Citation for published version (APA):
Accepted Manuscript

National population-based study comparing treatment-related toxicity in men who received Intensity-Modulated versus 3D-Conformal Radical Radiotherapy for prostate cancer

PII: S0360-3016(17)33654-4
DOI: 10.1016/j.ijrobp.2017.07.040
Reference: ROB 24439

To appear in: International Journal of Radiation Oncology • Biology • Physics

Received Date: 31 May 2017
Revised Date: 20 July 2017
Accepted Date: 26 July 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
National population-based study comparing treatment-related toxicity in men who received Intensity-Modulated versus 3D-Conformal Radical Radiotherapy for prostate cancer.

Authors
A Sujenthiran¹, J Nossiter¹, SC Charman¹,², M Parry¹,², P Dasgupta³, J van der Meulen², PJ Cathcart⁴, NW Clarke⁵, H Payne⁶, A Aggarwal²,⁷

Institutions
¹ Clinical Effectiveness Unit, Royal College of Surgeons of England, London
² Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London
³ MRC Centre for Transplantation, NIHR Biomedical Research Centre, King’s College London, London, United Kingdom
⁴ Department of Urology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
⁵ Department of Urology, The Christie and Salford Royal NHS Foundation Trusts
⁶ Department of Oncology, University College London Hospitals, London, United Kingdom
⁷ Department of Radiotherapy, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom

Corresponding Author:
Arunan Sujenthiran
Clinical Effectiveness Unit, Royal College of Surgeons
35-43 Lincoln’s Inn Fields
United Kingdom WC2A 3PE
Telephone: +4420 78696645
Fax: +4420 78696644
Email: asujenthiran@doctors.org.uk

Authors responsible for statistical analysis:
Arunan Sujenthiran & Susan Charman
Details as above
Email: scharman@rcseng.ac.uk

Acknowledgements:
JvdM is partly supported by the NHS National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care North Thames at Bart’s Health NHS Trust. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NHS National Institute for Health Research, or the Department of Health.

AA is funded by a Doctoral Research Fellowship from the NHS National Institute for Health Research.
MP is partly supported by the NHS National Institute for Health Research through an Academic Clinical Fellowship.

HP was supported by the UCLH/UCL Comprehensive Biomedical Research Centre

PD acknowledges support from the Vatikuti Foundation grant to the Institute of Robotic Surgery, King’s College London.

Hospital Episode Statistics were made available by the NHS Health and Social Care Information Centre (© 2012, Re-used with the permission of NHS Digital. All rights reserved.)

The cancer registry data used for this study are based on information collected and quality assured by Public Health England’s National Cancer Registration and Analysis Service. Access to the data was facilitated by the Public Health England’s Office for Data Release.

AS, JN, SCC, MP, JvdM, PJC, NWC, HP and AA are members of the Project Team of the National Prostate Cancer Audit (www.npca.org.uk) funded by the Healthcare Quality Improvement Partnership (http://www.hqip.org.uk/)

Conflicts of Interest:
HP has attended and received honoraria for advisory boards, travel expenses to medical meetings and served as a consultant for AstraZeneca, Astellas, Janssen, Sanofi Aventis, Takeda, Ipsen, Ferring, Sandoz and Novartis.

JvdM reports a contract with the Healthcare Quality Improvement Partnership for the provision of a national evaluation of prostate cancer services in England and Wales during the conduct of the study.

All other authors have no conflicts of interest to declare.
SUMMARY

Intensity-modulated radiotherapy (IMRT) has been rapidly adopted despite a lack of evidence demonstrating superiority over 3D-conformal radiotherapy (3D-CRT). A national cohort study using real world data was performed on 23,222 men comparing severe gastrointestinal (GI) and genitourinary (GU) toxicity between IMRT and 3D-CRT. Men who received radical radiotherapy using IMRT were less likely to experience severe GI toxicity and had similar GU toxicity compared to those who received 3D-CRT.
ABSTRACT

Purpose
There has been a rapid adoption of Intensity-modulated radiotherapy (IMRT) despite a lack of robust evidence demonstrating superiority over 3D-Conformal radiotherapy (3D-CRT). The aim of this national population-based study was to compare severe genitourinary (GU) and gastrointestinal (GI) toxicity in patients with prostate cancer who were treated with radical IMRT or 3D-CRT.

Methods and Materials
Patients treated with IMRT (n=6,933) or 3D-CRT (n=16,289) between January 1 2010 to December 31 2013 in the English National Health Service (NHS) were identified using cancer registry data, the National Radiotherapy Dataset and Hospital Episodes Statistics (HES), the administrative database of care episodes in NHS hospitals. We developed a coding system that identifies severe toxicity (at least Grade 3 according to the NCI CTCAE scoring system) based on the presence of a procedure and a corresponding diagnostic code in patients’ HES records after radiotherapy. A competing risks regression analysis was used to estimate hazard ratios (HR), comparing the incidence of severe GI and GU complications following IMRT and 3D-CRT, adjusting for patient, disease, and treatment characteristics.

Results
The use of IMRT, as opposed to 3D-CRT, increased from 3.1% in 2010 to 64.7% in 2013. Patients who received IMRT were less likely than those receiving 3D-CRT to experience
severe GI toxicity (4.9 vs 6.5 per 100 person-years; adjusted HR 0.66; 95%CI 0.61-0.72) but had similar levels of GU toxicity (2.3 vs 2.4 per 100 person-years; adjusted HR 0.94; 95%CI 0.84-1.06).

Conclusions
Prostate cancer patients who received radical radiotherapy using IMRT were less likely to experience severe GI toxicity and they had similar GU toxicity compared to those who received 3D-CRT. These findings in an unselected “real-world” population support the use of IMRT, but further cost-effectiveness studies are urgently required.
INTRODUCTION

External beam radiotherapy (RT) is a well-established definitive treatment for localised and locally advanced prostate cancer. Dose-escalation to the tumour has been shown to improve biochemical progression-free survival however this can be at the cost of increased gastrointestinal (GI) and genitourinary (GU) side effects (1-4). GI toxicity can occur in the acute phase typically within 3 months caused by a mucosal inflammatory response and in the late phase characterised by fibrotic changes resulting in chronic GI impairment (5). Similarly, GU side effects such as haematuria can occur soon after treatment whereas bladder outflow obstruction and radiation cystitis may occur later (6).

Attempts to improve the therapeutic ratio, in particular a reduction in treatment related side effects, has driven advances in modern radiotherapy technologies such as Intensity-modulated radiotherapy (IMRT) (4). The advantage of IMRT compared to 3D-conformal radiotherapy (3D-CRT) is the potential to deliver high-dose radiation to the prostate (7, 8), whilst limiting the radiation dose to surrounding tissue including the rectum and bladder, reducing acute and late toxicities (9-12).

IMRT was taken up rapidly from the early 2000s in the United States and then in the United Kingdom (13) at considerable cost (14) in the absence of robust RCT evidence demonstrating its superiority over 3D-CRT (15). A recent meta-analysis, including 23 clinical studies with 9,556 patients, demonstrated that the use of IMRT greatly reduced acute and late GI toxicity (16). This also suggested that IMRT was linked to a small increase in acute GU toxicity and a small reduction in biochemical failure (i.e. rise of prostate-specific antigen level of 2 ng/ml
or more). However, the authors of this meta-analysis highlighted the heterogeneity of the results and that more high-quality studies were needed.

The rapid adoption of IMRT means that future RCTs assessing its effectiveness are no longer feasible. However, “real-world” data provides an opportunity to understand the true value of IMRT compared to 3D-CRT. We carried out a national population-based study including more than 23,000 men diagnosed with prostate cancer between 2010 and 2013 in the English National Health Service, who received either IMRT or 3D-CRT. We used a coding system that was specially developed to identify severe toxicity, comparable to at least Grade 3 toxicity as measured by NCI Common Toxicity Criteria for Adverse Events (CTCAE) scoring system (version 4.0) (17), in administrative hospital data.

METHODS

Data Sources and Patient population

English cancer registry data and the National Radiotherapy Dataset were used to identify men with a diagnosis of prostate cancer (ICD-10 “C61”) who received radical radiotherapy between 1 January 2010 and 31 December 2013 (18). These men were linked to the Hospital Episode Statistics (HES) database, an administrative database of all care episodes in the National Health Service in England (19).
Control variables

Data items in HES records were used to determine age, the Royal College of Surgeons (RCS) Charlson comorbidity score expressed as the number of comorbidities (20), and socioeconomic deprivation status according to quintiles of the national ranking of the Index of Multiple Deprivation (21). Tumour characteristics including TNM-stage and Gleason score were extracted from the cancer registry data to determine a modified D’Amico prostate cancer risk classification (a previously developed algorithm to group patients according to pre-treatment prostate cancer risk in the absence of data on prostate-specific antigen levels) (13). The National Radiotherapy Dataset provided information on the radiotherapy treatment region (prostate only/prostate and regional), whether or not an IMRT technique was used (OPCS-4 code “X671”) (22), and the total prescribed dose/fractions.

Inclusion and exclusion criteria

The records of 41,763 men with non-metastatic prostate cancer who had received radiotherapy were studied. Patients were excluded if they had also received brachytherapy (n=165), if they had an associated diagnosis of bladder cancer (ICD-10 “C67”) (n= 1,103) (23), or if they received radiotherapy following radical prostatectomy (n= 3,341). As this study used national data, variation existed in the fractionated regimes delivered. With reference to UK radiotherapy dose fractionation guidance and regimes used in randomised controlled trials (3, 24-27), we included patients who received 72-79 Gy in 35-40 fractions. The three further regimes that were most commonly used were also included (72 Gy/32 fractions; 69 Gy/37 fractions; 70 Gy/35 fractions). This resulted in the exclusion of a further 13,932 men. The final cohort included 23,222 men (Figure 1).
Coding Framework

We have previously developed and validated a method using linked administrative data to identify severe GU complications following radical prostatectomy (28). This methodological approach was used to capture severe urinary complications after radiotherapy. With reference to earlier studies which used procedure codes to measure toxicity (11, 29, 30), a comprehensive list of OPCS-4 procedure codes (22) related to GU complications post-RT was pre-specified (“forward coding”). We also examined the most frequently occurring procedure codes in records of day-case and in-patient hospital episodes following radiotherapy and added these to the pre-specified list if they were not already included but likely to be related to GU complications (“backward coding”) (Appendix, Table i).

The forward and backward coding approach was repeated to identify ICD-10 diagnostic codes related to urinary complications. In addition to a “radiation-specific” code (N304, “irradiation cystitis”) we also captured other common side effects including haematuria, GU strictures and urinary incontinence (Appendix, Table ii). The GU toxicity outcome measure was defined as the occurrence of both a procedure and corresponding GU diagnostic code in a patient record following the first radiotherapy treatment session. This approach confined our analyses to what were likely to be more severe complications, comparable to at least Grade 3 toxicity as measured by NCI Common Toxicity Criteria for Adverse Events Scoring system (i.e. requiring hospital admission or procedural intervention) (17).

For GI toxicity after radiotherapy, we also determined a list of procedure and diagnostic codes based on previous studies (Appendix Table iii/iv) (11, 29, 30). ICD-10 diagnostic codes included “radiation-specific” codes (K520 “gastroenteritis and colitis due to radiation”; K627
“radiation proctitis”) as well as those likely to be a GI complication of radiation such as rectal bleeding and fistulae formation (Appendix Table iv). Just as for GU toxicity, we defined the GI toxicity outcome measure, also capturing Grade 3 or higher toxicity, as the occurrence of both a procedure and corresponding GI diagnosis code to be present in a patient record. This was important as it excluded men who underwent procedures such as a “colonoscopy” for other reasons not related to post-RT GI toxicity.

Time from date of the first radiotherapy treatment to the first GU or GI complication requiring an intervention were the study primary outcomes. For both outcomes, if more than one procedure code matched to a corresponding diagnosis code in the patient record, then the code in the first procedural field was used as it was most likely to represent the most relevant procedure. Patients were considered as not having experienced GU or GI toxicity if there were no day-case or in-patient hospital episodes from the first date of radiotherapy until the end of follow-up (31 December 2015).

Statistical Analysis

Differences between patient, disease and treatment characteristics were assessed using the \(\chi^2 \) test. The 5-year cumulative incidence of complications was estimated using a competing-risks approach (31). To be consistent with existing literature (32), for each outcome measure we calculated the number of events per 100 person-years of follow-up. This metric provided a single figure for the rate of GU and GI complications in both groups.

A competing-risks regression analysis was used to compare time to complication between IMRT and 3D-CRT groups, with complication as the event of interest and death as the
competing event. We adjusted for year of radiotherapy, age, RCS Charlson comorbidity score, socioeconomic deprivation status, prostate cancer risk group, and radiotherapy treatment region.

Results are reported as adjusted hazard ratios (HR) with 95% confidence intervals (95%CI). A p-value smaller than 0.05 was considered statistically significant. P-values were based on the Wald test or the likelihood ratio test, as appropriate.

Prior to the regression analysis, missing values for prostate cancer risk group (n= 5,753), radiotherapy treatment region (n=3,793), and socioeconomic deprivation status (n=61) were imputed using multiple imputation by chained equations. We created 50 datasets and used Ruben’s rules to combine the estimated hazard ratios across the datasets (33). The distribution of patients in categories did not change significantly after multiple imputation.

RESULTS

Patient population
Among the patients who received radical radiotherapy (n=23,222), the use of IMRT increased from 3.1% in 2010 to 64.7% in 2013 (Table 1). Approximately 60% of men included were between 65 to 74 years old, about 1 in 5 men had at least one recorded comorbidity, and nearly 60% of patients were staged with locally advanced disease. The median dose per fraction and total dose received were the same in both groups (2 Gy/fraction and 74 Gy, respectively). Men in the 3D-CRT group were more likely to be older and have a RCS
Charlson score ≥1, but were less likely to have locally advanced disease and receive radiation to the prostate and nodes compared to the IMRT group (Table 1). Median (IQR) follow-up was 3.6 (1.9) years for all men in the study; 2.7 (1.0) years for the IMRT group and 4.1 (1.6) years for the 3D-CRT group.

Timing and frequency of occurrence of toxicity

The most frequent intervention for GI toxicity was a “diagnostic fibreoptic sigmoidoscopy” (3,607 of 9,300 procedures, 38.8%) and the commonest associated GI diagnosis was “radiation proctitis” (5,962 of 8,701 diagnoses, 68.5%). For GU toxicity, an “unspecified endoscopic examination of the bladder” (1,470 of 3,625 procedures, 40.6%) was the most frequent intervention and “haematuria” was the most common associated GU diagnosis (1,265 out of 4,061 diagnoses, 31.1%) (Appendix, Tables i-iv).

Patients experienced 4.9 GI events per 100 person years of follow-up in the IMRT group compared to 6.5 in the 3D-CRT group (Table 2). Patients who received IMRT experienced 2.3 GU events per 100 person years of follow-up compared to 2.4 in the 3D-CRT group (Table 2).

Cumulative incidence curves showed GI toxicity was low in the first 9 months (=2%) and similar in the IMRT and 3D-CRT groups (Figure 2). However, beyond 9 months after RT, patients in the 3D-CRT group more frequently had complications than the IMRT group. Conversely, GU toxicity steadily increased in both IMRT and 3D-CRT groups following radical radiotherapy (Figure 2).
Outcome Measures

Adjusting for patient, disease, and treatment characteristics and using a competing-risks approach, we found that men treated with IMRT were less likely to experience GI toxicity (HR: 0.66, 95% CI: 0.61-0.72; p<0.01) than those who received 3D-CRT. There was no significant difference in GU toxicity between the groups (HR: 0.94; 95% CI: 0.84-1.06; p=0.31). (Table 2) (Appendix, Table v – competing-risks regression analysis with all variables)

DISCUSSION

Summary

Using outcome measures that were systematically developed, we demonstrated a significantly lower incidence of severe GI toxicity and a similar incidence of severe GU toxicity in men who received IMRT compared to those who received 3D-CRT. This is the largest study comparing treatment-related complications in patients receiving IMRT or 3D-CRT. It used “real-world” data from a national population-based cohort without excluding patients based on age or socioeconomic status.

We have used outcome measures, specifically designed to capture urinary complications severe enough to require an intervention and comparable to at least Grade 3 toxicity (NCI CTCAE scoring system). This is in contrast to all other studies using existing routine data (11, 34, 35) that used discrete diagnosis, procedure and claims codes without explicitly developing these codes as toxicity outcomes measures for a specific level of severity. A further strength of our study was the availability of data on radiation doses and fractions
received by patients within the National Radiotherapy Dataset, which was not present in previous studies (8, 11, 30). This ensured that only recognised fractionated regimes were included and that patients in both IMRT and 3D-CRT groups received comparable radiation doses, which are often confounders in population-based studies.

Comparison with other studies

The previous largest comparative study of IMRT and 3D-CRT using existing routine data reported on approximately 13,000 men who received treatment between 2002 and 2006 (11), based on SEER-Medicare-linked data. Similar to our study findings, men who received IMRT were less likely to have GI toxicity and there was no difference between the groups in GU toxicity. This study found a higher incidence of GI toxicity after 3D-CRT than after IMRT when considering GI diagnoses in both groups, but this was not the case when considering GI procedures. This discrepancy is to be expected given the use of toxicity based on diagnosis codes and procedure codes in isolation. In contrast, our study required the presence of a diagnosis and procedure code to ensure we captured complications comparable to Grade 3 toxicity or higher.

Our findings are similar to those reported in the recent meta-analysis (16) which found that IMRT had a lower incidence of acute and late GI toxicity. This meta-analysis also found a very small increase in acute GU toxicity after IMRT which was not observed in our study. It is important to note that in most of the studies included in the meta-analysis, patients in the IMRT group received a higher total radiation dose than the 3D-CRT group. A strength of our study is that both groups received comparable radiation doses.
We adjusted the comparison of the incidence of complications in men who received IMRT or 3D-CRT for differences in patient, disease, and treatment characteristics. However, we were not able to control for baseline GI and GU symptoms which could have an impact on post-RT toxicity. Furthermore, we could not control for additional therapeutic differences, including the use of image-guided radiotherapy (IGRT), the use of specific bladder or bowel preparation protocols, radiotherapy field size, or the use of hormonal treatment. For example, the use of IGRT reduces GI and GU toxicity (36) and is more likely to have been used in IMRT patients. If this is the case, our study may have overestimated the relative benefit of IMRT. Information on the use of hormonal therapy was also not available although results from previous studies demonstrate that hormonal therapy was not associated with the incidence of GI or GU toxicity (16, 37). Despite the absence of information on radiotherapy field size, we were able to account for whether men received treatment to the prostate alone or to the pelvis. At the time of this study, the last follow-up date within our database was the 31st December 2015 therefore we were not able to report on longer-term GI and GU toxicity – future studies will aim to address long-term RT-related toxicity.

As the use of IMRT compared to 3D-CRT increased during our study period, the median length of follow-up was higher in the latter. Although we adjusted for year of treatment in the regression model, we also performed a sensitivity analysis only including men who received RT in 2012 and 2013, all of whom had at least 2-years of follow-up. The results of this sensitivity analysis fully supported the findings from the primary analysis.
Clinical Implications

Our findings are in line with the notion that IMRT allows the delivery of higher doses while reducing exposure to the rectum and in turn reducing GI toxicity. Furthermore, this reduction occurred despite a higher proportion of patients in the IMRT group receiving additional pelvic radiotherapy compared to the 3D-CRT group. The benefits of IMRT, however, do not appear to lead to a reduction in GU toxicity. A potential explanation for this is that the benefits of IMRT may be countered by the high variability in patients’ bladder capacity and filling volumes. These findings are supported by other dosimetric studies which have shown that rectal sparing is better with IMRT than with 3D-CRT but that the differences for bladder sparing may not be as significant (8) (38).

Given the substantial increased costs associated with delivering IMRT (39), further studies are required to evaluate the cost-effectiveness of IMRT in light of its improved toxicity profile with respect to severe GI toxicity. This is of particular relevance in low and middle-income countries where there is an urgent need for expansion in access to radiotherapy (40). The lack of robust comparative clinical data has meant that the benefit from IMRT in a cost-effectiveness model remains uncertain, particularly the estimation of the incidence of toxicity following treatment (41). The morbidity outcomes from our study provide further means to strengthen economic models using existing administrative data.

Conclusion

In this national population-based study of patients with non-metastatic prostate cancer, we have shown that men who received radical radiotherapy using IMRT were less likely to experience severe GI toxicity and that they had similar severe GU toxicity compared to those
who received 3D-CRT. Our study used a transparent coding system that was specifically developed to identify only severe complications. This coding system can be used to provide a performance indicator for service evaluation and quality assessment. Furthermore, it can be used for comparative effectiveness research using existing administrative data to capture GU and GI toxicity following pelvic-based radiotherapy of other tumours such as cervical cancer.

FUNDING:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
REFERENCES

18. English Cancer Registry Data. Available from:

22. **OPCS-4 classification of interventions and procedures.** Available from:

23. **ICD-10 International Classification of Diseases** (10th revised edition). Available from:

24. **Radiotherapy Dose Fractionation 2nd Edition.** Available from:

31. Coviello V BM. Cumulative incidence estimation in the presence of competing risks.

Table 1: Patient, disease and treatment characteristics of men receiving radical radiotherapy (number and percentages)

<table>
<thead>
<tr>
<th></th>
<th>3D-CRT(n=16,289)</th>
<th>IMRT(n= 6,933)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of radiotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>4,248 (26.1)</td>
<td>216 (3.1)</td>
<td><0.01</td>
</tr>
<tr>
<td>2011</td>
<td>5,159 (31.7)</td>
<td>624 (9.0)</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>4,678 (28.7)</td>
<td>1,605 (23.1)</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>2,204 (13.5)</td>
<td>4,488 (64.7)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><60</td>
<td>1,069 (6.5)</td>
<td>532 (7.7)</td>
<td><0.01</td>
</tr>
<tr>
<td>60-64</td>
<td>2,409 (14.8)</td>
<td>1,096 (15.8)</td>
<td></td>
</tr>
<tr>
<td>65-74</td>
<td>9,311 (57.2)</td>
<td>3,879 (56.0)</td>
<td></td>
</tr>
<tr>
<td>>75</td>
<td>3,500 (21.5)</td>
<td>1,426 (20.6)</td>
<td></td>
</tr>
<tr>
<td>RCS Charlson comorbidity score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>12,407 (76.2)</td>
<td>5,463 (78.8)</td>
<td><0.01</td>
</tr>
<tr>
<td>≥1</td>
<td>3,882 (23.8)</td>
<td>1,470 (21.2)</td>
<td></td>
</tr>
<tr>
<td>Socioeconomic deprivation status (national quintiles)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (least deprived)</td>
<td>3,683(22.6)</td>
<td>1,649 (24.0)</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>4,063(25.0)</td>
<td>1,735 (25.2)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3,552 (21.8)</td>
<td>1,471 (21.4)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2,707 (16.6)</td>
<td>1,112 (16.2)</td>
<td></td>
</tr>
<tr>
<td>5 (most deprived)</td>
<td>2,270 (14.0)</td>
<td>919 (13.4)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>14</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Prostate cancer risk group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locally Advanced</td>
<td>6,433 (56.4)</td>
<td>3,603 (59.4)</td>
<td><0.01</td>
</tr>
<tr>
<td>Intermediate risk localised</td>
<td>4,433 (38.9)</td>
<td>2,211 (36.4)</td>
<td></td>
</tr>
<tr>
<td>Low-risk localised</td>
<td>534 (4.7)</td>
<td>384 (5.3)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>4,889</td>
<td>864</td>
<td></td>
</tr>
<tr>
<td>Radiotherapy treatment region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td>11,782 (72.3)</td>
<td>5,786 (86.4)</td>
<td><0.01</td>
</tr>
<tr>
<td>Prostate & Regional</td>
<td>950 (5.8)</td>
<td>911 (13.6)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>3,557</td>
<td>236</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Adjusted outcomes for gastrointestinal and genitourinary toxicity following radical radiotherapy

<table>
<thead>
<tr>
<th></th>
<th>GI Toxicity</th>
<th></th>
<th></th>
<th>GU Toxicity</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5-year cumulative incidence % (95% CI)</td>
<td>Rate (total events/100 person years)</td>
<td>HR* (CI)</td>
<td>p-value</td>
<td>5-year cumulative incidence % (95% CI)</td>
<td>Rate (total events/100 person years)</td>
</tr>
<tr>
<td>3D-CRT</td>
<td>24.5 (23.8-25.3)</td>
<td>6.5</td>
<td>1.00</td>
<td>-</td>
<td>11.1 (9.2-13.3)</td>
<td>2.4</td>
</tr>
<tr>
<td>IMRT</td>
<td>17.0 (15.6-18.5)</td>
<td>4.9</td>
<td>0.66 (0.61-0.72)</td>
<td><0.01</td>
<td>10.7 (10.1-11.3)</td>
<td>2.3</td>
</tr>
</tbody>
</table>

*Adjusted for year of radiotherapy treatment, age, RCS Charlson comorbidity score, socioeconomic deprivation status, prostate cancer risk group and radiotherapy treatment region
Figure 1: Flow chart of men included in study

Clinical exclusions (n=18,541)

- 165 men excluded who also received brachytherapy
- 1,103 men excluded with additional diagnosis of bladder
- 3,341 men who received radiotherapy after radical prostatectomy
- 13,932 men excluded who did not receive a recognised fractionated regime*

Included fractionated regimes:

<table>
<thead>
<tr>
<th>Regimen (Dose (Gy)/Fractions)</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>72-79/35-40</td>
<td>21,046</td>
</tr>
<tr>
<td>72/32</td>
<td>1439</td>
</tr>
<tr>
<td>70/35</td>
<td>443</td>
</tr>
<tr>
<td>69/37</td>
<td>294</td>
</tr>
</tbody>
</table>

Men receiving radical radiotherapy (2010-2013)
(non-metastatic prostate cancer)

41,763
Figure 2 Cumulative incidence curves for gastrointestinal toxicity (upper figure) and genitourinary toxicity (lower figure) following radical radiotherapy according to type of radiotherapy (IMRT versus 3D Conformal RT)