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SUMMARY

Regulatory T cells (Tregs) play a pivotal role in
maintaining immunological tolerance, but they
can also play a detrimental role by preventing
antitumor responses. Here, we characterized
T helper (Th)-like Treg subsets to further delineate
their biological function and tissue distribution,
focusing on their possible contribution to disease
states. RNA sequencing and functional assays
revealed that Th2-like Tregs displayed higher
viability and autocrine interleukin-2 (IL-2)-medi-
ated activation than other subsets. Th2-like Tregs
were preferentially found in tissues rather than
circulation and exhibited the highest migratory
capacity toward chemokines enriched at tumor
sites. These cellular responses led us to hypothe-
size that this subset could play a role in main-
taining a tumorigenic environment. Concurrently,
Th2-like Tregs were enriched speci�cally in malig-
nant tissues from patients with melanoma and
colorectal cancer compared to healthy tissue.
Overall, our results suggest that Th2-like Tregs
may contribute to a tumorigenic environment
due to their increased cell survival, higher migra-
tory capacity, and selective T-effector suppressive
ability.
This is an open access article und
INTRODUCTION

Regulatory T cells (Tregs) are a subpopulation of T cells that elicit
regulatory function by establishing and maintaining immunolog-
ical tolerance and regulating immune homeostasis (Rosenblum
et al., 2016; Sakaguchi et al., 2008). In humans, Tregs contribute
to 5%�10% of peripheral CD4+ T cells and are highly heteroge-
neous. In the peripheral circulation, the Treg population is
composed of thymic-derived Tregs and Tregs that are induced
in the periphery following T cell receptor (TCR) stimulation in a
speci�c cytokine microenvironment (Povoleri et al., 2013). Hu-
man Tregs are characterized by the constitutive expression of
the interleukin-2 (IL-2) receptor a chain (CD25) and the tran-
scription factor FoxP3, although the same markers are also ex-
pressed on activated and antigen experienced non-regulatory
effector T cells (Teffs) (Ziegler, 2007). Furthermore, due to its
intracellular expression, FoxP3 cannot be used for the isolation
of Tregs. Thus far, the identi�cation and isolation of Tregs in pe-
ripheral blood has been based on the low expression of the IL-7
receptor a chain (CD127) (Hartigan-O�Connor et al., 2007), as
there is an inverse correlation between CD127 and FoxP3, with
the most suppressive Tregs expressing low levels of CD127
(Liu et al., 2006). Thus, using a combination of CD4, CD127,
and CD25, it is possible to identify and isolate highly pure Tregs.
In 2009, Miyara et al. (2009) further categorized Tregs based on
the expression of CD4, CD25, FoxP3, and CD45RA. Later, Du-
hen et al. (2012) described new subpopulations of memory Tregs
mirroring the classical CD4+ T helper (Th) cells. These new sub-
populations, coined Th-like Tregs, express chemokine receptors
Cell Reports 20, 757�770, July 18, 2017 ª 2017 The Authors. 757
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CXCR3, CCR6, and CCR4, typically expressed by T-bet+-Th1,
RORgt+-Th17, and GATA3+-Th2, respectively. The shared hom-
ing receptor distribution causes the appropriate co-localization
of cell populations in peripheral tissue (Duhen et al., 2012;
Erhardt et al., 2011). CCR4 mediates the migration of Tregs to
its ligands, CCL17 and CCL22, which are produced by dendritic
cells upon maturation, thereby playing a key role in recruiting
Tregs into lymphoid tissue (Gobert et al., 2009; Perros et al.,
2009). CXCR3 mediates migration to its ligand CXCL10 and
may facilitate the recruitment of Tregs into chronically in�amed
liver, as liver-in�ltrating Tregs expressed higher levels of the
receptor than peripheral blood Tregs (Oo et al., 2010). The
expression of CCL20, the ligand for CCR6, is induced by IL-17
and secreted by Th17 cells during in�ammation and coordinates
the migration of Th17 and Tregs to in�ammatory sites (Yamazaki
et al., 2008). Understanding how chemokines and their cognate
receptor orchestrate T cell traf�cking and activity is essential
in gaining a better interpretation of their role and distribution in
health or disease.

A plethora of studies have focused on the role of Tregs in can-
cer. These regulatory cells can protect and maintain the malig-
nant environment by inhibiting the antitumor immune response
(Sugiyama et al., 2013; Zhu et al., 2016). In this pathology, Th1
responses allow secretion of cytokines that promote the anti-
tumor response (Page‘ s et al., 2005), whereas Th2 responses
favor tumor growth (Hou et al., 2013; Pernot et al., 2014). Th2
responses have been correlated with cancer progression in pa-
tients with pancreatic cancer (De Monte et al., 2011; Ochi et al.,
2012), leukemic cutaneous T cell lymphoma (Guenova et al.,
2013), esophageal and gastric cancer (Gabitass et al., 2011),
and ovarian cancer (Lutgendorf et al., 2008). The role of Th17
cells in cancer remains controversial (Bailey et al., 2014). Th17
cells are classically pro-in�ammatory, but studies have shown
that Foxp3+IL17+ T cells detected in colorectal cancer have the
ability to suppress tumor-speci�c CD8+ T cells (Ma and Dong,
2011) and promote the development of cancer-initiating cells
(Yang et al., 2011).

In this study, we investigated the immune transcriptome,
phenotype, functional responses, and distribution of Th-like
Tregs. Our results revealed that Th2-like Tregs were the subset
with the highest viability, blasting capacity, and chemotaxis
and the widest tissue distribution. Furthermore, they were also
the main Treg subset found in tissues and peripheral blood
from patients with colorectal cancer and melanoma compared
to healthy volunteers. Overall, our data indicate that Th2-like
Tregs represent the main Treg population involved in cancer
immunology.

RESULTS

Identification of Th-like Treg Subsets Based on the
Expression of CXCR3, CCR4, and CCR6
Circulating peripheral blood mononuclear cells (PBMCs)
were used to identify Th-like Treg lineages, as they contain
functional representations of Th-like cells from all tissues
(Wong et al., 2016). Total Tregs were classi�ed as CD4+CD25hi

CD127low cells, and the proportion of naive and memory Tregs
was based on the expression of CD45RA (Figure 1A). Using a
758 Cell Reports 20, 757�770, July 18, 2017
novel gating strategy based on CXCR3 and CCR6 expression
on CCR4+ cells, we evaluated the presence of these markers
in naive and memory Tregs. The majority of naive cells were
CCR4�CXCR3�CCR6� (Figure S1A). In contrast, the clear ma-
jority of memory Tregs were CCR4+, with substantial but differ-
ential expression of CXCR3 and CCR6. The expression of
these three chemokine receptors allowed the identi�cation of
four Th-like lineage subsets in circulation (Figure 1A). We
then analyzed FoxP3 expression among these Th-like Treg
subsets, and as expected, each subset had a higher frequency
and median �uorescence intensity (MFI) than Teffs (Figures 1B
and S1B). Furthermore, Th2-like Tregs exhibited the lowest
FoxP3 MFI, whereas Th1/17-like Tregs expressed the highest
(Figure S1C). Of note, the expression of CD25 and CCR4 did
not follow the same pattern of expression as FoxP3 (Figures
S1D and S1E). Following targeted RNA-sequencing (RNA-
seq) on activated Th-like Treg subsets (in the absence of exog-
enous IL-2), principal-component analysis indicated Th2-like
Tregs cluster separate from the other three Treg subpopula-
tions, independent of donor variability (Figure 1C). Thus, for
subsequent analysis, Th2-like Tregs were used as the compar-
ator group. Differential gene expression analysis (Figure 1D) re-
vealed an enrichment of corresponding Th-like genes in each
subset and a combination of Th1 and Th17-related genes
in Th1/17 Tregs (Figure 1E; Table S1). Gata-3, RORgt, and
T-bet expression was then con�rmed by protein expression
(Figures 1F and S2A). Lastly, cytokine production was
measured in supernatants of activated Th-like Tregs (Fig-
ure 1G). In line with the gene expression analysis, Th2-like
Tregs produced signi�cantly higher levels of IL-4, IL-5, and
IL-13 than other Th-like subsets (Figure 1G). In addition to clas-
sical Th2-cytokines, Th2-like Tregs also produced more IL-2
than other subsets (Figure 1G). Higher production of IL-17A
and IL-17F was observed in Th17-like Tregs, and higher pro-
duction of interferon-g (IFN-g) was observed in Th1-like Tregs.
Intermediate production of IL-17A and IFN-g was observed in
Th1/17 Tregs (Figure 1G). The production of cytokines was
consistently and signi�cantly lower in Th-like Tregs than in their
Teff counterparts (Figure S2B). Thus, expression of CXCR3,
CCR4, and CCR6 allowed us to de�ne four Th-like Tregs in
peripheral blood, which matched de�ning cytokines and tran-
scription factors of their respective lineages.

Th2-like Tregs Exhibit the Highest Viability and
Cytokine-Mediated Activation
FoxP3 has been shown to be a pro-apoptotic factor in devel-
oping Tregs in the absence of common gamma chain (gc)-
dependent cytokine signals (Tai et al., 2013). Since Th2-like
Tregs secreted higher levels of gc-dependent cytokine and
exhibited the lowest FoxP3 MFI, we evaluated viability and
cell activation after TCR engagement. After 3 days, viable,
apoptotic, dead, and blasting cells were identi�ed (Figure S3A).
Th2-like Tregs showed the highest survival and blasting capac-
ity (Figure 2A) as well as the lowest percentages of combined
apoptotic and dead cells (Figure 2B). We next evaluated the ef-
fect of cytokines on the viability and blasting of Th-like Treg
subsets, observing that IL-2 neutralization signi�cantly reduced
the blasting of Th2-like Tregs (Figure 2C), without affecting



Figure 1. Identification of Four Th-like Tregs Based on CXCR3, CCR4, and CCR6 Expression
(A) CCR4, CXCR3, and CCR6 expression was analyzed in memory CD4+CD25hiCD127lowCD45RA� Tregs. Four Th-like lineages were identi�ed in the circulation:
Th2, Th17, Th1, and Th1/17-like Tregs.
(B) FoxP3 expression between Teff and Th-like Treg subsets.
For (A) and (B), data are presented as mean ± SEM (n = 8) using independent values (RM one-way ANOVA with Tukey�s test).
(C and D) Principal-component analysis (C) and volcano plots (D) showing ANOVA of RNA-seq data obtained from activated Th-like Treg subsets. Thick vertical
lines indicate 1.5-fold change threshold (n = 3, using independent values clustered with ellipsoids).
(E) Heatmap showing upregulation of Th-lineage genes between Th-like Treg subsets using Partek software.
(F and G) Protein expression of GATA3, RORgt, and T-bet in FoxP3+ Treg subsets (F) and absolute values of cytokine production by activated Th-like Treg
subsets (G) (n = 4, mean ± SEM using independent values, RM one-way ANOVA with Tukey�s test).
For all statistical tests, ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05 were considered signi�cant.
viability, suggesting that autocrine IL-2 production contributes
to higher activation of Th2-like Tregs. Addition of exogenous
IL-2 rescued the blasting capacity of the other Treg subsets
but did not increase cell survival (Figures 2D and S3B), which
was mirrored in total memory Tregs (Figure S3C). IL-2 neutral-
ization also reduced the blasting capacity of total memory
Tregs, with no effects on viability (Figure S3D). To con�rm
this observation, we evaluated p53 expression and STAT5
signaling 16 hr post-activation in the presence or absence
of exogenous IL-2. p53 expression was highest in Th1-like
Tregs, and its expression was not affected by the addition of
exogenous IL-2 in any subset (Figure 2E). Conversely, STAT5
phosphorylation was signi�cantly increased in Th2-like Tregs
compared to other subsets in the absence of IL-2, and addition
of exogenous IL-2 rescued STAT5 phosphorylation in all Th-like
Treg subsets (Figure 2E). These data were backed up by
pathway analysis, as genes within JAK-STAT signaling path-
ways were signi�cantly higher in Th2-like Tregs than in all other
Th-like subsets (Figure 2F; Table S1). The TCR-signaling
pathway was also evaluated, but no signi�cant difference
between Th-like Treg subsets was observed (Figure S4A), sug-
gesting that higher viability was not due to differential TCR acti-
vation. Finally, we observed that Th2-like Tregs expressed an
anti-apoptotic gene pro�le, whereas Th17, Th1, and Th1/17
Tregs expressed a more pro-apoptotic gene pro�le (Figure 2F;
Table S1); thus, it is possible that other genes are regulating the
higher viability in Th2-like Tregs. Overall, our data suggest that
Th2-like Tregs have a survival advantage over other Treg sub-
sets and a higher blasting capacity due to the autocrine IL-2/
STAT5 signaling pathway.
Cell Reports 20, 757�770, July 18, 2017 759
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Th-like Treg Subsets Suppress Th-like Teffs, without
Preferential Targeting of Their Teff Counterparts
Next, we investigated the capacity of Th-like Treg subsets to
suppress their corresponding effector counterparts. Character-
ization of effector cells revealed that memory Teffs were mainly
CD25int, and unlike Tregs, they exhibited a substantial percent-
age of CCR4� cells (Figure 3A). Proliferative ability and cytokine
pro�le of Th-like Teff populations equivalent to the Th-like Treg
subsets were analyzed (Figure 3A). After TCR activation, we
observed higher proliferation of Th1/17 and Th17 compared to
Th2 and Th1-like Teffs (Figure 3B). Cytokine production by Th-
like Teff was, as expected, related to Th lineage and similar to
the cytokine pro�les obtained from Treg subsets (Figure S2B).
Next, the ability of Th-like Tregs subsets to inhibit the prolifera-
tion of total effector or subpopulations was measured (Fig-
ure 3C). Results showed that Th-like Treg subsets reduced cell
division of memory Teffs and Th-like Teffs, without preference
for inhibition of their Teff counterparts (Figure 3D). Similarly, no
inhibition by Treg subsets of lineage-speci�c cytokines pro-
duced by Teffs was observed (Figure 3E). Th-like Treg subsets
suppressed pro-in�ammatory cytokines, but they did not sup-
press IL-10, which was produced mainly by Th2-like Teffs (Fig-
ure 3E). Interestingly, Th2-like Tregs did not suppress prolifera-
tion of Th2-like Teffs as much as other Th-like Treg subsets,
possibly due to higher expression of TIGIT, the only protein
related to Treg function that is differentially expressed in Th2-
like Tregs compared to other subsets after activation (Fig-
ure S4B). TIGIT is a co-inhibitory molecule that selectively in-
hibits pro-in�ammatory responses of Th1 and Th17 cells, but
not Th2 cells (Joller et al., 2014). Differences in the susceptibility
to be suppressed between Teff subsets suggest that their distri-
bution in the site of in�ammation is also pertinent in understand-
ing the regulation of the in�ammatory response. Since our data
showed that all Th-like Tregs suppress memory Teff, we then
study the chemotaxis of Th-like Tregs to evaluate whether differ-
ences in their regulatory function in vivo may be mediated by dif-
ferences in their migratory capacity.

Th2-like Tregs Exhibit Higher Chemotaxis to CCL17/22
Than Other Tregs and Their Counterpart Teffs
To characterize the migratory ability of the Th-like Tregs, the
expression of chemokine receptors by each subtype and
the genes associated to migration were evaluated (Figure 4A).
Pathway analysis between Th-like Treg subsets revealed higher
expression of genes associated with leukocyte trans-endothelial
migration in Th2-like Tregs compared to other subsets (Fig-
Figure 2. Th2-like Tregs Exhibit Higher Viability, Activation, and JAK-S
(A) Total percentages of live and blasting cells between Th-like Tregs 72 hr post-
values, RM one-way ANOVA with Tukey�s test).
(B) Distribution of dead, apoptotic, and live cells between Th-like Tregs after TCR
(C and D) The percentage of live and blasting cells was analyzed in Th-like Treg s
and IL-17 (all at 10 mg/mL) (C) or 250 U/ml exogenous IL-2 (D) (n = 4, mean ± SE
(E) STAT5 signaling and p53 expression was measured in Th-like Tregs 16 hr
mean ± SEM using bar charts, RM two-way ANOVA with Sidak�s test).
(F) Heatmap showing upregulation of JAK-STAT, TCR signaling pathway and pro
and the KEGG database.
For all statistical tests, ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05 wer
ure 4B; Table S2), suggesting a higher migratory potential in
this subset. In addition, we observed a differential expression
of chemokines and chemokine receptors between Th-like Tregs
(Figure 4B; Table S2). Having characterized the expression of
chemokines and their receptors in the different Th-like Treg sub-
sets, cell migration was then assessed using a trans-well system.
We observed low migration of cells in the absence of chemo-
kines and a preferential migration of CCR4+ cells to chemokines
CCL17/22 (Figure 4C). We then evaluated the Th-like phenotype
of migrated cells and observed that Th2-like Tregs migrated
more than any of the other subsets to CCL17/22 and to a mixture
of all the chemokines (Figure 4D). Th2-like Tregs also migrated
even more than their Th2-like Teff counterpart in response to
the same chemokines (Figure 4E). On the contrary, Th17 and
Th1-like Tregs migrate less than their Teff counterparts in
response to CCL20 and CXCL10, respectively (Figure 4E).
Furthermore, Th2-like Tregs expressed more CCL17 than other
Th-like subsets (Figure 4B; Table S2), suggesting that this subset
not only migrates more but also has enhanced ability to recruit
CCR4+ Tregs.

Th2-like Tregs Are More Prevalent in Tissues and Are
the Main Infiltrating Subset Present in Melanoma and
Colorectal Cancer
Th-like Treg subsets expressed distinctive chemokine signa-
tures and exhibited different functional responses. Thus, we
evaluated their distribution in primary and secondary lymphoid
organs as well as peripheral tissues from healthy volunteers
and patients with melanoma or colorectal cancer. We compared
the expression of CCR4 between Th-like Tregs and Teff and their
distribution in different tissues (Figure 5A) and peripheral blood
(Figure 1A). We observed higher percentages of CCR4+ cells in
Tregs than Teffs in all tissues; conversely, low expression of
CCR4 was observed in the thymus (Figure S5A). Next, we
dissected the distribution of Th-like Teffs/Tregs in different
tissues (Figure 5B). High percentages of Th2-like cells were
observed in the spleen, liver perfusate, and thymus, but thymic
memory CD4+ T cells expressed very low levels of CCR4; there-
fore, the overall presence of Th-like cells in the thymus was low
compared to other tissues. Th17-like Tregs were the main pop-
ulation in the skin, whereas the colon was enriched for Th1/17-
like Tregs. In general, Th2-like Tregs were found preferentially
in tissues compared to the circulation, even in the skin and colon,
supporting the transmigration pathway previously observed
(Figure 4B). When samples from patients with cancer (Tables 1
and S3) were analyzed, a higher Treg/Teff ratio was observed
TAT Signaling Pathway Than Other Treg Subsets
TCR activation in the absence of IL-2 (n = 10, mean ± SEM using independent

activation (n = 5).
ubsets activated in the presence of neutralizing antibodies for IL-2, IL-4, IFN-g,
M using bar charts, RM two-way ANOVA with Tukey�s test).
post-TCR activation in the presence or absence of IL-2 (250 U/mL) (n = 4,

and anti-apoptotic genes between Th-like Treg subsets using Partek software

e considered signi�cant.
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in malignant tissue than in healthy tissue (Figure 5C). Further-
more, we observed an increase of Th2-like Tregs and Teffs,
concomitant with a reduction in Th1/17 lineages in tissues (Fig-
ure 5D) and peripheral blood (Figure S5B) from cancer patients.
The production of Th2 cytokines was con�rmed by intracellular
staining in total CD4+ T cells from malignant colon (Figure S5C).
Interestingly, the increment of Th2-like cells was more prominent
in Teffs than Tregs in patients with colorectal cancer, suggesting
that an imbalance in favor of Th2 effector cells may contribute to
cancer maintenance. The Th2 phenotype of colon samples from
patients with colorectal cancer distant from the cancer area was
similar to that obtained from healthy volunteers and signi�cantly
different from samples obtained from the cancer area (Figure 5E).
Furthermore, our data were supported by the analysis of disease
pathways (Figure 6A; Table S4) and previously published signa-
tures from tumors in�ltrating Tregs (Figure 6B) (De Simone et al.,
2016; Plitas et al., 2016), revealing that Th2-like Treg genes were
predominant in pathways associated with cancer. Furthermore,
we observed high expression of CCR8 on the surface of resting
Th2-like Tregs (Figure 6C), the main chemokine receptor found in
Tregs isolated from tumor sites (De Simone et al., 2016; Plitas
et al., 2016). Altogether, our phenotypic, genetic, and functional
characterization of Th2-like Tregs suggests that this is the main
Treg subset involved in cancer immunology.

DISCUSSION

Here, we provide a comprehensive transcriptomic analysis of
circulating Th-like Tregs based on the expression of chemokine
receptors, which allows cells to migrate into particular tissues in
health and disease (Annunziato et al., 2007; Groom and Luster,
2011; Sugiyama et al., 2013; Yamazaki et al., 2008). Chemokine
receptor CCR4 was expressed in all Th-like Treg subsets; how-
ever, Th2-like Tregs exhibited higher chemotaxis to CCL17/22
than to other Treg populations. Interestingly, the superior migra-
tory capacity of Th2-like Tregs did not correlate with their CCR4
expression (MFI). However, transcriptome analysis revealed that
Th2-like Tregs have higher expression of other genes involved in
migration that may imbue them with a better migratory capacity.
In addition, Th2-like Tregs express CCR8, which mediates
migration to its ligand, CCL17, enhancing their migratory capac-
ity (D�Ambrosio et al., 1998). Whole-genome microarray analysis
revealed a selective upregulation of Th2 signature genes,
including GATA3, IL4, IL5, and IL13, but a downregulation of
IL2RA (CD25) and CCR4 upon downregulation of FoxP3 (Hans-
mann et al., 2012). This provides a possible explanation as to
why Th2-like Tregs exhibited lower CCR4 MFI than other Tregs.
Figure 3. Th-like Tregs Suppress Cell Division of Th-like Teffs without
(A) Representative dot plots of Th-like Teffs. Th2, Th17, Th1, and Th1/17 were id
(B) Representative histograms and total percentages of divided Cell Trace Violet+

(cell/bead) ratio for 4 days (n = 5, mean ± SEM using bar chart and independent
(C and D) Representative histograms (C) and division (Div.) index (D) were obtained
subsets. Teffs (1 3 105) alone or with autologous Tregs (0.5 3 105) were activated
presented as division index obtained from FlowJo analysis (n = 6, mean ± SEM
(E) Absolute values of IL-4, IFN-g, IL-17, and IL-10 obtained from supernatants a
ANOVA with Tukey�s test).
For all statistical tests, ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05 wer
Cytokine production by Th1 and Th17-like Tregs was in line
with previous reports (Duhen et al., 2012). Conversely, Th2-like
Tregs produced the highest levels of IL-4, IL-5, and IL-13. Duhen
et al. (2012), in their Th-like Treg characterization study, could
not identify IL-4 or IL-22 by intracellular staining. We circum-
vented this technical problem by measuring secreted cytokines.
Ectopic expression of Foxp3 in conventional T cells has been
shown to repress cytokine production (Hori et al., 2003). How-
ever, instability of FoxP3 expression in Tregs allows for in�am-
matory Th cell phenotypes with the ability to secrete IFN-g and
IL-17 (Zhou et al., 2009), IL-4, IL-5, and IL-13 (Hansmann et al.,
2012). This is in accordance with our results showing that the
Treg population with the highest FoxP3 MFI was also the popu-
lation with the lowest overall cytokine production. A key question
regarding Treg biology is their stability and whether Tregs that
express pro-in�ammatory cytokine still maintain suppressive ca-
pacity. The co-expression of pro-in�ammatory and anti-in�am-
matory cytokines by Th-like Tregs does not appear to have an
impact on their suppressive capacity in our system and as previ-
ously reported (Duhen et al., 2012; Groom and Luster, 2011; Su-
giyama et al., 2013; Yamazaki et al., 2008). It has been shown
that Tregs expressing CCR6 are highly suppressive while still
producing IL-17 (Duhen et al., 2012; Voo et al., 2009). Moreover,
IL-17+ Tregs from patients with in�amed intestinal mucosa were
also shown to be functionally suppressive (Hovhannisyan et al.,
2011; Valmori et al., 2010). All Th-like Tregs suppressed total
memory Teffs; however, differences in their suppressive ability
were revealed when Th-like Teffs were evaluated. For example,
Th2-like Tregs did not reduce the proliferation of Th2 Teffs as
signi�cantly as they did with other Teffs. In addition, Th2-like
Tregs exhibited higher expression of TIGIT compared to the
other Treg subsets. This co-inhibitory molecule that has been
shown to selectively inhibit pro-in�ammatory Th1 and Th17 cell
responses (Joller et al., 2014), supporting the presence of Th2
Teffs in cancer samples. We also observed lower proliferation
rates in effector Th2 and Th1-like cells compared to Th17 and
Th1/17 Teffs, suggesting that a cellular response meditated by
Th17 and Th1/17 lineages could be more potent than a response
meditate by Th1-like or Th2 Teffs. In fact, low susceptibility of
Th17 and Th1/17 clones to the suppressive ability of total Tregs
compare to Th1 and Th2 clones has been reported (Annunziato
et al., 2007). This suggests that the presence of Th17 and Th1/17
lineages are favorable in tissues that require higher immune sur-
veillance, whereas a Th2 lineage is favorable in malignant tis-
sues, as they produce IL-10 and IL-4. The secretion of IL-4 is
known to inhibit IFN-g production, Th1 cell differentiation, and
Th17 and Th1 responses (Wurtz et al., 2004). Besides Th2-type
Preference for Lineage Counterparts
enti�ed from memory Teff CCR4+ cells.
Th-like Teff subsets (1 3 105) stimulated with anti-CD3/CD28 beads at a 40:1
values, RM one-way ANOVA with Tukey�s multiple comparison test).
from suppression assays between memory Teff or Th-like Teff and Th-like Treg
with anti-CD3/CD28 beads at a 40:1 (cell/bead) ratio for 4 days. The data are

using bar charts, RM two-way ANOVA with Tukey�s test).
fter 4 days of suppression assays (n = 6, mean ± SD using bars, RM Two-way

e considered signi�cant.
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Figure 4. Th2-like Tregs Exhibit Higher Chemotaxis toward CCL17/22 Than Other Th-like Tregs and Th2-like Teffs
(A and B) Volcano plots showing RNA-seq data obtained from activated Th-like Treg subsets (A), and heatmaps showing upregulation of leukocyte trans-
endothelial migration, chemokines, and chemokine receptors genes between Th-like Treg subsets using Partek software and the KEGG database (B).

(legend continued on next page)
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cytokines, Th2-like Tregs also produced higher levels of IL-2
than other Th-like Treg subsets, but at much lower levels than
Teffs. FoxP3 expression has been shown to induce cellular
apoptosis and promote cell death in thymic Tregs in the absence
of common gc-dependent cytokine signals, especially IL-2 (Tai
et al., 2013). IL-4 can also improve proliferation due to a degree
of redundancy in the ability of gc-cytokines to maintain func-
tional Tregs (Maerten et al., 2005; Thornton et al., 2010; Yates
et al., 2007). Our results showed that despite the fact Th2-like
Tregs secreted higher levels of IL-4 than IL-2, the latter was
more important for cell activation in vitro, but not for survival,
as addition of exogenous IL-2 or neutralization of this cytokine
did not affect the percentage of live cells in Th2-like Tregs.
Further studies are required to identify the mechanism driving
the higher survival; however, one of the highest upregulated
genes in Th2-like Tregs when compared with all other Th-like
Treg subsets was PTGDR2 (CRTh2), which has been shown to
prevent apoptosis under cytokine deprivation (Xue et al., 2009).
Altogether, our results suggest that Th2-like Tregs could be
more resistant in environments with low levels of IL-2, such as
malignant tissues (Giuntoli et al., 2009; Mocellin et al., 2001). In
addition to higher viability, Th2-like Tregs also exhibited a higher
chemotactic ability than other Treg subsets in response to
CCL17/22. A positive correlation between the levels of CCL17
or CCL22 produced by tumor-associated monocytes and
the frequency of FoxP3 Tregs in gastric cancer has previously
been reported (Mizukami et al., 2008). The migration induced
by CCL17 or CCL22 was signi�cantly higher in CD4+CD25+ cells
than in CD4+CD25� cells (Mizukami et al., 2008), similar to our
migration results. In addition, CCL22 has been shown to divert
Tregs and control the growth of melanoma (Klarquist et al.,
2016). More recently, poor prognosis in patients with metastatic
melanoma due to Th2 polarization has been reported (Enninga
et al., 2016). Together, these �ndings suggest that CCL22 con-
tributes to tumor immunity by recruiting Tregs and Th2 cells.
In colorectal cancer, intestinal epithelial cells have the capacity
to regulate mucosal T cell traf�cking through the release of
CCL22 under in�ammatory conditions. This allows them to
modify the local mucosal cytokine milieu through recruitment
of CCR4+ T cells that counterbalance the in�ammation with the
speci�c production of Th2 cytokines (Berin et al., 2001). In addi-
tion, GATA3 is not essential for Treg survival under homeostatic
conditions in mice, but GATA3-de�cient Tregs do not accumu-
late at in�amed sites, especially in the gastrointestinal tract
compared to other compartments (Wohlfert et al., 2011). More-
over, GATA3-de�cient Tregs were not able to prevent colitis in
a model of T cell transfer colitis (Wohlfert et al., 2011). Thus,
migration of Th2 cells, both Teffs and Tregs, seems to be a
mechanism by which the colon maintains gut homeostasis and
controls in�ammation. This anti-in�ammatory response seems
(C) Representative dot plots and percentage of migrated memory Teffs and Treg
chamber of a 5-mm-pore Transwell �lter system with ICAM (1 mg/mL). Bottom cham
CXCL10 (0.5 mg/mL); or a combination of all of them. The percentage of migration
1 hr 3 100)/initial number of cells in the top chamber.
(D and E) Representative dot plots and percentage of migration between Th-like
mean ± SEM using bar charts, RM two-way ANOVA with Sidak�s test).
For all statistical tests, ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05 wer
to be exacerbated by the tumor to maintain an anti-in�ammatory
environment, preventing anti-tumor responses and supporting
tumor growth. In support of this, two independent studies
recently demonstrated higher expression of CCR8 and OX40 in
tumor-in�ltrating Tregs from breast and lung cancer, colorectal
adenocarcinoma, and melanoma (De Simone et al., 2016; Plitas
et al., 2016). Previously, CCR8-expressing CD4+ T cells have
been shown to produce more Th2-type cytokines, such as
IL-4, IL-5, IL-9, and IL-13, and less IFN-g and IL-17 than
CCR8�CD4+T cells (Soler et al., 2006). In addition, the OX40-
OX40L pathway is required for Th2 responses (van Wanrooij
et al., 2007). Furthermore, most genes upregulated in the Treg
signature in cancer were also upregulated in Th2-like Tregs.

Overall, our data suggest that in malignant tissues with
increased CCL17/22 secretion, Th2-like Tregs are preferentially
attracted to tumor sites, where they display a survival advantage
and the ability to inhibit Th1-Th17-Th1/17 effector lineages.
Effector Th2 cells also migrate and play a suppressive role, as
they secrete IL-10 and IL-4. The data presented here provide
further support for studying tumor microenvironments to identify
key cellular players maintaining the tumorigenic milieu and
possible novel drug targets for tumor immunotherapy.

EXPERIMENTAL PROCEDURES

Phenotypic Analysis of Cell Subsets from Peripheral Blood and

Tissues

Peripheral blood was obtained from healthy volunteers (age range, 22�36
years; male to female ratio, 3:5) after informed consent was approved. Pa-
tients with colorectal cancer (London-Dulwich Research Ethics Committee,
reference number 15/LO/1998) and melanoma (King�s College London and
St Thomas� NHS Trust Ethics Committee, reference numbers 08/H0804/
139 and 16/LO/0366) were consented in accordance with the Declaration
of Helsinki. PBMCs were isolated by density-gradient centrifugation. Isolation
protocols of mononuclear cells and research ethics for each tissue are
described in Supplemental Experimental Procedures. Patient data are
described brie�y in Table 1, and more in details can be found in Table S3.
The list of all reagents used in this study can be found in Supplemental Exper-
imental Procedures.

Teff and Treg Isolation from Leukapheresis Blood Cones

RosetteSep Human CD4+T Cell Enrichment Cocktail was used to isolate CD4+

T cells from leukapheresis cone blood (NHS Blood and Transplant, Colindale,
London, UK) obtained from anonymous healthy donors. After negative isola-
tion of CD4+ T cells, CD25 MicroBeads II were used to separate Tregs from
Teffs. Tregs and Teffs were then sorted on a BD FACSAria I.

Flow Cytometry

PBMCs and mononuclear cells obtained from tissues were stained with
anti-CD4, CD25, CD127, CXCR3, CCR4, CCR6, CD45RA, CD3, CD8, and
CCR8 for 30 min at 4�C in the dark. Transcription factor staining was
then performed with the Foxp3/Transcription Factor Staining Buffer Set
using anti-FoxP3, GATA3, T-bet, and RORgt for 30 min at 4�C in the dark.
Samples were acquired on LSR Fortessa and �les analyzed using FlowJo
s. Memory Teffs (5 3 104) and memory Tregs (5 3 104) were placed in the top
bers were �lled with media only; CCL17/22 (0.5 mg/mL), CCL20 (0.5 mg/mL), or

for each subset was calculated as (number of cells in the bottom chamber after

Treg subsets (D) and between CCR4+ Th-like Teff and Th-like Tregs (E) (n = 6,

e considered signi�cant.
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Table 1. Description of Cancer Patients

Patient Data Melanoma Colorectal Cancer

Number of patients 12 6

Male 6 4

Female 6 2

Age (y), mean (range) 61.8 (28�89) 62.3 (18�72)

Cancer stage

I 0 2

IIIA 0 1

IIIC 1 2

IV 11 0

Not applicable 0 1
(Tree Star). Gates were set based on biological controls and �uorescence
minus one controls.

RNA-Seq Targeted Panel

Fluorescence-activated cell sorting (FACS)-sorted Th-like Tregs (2 3 105) were
activated with CD3/CD28 beads (ratio 1:4) for 72 hr. Cells were lysed in TRIzol,
and RNA was isolated with Direct-Zol RNA MicroPrep w/Zymo-Spin columns.
RNA-seq was performed using the QIAGEN Human In�ammation and Immu-
nity Transcriptome RNA targeted panel. Samples were quanti�ed with the
Agilent High Sensitivity DNA Kit and sequenced with the Illumina MiSeq using
MiSeq Reagent Kit v3 (150-cycle) (Illumina). Principal-component analysis, vol-
cano plots, and pathway analysis were performed using QIAseq targeted RNA
data analysis tools (QIAGEN) and Partek Genomics Suite software, version 6.6.

Viability, Blasting, and Cytokine Analysis

FACS-sorted Th-like Tregs (0.5�1 3 105), total memory Tregs (0.5 3 105) and
Teffs (1 3 105) were stimulated with anti-CD3/CD28 beads at a 4:1 (cell/bead)
ratio in the absence or presence of the neutralizing antibodies anti-IL-2
(10 mg/mL, BioSource International), anti-IL-4, anti-IFN-g, or anti-IL-17 (all
10 mg/mL, R&D Systems) or in the presence of different concentrations of
exogenous IL-2 (Novartis). After 16 hr, STAT5 and p53 were evaluated using
western blot. After 72 hr, viability and apoptosis were evaluated using the
LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit and Annexin V, and superna-
tants were used to detect human T cell cytokine production.

Suppression Assay

FACS-sorted Th-like Teff subpopulations were labeled with 5 mM Cell Trace
Violet for 37�C for 15 min. 1 3 105 Teff subpopulations were plated alone
and in co-culture with autologous Tregs at 1:2 (Treg/Teff) ratio. Cells were
activated with anti-CD3/CD28 beads at a 40:1 (cell/bead) ratio. Cellular prolif-
eration was assessed after 4 days by �ow cytometry, and �les were analyzed
using FlowJo. The data are presented as division index (the total number of
divisions divided by the number of cells that went into division) obtained
from FlowJo analysis. Supernatant was used to detect human T cell cytokine
production using BD Cytometric Bead Array.
Figure 5. Distribution of Th-like Teff and Treg Subsets in Health and M
(A) Representative plots of chemokine receptor expression in Th-like Tregs obta
(B) Pie charts and total percentages of Th-like Tregs and Th-like Tregs Teff in tissue
Sidak�s test). Thymus = 6, spleen = 8, liver perfusates = 6, healthy skin = 5, skin w
healthy donors = 8, peripheral blood from patients with skin cancer = 10, and pe
(C and D) Treg/Teff ratio (C) and tissue distribution of Th-like cells between healthy
as mean ± SEM using individual values (one-way ANOVA with Dunnett�s test). In (D
Sidak�s multiple comparison test).
(E) Representative plots and total percentages of Th2-like Tregs obtained from
compared with samples obtained from distant areas to the tumor (n = 4, indepen
For all statistical tests, ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05 wer
Chemotaxis Assays

T cell migration was assessed using a 5-mm-pore Transwell �lter system. The
top chambers were incubated with ICAM (1 mg/mL) overnight at 37�C. Cell
Trace Violet+ memory Teffs and unstained memory Tregs were sorted and
rested prior experiment. After resting, 5 3 104 Teffs + 5 3 104 Tregs in 50 ml
X-VIVO15 serum-free medium were placed in the top chamber. The bottom
chambers were �lled with 100 ml X-VIVO15 serum-free only; with CCL17 +
CCL22, CCL20, or CXCL10; or with a combination of all of them (all at
0.5 mg/mL, BioLegend). After 1 hr at 37�C, cells were harvested from bottom
compartments, stained with anti-CXCR3, anti-CCR4 and anti-CCR6, counted
using CountBright Absolute Counting Beads and analyzed by �ow cytometry.
The percentage of migration for each subset was calculated as (number of Th
cells in the bottom chamber after 60 min 3 100)/initial number of Th cells in the
top chamber.

Statistical Analysis

Statistical tests were performed using Prism 7 software (GraphPad). Data
are expressed as mean ± SD or SEM where applicable using individual values,
bar charts, or boxplots. A repeated-measures (RM) two-way ANOVA was used
to compare two related variables between Th-like subsets. An RM one-way
ANOVA was used to compare one related variable between Th-like Tregs.
An ordinary one-way ANOVA was used to compare CCR8 expression between
Th-like Tregs. A two-tailed t test was used to compare tumor specimens. Post
hoc tests were used as indicated in the �gure legends. p values are reported as
follows: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

ACCESSION NUMBERS

The accession numbers for the Th-like Treg RNA-seq and �ow cytometry data
reported in this paper are GEO: GSE99733 and Flow Repository: FR-FCM-
ZY75, respectively.
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�ve �gures, and four tables and can be found with this article online at
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