using PCR-based methods (Brüggenm et al., 2007). Furthermore, in matched samples (skin and PBMC) from patients with SS, an identical T-cell clone was demonstrated. Supplementary Tables S2 and S3 online detail the breakdown of samples used in different study components.

DNA samples from lesional skin and PBMCs were obtained from the nationally approved cutaneous lymphoma research tissue bank (National Research Ethics Committee: 07/H10712/111+5). Written and informed consent was obtained from all patients/volunteers in this study. DNA samples from PBMCs of 84 HCs were obtained from the Human Random Control DNA Panel 4 (ECACC, Sailsbury, UK) for use as controls.

The CTCL cell lines, HuT78 and SeAx were gifts from Dr S. John (King’s College London) and Professor M. Vermeer (Leiden University Medical Centre), respectively. Jurkat and MyLa cells were obtained from the ECACC. All cell lines were maintained in the RPMI medium containing 10% fetal calf serum and 1% penicillin/streptomycin (Invitrogen, Paisley, UK). SeAx cells were supplemented with IL-2 (25 U/ml).

Assessment of gene copy number by Q-PCR
Probeset1. Q-PCR was performed on 273 patient samples and 84 HCs. Reactions were performed in triplicate on the ABI Prism 7000 Sequence Detection System (Applied Biosystems, Cheshire, UK) using previously published primer/probe sequences for CDKN2A (M’Soka et al., 2000), MTAP (M’Soka et al., 2000), BCMA (De Preter et al., 2002), and PFKL (De Preter et al., 2002). BCMA and PFKL control genes were used to control the amount of input DNA and selected to detect diploid genes in chromosomal regions not previously reported to be affected by structural or numerical changes in CTCL. Mean ΔΔCT was calculated from the ΔΔCT of both control genes and patient ΔΔCT was compared with the mean and standard deviation of the HC group to infer gene CN. Further statistical analyses are described below.

Probeset2. Q-PCR was performed on 94 of 273 samples with additional probes to validate findings from the probe set 1. Probes for MTAP (Hs06918311_cn), CDKN2A (Hs03721302_cn), and the control gene TERT (probes purchased from Life Technologies, Paisley, UK) were run in triplicate. Analysis was performed using the ΔΔCT method and the mean and standard deviation of 84 HCs were used to determine the normal ΔΔCT for the probes. Samples below 3 standard deviations of the HC mean were called CN loss.

Assessment of gene expression
RNA was extracted from CD4⁺-enriched PBMCs of 20 patients with SS and 14 HCs and converted to cDNA. Previously published primer/probe sequences for cyclophilin-A/PPIA (Riemer et al., 2012), MTAP (Hs00559618_m1), and CDKN2A (Hs00923894_m1) were used to perform RT-Q-PCR on the ABI 7900HT high-throughput real-time PCR system (Applied Biosystems); reactions were performed in triplicate. Cyclophilin-A/PPIA was used as an endogenous control. The ΔΔCT thresholds of MTAP and CDKN2A were compared between patient cDNA and HC cDNA. The normal range of MTAP and CDKN2A expression was defined as within 3 standard deviations of the HC mean ΔΔCT (P < 0.01). A sample with ΔΔCT below this range was considered to have reduced expression.

Statistical analysis
All statistical analysis was performed in R (www.r-project.org/). A CN of 2 was determined to be the mean ± 3 standard deviations of the HCs with 99% confidence. Any patient values that fell outside of these limits were considered to have CN loss or gain. For Q-PCR probe set 1 analysis of variance was used to test for significant differences between healthy and patient subgroups followed by Tukey’s HSD test for pairwise comparisons. A Wilcoxon-rank-sum test was used to test for a significant difference in expression between patient and healthy groups.

Bisulfite conversion of DNA
One microgram of DNA was bisulfite converted using the Epitect Bisulfite kit (Qiagen, Manchester, UK) according to the manufacturer’s instructions.

Bisulfite sequencing PCR
A set of PCR primers specific to bisulfite-treated DNA were designed for each discrete region CG1, CG2, and CG3 of the MTAP CpG island using Methprimer software (Li and Dahiya, 2002). DNA was then subjected to PCR amplification with primers specific to:

- CG1 (F-ATTGGATTATTGTAGGGAAGGG, R-AAAAACCTTACACAATCCCACTCTCA)
- CG2 (F-AGTTTTGGGTATAAGTTTATTTATGT, R-AAAAAACACCATCCCTACTTAAAC)
- CG3 (F-GGGGGAGATTATATATATATATGTTTATGGTATTAAT, R-TAATACCAAAACCATATCTCACA)

PCR was carried out using AmpliTaq Gold (Applied Biosystems) with 2 mM MgCl₂ and an annealing temperature of 59 °C for CG1, 61 °C for CG2, and 58 °C for CG3.

Reverse transcriptase-PCR
RNA was extracted fresh from cell lines. The following primers were used for PCR amplification of cDNA:

- MTAP (F-CTCCCGCGCAGTGAAGGTTCG, R-CCGCCGCGCTGAAATCTCTCTCC)
- CDKN2A (F-GCTGCGCCACCGCCAAGCA, R-GCGCTGCCCATCATACTGTA)
- Cyclophilin (F-AAACGCATACCGGCTTCATCCAT, R-CGAGTTGTCACAGTACAGT)

PCR was carried out using AmpliTaq Gold (Applied Biosystems) with an annealing temperature and MgCl₂ concentration of 35 °C, 1.5 mM for cyclophilin and 60 °C, 1.5 mM for CDKN2A. A touchdown PCR approach using 2.0 mM MgCl₂ was employed for MTAP.

Intracellular flow cytometry
The cell lines SeAx and MyLa were fixed in 1% formaldehyde and then permeabilized in 90% methanol at 1 × 10⁶ cells/ml. Cells were incubated with an MTAP monoclonal antibody (ab55517, AbCam, Cambridge, UK) followed by treatment with a fluorescently labeled
secondary antibody (Alexa Fluor 555 goat antimouse, A-21422, Life Technologies). To detect background fluorescence, samples were incubated with the mouse isotype control (Life Technologies). Flow cytometry analysis was performed on a FACSDiva® (BD Biosciences, Oxford, UK); machine settings were standardized and retained throughout the study. 10,000 events were acquired per sample, and delta mean fluorescent intensity was calculated by subtracting the mean fluorescent intensity of the isotype control from the mean fluorescent intensity of the specific antibody using Flowjo software (Tree Star, Ashland, OR).

Capture library design
A targeted capture was designed using the “Agilent SureDesign” probe selection software (Agilent, Cheshire, UK). Probes were designed to cover all exons and UTRs of MTAP, CDKN2A, and CDKN2B (Supplementary Table S4 online). Additional probes were added to the 3’ and 5’ ends of each exon to ensure efficient capture of splice site sequences.

Library preparation, target capture, and sequencing
Tumor DNA was derived from PBMCs of 77 patients with SS and 32 HCs. Libraries were prepared according to the manufacturer’s instructions using the SureSelect XT library preparation kit (Agilent). Libraries were incubated for 24 hours with biotinylated custom capture probes designed against the target region. Streptavidin-coated magnetic beads were utilized to isolate the probe-bound target DNA and any unbound DNA was washed off. A low cycle number PCR was then used to amplify the bound DNA but minimize PCR duplicates. The target enriched DNA was finally sequenced with 100 basepairs paired-end reads on an Illumina (San Diego, CA) Hi-Seq2000.

Next generation sequencing analysis
Reads were aligned to the reference genome (hg19, NCBI build) using Novoalign (Novocraft Technologies). SAMtools was used to call variants and remove PCR duplicates. ANNOVAR (Wang et al., 2010) was used to annotate variants with respect to coding genes. In-house scripts and the BEDtools package were used to calculate the depth of sequencing and overall coverage. A total of 32 HCs underwent NGS and were used as controls to exclude sequencing artifacts from the capture.

For 31 patient with SS samples that were also included in the Q-PCR study, CN analysis was performed on NGS data using the “ExomeDepth” R-package (Plagnol et al., 2012). Briefly, this package uses normalized exome depth, which is the ratio of depth at any given base to the total number of reads for that sample. This metric is considered across each exon in comparison to expected values based on HCs included in our NGS study. The final output is based on a hidden markov model that outputs either deletion, normal, or duplication for each exon; see Plagnol et al (2012) for more detailed description.

CONFLICTS OF INTEREST
The authors state no conflict of interest.

ACKNOWLEDGMENTS
This research was supported by grants from the British Skin Foundation and the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health. We thank Michael Simpson for his assistance with the analysis of next generation sequencing data and critical appraisal of the manuscript.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at www.jidonline.org, and at http://dx.doi.org/10.1016/j.jid.2016.01.028

REFERENCES

3.3 Additional figures and data for chapter 3

Figure 3.1. Tukey’s HSD for probe sets 1 and 2 for gene copy number analysis. ANOVA, followed by post hoc testing was carried out for each probe for each gene. Box plots show the distribution of samples for each probe/gene combination and Tukeys test results are shown adjacent. Results for probe set 2 should be interpreted with caution as samples included in this set were selected from probe set 1 to validate original data.
Figure 3.2. Linear Regression analysis to determine MTAP/CDKN2A Copy Number

The MyLa cell line has normal gene copy number of MTAP and CDKN2A whereas the Jurkat cell line has homozygous loss of both genes. Mixed DNA samples from the cell lines were assayed by Q-PCR for MTAP and CDKN2A using TERT as a control gene (See materials and methods section). The gene copy number for MTAP and CDKN2A in each mixed sample can be directly inferred from the ratios of MyLa and SeAx in the samples and is plotted on the x-axis. From left to right (x-axis) samples comprising 10% MyLa/90% Jurkat up to 100% MyLa/0% Jurkat mixed in 10% intervals. Delta-CT was calculated and plotted on the y-axis. Linear regression is a method for modelling a scalar, dependent variables on the y-axis with an independent variable on the x-axis. Linear regression was used to derive a line of best fit demonstrating a clear positive trend for both MTAP and CDKN2A with increasing target DNA relative to TERT. Regression lines were extrapolated to infer copy number in subsequent microdissected DNA samples from patient tumour and epidermis (DCT=Delta-CT, CN=gene copy number).
Micro-dissection was performed on 2 MF cases for which paraffin embedded material of the original lesion (analysed by probe sets 1 and 2) was available. Slides were assessed and marked by an expert dermatopathologist. DNA was extracted from microdissected FFPE tissue from the epidermis and focal areas of tumour cells. Images were obtained of sections for each case: A = H/E stain of MF plaque showing the epidermis and lymphocyte infiltrates. B = CD3+ stain of the same tumour, lymphocytes can be seen clearly in large numbers. C = Microdissected area containing tumour cells which was used for enriched tumour DNA extraction. D = Microdissected area showing regions where epidermis was removed for DNA extraction. An additional H&E was taken after cutting the sections (not shown).
Figure 3.4. Determination of CDKN2A and MTAP Copy Number in DNA from micro-dissected tissue.

Q-PCR was performed on DNA extracted from tumour enriched and epidermal FFPE tissue (shown in figure 1A). Delta CT values were calculated for MTAP and CDKN2A relative to the housekeeping gene TERT. Gene copy number was calculated from the regression analysis of Delta-CT values (shown in figure 1). The data demonstrates reduced MTAP gene copy number and no loss of CDKN2A in the tumour compared to the epidermis in both cases. Error bars show standard error of gene CN. T-tests were carried out for MTAP and CDKN2A comparing to a gene copy number of 2 which was previously determined by the cell line MyLa. In both cases; for MTAP a significant difference was detected between tumour and MyLa (P<0.05), there was no significant difference between the MTAP CN in epidermis and MyLa, or CDKN2A from the tumour or epidermis compared to MyLa in either case.
4 The effect of MTAP loss on type I PRMT activity
4.1 Background

Loss of MTAP is known to occur in a range of haematological malignancies (246-252) and several studies suggest MTAP has a role as a tumour suppressor. The most prominent lines of evidence include a mouse model where loss of MTAP leads to mature T-cell malignancies (253) and studies involving xenografted tumours where tumour growth is inhibited upon reintroduction of MTAP (141).

The only known function of MTAP is to metabolize MTA (241, 242) and the most prominent hypothesis of MTAPs tumour suppressing function is that it prevents the accumulation of MTA and thus prevents MTA from inhibiting other cellular processes (144, 242).

One class of enzymes thought to be inhibited by the accumulation of MTA is the PRMT family. Increased MTA has been shown to inhibit the activity of PRMT1 and prevent the deactivation of STAT1 leading to constitutive STAT1 activation (267). Levels of MTA have also been shown to correlate with MAPK/ERK activity, this is a well-known oncogenic pathway known to be modulated by PRMT5 (271). Restoring MTAP function has been shown to lead to the restoration or PRMT function which correlates with a reduction in overactive ERK (270).

To date, the effect of loss of MTAP on the PRMT family has not been investigated in CTCL. The aim of this investigation is as a preliminary study to first determine if PRMTs are expressed in CTCL and if loss of MTAP has an effect on their activity.

4.2 Expression of PRMTs in SeAx and Jurkat cells

In order to determine that PRMT family members are expressed in model cell lines, qualitative expression of the PRMT gene family was assessed in SeAx and Jurkat CTCL cell lines using RT-PCR. Expression of all but one PRMT family member was confirmed, with the only exception being PRMT8 which showed no detectable expression (Figure 4.1).
Figure 4.1 Expression of PRMTs in SeAx and Jurkat.
Qualitative expression of PRMTs is shown in the positive control (Healthy CD4+ T-cells) and the cell lines SeAx and Jurkat. Single bands of the expected length were shown in each case.

4.3 Transient knock-down of MTAP in SeAx cells

SeAx cells were chosen as a model to assess in vitro effects of MTAP loss. Other lines reviewed as candidate models included the cell lines Hut78 and Jurkat, however both copies of MTAP are deleted in these lines. Also, the cell line MyLa was considered but MTAP is silenced by promotor methylation. Therefore, SeAx was considered the most suitable T-cell model.

Transient knockdown of MTAP was attempted in SeAx using a siRNA construct complimentary to MTAP and a scrambled siRNA control. Initial attempts by nucleofection yielded a high rate of cell transformation (Figure 4.2). However, this was accompanied by high rates of cell death and aggregation in the following 24 hours so that lysates and RNA could not be extracted consistently.
Figure 4.2 Nucleofection of SeAx cells.
SeAx cells underwent nucleofection using GFP expression vector as a control. Qualitative assessment of nucleofection was performed using fluorescence microscopy; the image shows the typical appearance of cells 24 hours after transfection.

Subsequent transfection of SeAx was attempted by Lipofectamine 2000. This was shown to have low to no toxicity to SeAx cells however the rate of transformation was considered too low (<0.1% transformation) to detect a signal with all recommended experimental conditions (Figure 4.3). Transfection was also attempted at concentrations of both DNA and Lipofectamine2000 beyond those recommended by the manufacturer (Invitrogen, UK) and showed no significant improvement. Transient transfection of SeAx was considered unpractical at this point for the planned investigation.

Figure 4.3 Transfection of SeAx by Lipofectamine2000.
SeAx cells transfected with 1000ng GFP expression vector using 2.5μl Lipofectamine2000 in 50μl of antibiotic free OptiMEM media per 4x10^5 SeAx cells. Limited transfection occurs.
4.4 Proof of principle experiments in HEK293 cells

The human embryonic kidney cell line HEK293 was considered for use in a proof of principle experiment to assess the in-vitro effects of MTAP knock-down. This cell line is known to be easily transfected and so signals from transient knock-down of MTAP should be detectable in downstream experiments.

4.5 Expression of PRMTs in HEK293 cells

Qualitative expression of the PRMT gene family was assessed in HEK293 cells using RT-PCR in the first instance. Expression of most (8/9) PRMT family members was confirmed, similar to SeAx and Jurkat with the only exception being PRMT8 which showed no detectable expression (Figure 4.4).

![Figure 4.4 Expression of PRMTs in HEK293 cells.](image)

All PRMTs except PRMT8 show bands of the expected size demonstrating expression in HEK293 cells. A negative control containing no target DNA was run for each reaction.

4.6 Transient knock-down of MTAP in HEK293 cells

Transient knockdown of MTAP was attempted in HEK293 cells using the siRNA constructs that were used for the previous experiment in SeAx. The Lipofectamine2000 chemical transfection kit was used according to manufacturer’s recommendations (Invitogen, UK). Qualitative assessment of transfection using a GFP expression vector and fluorescence microscope indicated that transfection was efficient (Figure 4.5).
Figure 4.5 HEK293 cells transfected with pmaxGFP.
High rates of transfection of the GFP expressing vector pmaxGFP was confirmed qualitatively by fluorescence microscopy. The image shows a typical transfection after 24 hours.

4.6.1 Assessment of MTAP expression by RT-PCR

In order to determine that the MTAP siRNAs can effectively target MTAP, expression of MTAP in HEK293 cells was analysed in untransfected cells, cells that were transfected with two different siRNA constructs complimentary to MTAP and cells were transfected with a scrambled siRNA control. Cells were collected prior to transfection (0h) and at 24, 48 and 72 hours post transfection to extract RNA and cell lysates. RT-PCR of MTAP and PPIA was performed for all samples and products were run on a 2% agarose gel. The cells transfected with MTAP siRNA show reduced expression of MTAP compared to untransfected cells and cells transfected with scrambled siRNA suggesting that transfection with MTAP siRNA can reduce MTAP mRNA (Figure 4.6).
Figure 4.6 Expression of *MTAP* and PPIA by RT-PCR in HEK293.
Expression of *MTAP* and PPIA was analysed in HEK293 cells. From left to right; untransfected, scrambled siRNA, *MTAP* siRNA1, *MTAP* siRNA 3 after 24 hours, scrambled siRNA, *MTAP* siRNA1, *MTAP* siRNA 3 after 48 hours, scrambled siRNA, *MTAP* siRNA1, *MTAP* siRNA 3 after 72 hours.

4.6.2 Assessment of MTAP expression by RT-QPCR

MTAP expression was further analysed by RT-QPCR which confirmed with greater accuracy reduced *MTAP* expression in cells transfected with *MTAP* siRNA compared to cells transfected with scrambled siRNA or untransfected cells ([Figure 4.7](#)). Untransfected HEK293 cells had comparable expression to cells prior to transfection (data not shown).
Expression of MTAP relative to PPIA in HEK293 cells transfected with scrambled siRNA, MTAP siRNA1 and MTAP siRNA3. Expression was analysed before transfection and at 24, 48 and 72 hours after transfection. All samples were run in triplicate. Error bars show standard error.

Figure 4.7 MTAP expression in HEK293 cells analysed by RT-QPCR.

Expression of MTAP relative to PPIA in HEK293 cells transfected with scrambled siRNA, MTAP siRNA1 and MTAP siRNA3. Expression was analysed before transfection and at 24, 48 and 72 hours after transfection. All samples were run in triplicate. Error bars show standard error.

4.7 Assessment of MTAP protein expression

To assess if loss of MTAP mRNA correlates with loss of MTAP protein, whole cell protein lysates were prepared from; untransfected HEK293 cells, cells transfected with a scrambled siRNA control, cells transfected with MTAP siRNA1 and cells transfected with MTAP siRNA3. Lysates were extracted from transfected cells at 24, 48 and 72 hours post-transfection and run on a 5-15% SDS-PAGE gel.
Immunoblot analysis of MTAP shows similar expression of untransfected HEK293s compared to cells transfected with scrambled siRNA at all timepoints (Figure 4.8). Cells transfected with MTAP siRNA appear to show reduced MTAP protein expression suggesting that MTAP siRNAs can reduce MTAP protein. However, this assay was only performed a single time and further confirmation would be required to validate this claim.

Figure 4.8 Immunoblot analysis of MTAP, Asymmetric dimethyl arginine methylation and β-actin.
Whole cell lysates from untransfected HEK293s, HEK293s transfected with scrambled siRNA, MTAP siRNA 1, and MTAP siRNA 3 were run on a 5-15% SDS-PAGE gel. Lysates were extracted from transfected cells at 24, 48 and 72 hours after transfection and probed with the indicated antibodies.

4.8 Assessment of pan asymmetric-dimethyl-arginine methylation in MTAP knock-down HEK293 cells

To determine if reduced MTAP affects the activity of the PRMT family the blot was re-probed to assess asymmetric dimethyl arginine methylation. This is an assay to detect the activity of type I PRMT family members which include PRMTs 1, 2, 3, 6 and 8.
The inferences reported in this section relating to the Western blot analysis are suggestive hints derived from a single experiment which require further confirmation rather than conclusive results. Untransfected HEK293s and HEK293s transfected with scrambled siRNA show similar patterns of dimethyl arginine methylation at all timepoints (Figure 4.8). HEK293 cells transfected with MTAP siRNA appear to show slightly reduced dimethyl arginine methylation on several proteins. This can be inferred from the slightly reduced intensity of bands at ~150KDa, ~80KDa, ~50KDa, ~45KDa and ~40KDa. Cells transfected with MTAP siRNA1 also appear to show fainter bands at ~60KDa. The reduction in dimethyl arginine methylation peaks at 24 hours in the majority of cases.

The apparent reduction in asymmetric dimethyl-arginine methylation correlates with reduced MTAP expression. This assay suggests the possibility that loss of MTAP could reduce pan-dimethyle-arginine methylation, likely via reducing the activity of type I PRMT family members. However, this assay has not been repeated and the result is very weak at this stage so would require further optimisation to draw any strong conclusion.
5 Candidate driver genes in Sézary syndrome: frequent perturbations of genes involved in genome maintenance and DNA repair
5.1 Candidate contributions to chapter 5

This chapter is work that has been contributed to and published by a team of researchers. My personal contributions are as follows: library preparation of all tumour and germline WES samples, downstream filtering of somatic WES variants, design and library preparation of all targeted capture samples including patient samples and HC’s, Sanger sequencing validation of numerous WES and targeted capture variants, comparison of genes in our dataset to the network of cancer genes, comparison of variants in our dataset to identical variants in other similar NGS studies, Figure 1, all tables, all supplementary tables and heatmaps, selection of genes to be included in submatrices of figure 4, I also produced alternate versions of figure 2a, 2b and matrices from figure 4 though versions produced by the BRC were selected for the final manuscript, furthermore I produced the original draft and subsequent revisions of the manuscript with oversight from my PhD supervisors.

5.2 Introductory remarks for chapter 5

In this study, patients from the cohort used in the MTAP study (Chapter 3) were shared with this study. In total 31/101 patients that underwent NGS in this study were used in the MTAP study and overlapped with the QPCR gene CN study in chapter 3. A total of 77/101 were used for mutational analysis across 9p21 in the chapter 3.

Gene copy number variations and mutations across the chromosome 9p21 region have not been analysed in this study as this was looked at more specifically in chapter 3 and the data had been published in the Journal of Investigative Dermatology. Data from this chapter was published in the journal ‘Blood’ and the studies are bound by publishing rules of both journals which do not allow data to be duplicated across separate studies. For this reason data relating to 9p21 is not analysed as part of chapter 5.
Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome

Wesley J. Woolard,1 Venu Pullabhatla,2 Anna Lorenc,2 Varsha M. Patel,1 Rosie M. Butler,1 Anthony Bayega,1 Nelema Begum,1 Farrah Bakr,1 Kiran Dedhia,1 Joshua Fisher,1 Silvia Aguilar-Duran,1 Charlotte Flanagan,1 Aria A. Ghasemi,1 Ricardo M. Hoffmann,1 Nubia Castillo-Mosquera,1 Elisabeth A. Nuttall,1 Arisa Paul,1 Ceri A. Roberts,1 Emmanouil G. Solomonidis,1 Rebecca Tarrant,1 Antoinette Yoxall,1 Carl Z. Beyers,1 Silvia Ferreira,1 Isabella Tosi,1 Michael A. Simpson,3 Emanuele de Rinaldis,2 Tracey J. Mitchell,1,* and Sean J. Whittaker 1,*

1St John’s Institute of Dermatology, Division of Genetics and Molecular Medicine, Tower Wing, King’s College London, London, United Kingdom; 2BRC Bioinformatics Core, Tower Wing, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom; and 3Department of Genetics, Division of Genetics and Molecular Medicine, Tower Wing, King’s College London, London, United Kingdom

Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array–based copy number analyses of CD4+ tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop–gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCAQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment. (Blood. 2016; 127(26):3387-3397)

Introduction

Primary cutaneous T-cell lymphomas (CTCL) represent a heterogeneous group of mature T-cell lymphomas. Targeted treatment options for advanced stages of CTCL are limited and associated with modest and short-lived responses.1,2 Sézary syndrome (SS) is a leukemic variant of CTCL and represents an ideal model for defining the molecular pathways involved in the malignant transformation of mature T cells.

Recent studies3-9 have revealed marked genomic heterogeneity in SS illustrated by extensive copy number variants (CNVs) and single-nucleotide variants (SNVs) affecting many genes, including known cancer genes, and selection for genes involved in T-cell receptor (TCR), JAK-STAT, and NF-κB signaling5,6,9 and epigenetic regulation3,7,8.

Furthermore, nodal T-cell lymphomas (TCL) show considerable genomic overlap with CTCL.10-13 Although adult T-cell leukemia lymphoma (ATLL) is associated with HTLV-1 transformation, both ATLL and CTCL are mature T-cell lymphomas of skin-homing memory CD4+ T cells with marked clinical and phenotypic overlap. A recent comprehensive genomic study of ATLL has also shown striking similarities at the genomic level with high rates of CNV.13 However the underlying basis for genomic instability, reflected in the high prevalence of CNVs detected in mature T-cell lymphomas, including CTCL, has yet to be clarified.

We have performed a discovery screen using next-generation sequencing (NGS) to analyze enriched tumor cell populations and matched normal DNA from samples obtained at diagnosis from untreated patients using whole-exome sequencing and SNP arrays. This was followed with a prevalence screen in a large cohort of SS samples using targeted resequencing.
Patients, materials, and methods

Samples
All patients fulfilled the WHO-EORTC diagnostic criteria for SS.2 Patient samples were obtained from the nationally approved CTCL research tissue bank (National Research Ethics Committee: 07/H10712/1115); healthy control samples were obtained with the approval of the Guy’s and St Thomas’ Hospital Research Ethics Committee (EC01/301). Written and informed consent were obtained from all patients and volunteers. Discovery samples: DNA was extracted from CD4+ enriched peripheral blood mononuclear cells (PBMCs) using RosetteSep (Stemcell Technologies, Cambridge, UK) and matched primary fibroblasts from skin explants obtained from 10 untreated patients with SS at diagnosis. Targeted capture samples: DNA was extracted from PBMCs of 101 SS and 32 healthy control samples (supplemental Table 1, available on the Blood Web site).

Whole-exome sequencing (WES) and targeted capture
The workflow overview is summarized in Figure 1. Paired-end sequencing library preparation was performed according to manufacturer’s instructions and sequenced on an Illumina Hi-Seq2000 with reads aligned to Hg19 using Novoalign v2.07.11 and postalignment processing performed by picard tools. For WES, Varscan2, Somatic was used to separate tumor variants from patient-matched fibroblasts. ANNOVAR was used for variant annotation.14 Somatic and nonsynonymous variants were selected based on exclusion of variants in dbSNP, the 1000-genomes project, exome variant server, in-house exome database, and genes reported to be error prone in NGS analysis because of sequence repeats and high GC content.15

For targeted capture, Varscan2 and ANNOVAR were also used but the threshold on the minimum allele frequency for calling tumor variants was calibrated to account for the heterogeneity of tumor samples derived from PBMCs (supplemental Methods). Mpileup2cns was used for SNV and INDEL identification with $203 depth, $15 phred score, $6% minimum variant frequency, and read frequency #90% in either direction. Variants selected from WES and targeted capture data were validated by Sanger sequencing on original tumor and additional skin, lymph node, and tumor-derived cDNA samples from the same patients.

Mutational pattern analysis
Several types of mutational pattern analysis were conducted using custom in-house Perl scripts. These included proportions of different types of variant (synonymous, nonsynonymous), SNV base change patterns, and mutation context (motif) analysis upstream and downstream at 3 bp.

Identification of SNV drivers
Several parallel criteria were used to identify genes affected by SNVs. These included MutSigCV,16 the 20/20 rule17 (see supplemental Methods for details), and simple frequency filtering of $5% after removing genes previously identified as problematic.15 We also compared the list of candidate driver genes to those present in the network of cancer genes.18
Gene copy number analysis

Tumor-specific CNVs were identified through integrative analysis of discovery and targeted capture data generated using exome/targeted sequencing and SNP array technologies. Data from WES were analyzed by Encava v 2.2 in matched pairs. HumanOmni5Exome arrays were analyzed using OncoSNP, v1.4. Raw data (BAF and LRR) required for OncoSNP was extracted using Illumina Genome Studio software. Data from WES and SNP array were combined for final analysis (n = 16). Remaining prevalence samples (n = 91) were analyzed with ExomeDepth software using the targeted capture data and 32 healthy controls (Figure 1). This analysis was restricted to targeted capture genes (n = 549) but allowed deeper resolution. The genotype array data have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE80650 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80650).

Pathway analysis
To investigate for significant perturbations at the pathway level, we performed a gene set enrichment analysis on WES and TC SNVs (supplemental Methods) using the MsigDB repositories. Pathway-level perturbations were quantified using 2 inter-related metrics. One metric, “fraction of pathway genes mutated,” captures the proportion of pathway genes involved in nonsynonymous SNVs or indels across all patients. The second metric, “pathway perturbation frequency score,” captures how often each pathway is perturbed as a proportion of all samples (both uncorrected and corrected for pathway size), assuming perturbation occurs if at least one of the pathway’s genes is mutated.

Results

Whole-exome sequencing of CD4⁺-enriched cells and matched controls (discovery screen)

For 10 CD4⁺-enriched/control-matched DNA samples, we obtained depth ≥20 reads covering 82% to 95% of the target region across all samples, with a median of 91.12%. The most frequent type of variant effect (Figure 2A) was nonsynonymous (63%) followed by synonymous (26%) and stop-gain (3.5%). After filtering, we identified 824 somatic, nonsynonymous variants (750 genes; supplemental Table 2) from which we selected 549 genes for targeted capture analysis. Overall mutation rates for filtered somatic tumor variants were between 0.54 and 4.2 mutations per megabase with total nonsynonymous variants or indels across all patients. The second metric, “pathway perturbation frequency score,” captures how often each pathway is perturbed as a proportion of all samples (both uncorrected and corrected for pathway size), assuming perturbation occurs if at least one of the pathway’s genes is mutated.

Copy number analysis of WES sequence data from the discovery panel (Figure 3, outer track) reveals recurrent (>1) tumor-specific CNVs consisting of large (>1 MB) and focal (<1 MB) regions of amplification and deletion and confirmed using SNP array (Figure 3, inner track). Noticeably, 2 deleted regions on chromosomes 7 and 14 containing the γ and α TCR genes occurred in all samples, reflecting clonal TCR gene rearrangements.

Analysis of SNP array and WES CNV data confirms and extends previous findings in SS using array CGH and cytogenetic techniques, including large complex chromosomal abnormalities such as isochromosome 17q (loss of 17p >70% and gain of 17q >50% of tumor samples).26-28 and recurrent focal CNVs often affecting individual genes already subject to SNVs. Other frequently observed large CNVs were losses on 1p, 2p, 13p, and 10q, and gains on 8, consistent with previous reports.3,21 However, array data showed gains on chromosome 4 that were not observed in the WES data, although these have been previously reported in SS.21

Targeted capture sequencing of 101 SS samples from patients (prevalence screen)

In the targeted custom capture of 549 genes—depth was between 149 and 848 reads starting from the list of all variants in tumors—we filtered out those also present in the healthy control panel. To enrich for somatic variants, we further filtered out variants present in dbSNP, the 1000 Genomes Project, Exome Variant Server (National Heart, Lung, and Blood Institute Exome Sequencing Project), and our in-house exome database. We also filtered out variants in genes reported to be error-prone in NGS analysis because of sequence repeats and high GC content.15

From this list we focused on the final subgroup of nonsynonymous variants including Indels, stop gain/loss, splice variants, and indels, for a total of 1520 variants. There were between 2 and 93 variants per tumor, with a median of 13 variants per tumor (supplemental Table 3).

Analysis of CNVs in the targeted capture samples revealed a similar distribution of CNVs to the discovery WES samples. Overall, 453 of 549 genes in the targeted capture were affected by CNVs in at least 1 tumor (supplemental Table 4). Illustration of CNVs and mutations occurring in each gene are reported in Figure 4 and supplemental Figure 2.

Identification of potential driver genes

In view of the marked genomic heterogeneity, we applied different parallel criteria (supplemental Methods) to identify 21 potential driver genes based on SNVs and 42 genes based on high rates of CNVs (Figure 4; supplemental Tables 4 and 5).

We identified 51 genes with SNVs occurring in >5% of tumors. Analysis of all SNVs using MutSigCV16 confirmed that 5 of these 51 genes (DNMT3A, FAM47A, POT1, CAPDS, TP53) were mutated more often than expected by chance (q < 0.1) and all except FAM47A have been implicated as driver gene mutations in other cancer types. Two genes (PREX2 and PCLO) had MutSigCV values close to significance (q = 0.11). In this data set, ATM and both TP53 and DNMT3A identified with MutSigCV, have been previously defined as driver genes based on specific criteria applied to COSMIC and the Cancer Genome Atlas and functional validation. In contrast CSMD1, CSMD3, PCLO, and CNTNAP5 have been identified as likely false-positive cancer genes, although overexpression of CSMD3 has been associated with growth advantage in epithelial cells.30 Finally, correlation of these putative driver genes with data sets annotating candidate driver genes18 identified 21 genes as potential or established driver genes. Analysis of SNVs using the “20/20” rule3 identified 16 of these 21 genes (supplemental Table 5) as either potential oncogenes (5 genes including FAM47A, PLCG1, and GPR158) or tumor-suppressor genes (11 genes including POT1, ANK3, UNC13C, ATM, DNMT3A, and TP53).

The overall frequency of SNVs affecting these 21 potential driver genes in our prevalence data set ranged from 5.5% to 19% (6-21), with 7 mutated genes affecting >10% of tumors. These consisted of known
tumor suppressor genes TP53 and FAT3/FAT4 (upstream regulators of the Hpo pathway31) and putative oncogenes such as PLCG1,3,32 as well as GPR98, CADPS, and CACNA1C,33 whose potential functional role in cancer has yet to be established. Of these potential driver genes, 15 had identical recurrent variants, with 2 genes having more than one recurrent variant, namely GPR98 (2) and PLCG1 (5).

Two tumor samples were notable for having relatively few SNVs detected in the whole-exome study (supplemental Table 2). Both tumors had aberrations affecting only a few of our potential driver genes including identical variants reported in COSMICv71 namely POT1R127C, JAK3A573V, and PREX2 in one tumor and PREX2, DNMT3A, STAT5B,34 FAT4R3615W, and GPRC158R757C in the other tumor, suggesting that these gene mutations could be sufficient for tumor development.

We identified 42 genes with at least 1 SNV and CNVs affecting \textasciitilde10\% of tumors as additional potential driver genes. CNVs affected all 21 potential driver genes identified based on analysis of SNVs. We also identified a higher prevalence of aberrations (14\%–48\% of tumor samples) for other putative driver genes such as DNAH9, ENPP2, ELAVL2, RFX6, PDCD11, GPR158, PTPRK, PRKCA, BRCA2, TET1, RAD51C, and PREX2. Notably few tumor samples had SNVs affecting individual JAK and STAT genes, but overall 55\% of tumors had combined SNVs and CNVs affecting these genes including regulators of STAT3 such as SOC57.

Overall, 510 of 549 genes in our targeted capture had SNVs and/or CNVs affecting these genes including regulators of STAT3 such as SOC57.

Analysis of signaling pathways affected by SNVs

Our gene set enrichment analysis highlighted aberrations affecting numerous pathways involved in cell fate, cell survival, genome maintenance, and immune-related functions in both the TC and WES data sets (Figure 5; supplemental Figure 3). Notably, several pathways have SNVs affecting the same gene(s), specifically JAK5, STAT3, PLCG1, and TP53. This analysis showed enrichment for genetic aberrations involving many of the putative driver genes affecting pathways including homologous recombination (RAD51C, BRCA2, POLD1; 45\%) and DNA repair (ATM, TP53, BRCA2; 32\%).

Gene perturbations (SNVs and CNVs; supplemental Figure 4) were also grouped into families with related functions including DNA repair (at least 1 perturbation 64\%; >1 perturbation 36\%), global epigenetic regulation (at least 1 perturbation 42\%; >1 perturbation 14\%), and programmed cell death (at least 1 perturbation 64\%; >1 perturbation 37\%) in line with well-known hallmarks of cancer.37
between mutational load (including total SNVs and CNVs) and overall survival. Analysis of individual genes in the targeted capture data set identified 10 genes affected by SNV, CNV, or a combination of both, which were associated with a worse overall survival (supplemental Table 7). Only one of these 10 genes (RELN) was identified as a potential driver gene. However in view of lack of power, these results should be interpreted cautiously because the likelihood of chance occurrence is 1 in 5.

Validation of potential driver gene mutations

Sanger resequencing was performed on variants from 55 genes from the Discovery Panel (supplemental Table 8). A total of 97 of 101 variants were validated, consistent with other NGS cancer studies.48-52 Similar proportions of variants were successfully validated on the prevalence screen data (134/139). Highly recurrent gene mutations in the targeted capture analysis were also validated in multiple and different tissue samples (blood, lesional skin, and lymph node) from the same patients at diagnosis and at disease progression, further supporting their role as candidate drivers (supplemental Table 8). In contrast for those patients who achieved a complete clinical remission after reduced intensity allogeneic transplantation, we could not detect specific gene variants, identified in the diagnostic samples, in the post-transplant tissue samples consistent with the absence of the original T-cell clone and a complete molecular remission.

The presence of \(\text{POT}1^{R117C} \) and \(\text{ATM}^{G286S} \) variants were confirmed in additional blood and skin samples and at the transcriptional level in mRNA from enriched CD4\(^+\) tumor cells (Figure 6 and supplemental Table 8). Interestingly, for \(\text{POT}1^{R117C} \), predominant expression of the mutant was detected over the wild-type allele. This is likely attributable to LOH affecting the wild-type allele. This was confirmed by sequencing genomic DNA from the same CD4\(^+\)-enriched tumor cells, in which \(\text{POT}1^{R117C} \) was also predominantly detected (data not shown).
Figure 4.
likely drivers in other lymphomas17,53 and CTCL.3-5,7-9 These putative variants and CNVs predicted to be potential drivers. Speciﬁcally, they included such as ATM and POLD1, which are involved in genome maintenance.

Finally, we sought to identify variants from our study that had been detected and/or functionally validated in previous studies. Several such variants (Table 1) were identiﬁed including PLCG1 (S345F, S520F, D342N, 3,6,37-38 JAK3 (S573N), 4,4, STAT3 (Y640F, A408V, D342N, and POT1 (R117C, H208R, R114S, and POT1, respectively). These candidate driver genes from our study including PTPRK and FAT3 (as opposed to proven drivers such as TP53) have also been functionally validated based on analysis of different variants.18

Discussion

Our analysis of a large series of SS patient samples has identiﬁed novel variants and CNVs predicted to be potential drivers. Speciﬁcally, we found a high frequency of perturbations in POT1, ATM, and BRCA2, which are involved in genome maintenance. Dysregulation of genome maintenance processes may contribute to the high prevalence of malignancies. Functionally validated specific variants are indicated.

Several speciﬁc variants have been reported previously in CTCL and other malignancies. Functionally validated speciﬁc variants are indicated.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Variant</th>
<th>Functional validation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAK3</td>
<td>A573V</td>
<td>Yes</td>
<td>40, 41</td>
</tr>
<tr>
<td>STAT3</td>
<td>Y640F</td>
<td>Yes</td>
<td>42</td>
</tr>
<tr>
<td>STAT5B</td>
<td>Y665F</td>
<td>Yes</td>
<td>43, 44</td>
</tr>
<tr>
<td>STAT5B</td>
<td>N642H</td>
<td>Yes</td>
<td>43, 45, 46</td>
</tr>
<tr>
<td>STAT5B</td>
<td>E150Q</td>
<td>Yes</td>
<td>46</td>
</tr>
<tr>
<td>PLCG1</td>
<td>S345F</td>
<td>Yes</td>
<td>3-6, 8, 9, 13, 36, 37</td>
</tr>
<tr>
<td>PLCG1</td>
<td>S520F</td>
<td>Yes</td>
<td>4, 6, 8</td>
</tr>
<tr>
<td>PLCG1</td>
<td>E1324N</td>
<td>Yes</td>
<td>3, 37, 38</td>
</tr>
<tr>
<td>PLCG1</td>
<td>R48W</td>
<td>Not done</td>
<td>3, 4, 7, 13</td>
</tr>
<tr>
<td>PLCG1</td>
<td>E1636K</td>
<td>Not done</td>
<td>3, 4, 7, 8, 13</td>
</tr>
<tr>
<td>PLCG1</td>
<td>D1656S</td>
<td>Not done</td>
<td>4, 13</td>
</tr>
<tr>
<td>POT1</td>
<td>R117C</td>
<td>Yes</td>
<td>35</td>
</tr>
<tr>
<td>TP53</td>
<td>S127F</td>
<td>Yes</td>
<td>>10 papers</td>
</tr>
<tr>
<td>TP53</td>
<td>H208R</td>
<td>Not done</td>
<td>5</td>
</tr>
<tr>
<td>TP53</td>
<td>R37X</td>
<td>Not done</td>
<td>5</td>
</tr>
<tr>
<td>ATM</td>
<td>E2423K</td>
<td>Yes</td>
<td>39</td>
</tr>
<tr>
<td>CSMD1</td>
<td>A408F</td>
<td>Not done</td>
<td>4</td>
</tr>
<tr>
<td>ENPEP</td>
<td>V97L</td>
<td>Not done</td>
<td>7</td>
</tr>
<tr>
<td>LRPIB</td>
<td>R790Q</td>
<td>Not done</td>
<td>4</td>
</tr>
</tbody>
</table>

Several speciﬁc variants have been reported previously in CTCL and other malignancies. Functionally validated speciﬁc variants are indicated.

Overall, 40% of tumors had somatic mutations affecting genes involved in TCR/NF-kB signaling. We detected recurrent PLCG1 gene variants in 11 patients including several variants reported previously3-9,37 in MF and SS, as well as PTCL, ATLL, and ATL.13,36 The PLCG1 (S345F) variant has been shown to induce expression of both NFAT via IP3 activation and NF-kB via DAG activation of PKC signaling. This mutation is predicted to impair the auto-inhibitory function of PLCG1, which limits TCR signaling downstream of receptor ligation.8,35 In addition, a further recurrent variant (PLCG1 (P342L)) has been shown to increase inositol phosphate production in COS-7 cells.38 It is not yet clear whether the other recurrent PLCG1 variants identiﬁed affect this same catalytic function and whether these variants are sufﬁcient alone to enable constitutive TCR signaling without costimulatory signals, but recent studies in SS and ATLL have detected activating CD28 mutations and CTLA4-CD28 and ICOS-CD28 gene fusions.1,3,13 Although we did not detect abnormalities of CD28, key ﬁndings in our study included mutations of other TCR/NF-kB signaling genes, notably PRKCB (20% of cases) as well as NFATC2, NFkB1, and PAK7. PRKCB belongs to the PKC family of serine/threonine kinases, is highly expressed in T cells, and has a pivotal role downstream of PLCG1 in transducing TCR and costimulatory CD28 signals.13 In all but 2 cases, PRKCB aberrations were independent of PLCG1 mutations. In ATLL studies, mutations of PRKCB have been shown to disrupt the interplay of downstream activators of CARD11, leading to enhanced NF-kB activation.13 CARD113-5,7,8 activating mutations and PRKCB3,4 SNVs and CNVs have also been detected recently in SS.

Constitutive activation of NF-kB is described in CTCL.64,65 and recurrent gain-of-mutation affecting the TNFRSF1B gene in MF/SS have been shown to enhance noncanonical NF-kB signaling.5 In PTCL, the t(5;9)(q33:22) results in an ITK-SYK fusion kinase, which induces constitutive TCR activation,66 and LCK mutations have been documented in lymphoma.67 These ﬁndings now provide compelling support for the hypothesis that the survival of malignant T cells in

Figure 4. Genomic data of 549 genes from 101 Sézary tumors identiﬁes candidate driver genes. Heat map showing all genes (y-axis) and all tumors (x-axis) (left); pathways identiﬁed as frequently perturbed are aligned below the main panel (bottom). The color code represents the percentage of mutually perturbed genes in each tumor sample for each pathway. Candidate driver genes showing high frequencies of SNVs (top right), frequently deleted genes (middle right), and frequently ampliﬁed genes (bottom right) are subsetted from the main panel.
SS and other mature T-cell lymphomas is at least partly dependent on TCR and NF-κB signaling: In mature T-cell lymphomas such as SS, selection for activating mutations of PLCG1, PRKCQ, PREX2, and CARD11 is likely to enhance cell survival if accompanied by appropriate costimulatory signals and resistance to TNFRSF-mediated apoptosis.68-72

Although we did not detect a high frequency of SNVs affecting individual JAK STAT genes, the presence of activating JAK1/3, STAT3, and STAT5A/B mutations and copy number gains of 17q including STAT3 and STAT5 could explain constitutive STAT3 activation in some cases of SS.63,65,73-75 STAT5B mutations have recently been described in γδ T-cell lymphomas10 and JAK/STAT mutations have

Figure 5. Gene-set enrichment analysis identifies key pathways. Highly perturbed pathways from the KEGG and BIOCARTA repositories were grouped according to related functions. The proportion of tumors showing perturbations in a given pathway is shown in green. Proportion of genes in each pathway with a perturbation across all affected tumors is shown in red bar. Pathway perturbation frequency score (blue bar) shows how often a pathway is perturbed but taken in consideration of the pathway size.
now been documented in other extranodal and nodal T-cell lymphomas including SS. Recent studies have also shown that constitutive STAT3 expression in ALCL can be the result of gene fusions. Previously we reported constitutive STAT3 protein expression in 10 patients with SS, all of whom were included in this study. Overall, 6 of these cases showed copy number gains but no SNVs of JAKs, STAT3, or SOCS7, suggesting that other upstream events can lead to aberrant STAT3 signaling in SS. There is growing interest in the role of GPCRs in malignancy, and one, SIPR1, is involved in noncanonical activation of JAK STAT signaling in lymphoid cells via PI3K signaling. Whether other GPCRs are implicated in JAK STAT signaling is unclear, but SNVs affecting 2 GPCRs (98, 158) were detected in 30% of tumors. One variant (GPR158R757C) has been reported in COSMIC, and recent studies in ATLL also detected a high prevalence of GPCR aberrations including SNVs affecting GPR183.

Overall, 40% of tumors had either SNVs and/or CNVs affecting genes involved in epigenetic regulation including ASLX3, TET1, TET2, and DNMT3A, which have been described in myeloid malignancies and lymphomas. These include inactivating mutations of TET1/2, ASLX3, and DNMT3A, which have a role in DNA methylation, and IDH2 mutations affecting histone methylation in AITL. Both histone acetylation and methylation are known to be critical for T-cell differentiation and memory. Loss of epigenetic regulation in SS is reflected by promoter hypermethylation of multiple genes and clinical responses to HDAC inhibitors such as Romidepsin. In addition, recent studies in both CTCL and PTCL have shown mutations of ARID1A/B involved in chromatin remodeling. These findings suggest that chromatin modification plays a key role in malignant transformation of mature T cells as recently described for B-cell non-Hodgkin lymphoma.

Analysis of our data sets revealed that 42% of the C>T variants occurred at NpCpG sites, which could be consistent with at least 5 of 21 recently described signatures including age-related deamination of methylated cytosines. Although UV-specific TP53 mutations (CC>TT transversions at pyrimidine sites) have been described previously in MF, we only detected very rare CC-TT transversions in SS. MF is considered to be derived from skin resident memory T cells, which may be exposed to environmental UV, and MF patients are often treated with phototherapy. In contrast, SS is thought to derive from central memory T cells. Further studies of larger data sets are required to define the mutational signatures associated with SS and other CTCL variants including MF.

In conclusion, our findings illustrate that the genomic landscape of SS is markedly heterogeneous. We suggest that the high prevalence of perturbations in genes maintaining genome integrity is a likely cause of the loss of genome stability in SS. Further, there is selection for gene mutations/structural variation contributing to deregulation of key pathways regulating T-cell homeostasis, cell survival, and global epigenetic processes. These findings provide the basis for detailed functional analyses to define novel therapeutic targets for CTCL.

Acknowledgments

This research was supported by grants from The British Skin Foundation, Skin Tumour Unit Fund 461, Guy’s and St Thomas’ Charity, and the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London.
The views expressed are those of the authors and not necessarily those of the NIH, the NIHR or the Department of Health. C.F., R.M.B., and R.T. were supported by the King’s Bioscience Institute and the Guy’s and St Thomas’ Charity Prize Programme in Biomedical and Translational Science.

Authorship

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Tracey J. Mitchell, St John’s Institute of Dermatology, Division of Genetics and Molecular Medicine, Tower Wing, King’s College London, London SE1 9RT, United Kingdom; e-mail: tracey.mitchell@kcl.ac.uk.

References

Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome

5.3 Additional figures for chapter 5

Figure 5.1. Heatmap of tumours affected by perturbations in gene families.

DNA Repair and Maintenance (Top): 64% of Tumours are affected by a perturbation in at least 1 of these genes and 36% have perturbations in more than 1 of these genes. **Global Epigenetic Regulators (Middle):** 42% of Tumours are affected by a perturbation in at least 1 of these genes and 14% have perturbations in more than 1 of these genes. **Programmed Cell Death (Bottom):** 64% of Tumours are affected by a perturbation in at least 1 of these genes and 37% have perturbations in more than 1 of these genes.
Figure 5.2. Summary heatmap showing targeted capture gene alterations.

This was a preliminary alternative heatmap figure that was produced as a summary of the data produced in this chapter. An alternative version produced by the BRC was chosen for inclusion in the manuscript.
6 Discussion

6.1 Focal deletions of 9p21 in CTCL

In CTCL several previous studies have demonstrated loss of the broader region of 9p21 including $CDKN2A$, $CDKN2B$ and $MTAP$ (22, 23, 27, 127). In addition recent NGS studies have confirmed with higher resolution that focal deletions in this region are very common (16, 49), but whilst the majority of losses cover $MTAP$ and $CDKN2A$ and $CDKN2B$ the lost regions can vary considerably in size and position. Two important aspects of these NGS studies is that (a) they focus on advanced stage disease and (b) derive tumour samples exclusively from circulating blood making it currently unfeasible to contrast differences in tumour sub compartments such as skin. A novel finding of this study is that it shows that $MTAP$ is often lost as an earlier event in MF, preceding the loss of $CDKN2A$. The SS skin tumour sub compartment also shows a propensity for independent $MTAP$ loss on 9p21, although the reason for this remains unclear. Four independent QPCR probes (two on $MTAP$ and two on $CDKN2A$) were used to identify copy number variations across 9p21 and the pattern of loss was in many cases consistent with the presence of several small focal deletions being present across the region. Data from the next generation sequencing study was able to validate the QPCR methodology as 31 overlapping samples were shared by both studies. These samples were used to reassess copy number variation and the synteny between both datasets was over 90%. When this study was designed the available DNA samples of early MF tumours were not of sufficient purity or quantity to undergo NGS, it would have been of tremendous benefit to validate $MTAP$ loss as an early event in MF. Two cases were selected for microdissection and subsequent QPCR of the higher purity micro-dissected tumour DNA which allowed more specific interrogation of MF tumour tissue. This experiment served as a further validation to the original QPCR results. Recent advancements in laser capture microdissection and advancements in NGS library preparation would now make NGS studies of early MF very feasible.
One curious outcome of the *MTAP* CN study was the apparent difference in independent *MTAP* CN loss between the SS blood and SS skin compartments. It is conceivable that the reason for this may be related to tumour subclone selection pressure being different in the tumour microenvironment of the skin compared to the microenvironment of the circulating blood.

Gene expression analysis of *MTAP* was concordant with *MTAP* gene loss but loss of *MTAP* expression also seemed to be occurring in samples where loss of *MTAP* CN was not detected. One limitation of this study is that we were not able to validate the promoter hypermethylation hypothesis in patient samples where *MTAP* gene CN was normal but *MTAP* expression was reduced. The reason for this was that the DNA samples available which were used in the gene CN study were predominantly legacy samples extracted from PBMCs and therefore were not pure tumour DNA. This would have made it challenging to detect *MTAP* promoter methylation differences between patient and healthy control samples using bisulphite sequencing as PBMCs are a mixed population of cells. Any differences would not be able to robustly attributed to tumour cells and any signal that may have been present would have been weakened by the presence of other (non-tumour) cell types in the DNA sample. It would be interesting to investigate *MTAP* promoter hypermethylation using bisulphite sequencing in a new cohort with DNA and RNA extracted from CD4+ enriched tumour samples.

6.2 The effects of *MTAP* loss on type I PRMT activity

Part of the work contributing to this thesis has shown that *MTAP* is lost as an early event in CTCL. Several previous studies suggest that *MTAP* may act as a tumour suppressor (141, 253, 324). However, questions remain about the possible mechanisms by which *MTAP* may be contributing to tumourigenesis in CTCL.

Evidence largely points to a build-up of *MTAP*’s known substrate, MTA, as playing the main role (141, 144, 242). There has been a study suggesting there is at least one other as yet unknown mechanism that *MTAP* may act via which differs to its enzymatic function (272).
However, the majority of evidence hints that MTA accumulation is the primary tumourigenic driver. Downstream of MTA, processes that may be disrupted include the conversion of putrescine into spermidine (141). Spermidine itself promotes autophagy (136) by inhibiting acetyltransferase EP300 (325). Autophagy is an important part of cellular homeostasis and under certain circumstances acts as a backup to apoptosis (113, 133, 136). The long term effects of reduced or partially compromised homeostatic functions such as autophagy are not well understood but there is suggestion that it may create an environment that is conducive to the acquisition of further tumorigenic advantages (326, 327). It is also conceivable that loss of MTAP may indirectly prevent autophagy induced programmed cell death, which alone may be a minor contribution to tumourigenesis but amongst a plethora of other damaging events could prove significant.

The accumulation of MTA is also known to inhibit PRMT enzymes such as PRMT1 (267). This has been shown to prevent the deactivation of STAT1 and lead to overactive JAK/STAT signalling (267). Furthermore, in melanoma asymmetric and symmetric dimethyl-arginine methylation was shown to correlate with loss of MTAP and increased MTA (270). This justifies similar investigation in other cancers including CTCL.

As part of this thesis it has been demonstrated that all PRMT family members except PRMT8 are expressed in the CTCL cell line SeAx. However, this cell line was difficult to transfect making downstream experiments challenging. As proof of principle the HEK293 cell line was chosen to assay the effects of MTAP loss on asymmetrically dimethylated-arginine. This cell line was also shown to express all PRMTs except PRMT8. Reduced MTAP expression was successfully demonstrated in HEK293s transfected with MTAP siRNAs at the mRNA level compared to untransfected HEK293s or HEK293s transfected with scrambled siRNAs. One preliminary experiment also showed reduced MTAP expression at the protein level though this would require further demonstration to confirm. The same western blot assay also seemed to show subtle suggestions of reduced asymmetrically dimethylated-arginine levels on at least 5
proteins ranging in size from 40KDa to 150KDa, though again this experiment was only performed once and lacked a clear signal. This would need to be repeated to draw any conclusion from. This indicates that reduced MTAP expression may affect type I PRMT activity although which of the type I PRMTs are affected is not yet known. It is thought that PRMT1 has the highest activity of the PRMT type I family (266) but the other type I PRMTs; 3, 4 and 6 are also plausible candidates for inhibition by MTA and their inhibition may also be contributing to reduced asymmetrically dimethylated arginine. The PRMT family have already been shown to regulate STAT1 (267) but other STATs such as STAT3 may be affected by PRMT1 or other PRMTs. The STAT family have been shown to have a selective pressure targeting them in SS by mutation and copy number variation. This has been demonstrated as part of the NGS study contributing to this thesis and by others previously (50, 90). Therefore, establishing other mechanisms by which abrogated STAT signalling could occur in CTCL is of significant interest. This work has suggested that several type I PRMT targets may be affected by reduced MTAP expression so further experiments may be able to confirm this. If successful, then identifying them could help identify further pathways where loss of MTAP may have functional consequences.

6.3 High throughput screening for putative driver genes in CTCL

It is well established that high genomic instability is a consistent feature of CTCL. Recent NGS studies (16, 28, 29, 49-51) strongly support and extend the previous lower resolution and array based studies however the underlying cause of genomic instability associated with this malignancy has remained elusive. Establishing the cause of genomic instability is likely to pay dividends for both scientific and clinical purposes. A major novel finding of this study is that the screen highlighted a large proportion of tumours as having perturbations in genes involved in genome maintenance which now warrant functional investigation.

Global epigenetic regulators were also significantly affected by aberrations and this study confirms several genes of this class previously reported in CTCL including DNMT3A, SETDB1
and the TET family (50). Global epigenetic regulators not previously reported in CTCL but highlighted by this study include ASXL3 and KDM6A, which were perturbed in 8% and 6% of tumours respectively. The ASXL family are polycomb group proteins involved in maintaining transcriptional repression of developmental genes. They have been reported in other cancers including ASXL3 in melanoma and ASXL2 in ATLL (328). The histone modifier KDM6A catalyses the demethylation of tri/dimethylated histone H3 and has been reported as altered by several mutation types in 24% of bladder cancers (329).

Loss of apoptotic regulatory machinery is a hallmark feature of all cancers so it is not unexpected that SS tumours share this feature. This study confirms loss of several previously reported apoptotic regulators including ATM and TP53 (16, 49, 51). In addition, several further candidates that may impact programmed cell death processes were identified including; PDCD11 (also known as ALG4) in 35% of tumours and TRPM3 in 11% of tumours. The majority of defects in PDCD11 identified in this study were loss or deletion. The FAS cell death pathway is known to be activated by upregulation of PDCD11 (330) so loss is likely to have a significant effect on apoptotic activation via this pathway. TRPM3 is known to play a major role in the regulation of oncogenic autophagy in clear cell renal cell carcinoma (331). Whilst a specific role for autophagy in CTCL is currently unclear, defects in autophagy are emerging to have key roles in cancers and are intricately linked to programmed cell death (138). In addition the histone deacetylase inhibitor vorinostat, is thought to partially act by attenuating oncogenic autophagy (139, 140) offering the possibility of more targeted therapy to patients identified as having defective autophagy components.

Another signal transduction pathway related to proliferation that showed numerous mutations in this study is the MAP-Kinase network, with 53% of tumours showing defects in at least one of 14 genes listed in the KEGG MAPK gene list. Other NGS studies have also reported defects in MAP-kinase downstream components including MAPK1 (51) and upstream components such
as PI3K members (29). The MAPK pathways are arguably the most well studied pathways in cancer biology so it perhaps comes as no surprise to find they are disrupted in CTCL.

Given the diversity of SNVs and CNVs identified by this study and others and the insight gained from these studies that CTCLs are largely driven by alterations at the pathway level; a potential improvement to this study could have been to increase the size of the discovery cohort. If the discovery cohort were larger, then the number of true driver genes included in the targeted capture would also have been larger and we may have covered a higher percentage of genes in the key pathways identified.

As we move into an era of personalized genomic medicine we will begin to diagnose and treat malignancies based more on genetic events and their consequences for specific molecular pathways, rather than traditional criteria such as tissue of origin and morphological or histological features. Therefore, characterising the many facets of genomic variation in CTCL and other cancers will become increasingly important and continue to grow over the coming years. Extensive genomic screens are the first important milestones that must be undertaken for cancer studies in the genomic era.

7 Conclusions

The work produced through the course of this thesis has identified putative driver genes of CTCL using two different approaches. Firstly, the 9p21 candidate region was analysed in detail using several methods. This work highlights that MTAP loss often occurs as an early event prior to the loss of the more established driver gene CDKN2A, on 9p21. This suggests that MTAP is under selective loss and may therefore act as a tumour suppressor gene. Secondly, a larger number of putative driver genes were identified using a high throughput next generation sequencing approach. Many candidates identified by this approach are known to play important roles in other malignancies but have been highlighted for the first time as potential
driver genes of CTCL. The identification of multiple candidate driver genes supports the hypothesis that a variety of different driver events underlie CTCL.

Both approaches used in this thesis are in concordance with the established knowledge that genetic events in CTCLs are highly variable and support the hypothesis of this thesis. However, the high throughput screen has hinted at a possible explanation as to why. The screen identified two groups of genes which may drive this variability. The first is the identification of genetic events occurring in genes that maintain genome integrity, particularly genes that facilitate double stranded break repair. Without adequate maintenance of the genome it is easily envisaged that mutations, copy number changes and structural variants such as 9p21 loss and isochromosome 17 would accumulate over several cell divisions. Those alterations that convey an advantage to the tumour, namely those that contribute to the hallmarks of cancer (68, 69) are maintained in the lineage in a manner akin to Darwinian natural selection. The 9p21 region has been highlighted by numerous previous studies as one such region (16, 22, 23, 27, 49, 127), and is thought to be particularly susceptible to deleterious DSB repair events (332) which may explain why 9p21 often undergoes loss in a malignancy highly affected by loss of DSB repair genes.

An interesting feature of SS shown by the whole exome data is the existence of significant parts of the genome where loss of heterozygousity (LOH) events have occurred. The existence of numerous LOH regions supports the model that SS tumours lose the ability to accurately repair DSB events. Moreover, the presence of numerous LOH regions could also indicate that DSB events are taking place in SS tumours more regularly than in other cells. It is conceivable that this is linked to a high rate of cell division as is the case in many cancers but the presence of LOH events is intriguing and justifies further research into DSB events and the related genes in SS and other CTCLs.

The INK and ARF cell cycle regulators transcribed by CDKN2A and CDKN2B are by far the most obvious tumour suppressors on 9p21 and this has perhaps overshadowed the potential role of
MTAP. As a metabolic gene in close proximity on the loci it could easily be viewed as coincidentally deleted as part of a larger deletion (243, 333). Contrary to expectations, MTAP appears to be deleted as an early stage event in CTCL and at a higher frequency than CDKN2A in MF and SS skin. This implication of these findings is that there is selective pressure for CTCL tumours to lose MTAP at an early stage in development prior to a selective loss of CDKN2A. One further insightful perspective is that selective loss of MTAP may have been overlooked by a broad genomic screen. This demonstrates a niche for candidate gene based studies to build on initial screens.

A common thread that emerges through this thesis is the selection for epigenetic mechanisms of gene silencing by the tumour. The high throughput screen identified numerous genes that had undergone CNVs and/or mutations with key roles in altering the epigenetic landscape of the cell. Novel genes identified include ASXL3 and KDM6A, whilst others previously reported include DNMT3A and the TET family. On 9p21 the MTAP gene is silenced by several mechanisms; whilst CNVs are very common, repression also occurs by other mechanisms. No mutations were detected in MTAP implicating epigenetic mechanisms as a possible cause. The cell line work performed as part of this study indicates that DNA methylation could be a possible mechanism of MTAP silencing in CTCL tumours and the identification of loss of DNMT3A in several NGS studies including this one could possibly facilitate hypermethylation of the MTAP promoter. Additional promotar methylation studies of MTAP would also be required, ideally in enriched CD4+ tumour samples from patient samples to confirm this hypothesis and support the cell line studies conducted in chapter 3. However, the possibility of other epigenetic silencing mechanisms such as histone modifications driving MTAP repression cannot be excluded at this stage. Changes to global histone modification genes ASXL3 and KDM6A, identified during the course of this thesis, open the possibility that changes to local histone structure may underlie repression of MTAP as well as numerous other genes that may not be detected in any genomic screen. This perspective gives insight into a whole alternative class of driver genes known as epigenetic driver genes (334) which may be of particular
importance to CTCL given that we detected 42% of tumours with aberrations in global epigenetic regulatory genes, and similarly high proportions were also detected by others (50). The identification of multiple candidate driver genes affecting global epigenetic regulation supports the hypothesis that different driver genes may contribute to disruption in the same gene regulatory networks.

7.1 Future work

The findings of this thesis have identified several areas that could be further investigated. The first study has identified MTAP as a candidate tumour suppressor and it would be highly pertinent to identify possible mechanisms of how MTAP may act as a tumour suppressor. The key aim here would be to identify further downstream targets that may be therapeutically exploitable. Preliminary work has shown that loss of MTAP may affect type I PRMT activity. Which type I PRMTs specifically may be affected by loss of MTAP has yet to be confirmed. Furthermore, an evaluation of type II PRMTs would be of great interest, as this subgroup may also be affected by loss of MTAP in CTCL. It would also be of significant interest to identify specific targets downstream of PRMTs that are affected by reduced MTAP expression. These studies could be extended to more appropriate models such as cells from primary tumours that show loss of MTAP copy number or gene expression. This would help to establish if the pattern of reduced PRMT activity occurs in primary tumour cells, rather than relying on in-vitro manipulated cell lines and potentially identify therapeutic targets which are currently undiscovered.

One important general consideration for future NGS studies is that gene expression data is an invaluable accompaniment to genomic data and would ideally accompany genomic datasets wherever possible in the form of transcriptomic data. This adds a level of robustness to any genomic screen as it would serve to validate copy number changes, small indels and stopgains in genes that may be associated with changes in gene expression and thus identify genes that are haplosufficient or haploinsufficient. In the absence of readily obtainable sample material,
as can be the case with many diseases, candidate gene based RT-QPCR is the next best alternative.

The other major arm of investigation in this thesis surrounds the considerable amount of genomic data that has now been collected on late stage CTCL. Future studies should focus on defining the roles of pathways and individual candidate driver genes using loss and gain of function experiments. Future NGS studies should also attempt to focus on early stage disease as the technical challenges associated with it are now surmountable and early putative drivers have not yet been identified. A comprehensive understanding the role of these will likely form a crucial part of early intervention strategies. Histological sections of early stage CTCL could undergo laser capture microdissection to extract DNA from enriched early stage tumour cells. Antibodies that target CD4+ cells could be used and stained cells from histological features such as Pautrier microabsesses could be laser captured to yield enriched DNA from early stage tumours. Library prep methods for NGS have developed considerably since the initial studies in this thesis were undertaken and sequencing can now be efficiently performed on samples with as little as 20ng of DNA.

One group of genes identified as putative drivers in this thesis and by others (50) is the master epigenetic regulators. This group of genes is likely to affect transcription across significant parts of the genome by targeting the regulation of genes which are not affected by SNVs or CNVs. This subgroup of downstream targets are known as epigenetic driver genes (159, 335) and cannot be identified by genomic screening. Further work addressing their roles in mature T-cells could highlight important targets for therapeutic intervention. One approach could be to use a Chip-Seq approach in T-cells to identify regions targeted by master epigenomic regulators, specifically to identify regions that are differentially regulated in CTCL tumour cells compared to healthy control T-cells. The first step could involve checking transcript levels of master epigenomic regulators using simple QPCR, ideally followed by assays at the protein level. The next step would be to Chip-seq candidates that show the highest expression change.
This approach could be used to identify genes, that may be therapeutically targetable, that would not be identified by genomic screening. In addition, this approach could be combined to identify genes that are targeted by both epigenetic changes; and genes that had been previously identified as putative drivers by NGS genomic screens. Identifying genes that are targeted by two (or more) different selective pressures such as CNVs and epigenetic alterations strongly increases the likelihood of that gene being a bona fide driver gene. This has been shown to be the case for MTAP in this thesis.

7.2 Concluding remarks

Before this thesis MTAP was known to be lost in CTCL but it was not known that MTAP loss frequently occurred independently of CDKN2A. It is also a novel finding that additional mechanisms of gene silencing act to suppress MTAP expression in CTCL. A selective loss of MTAP, by copy number loss and as well as by epigenetic mechanisms, supports the hypothesis that MTAP acts as a tumour suppressor in CTCL. Evidence from other tumour types regarding MTAP loss adds further weight to this view. Prior to the NGS study produced as part of this thesis it was widely known that genomic instability was a key feature of CTCLs. However, the underlying cause of this instability remains elusive. This study is the first to propose that genomic instability is acquired in CTCL tumours because genes involved in genome maintenance are highly perturbed. This study is also the first to highlight this in CTCL at the level of gene families and networks rather than at the level of individual driver genes.

A gene network orientated view must be taken to comprehend the constellation of SNVs and CNVs and integrate our understanding of focal deletions on 9p21 and other perturbation in SS. Genomic perturbations in CTCL, as in many cancers, undoubtedly encompasses numerous passengers as well as driver events. But despite the range of genetic events and lack of consistency at the level of individual genes, patterns begin to emerge when a molecular pathway or network is viewed as a functional unit rather than genes in isolation. This is highly
evident in this thesis as multiple components involved in genome maintenance, global epigenetic regulators and pathways that regulate growth and cell fate are perturbed in significant proportions of SS tumours. Broad challenges remain in cancer genomics with regards to standardising; (i) sample collection and processing, (ii) data generation, and (iii) analysis techniques. Applying a consistent approach as well as integrating genomic, transcriptomic and proteomic data in a systems biology approach will likely deliver the most efficient benefit in the long term to both patients and the research community.
8 References

128

133

146. Festjens N, Vanden Bergh T, Cornelis S, Vandenabeele P. RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death and Differentiation. 2007;14(3):400-10.

142