THE ROLE OF CERVICAL LYMPH NODE METASTASES AND THEIR DISSECTION IN PAPILLARY THYROID CANCER EMPLOYING DIFFERENT SURGICAL APPROACHES WITH REGARDS TO THEIR LONG-TERM PROGNOSIS AND OUTCOMES

Mulla, Mubashir Ganie

Awarding institution:
King’s College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.

END USER LICENCE AGREEMENT

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to:
- Share: to copy, distribute and transmit the work

Under the following conditions:
- Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work).
- Non Commercial: You may not use this work for commercial purposes.
- No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above.

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
THE ROLE OF CERVICAL LYMPH NODE METASTASES AND THEIR DISSECTION IN PAPILLARY THYROID CANCER EMPLOYING DIFFERENT SURGICAL APPROACHES WITH REGARDS TO THEIR LONG-TERM PROGNOSIS AND OUTCOMES

Mr. Mubashir G Mulla
MB BS, MRCS, MMED

Department of Endocrine Surgery
King’s College Hospital, London

Presented for the award of Doctorate of Medicine (MD Res)
September 2017
Summary of Thesis

Background
Papillary Thyroid Cancer (PTC) is a common endocrine cancer which metastases to the cervical lymph nodes (LN). The frequency of metastasis is poorly defined. The imaging modalities commonly employed to detect these metastases have limitations. The aim of this study was to define the extent of cervical LN metastases, the role of imaging in their detection and to determine long term outcomes.

Design and Methods
The study was designed in two parts.
A. Systematic reviews of incidence of cervical LN metastases in PTC and the use of imaging modalities in detection of these LN.
B. Retrospective Cohort Study of PTC patients: Data from three centres in London over the last 9 years was collected and analysed.

Results
I. Systematic reviews
A. Central LN Dissection (LND): 21 studies provided data for 4188 patients. Among patients who underwent prophylactic central LND (pCLND), 772 had positive central LN (44.8 %).

B. Lateral LND: 19 studies provided data for 5587 patients. Out of 2048 patients who underwent pLLND, 1177 were found to have positive lateral LNs (57.5%).

C. Imaging of metastatic cervical LN
Ultrasound: The sensitivity to detect central and lateral cervical LN was 38.4% and 27.2% respectively.

Computerised Tomography: The sensitivity to detect central LN was 67%. For lateral LN none of the studies calculated the sensitivity accurately.

II. Results from the Cohort Study
44 patients were included in the analyses. 53.8% had positive LN when pLLND dissection was performed. Recurrence free survival between the two cohorts was not statistically significant. Overall survival was 100% for both groups.
Conclusions

Prophylactic LND yielded metastatic central and lateral LN in about half of all patients with PTC. Imaging modalities currently utilised for detection of metastatic central and lateral cervical LN have low sensitivities. In our cohort of patients, prophylactic lateral lymph node dissection did not show any significant difference in terms of long term outcomes.
Table of Contents

Summary of Thesis
List of Figures
List of Tables
Abbreviations
Acknowledgements
Statement of Originality
Chapter 1
Thyroid Nodule and Carcinoma
1.1 Thyroid Nodule
1.1.1 Clinical evaluation and Investigation
1.1.2 Biochemical Evaluation
1.1.3 Imaging Modalities in Thyroid Nodule
1.1.4 Fine Needle Aspiration Cytology (FNAC)
1.1.5 USS Elastography
1.1.6 Imaging modalities in Thyroid Carcinoma
1.1.7 Imaging of Cervical Lymph Nodes
1.2 Thyroid Carcinoma
1.2.1 Introduction
1.2.2 Classification of Thyroid Cancer
1.2.3 Differentiated Thyroid Carcinoma (DTC)
1.2.4 Risk Factors for DTC
1.2.5 Histopathology
1.2.5a Classical Papillary Thyroid Carcinoma
1.2.5b Histopathological Variants
1.2.6 Prognostic Factors for Papillary Thyroid Carcinoma
1.2.7 Classification of Cervical Lymph Nodes
1.2.8 Pattern of Metastasis
1.2.9 Cervical Lymph Node Dissection
1.2.10 Terminology of Neck Dissection
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.11 Staging of Papillary Thyroid Cancer</td>
<td>48</td>
</tr>
<tr>
<td>1.3 Treatment of Differentiated Thyroid Cancer</td>
<td>51</td>
</tr>
<tr>
<td>1.3.1 Surgery for Papillary Thyroid Cancer</td>
<td>51</td>
</tr>
<tr>
<td>1.3.2 Central Lymph Node Dissection</td>
<td>53</td>
</tr>
<tr>
<td>1.3.3 Lateral Lymph Node Dissection</td>
<td>54</td>
</tr>
<tr>
<td>1.3.4 Treatment of Follicular Thyroid Carcinoma</td>
<td>54</td>
</tr>
<tr>
<td>1.3.5 Treatment of Hurthle Thyroid Carcinoma</td>
<td>55</td>
</tr>
<tr>
<td>1.3.6 Medullary Thyroid Carcinoma</td>
<td>55</td>
</tr>
<tr>
<td>1.3.7 Radio-Iodine Remnant Ablation for DTC</td>
<td>58</td>
</tr>
<tr>
<td>1.3.8 TSH Stimulation</td>
<td>59</td>
</tr>
<tr>
<td>1.3.9 Indications for RRA</td>
<td>60</td>
</tr>
<tr>
<td>1.3.10 TSH Suppression</td>
<td>62</td>
</tr>
<tr>
<td>1.3.11 Thyroglobulin</td>
<td>63</td>
</tr>
</tbody>
</table>

Chapter 2

Design and Aims of the Thesis

2.1 Primary Aims

2.2 Secondary Aim

2.3 Study Design

Chapter 3

Systematic Review of Central Cervical Lymph Nodes Dissection

3.1 Aims and Objectives

3.2 Inclusion and Exclusion criteria

3.3 Methodology

3.4 Statistical Methods

3.5 Results

3.6 Discussion

3.6.1 Advantages of pCLND

3.6.2 Disadvantages of pCLND

3.7 Study Limitations

81
Chapter 4

Systematic Review of Lateral Cervical Lymph Nodes Dissection

4.1 Aims and Objectives
4.2 Inclusion and Exclusion criteria
4.3 Methodology
4.4 Statistical Methods
4.5 Results
4.6 Discussion
4.6.1 Disadvantages of pCLND
4.6.2 Advantages of pCLND
4.7 Study Limitations

Chapter 5

Systematic Review of Imaging of Cervical Lymph Nodes

5.1 Aims and Objectives
5.2 Inclusion and Exclusion criteria
5.3 Methodology
5.4 Statistical Methods
5.5 Results
5.5.1 Results of USS
5.5.2 Results of CT
5.5.3 Results of MRI
5.5.4 Results of 18 FDG PET-CT
5.6 Discussion
5.7 Limitations of systematic reviews

Chapter 6

Multicentre Retrospective Cohort Study

6.1 Aims and Objectives
6.2 Methodology
6.3 Statistical Methods
6.4 Results
Published Articles

I. Systematic Review of Central Cervical Lymph Nodes
II. Systematic Review of Lateral Cervical Lymph Nodes
III. Terminology inaccuracies in the interpretation of imaging results in detection of cervical lymph node metastases in papillary thyroid cancer
IV. Book Chapter-Thyroid Cancer: Diagnosis, Treatment and Prognosis
V. Letter to Editor
List of Figures

Figure 1.1: Graphic features of thyroid nodules on USS
Figure 2.1: Histology of Papillary Thyroid Cancer
Figure 3.1: Flow chart for central LND systematic review
Figure 4.1: Flow chart for Lateral LND systematic review
Figure 6.1: Flow of all patients at King’s College Hospital (KCH)
Figure 6.2: Flow of all patients at Guy’s and St. Thomas’ (GSTT) Hospitals
Figure 6.3: Flow of patients and the process of inclusion in the two cohorts
Figure 6.4: Recurrence free survival in between the two cohorts
List of Tables

Table 1.1: Causes of Thyroid Nodules
Table 1.2: USS features of benign and malignant nodule
Table 1.3: Description of USS classification of thyroid nodules
Table 1.4: Summary of Classification of thyroid nodules on cytology
Table 1.5: Bethesda categories and the BTA classification
Table 1.6: Clinical classification of cervical Lymph Nodes
Table 1.7: Imaging based classification of cervical LN
Table 1.8: Staging of Papillary Thyroid Cancer
Table 1.9: Group Staging- Papillary Thyroid Cancer
Table 1.10: Risk Stratification systems for DTC
Table 1.11: Recommended terminologies for Thyroid Cancer
Table 1.12: Guidelines for Thyroid Surgery in Papillary Thyroid Cancer
Table 1.13: Indications of RRA
Table 1.14: Advantages and Disadvantages of RRA
Table 3.1: Characteristics of included studies for central lymph nodes
Table 3.2: Results of prophylactic and therapeutic CLND
Table 3.3: Results of CLND in PTC less than 2 cm
Table 3.4: Results of CLND according to the size of primary tumour
Table 3.5: Results of central lymph node dissection according to T stage
Table 4.1: Characteristics of included studies for lateral lymph nodes
Table 4.2: Results of prophylactic and therapeutic lateral LND
Table 4.3: T stage-dependent frequency of lateral lymph node Metastasis
Table 5.1: Study details and Validity-Central and combined cervical LN
Table 5.2: Study Details and Validity- Lateral LN
Table 5.3: Ultrasonography in detection of cervical LN in PTC
Table 5.4: CT in the detection of cervical LN metastases in PTC
Table 5.5: 18-FDG PET/CT and MRI in the detection of CLN
Table 6.1: Demographics and other characteristics of all patients
Table 6.2: Tumour Staging and the surgical procedure at KCH
Table 6.3: Tumour Staging and the surgical procedure at GSTT 124
Table 6.4: Demographics and Uni-variate analyses of risk factors 126
Table 6.5: Results of Central Lymph Nodes Dissection at KCH 127
Table 6.6: Radio-iodine (RAI) treatment between the two groups 129
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATA</td>
<td>American Thyroid Association</td>
</tr>
<tr>
<td>AUC</td>
<td>Area Under the Curve</td>
</tr>
<tr>
<td>CT</td>
<td>Computerised Tomography</td>
</tr>
<tr>
<td>18-FDG PET</td>
<td>fluoro- D-glucose Positron Emission Tomography</td>
</tr>
<tr>
<td>FNA</td>
<td>Fine Needle Aspiration</td>
</tr>
<tr>
<td>FN</td>
<td>False Negative</td>
</tr>
<tr>
<td>FP</td>
<td>False Positive</td>
</tr>
<tr>
<td>LN</td>
<td>Lymph Nodes</td>
</tr>
<tr>
<td>LND</td>
<td>Lymph Node Dissection</td>
</tr>
<tr>
<td>LNM</td>
<td>Lymph Node Metastases</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>NPV</td>
<td>Negative Predictive Value</td>
</tr>
<tr>
<td>PTC</td>
<td>Papillary Thyroid Carcinoma</td>
</tr>
<tr>
<td>pCLND</td>
<td>Prophylactic Central Lymph Node Dissection</td>
</tr>
<tr>
<td>pLLND</td>
<td>Prophylactic Lateral Lymph Node Dissection</td>
</tr>
<tr>
<td>PPV</td>
<td>Positive Predictive Value</td>
</tr>
<tr>
<td>RAI</td>
<td>Radio-iodine</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristic</td>
</tr>
<tr>
<td>SLN</td>
<td>Sentinel Lymph Node</td>
</tr>
<tr>
<td>tCLND</td>
<td>Therapeutic Central Lymph Node Dissection</td>
</tr>
<tr>
<td>tLLND</td>
<td>Therapeutic Lateral Lymph Node Dissection</td>
</tr>
<tr>
<td>TN</td>
<td>True Negatives</td>
</tr>
<tr>
<td>TP</td>
<td>True Positives</td>
</tr>
<tr>
<td>TT</td>
<td>Total Thyroidectomy</td>
</tr>
<tr>
<td>USS</td>
<td>Ultrasound scan</td>
</tr>
</tbody>
</table>
Acknowledgements

I am extremely grateful to my supervisor, Professor Klaus-Martin Schulte for his guidance throughout the years during this journey. His infinite knowledge, attention to detail and insatiable appetite for research has always inspired me and will continue to do so in future. I would also pay my gratitude to Professor Alan McGregor and Professor Ameet Patel for their invaluable contributions and guidance.

I want to take this opportunity to thank Mr. Gabriele Galata and Nadia Talat for their help and support without which this would not have been possible. Thanks, a million!!

Finally, I would like to pay my sincere gratitude to my parents, my wife and my little son and daughter for their patience and continued support all the way!!
Statement of Originality

This research work produced in the thesis was undertaken entirely by the author Mubashir G Mulla at the Department of Endocrine Surgery, King’s College Hospital.
Chapter 1

Thyroid Nodule and Carcinoma
1.1 Thyroid Nodule

Introduction

The most common presentation of thyroid cancer is a newly diagnosed thyroid nodule or increase in size of an existing nodule (Perros, Boelaert et al. 2014). Thyroid nodules are common clinical findings with a prevalence of 3-7% on palpation (Tunbridge, Evered et al. 1977). With increased use of high resolution ultrasound scans, the incidence is reported to be much higher in the region of 20-76% (Ezzat, Sarti et al. 1994). Clear majority of those presenting with a thyroid nodule however have benign disease. The clinical importance of thyroid nodules is primarily the need to exclude thyroid cancer which occurs in 7-15% of cases (Tan and Gharib 1997; Hegedus 2004).

The causes of thyroid nodules are listed in Table 1.1 (Gharib, Papini et al. 2006)

<table>
<thead>
<tr>
<th>Table 1.1 Causes of Thyroid Nodules</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Benign nodular goitre</td>
</tr>
<tr>
<td>• Chronic lymphocytic thyroiditis</td>
</tr>
<tr>
<td>• Simple or haemorrhagic cysts</td>
</tr>
<tr>
<td>• Follicular adenomas</td>
</tr>
<tr>
<td>• Sub-acute thyroiditis</td>
</tr>
<tr>
<td>• Papillary carcinoma</td>
</tr>
<tr>
<td>• Follicular carcinoma</td>
</tr>
<tr>
<td>• Hurthle cell carcinoma</td>
</tr>
<tr>
<td>• Poorly differentiated carcinoma</td>
</tr>
<tr>
<td>• Medullary carcinoma</td>
</tr>
<tr>
<td>• Anaplastic carcinoma</td>
</tr>
<tr>
<td>• Primary thyroid lymphoma</td>
</tr>
<tr>
<td>• Sarcoma, teratoma, and miscellaneous tumors</td>
</tr>
<tr>
<td>• Metastatic tumours</td>
</tr>
</tbody>
</table>
1.1.1 Clinical evaluation and Investigation

Thyroid nodules are often accidental findings during clinical examination or on imaging for unrelated reasons (Gough, Scott-Coombes et al. 2008). Most patients with thyroid nodules do not have any symptoms. In symptomatic patients, a detailed history and examination will help guide further investigations. History should include a change in nodule size, rate of growth, previous head and neck irradiation and a family history of thyroid diseases (Yeung and Serpell 2008). Other associated symptoms include difficulty in swallowing or breathing which is suggestive of compressive effect from the thyroid swelling (Eng, Quraishi et al. 2010). Hoarse voice is a strong indication of recurrent laryngeal nerve involvement and malignancy (Ross 2003). Clinical examination of the neck should include palpation of the thyroid gland to determine the characteristics namely the size, consistency, mobility, single nodule or multinodular and for palpable cervical lymphadenopathy (Eng, Quraishi et al. 2010). Clinical features which are associated with increased probability of malignancy in a thyroid nodule include (Perros, Boelaert et al. 2014)-

- Age less than 20 or older than 60 years
- Firmness of the nodule on palpation
- Rapid growth
- Fixation to adjacent structures
- Vocal cord paralysis
- Regional lymphadenopathy
- History of neck irradiation
- Family history of thyroid cancer

According to British Thyroid Association (BTA), patients with a thyroid nodule associated with any of the following will need urgent investigation (Perros, Boelaert et al. 2014);

- Unexplained hoarseness or voice changes associated with a goitre
- Thyroid nodule in a child
- Cervical lymphadenopathy associated with a thyroid mass (usually deep cervical or supraclavicular region)
• A rapidly enlarging, painless, thyroid mass over a period of weeks (a rare presentation of thyroid cancer and usually associated with anaplastic thyroid cancer or thyroid lymphoma).

1.1.2 Biochemical Evaluation

Functional status of the thyroid gland should be assessed as part of the initial investigation of thyroid nodules. Tests include serum thyroid-stimulating hormone (TSH), free thyroxine (T4), and free tri-iodothyronine (T3). Serum Thyroglobulin (Tg) can be elevated in most thyroid diseases and is therefore not recommended as a routine initial assessment of thyroid nodules (Haugen, Alexander et al. 2016). If the serum TSH is subnormal, a radionuclide thyroid scan should be obtained to document whether the nodule is hyperfunctioning (hot), isofunctioning (warm), or non-functioning (cold) (Gharib and Papini 2007).

Hyperthyroidism in the setting of thyroid nodules may suggest the presence of one or more hyper-functioning (autonomous) adenomas and the risk of malignancy in such nodules is less than 1% (Cases and Surks 2000). Since hyper-functioning nodules rarely harbour malignancy, no cytologic evaluation is necessary. If overt or subclinical hyperthyroidism is present, additional evaluation is required (Haugen, Alexander et al. 2016). A higher serum TSH level is associated with increased risk of malignancy in a thyroid nodule as well as more advanced stage thyroid cancer (Haymart, Repplinger et al. 2008). Patients with a nodule and normal thyroid function tests (euthyroid) may have thyroid cancer and should have further investigations (Perros, Boelaert et al. 2014).

Thyroid antibodies such as thyroid peroxidase and anti-thyroglobulin antibodies are found in most patients with Graves’ disease or Hashimoto’s thyroiditis. TSH receptor autoantibodies are detectable in majority of patients with Graves’ disease. In patients with a family history of Medullary Thyroid Carcinoma and Multiple Endocrine Neoplasia (MEN) type II, calcitonin levels are also performed as part of the initial investigation.
1.1.3 Imaging Modalities for Thyroid Nodule

Thyroid Scintigraphy

Thyroid Scintigraphy is a procedure producing images of the thyroid gland obtained within 15–30 min after intravenous injection of Tc-99m pertechnetate isotope or 3–24 hours after the oral ingestion of radioactive Iodine131. It has been relied upon in the past to assist in risk stratification of nodules as being benign or malignant based on their ability to take up the isotope. Depending on the pattern of uptake, nodules are classified as hyper-functioning (hot), hypo-functioning (cold), or normal functioning (warm). Hot nodules are seen in about 5% of scans and are malignant in 5% of cases (Wong and Wheeler 2000). Approximately 80%–85% of nodules are cold and 10%–15% of these are malignant (Meier and Kaplan 2001).

Primary or secondary carcinomas of the thyroid almost invariably appear as nonfunctioning (cold) areas on the images (Mettler 2012), however most more than 90% of the 'cold' lesions are due to benign processes (eg. adenoma, thyroiditis, cyst etc). However, if a ‘cold’ nodule is found on thyroid scan, further investigation such as ultrasound and fine needle biopsy are recommended.

Ultrasound Scan (USS)

USS forms part of the initial investigation of thyroid nodule along with clinical examination and Fine Needle Aspiration Cytology (FNAC). USS is readily available, non-invasive and an inexpensive investigation. All patients with thyroid nodule should undergo ultrasound evaluation of the nodule, thyroid gland, and cervical lymph nodes. It is helpful in identifying the nodules on which FNAC is necessary and also consistently increases the yield of diagnostic FNAC (Cesur, Corapcioglu et al. 2006; Hambly, Gonen et al. 2011).

USS helps to differentiate benign from malignant nodules. However, no single feature is diagnostic (Perros, Boelaert et al. 2014). USS features indicative of benign and malignant lesions are listed in Table 1.2.
Table 1.2: USS features of benign and Malignant nodule (Perros, Boelaert et al. 2014)

US features indicative of benign nodule
- Spongiform or honeycomb appearance (micro-cystic spaces with thin walls, comprising >50% of the nodule)
- Pseudocystic nodules and nodules with a cystic component containing colloid (hyperechoic fluid with a 'ring-down' sign)
- Egg shell type calcification around the periphery of a nodule
- Iso-echoic or mildly hyperechoic in relation to the surrounding normal thyroid tissue and typically with a surrounding hypo-echoic halo
- Peripheral vascularity on colour flow or power Doppler

US features indicative of malignant nodule
- Papillary and Medullary cancers
- A solid hypo-echoic (i.e. hypo-echoic relative to the normal thyroid tissue) nodule, which may contain hyper-echoic foci (i.e. microcalcification)
- An irregular margin, intra-nodular vascularity and absence of an associated halo
- 'Artificially' radiating to the anterior/posterior (AP) > Transverse (TR) diameter when imaged in the axial plane (AP diameter ≥ TR)
- Diameter increasing the likelihood of malignancy
- Irregular or spiculated margin and a 'taller than wide' shape have been shown to have good Positive Predictive Value for malignant nodules
- Egg shell type calcification around the periphery of a nodule with a broken calcified rim where there is extension beyond the calcified rim of a hypo-echoic mass

Follicular lesions
- Typically hypo-echoic and homogeneous in echotexture with a well defined halo
- Hypo-echoic nodule and loss of the 'sandwiched' halo associated with carcinoma

A graphic representation of the recognised signs that can be used to classify thyroid nodules is shown in Fig 1.1 (Perros, Boelaert et al. 2014). The description of the classification of thyroid nodules on ultrasound scan (U1-U5) is shown in Table 1.3 (Perros, Boelaert et al. 2014). As is evident from the table, it is used to differentiate between benign and malignant nodules. Such a classification system for the prediction of malignancy helps to determine whether a FNAC should be performed (Kim, Park et al. 2002; Moon, Jung et al. 2008).
Figure 1.1 Graphic features of thyroid nodules as seen on USS.

U1 U2 U3 U4 U5

a

b

c

d

e

f

a>b
Table 1.3: Description of Ultrasound Scan classification of thyroid nodules

<table>
<thead>
<tr>
<th>Ultrasound Category</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Normal</td>
</tr>
<tr>
<td>U2</td>
<td>Benign</td>
</tr>
<tr>
<td></td>
<td>(a) halo, iso-echoic / mildly hyper-echoic</td>
</tr>
<tr>
<td></td>
<td>(b) cystic change +/- ring down sign (colloid)</td>
</tr>
<tr>
<td></td>
<td>(c) micro- cystic / spongiform</td>
</tr>
<tr>
<td></td>
<td>(d & e) peripheral egg shell calcification</td>
</tr>
<tr>
<td></td>
<td>(f) peripheral vascularity.</td>
</tr>
<tr>
<td>U3</td>
<td>Indeterminate/Equivocal</td>
</tr>
<tr>
<td></td>
<td>(a) homogenous, hyper-echoic (markedly), solid, halo (follicular lesion).</td>
</tr>
<tr>
<td></td>
<td>(b) ? hypo-echoic, equivocal echogenic foci, cystic change</td>
</tr>
<tr>
<td></td>
<td>(c) mixed/central vascularity.</td>
</tr>
<tr>
<td>U4</td>
<td>Suspicious</td>
</tr>
<tr>
<td></td>
<td>(a) solid, hypo-echoic (cf thyroid)</td>
</tr>
<tr>
<td></td>
<td>(b) solid, very hypo-echoic (cf strap muscle)</td>
</tr>
<tr>
<td></td>
<td>(c) disrupted peripheral calcification, hypo-echoic</td>
</tr>
<tr>
<td></td>
<td>(d) lobulated outline</td>
</tr>
<tr>
<td>U5</td>
<td>Malignant</td>
</tr>
<tr>
<td></td>
<td>(a) solid, hypo-echoic, lobulated / irregular outline, micro-calcification (? Papillary carcinoma)</td>
</tr>
<tr>
<td></td>
<td>(b) solid, hypo-echoic, lobulated/irregular outline, globular calcification (? Medullary carcinoma)</td>
</tr>
<tr>
<td></td>
<td>(c) intra-nodular vascularity</td>
</tr>
<tr>
<td></td>
<td>(d) shape (taller >wide) (AP>TR)</td>
</tr>
<tr>
<td></td>
<td>(e) characteristic associated lymphadenopathy</td>
</tr>
</tbody>
</table>
1.1.4 Fine Needle Aspiration Cytology (FNAC)

FNAC forms part of the triple assessment of thyroid nodule. It is the procedure of choice in the workup of thyroid nodules (Cooper, Doherty et al. 2006). It is also a cost effective pre-operative investigation for thyroid nodules (Bajaj, De et al. 2006). It helps to diagnose a benign nodule and provide definite diagnosis for some thyroid malignancies enabling one stage therapeutic surgery (Perros, Boelaert et al. 2014). However, there are some limitations of FNAC as indicated below;

1. High rate of inadequate/unsatisfactory samples
2. Inability to distinguish between non-neoplastic, benign and malignant follicular lesions (Pauzar, Staklenac et al. 2010)
3. Difficulty in detecting follicular variant of papillary thyroid carcinoma (Chang, Lin et al. 2006).

USS guided FNAC samples have increased accuracy (Cai, Valiyaparambath et al. 2006; Nixon, Ganly et al. 2010) and reduced rates of unsatisfactory samples (Cesur, Corapcioglu et al. 2006). It is essential that adequate material is obtained for diagnosis and microscopy is performed by experienced pathologists (Porterfield, Grant et al. 2008). Aspiration should be ideally be performed by adequately trained personnel with expertise in thyroid disease (Perros, Boelaert et al. 2014). Reporting of the cytology samples in the United Kingdom is performed according to Royal College of Pathologists guidance using the Thy classification (Cross P 2016) as described in Table 1.4.
Table 1.4: Summary of Classification of thyroid nodules on cytology and recommended actions (Eng, Quraishi et al. 2010; Perros, Boelaert et al. 2014)

<table>
<thead>
<tr>
<th>Diagnostic category</th>
<th>Description</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thy 1</td>
<td>Non-diagnostic, insufficient sample. Cyst containing colloid or histiocytes only, in the absence of epithelial cells</td>
<td>To repeat FNAC. Ultrasound guidance may help. If cyst aspirated to dryness with no residual swelling, clinical/ ultrasound follow-up alone may be sufficient.</td>
</tr>
<tr>
<td>Thy 2</td>
<td>Benign, non-neoplastic. Cyst containing benign epithelial cells.</td>
<td>Repeat FNAC in 3-6 months. Two non-neoplastic results 3-6 months apart should exclude neoplasia</td>
</tr>
<tr>
<td>Thy 3a</td>
<td>atypical features suspected</td>
<td>USS assessment +/- repeat FNA. MDT discussion</td>
</tr>
<tr>
<td>Thy 3f</td>
<td>Follicular neoplasm or follicular variant of papillary thyroid carcinoma is suspected</td>
<td>Diagnostic Hemithyroidectomy</td>
</tr>
<tr>
<td>Thy 4</td>
<td>Suspicious of malignancy.</td>
<td>MDT discussion - surgical intervention, e.g. Total Thyroidectomy</td>
</tr>
<tr>
<td>Thy 5</td>
<td>Diagnostic of malignancy</td>
<td>MDT discussion - surgical intervention, e.g. Total Thyroidectomy</td>
</tr>
</tbody>
</table>

The categories can provide useful information of the likelihood of their malignant potential. As the Thy categories increases from 1-5, so does the malignant potential. In Thy 1, malignancy can be found in nodules in 4.5–8.5% of cases (Orija, Pineyro et al. 2007; Al Maqbali, Tedla et al. 2012). The risk is higher (14.3%) if the lesion is cystic.
(Garcia-Pascual, Barahona et al. 2011). Thy 3 cases can have malignancy rate of 9.5–43% especially with suspicious USS features (Maia, Matos et al. 2011; Wang, Friedman et al. 2011). Thy 4 cytology is associated with malignant histology in about 68–70% (Wu, Jones et al. 2006) cases. The likelihood of a malignancy for Thy 5 is 100%, although rates of 98-99% have been reported (Jo, Stelow et al. 2010; Wang, Friedman et al. 2011).

Another method of thyroid nodule cytology classification is the Bethesda system described initially by National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference in 2007 (Crippa, Mazzucchelli et al. 2010). It is also recommended by the American Thyroid Association (ATA). The two systems have comparable categories as described in Table 1.5.

<table>
<thead>
<tr>
<th>Bethesda Diagnostic Category</th>
<th>British Thyroid Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Thy 1</td>
</tr>
<tr>
<td>Non-diagnostic or unsatisfactory</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Thy 2</td>
</tr>
<tr>
<td>Benign</td>
<td>Non-neoplastic</td>
</tr>
<tr>
<td>III</td>
<td>Thy 3a</td>
</tr>
<tr>
<td>Atypia of undetermined significance or follicular lesion of undetermined significance</td>
<td>Atypical features present</td>
</tr>
<tr>
<td>IV</td>
<td>Thy 3f</td>
</tr>
<tr>
<td>Follicular neoplasm or suspicious of follicular neoplasm</td>
<td>Follicular neoplasm suspected</td>
</tr>
<tr>
<td>V</td>
<td>Thy 4</td>
</tr>
<tr>
<td>Suspicious of Malignancy</td>
<td>Suspicious of Malignancy</td>
</tr>
<tr>
<td>VI</td>
<td>Thy 5</td>
</tr>
<tr>
<td>Malignant</td>
<td>Diagnostic of Malignancy</td>
</tr>
</tbody>
</table>
1.1.5 USS Elastography

Conventional USS is still the first line investigation in thyroid nodules but there has been considerable variation in its diagnostic performances (Park, Kim et al. 2009; Moon, Baek et al. 2011). Elastography is a dynamic technique that uses USS to provide an estimation of tissue stiffness by measuring the degree of distortion under the application of an external force (Rago, Santini et al. 2007). It is applied to study the hardness and elasticity of nodules to differentiate malignant from benign lesions (Cochlin, Ganatra et al. 2002).

Its clinical application in thyroid nodes was first reported by Rago et al. (Rago, Santini et al. 2007) using a five-point scale described originally by Ueno and colleagues (Ueno E 2004). A score of 1 is defined as elasticity in the whole nodule, 2 as elasticity in a large part of the nodule, 3 as elasticity only at the peripheral part of the nodule, 4 as no elasticity in the nodule, and 5 as no elasticity in the nodule and in the posterior shadowing (Rago, Santini et al. 2007). Another scoring system was described by Asteria and colleagues (Asteria, Giovanardi et al. 2008). They defined a score of 1 as elasticity that is entirely soft in the nodule, 2 as mostly soft in the nodule, 3 as mostly hard in the nodule, and 4 as entirely hard in the nodule (Asteria, Giovanardi et al. 2008). Based on these scoring systems, sensitivity to detect thyroid malignancy has been found to be between 94-97% and specificity between 81-100% (Rago, Santini et al. 2007; Asteria, Giovanardi et al. 2008).

Moon and colleagues (Moon, Sung et al. 2012) evaluated the role of elastography as an adjunctive tool to conventional USS in 676 patients with 703 solid nodules. In their study, neither elastography nor the combination of elastography and gray-scale USS showed better performance for diagnosing thyroid cancers compared with conventional US. Elastography has shown to be a promising technique in breast (Lee, Chang et al. 2014) and liver imaging (Kim, Lee et al. 2013). Addition of elastography to conventional USS should improve the diagnostic performances, however the results are conflicting of its additional value in predicting thyroid malignancies (Bhatia, Tong et al. 2012; Kim, Kim et al. 2013; Russ, Royer et al. 2013). Therefore, the value of elastography in the routine in the assessment of thyroid nodules needs to be established.
1.1.6 Imaging Modalities in Thyroid Carcinoma

For any cancer, it is important to have accurate staging to plan treatment as it impacts on the long-term outcomes and survival. In PTC, the importance of a thorough preoperative evaluation and subsequent neck dissection to an appropriate extent during initial surgery has been emphasized in many studies (Chow, Law et al. 2003; Mazzaferri 2009).

Ultrasound Scan (USS)

The role of USS in triple assessment of thyroid nodules and the characteristic features seen on USS have been described in above chapter. USS features of PTC include a solid hypoechoic nodule with a well or poorly defined margin and small foci of punctate calcification (Appetecchia and Solivetti 2006). PTC occasionally shows cyst formation as the dominant feature (Yuan, Chiou et al. 2006). Medullary carcinoma shows punctate calcification; calcification is however rare in follicular carcinoma. Anaplastic carcinomas are usually large necrotic tumours that extend outside the thyroid gland (Kebebew, Greenspan et al. 2005).

CT and MRI Scans

Computed tomography (CT) and Magnetic Resonance Imaging (MRI) are inferior and less sensitive to ultrasound in the investigation of thyroid cancer (Chaudhary and Bano 2012). Small tumours and thyroid nodules readily identified by ultrasound may be undetectable by these imaging modalities (King, Ahuja et al. 2000; Shetty, Maher et al. 2006). There are no definite CT features that distinguishes benign from malignant lesions and it underestimates nodularity (Shetty, Maher et al. 2006). When found on CT, punctate calcification or cystic components may be detected (Shetty, Maher et al. 2006), while on MRI the cystic components show a high T1 signal intensity.

The main role of CT and MRI is to demonstrate extra-thyroidal tumour extension, spread of disease into the mediastinum or retro-tracheal region and detecting pulmonary and hepatic metastasis which is essential in staging of the disease (Chaudhary and Bano 2012; Perros, Boelaert et al. 2014). CT and MRI are also
recommended to evaluate occult metastases in post-thyroidectomy cases with elevated serum thyroglobulin (Tg) levels and negative USS finding (Cooper, Doherty et al. 2009).

131/I/123I **whole body scan (WBS)**

131/I/123I whole body scan serves as an adjunct to clinical evaluation and serum Tg testing following thyroidectomy and ablative 131I therapy (Taylor, Hyer et al. 2004). It is used to detect residual loco-regional disease in the neck and distant metastases usually after surgery has been performed (King 2008). A positive diagnostic scan may demonstrate persistent disease following ablation (Grigsby, Baglan et al. 1999). In the UK, 131I WBS has been used to assess the success of Radio-iodine Remnant Ablation (RRA) with stimulated thyroglobulin (Tg) (Perros, Boelaert et al. 2014). In recent years, stimulated Tg and specialised USS (Torlontano, Crocetti et al. 2006) has been favoured as a means of assessing RRA success without the need for diagnostic 131I WBS (Schlumberger, Berg et al. 2004; Sherman 2013).

F-18 FDG PET/CT (Positron Emission Tomography/Computed Tomography)

F-18 FDG-PET (2-deoxy-2- _F-18_ fluoro-D-glucose) is an integral part of investigation for many cancers such as lymphoma, melanoma, metastatic gastro-intestinal, lung, and head and neck cancer (Mosci and Iagaru 2011). However, it is not recommended as a routine investigation in the initial assessment of well differentiated thyroid cancer (Haugen, Alexander et al. 2016). Its main role is in investigation of persistent or recurrent disease. One scenario where its use is well established is in patients presenting with elevated Tg levels and negative radioactive iodine scan (Fletcher, Djulbegovic et al. 2008; Chaudhary and Bano 2012).

18FDG-PET is useful in differentiating incidentaloma (focal uptake) from thyroiditis and hypothyroidism (diffuse uptake); and malignant thyroid which shows a very high FDG activity approaching 100% (de Geus-Oei, Pieters et al. 2006; Soto, Halperin et al. 2010). 18FDG-PET has also been found to be the most accurate in detecting recurrent
or metastatic medullary thyroid carcinoma with an elevated calcitonin levels (Szakall, Esik et al. 2002; Iagaru, Masamed et al. 2007; Chaudhary and Bano 2012).

1.1.7 Imaging of Cervical Lymph Nodes

Ultrasound Scan (USS)

USS is commonly used and is the imaging modality of choice in the pre-operative evaluation of cervical Lymph Nodes (Watkinson, Franklyn et al. 2006). It is recommended by various organisations including the American Thyroid Association (Cooper, Doherty et al. 2009). The main current use of US is to identify the presence of suspicious LN to guide FNA which in turn will help to differentiate between benign and malignant LN.

Features which are suspicious of metastatic LN are (Kim, Park et al. 2008; Sugitani, Fujimoto et al. 2008) are as follows:

a) clear hypo-echoic or in-homogenous pattern
b) irregular cystic appearance
c) presence of internal micro-calcification and
d) rounded shape with increased antero-posterior diameter

However the US features of metastatic LN are not standardised (Kessler, Rappaport et al. 2003) and the accuracy of differentiation can be low (Rosario, de Faria et al. 2005). Ultrasound-guided biopsy improves diagnostic accuracy, however in patients especially with PTC multiple very small nodes are found and unless punctate calcification is identified, it can be difficult to establish a pre-operative diagnosis (King 2008).

CT and MRI scan

Computerised Tomography (CT) is also used in pre-operative evaluation of cervical LN although not routinely employed. However USS is considered better than CT to characterize features of metastatic LN as small as 5 mm in diameter due to its high-resolution images (Na, Choi et al. 2015).

Features which are suspicious of LN metastasis on CT are as follows (Som, Brandwein et al. 1994; Kim, Park et al. 2008)
a) cystic change
b) calcification
c) hyperenhancement
d) central necrosis

The following features seen on MRI are considered suspicious of metastatic disease (Gross, Weissman et al. 2001; Liu, Xun et al. 2014)
a) Long-diameter≥10 mm with high T2 weighted signal intensity
b) Short diameter
c) Central Necrosis or cystic degeneration
d) Enhancing lesions
e) Clustering
f) Fusion

A combination of USS, CT and MRI is advised in the assessment of thyroid cancer pre-operatively (Perros, Boelaert et al. 2014).
1.2 Thyroid Carcinoma

1.2.1 Introduction

Thyroid cancer is the most common malignancy of the endocrine system (Hundahl, Fleming et al. 1998). It accounts for about 1% of all cancers around the world with over 140,000 new cases every year (Parkin, Bray et al. 2005). It’s incidence has continuously increased all over the world (Curado M. P 2007). In Great Britain, incidence rates have more than doubled from 1.5 to 3.1 per 100,000 over the last four decades (Compeau, Tyrwhitt et al. 2009). Increased incidence of thyroid cancer has been shown in certain regions of the pacific (Le Vu, de Vathaire et al. 2000; Truong, Rougier et al. 2007) and in the last few decades in industrialized nations like France (Reynolds, Weir et al. 2005; Davies and Welch 2006).

The exact reasons for the global rise of thyroid cancer remain unclear; there is an argument whether this is a true or an apparent increase. Most experts believe that the increased number of new cancers is due to the increased diagnostic intensity especially of small tumours (Davies and Welch 2006; Grodski, Brown et al. 2008). Incidental detection of thyroid tumours has also increased in recent years from increasing use of Doppler examination of the neck vessels and other imaging procedures like PET scans (Yun, Noh et al. 2010; Nilsson, Arnberg et al. 2011).

There are others who believe that when improved detection is the only cause, the increase of small and early stage tumours should be accompanied by a progressive decline of larger and more advanced tumours (Pellegriti, Frasca et al. 2013). However this is not the case and the rise of thyroid cancer incidence whilst most prominent for small tumours, has occurred across all tumour sizes and stages, suggesting that increased detection is not the only cause (Enewold, Zhu et al. 2009; Rego-Iraeta, Perez-Mendez et al. 2009). Increased exposure to radiation is the most likely contributing factor for any true increase in the incidence but also other environmental carcinogens and lifestyle changes are a possibility (Pellegriti, Frasca et al. 2013). It is the fifth most common cancer in women (Jemal, Siegel et al. 2010); and in some countries like Italy, it is the second most common cancer in women below 45 years of age (Dal Maso, Lise et al. 2011).
1.2.2 Classification of Thyroid Cancer

I. Follicular Epithelial Cell Origin

A. Differentiated Thyroid Cancer

1. Papillary Thyroid Cancer (PTC)
 a) Classic morphology
 b) Encapsulated variant
 c) Follicular variant
 d) Aggressive variants
 1. Diffuse sclerosing variant
 2. Tall cell variant
 3. Columnar Cell variant

2. Follicular Thyroid carcinoma (FTC)
 a) Classic morphology (‘follicular carcinoma’)
 - minimally invasive versus widely invasive
 b) Hurthle Cell variant
 - minimally invasive versus widely invasive

B) Poorly differentiated thyroid cancer (Insular Carcinoma)
C) Undifferentiated thyroid cancer (Anaplastic Carcinoma)

II. Parafollicular C-Cell origin

Medullary Thyroid carcinoma (MTC)

III. Other Malignant neoplasm

-Lymphoma
-Metastatic tumours
1.2.3 Differentiated Thyroid Carcinoma

This includes Papillary and Follicular Thyroid Carcinomas. Papillary Thyroid Carcinoma (PTC) is the most common type of thyroid malignancy accounting for nearly 75% of all thyroid malignancies (Hundahl, Cady et al. 2000).

1.2.4 Risk Factors for Differentiated Thyroid Cancer

Radiation exposure

Exposure to radiation is a proven risk factor in the aetiology of papillary thyroid cancer (Hunt 2009). The thyroid gland is likely to be exposed to radiation more than other tissues because of its position in the body and its ability to concentrate iodine (Pellegriti, Frasca et al. 2013). In the past, thyroid carcinomas were more frequent in patients treated with low dose radiation for benign head and neck disease (DeGroot and Paloyan 1973). During the last quarter of a century, the individual radiation dose has doubled in developed countries like the USA (Mettler, Bhargavan et al. 2008). This has been attributed mainly due to medical diagnostic and therapeutic procedures (Mettler, Bhargavan et al. 2008). The increased use of CT scans in childhood has been attributed to a potential increase in thyroid cancer (Mazonakis, Tzedakis et al. 2007; Berrington de Gonzalez, Mahesh et al. 2009). The use of I131 either for diagnostic reasons or therapeutic purposes in hyperthyroidism is another source of thyroid irradiation and has shown to cause a small increase in thyroid cancer (Franklyn, Maisonneuve et al. 1998; Metso, Auvinen et al. 2007). Due to the increase in the use of radiotherapy for many cancers, survivors have been found to develop PTC in later life (Chow, Friedman et al. 2009).

After the nuclear bomb attacks in World War II, there have been reports of increased incidence of PTC in survivors (Wood, Tamagaki et al. 1969; Nakachi, Hayashi et al. 2008). Unusual thyroid tumours have also been reported in individuals living near areas near nuclear bomb test sites (Anspaugh, Ricker et al. 1990; Takahashi, Schoemaker et al. 2003). Similar reports of increased incidence of thyroid cancer
Iodine Deficiency and Goitre

Thyroid stimulating hormone (TSH) is a major growth factor for thyroid follicular cells and iodine deficiency causes an increase level of this hormone. Some animal experiments have demonstrated an increase of thyroid cancer after prolonged iodine deficiency. However, this has not been demonstrated in humans residing in iodine deficient areas (Dal Maso, Bosetti et al. 2009). In iodine deficient areas, the over-all incidence of follicular carcinoma seems to be more than the papillary type (Feldt-Rasmussen 2001). This shift from a follicular to a papillary histotype may be due to the frequency of the BRAF(V600E) mutation, a typical molecular alteration in PTC (Pellegriti, Frasca et al. 2013).

Chronic iodine deficiency seems to be a risk factor for follicular thyroid cancer, and possibly anaplastic thyroid cancer (Besic, Hocevar et al. 2010). The major risk factor for goitre and nodularity is iodine deficiency, and both goitre and nodules are major risk factors for thyroid cancer in both men and women (Pellegriti, Frasca et al. 2013). One study reported a relative risk for thyroid cancer of 5.9 (95% CI 4.2–8.1) in individuals with a history of goitre and a much higher risk in those with a history of benign nodularity (Franceschi, Preston-Martin et al. 1999). Williams et.al have reported that dietary iodine concentrations influence the morphology of the papillary carcinomas (Williams, Abrosimov et al. 2008). They found that PTC amongst children in iodine deficient areas showed more aggressive and less differentiated morphological features than those from iodide-rich areas (Williams, Abrosimov et al. 2008).

Other Risk Factors

Other known risk factors for thyroid cancer are non-modifiable with patient age, sex, ethnicity and family history serving as the strongest predictors of risk (Kitahara and Sosa 2016). Women have approximately 3-4 times higher incidence of thyroid cancer than men, this ratio has remained constant over time and across countries (Kilfoy, Zheng et al. 2009). This difference is more pronounced for PTC compared to other
histological subtypes (Kilfoy, Zheng et al. 2009). A SEER (Surveillance, Epidemiology, and End Results) based study from the United States found the incidence of PTC to be highest in Asian females, while papillary and follicular thyroid cancer were the highest among White males (Aschebrook-Kilfoy, Kaplan et al. 2013).

Although vast majority of differentiated thyroid carcinomas are sporadic (Dotto and Nose 2008; Nose 2008), familial tumours may account for 5–15% of thyroid cancers (Nose 2011). They fall under a broad category named Familial Non-Medullary Thyroid Carcinomas (FNMTC) and are follicular cell derived neoplasms. They encompass a heterogeneous group of diseases including both syndromic-associated tumours and non-syndromic tumours based on clinic-pathologic findings (Nose 2008).

Dietetic factors interfering with thyroid hormone synthesis such as cruciferous vegetables could also affect thyroid cancer risk, however this possibility has never been demonstrated (Peterson, De et al. 2012). The evidences of a possible effect of food or environmental pollutants on thyroid cancer are weak and not confirmed.

1.2.5 Histopathology

1.2.5a Classical Papillary Thyroid Cancer

The gross appearance of PTC is variable. Papillary carcinomas often average 2–3 cms, although lesions may be quite large or commonly sub-centimetre in size (LiVolsi). The lesions are firm and usually white in colour. There may be extensive sclerosis making the lesion resemble a scar especially in small lesions. In addition, cyst formation may be observed. Rarely lesions may be almost completely cystic, making diagnosis difficult (Carcangiu, Zampi et al. 1985; Baloch Z 2002).

Microscopically papillary carcinomas share certain features (Figure 1.2). The neoplastic papillae contain a central core of fibro-vascular (occasionally just fibrous) tissue lined by one or occasionally several layers of cells with crowded oval nuclei (Vickery 1983; Carcangiu, Zampi et al. 1985; Baloch Z 2002). Cellular features include clear nuclei, nuclear grooves, and pseudo-nuclear inclusions. The tumours invade lymphatics leading to multifocal lesions and to regional node metastases. Venous
invasion rarely occurs and metastases outside the neck are unusual (5–7% of cases) (LiVolsi).

Figure 1.2 Papillary Thyroid Cancer-Finger like projections representing papillary growth pattern lined by neoplastic cells.

1.2.5b Histo-pathological variants

Micro-carcinomas

Commonly known as Papillary thyroid micro-carcinoma (PTMC), they are defined by the World Health Organisation (WHO) as PTC less than 1.0cm in largest dimension (DeLellis R 2004). In recent years, it is being diagnosed with increasing frequency. This has been attributed to the widespread use of USS and FNAC biopsy, as well as the improved resolution of ultrasonography (Noguchi, Yamashita et al. 2008; Grodski and Delbridge 2009).

Follicular variant

The follicular variant of PTC is the second most common subtype found in 9–22.5% of patients with PTC (Sebastian, Gonzalez et al. 2000; Passler, Prager et al. 2003). It has characteristic nuclear features of a typical PTC like nuclear clearing, grooves, and pseudo-inclusions in addition to a follicular growth pattern (Gupta, Ajise et al. 2012). These tumours can be a challenge for pathologists to diagnose accurately.
There are two further sub-types of the follicular variant of PTC, namely encapsulated and non-capsulated. Most of these are encapsulated tumors, which are difficult to distinguish from follicular adenomas (Gupta, Ajise et al. 2012). These subtypes appear to be distinct both clinically and genetically. A study showed that lymph node metastases were found to be 5% and 65% in encapsulated and non-encapsulated varieties respectively (Liu, Singh et al. 2006).

Aggressive variants

Tall Cell Variant

The tall-cell variant (TCV) is more aggressive than classical PTC. It was first described by Hawk and Hazard in 1976 (Hawk and Hazard 1976). It is an uncommon variant that is usually found in older patients and is associated with poor prognosis (Morris, Shaha et al. 2010). It is composed predominantly of tall cells with height at least twice width, eosinophilic cytoplasm, and basally oriented nuclei (Ghossein and Livolsi 2008). As a variant of PTC, the characteristic nuclear features of PTC are also present. A meta-analysis on prognostic outcomes found that TCV recurs with 4.50 times (CI: 2.90-6.99) greater odds than the classical variant and also had 14.28 (CI: 8.01-25.46) greater odds of disease-related mortality (Jalisi, Ainsworth et al. 2010). The same study also found that TCV had higher trends of lymph node and distant metastases and extra-thyroidal extension (Jalisi, Ainsworth et al. 2010).

Columnar cell variant

It is a rare variant of PTC accounting for 0.15% to 0.2% of all tumours; some authors group them together with TCV (Wenig, Thompson et al. 1998). In this variant, cells are tall with elongated hyperchromatic pseudostratified nuclei which differ from TCV cells in that they lack the cytologic nuclear features characteristic of TCV (Silver, Owen et al. 2011). Columnar cell variant are aggressive due to its rapid growth, high local recurrence rate, and frequent distant metastases (Silver, Owen et al. 2011).
Diffuse Sclerosing Variant

Diffuse sclerosing variant of PTC is characterized by dense sclerosis, patchy lymphocytic infiltration, and abundant psammoma bodies (Fujimoto, Obara et al. 1990). Both lobes of the thyroid are usually involved which often show a background of chronic lymphocytic thyroiditis. These variety is more common in younger patients between 15 and 30 years of age (Koo, Hong et al. 2009).

There are mixed reports regarding the aggressiveness and outcomes of this variant of PTC. Most authors have found high incidence of cervical metastasis, extracellular spread, local recurrence and distant metastases with decreased disease-free survival (Carcangiu and Bianchi 1989; Sywak, Pasieka et al. 2004; Falvo, Giacomelli et al. 2006). Some smaller series however have found no difference in the outcomes (Fujimoto, Obara et al. 1990; Albareda, Puig-Domingo et al. 1998).

Given the infiltrating nature of the disease and the propensity for lymph node metastases, more aggressive management of this variant with total thyroidectomy and appropriate lymphadenectomy is recommended for all patients (Silver, Owen et al. 2011).

Follicular Thyroid Carcinoma

Follicular Thyroid Carcinoma (FTC) is defined by WHO as a malignant epithelial tumour showing follicular cell differentiation and lacking the diagnostic nuclear features of papillary thyroid carcinoma (Sobrinho-Simoes, Eloy et al. 2011).

Follicular Thyroid Carcinomas are solid encapsulated tumours with gray to brown colour at the cut surface (Sobrinho-Simoes, Eloy et al. 2011). They usually occur as single tumours; multi-focality and recurrence in the residual parenchyma after treatment is uncommon. There are two sub-types of FTCs namely minimally and widely invasive. Macroscopically minimally invasive FTCs are indistinguishable from Follicular Adenomas (FA), except for capsular characteristics which tends to be thicker and more irregular in FTC than in FA (Rosai 2004). Widely invasive FTCs may occur as partially encapsulated tumours with extensive penetration of the capsule or as multi-nodular, bulking tumours without a capsule (Rosai 2004).
FTC often presents with more advanced disease and a higher incidence of distant metastases because of the propensity of vascular invasion (Lo, Chan et al. 2005). Lymph node metastasis is uncommon in FTC with an average incidence of about 10% (Thompson, Wieneke et al. 2001). The prognosis of FTC depends on several factors: age of the patient, size and staging of the tumour, completeness of surgery and responsiveness to radioactive iodine. Age more than 45, male gender, extrathyroid invasion, bigger tumour size (>4cms), vascular invasion and presence of distant metastasis are recognized risk factors for poorer prognosis (Lang, Lo et al. 2007; Pisanu, Di Chiara et al. 2010).

Oncocytic/Hurthle Cell Variant

Hurthle cell carcinomas (HCC) account for about 5% of all well-differentiated carcinomas (Bhattacharyya 2003). Once considered to a subset of FTC, genomic dissection has revealed a unique class of thyroid malignancy distinct from papillary and follicular thyroid cancer (Ganly, Ricarte Filho et al. 2013). Because of the rarity, large scale data on this type of tumour is limited. These variants have the typical molecular features of their conventional counterparts of PTC and FTC, however they demonstrate a lesser ability to concentrate iodine and thus are less responsive to radioactive iodine therapy (Cannon 2011). HCC are commonly found in older patients, those who have undergone thyroid irradiation, long-standing nodular goiters, Graves' disease, and Chronic Lymphocytic Thyroiditis (Cannon 2011). It can be difficult to determine if a Hurthle cell lesion is benign or malignant (Montone, Baloch et al. 2008). Although larger lesions have a higher incidence of malignancy, size in itself is not a criterion. The main criteria for malignancy include the presence of capsular and or vascular invasion (Montone, Baloch et al. 2008). Hurthle cell carcinomas do metastasize to the lymph nodes in about 3-25% (Guerrero, Suh et al. 2010); in addition they can spread to the lungs, liver and bone (Har-El, Hadar et al. 1986). There is conflicting evidence about the prognosis of HCC compared to the other types of differentiated thyroid carcinoma and FTC (Kushchayeva, Duh et al. 2008; Sugino, Kameyama et al. 2012).
1.2.6 Prognostic Factors for Papillary Thyroid Cancer

Age
It is a major prognostic factor in thyroid cancer and features in all prognostic scoring. Patients younger than 45 years of age do remarkably well compared with those older than 45 years (Shaha 2004). The mortality rates increases after 60 years of age (Mazzaferri and Jhiang 1994).

Gender
The importance of gender in PTC prognosis has been widely discussed in literature. Studies have shown that women have a higher incidence of thyroid nodules compared to men (Morganti, Ceda et al. 2005; Frates, Benson et al. 2006). However, the incidence of cancer in nodules tends to be higher in men (Machens, Hauptmann et al. 2006). Arguably women with thyroid cancer tend to have a better prognosis than men although the cause of this is not well established. One of the possible explanations for this could be because of differences in screening rates, such as the greater tendency of men to seek medical attention later than females (Toniato, Boschin et al. 2008).

Another possible explanation could be that papillary thyroid cancer tends to be diagnosed at an earlier age in females than in males (Lin, Hsieh et al. 2001). Male patients are higher risk of lymph node micro-metastasis (Teixeira, Teixeira et al. 2011). Studies have also shown a significant correlation between male gender and lung metastasis in papillary thyroid carcinoma presenting with bilateral lateral cervical lymph node metastasis (Lee, Lim et al. 2011).

Men tend to have higher recurrence rates and mortality (Mazzaferri and Jhiang 1994). This might be because men tend to have higher rates of extra-thyroidal invasion (51 vs 39%), greater likelihood of loco-regional lymph node involvement (40 vs 32%) and more than twice the rate of distant metastases (9 vs 4%) (Ries LAG 2003). A recent study found higher mortality and recurrence rates in males with PTC in TNM stages II to IV, suggesting the need for more aggressive surgical treatment.
and postoperative radio-iodine therapy for this specific group of patients (Hsieh, Chen et al. 2012).

Tumour size
Size of the primary tumour features in most of the risk stratification systems for PTC namely AMES, MACIS, AGES etc. Long term survival and recurrence rates have been found to be worse for larger tumours. A large database study has shown ten-year recurrence rates increased with increasing tumour size: <1.0 cm 4.6%, 1.0-1.9 cm 7.1%, 2.0-2.9 cm 8.6%, 3.0-3.9 cm 11.6%, 4.0-8.0 cm 17.2%, and >8.0 cm 24.8% ($P <0.0001$) (Bilimoria, Bentrem et al. 2007). Similarly ten-year survival rates declined with increasing tumour size, but survival was statistically worse only for tumours larger than 4.0 cm ($P <0.0001$): <1.0 cm 98.0%, 1.0-1.9 cm 98.4%, 2.0-2.9 cm 98.5%, 3.0-3.9 cm 95.5%, 4.0-8.0 cm 90.5%, and >8.0 cm 81.3% (Bilimoria, Bentrem et al. 2007).

Other studies have also shown a linear correlation with the tumour size; there is a 0.4% long term mortality in tumours <1.5 cm increasing to 20% in tumours >4.5cm (Mazzaferri and Jhiang 1994). However, outcomes depend of variety of other factors including overall staging, type of surgical and adjuvant treatments. Tumours < 1 cm i.e Papillary Thyroid Micro-carcinomas (PTMC) have a very good prognosis. From a recent database study looking at the outcomes of PTMC's, disease-specific survivals at 10 and 15 years were 99.5% and 99.3% respectively (Yu, Wan et al. 2011).

Histology
Histology of the tumour is an important determinant of long-term outcome. Differentiated Thyroid Cancer, including PTC has the most favourable survival rates, while MTC and ATC have been associated with significantly poorer outcomes (Hundahl, Fleming et al. 1998). Among the histological subtypes of PTC, tall cell variant tends to present at a later stage and has a higher risk of loco-regional and distant relapse with worse overall survival compared to patients with classic PTC (Leung, Chow et al. 2008). In a large multicentre study looking at the PTC subtypes, follicular variant had the best
recurrence and mortality rates at 9.1% and 0.6% respectively. Classical PTC had recurrence and mortality rates of 16.1% and 2.5% whereas the tall cell variant had the worst figures with recurrence at 27.3% and mortality of 6.7% (Shi, Liu et al. 2016).

For FTC, the prognosis is generally good but the presence of metastatic disease makes it worse. A large study on FTC found that in patients without metastatic disease, 20-year disease-specific survival rates reached 80.2%, whereas for all FTC patients it was 73.7%. (Verburg, Mader et al. 2009). Another large study by Hundahl et al found a 10-year survival rate of 85% for FTC (Hundahl, Fleming et al. 1998). For Medullary Thyroid Carcinoma (MTC), age and stage of disease at the time of diagnosis has been shown to be an important factor that influences prognosis (Wells, Asa et al. 2015). Studies have shown a worse disease free survival at five and ten years for patients <40 years as compared to >40 years of age (95 versus 65% and 75 versus 50%, respectively) (Kebebew, Ituarte et al. 2000). The 10-year survival rates for patients with stages I, II, III, and IV MTC are 100, 93, 71, and 21% respectively (Wells, Asa et al. 2015).

Extra-thyroidal extension

Extension of thyroid cancer into the surrounding tissues, oesophagus and trachea is associated with a high-risk of loco-regional disease recurrence (Gemsenjager, Heitz et al. 2001). It is seen in as many of 30% of cases of PTC (Mazzaferri and Jhiang 1994). Even if the spread is microscopic and beyond the capsule, it is associated with a higher risk of recurrent disease (Jukkola, Bloigu et al. 2004) and greater likelihood of lymph node metastases (Lee, Lee et al. 2008). Studies have also shown that positive resection margins (R1) is associated with higher rates when compared to negative margins (R0) (Tuttle, Leboeuf et al. 2008; Hong, Ahn et al. 2012).

Lymph node metastases

LN metastases are more common in PTC when compared to other subtypes of thyroid cancer. The prevalence of lymph node metastases at the initial presentation has varied between studies. To some extent it depends on the imaging modalities used and the method employed in detection. The incidence of metastases ranges...
from 20% to 90% with an average of 60% (Rotstein 2009). Other studies have reported similar percentages (Ito, Higashiyama et al. 2007; Jallon, Bonnet et al. 2009). In children, the numbers are even higher with up to 65% having central nodal disease at presentation (Kumar and Bal 2003).

The clinical importance of cervical LN metastases (CLNM) is however highly controversial. The key question whether the presence of CLNM, or their removal, affects long term survival remains largely unanswered. There are some studies which have found no difference in survival between patients with and without lymph node metastases (Hay, Bergstralh et al. 1993; Hughes, Shaha et al. 1996).

The reason for this is not fully understood. The speculation is the difference in the behaviour of tumour biology between thyroid and other solid cancers. Studies have shown that cancer cells disseminate relatively early in both lymphatic and blood vessels in a large proportion of adult solid cancers (Roberts, Hengesh et al. 1967; Griffiths, McKinna et al. 1973). These cells can be detected cytologically, yet their presence is not necessarily correlated with a poor outcome (Roberts, Hengesh et al. 1967). Whilst the spread to the lymph nodes may occur readily in thyroid cancer, this does not translate into distant metastasis readily unlike some other solid cancers (Cady 1984).

Other studies have found that their presence leads to an increased risk of recurrence (Ito, Higashiyama et al. 2007). A large cohort study has shown significantly reduced overall survival at 14 years in patients with lymph node metastasis compared to those with node negative disease (82 vs 79%, p<-0.05) (Podnos, Smith et al. 2005).

Distant metastases

Distant metastasis is seen in about 5-10% of patients with PTC and remains the main cause of mortality in patients with PTC (Benbassat, Mechlis-Frish et al. 2006; Durante, Haddy et al. 2006). The most common site is the lungs accounting for more than half of patients with distant metastases. 25% have bone involvement alone, 20% have both lung and bone involvement, and about 5% develop distant metastases at other sites (Lee and Soh; Durante, Haddy et al. 2006).
1.2.7 Classification of Cervical Lymph Node Compartments

The most widely used classification is that proposed by the American Joint Committee on Cancer (AJCC) and the American Academy of Otolaryngology-Head and Neck Surgery first described by Robbins (Robbins, Clayman et al. 2002) displayed in Table 1.6. In addition to the above classification, cervical LN have also been classified based on axial imaging as described by Som and colleagues (Table 1.7) (Som, Curtin et al. 2000).

Table 1.6 Clinical classification of cervical LN (Robbins, Medina et al. 1991)

<table>
<thead>
<tr>
<th>Levels</th>
<th>Boundaries</th>
<th>Sub-classified and included Lymph nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level I</td>
<td>Anterior belly of the digastric muscle and the hyoid bone.</td>
<td>IA (Sub-mental).</td>
</tr>
<tr>
<td></td>
<td>Between anterior and posterior bellies of digastric and the mandible.</td>
<td>IB (Sub-mandibular)-</td>
</tr>
<tr>
<td>Level II</td>
<td>Upper Jugular – from the carotid bifurcation or the hyoid bone to the base of the skull. Anterior boundary is the lateral border of sternohyoid; posterior boundary is the posterior border of sternocleidomastoid.</td>
<td>IIA- anterior to spinal accessory nerve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IIB- posterior to spinal accessory nerve.</td>
</tr>
<tr>
<td>Level III</td>
<td>Middle jugular- from the carotid bifurcation superiorly to the omohyoid muscle or cricothyroid notch inferiorly. Anterior boundary is the lateral border of sternohyoid, posterior boundary is the posterior border of sternocleidomastoid.</td>
<td>None.</td>
</tr>
<tr>
<td>Level IV</td>
<td>Lower Jugular- omohyoid muscle superiorly to the clavicle inferiorly. Anterior boundary is the lateral border of sternohyoid, posterior boundary is the posterior border of sternocleidomastoid.</td>
<td>None.</td>
</tr>
<tr>
<td>Level V-Posterior triangle group.</td>
<td>Posterior boundary is the anterior border of the trapezius muscle, anterior boundary is the posterior border of sternocleidomastoid</td>
<td>VA- those located above the horizontal plane defined by the inferior border of the cricoid</td>
</tr>
<tr>
<td>Levels</td>
<td>Boundaries</td>
<td>Sub-classified and included Lymph nodes</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Level I</td>
<td>Medial margins of the anterior bellies of the digastric muscles above the hyoid bone and below the mylohyoid muscle.</td>
<td>IA (Sub-mental)</td>
</tr>
<tr>
<td></td>
<td>On each side of the neck, these nodes lie lateral to the level IA nodes and anterior to the back of each submandibular gland.</td>
<td>IB (Sub-mandibular)</td>
</tr>
<tr>
<td>Level II</td>
<td>These nodes extend from the skull base to the level of the bottom of the body of the hyoid bone. They are posterior to the back of the submandibular gland and anterior to the back of the sternocleidomastoid muscle.</td>
<td>II A-Level II nodes that lie either anterior, lateral, medial, or posterior to the internal jugular vein. II B- nodes that lie posterior to the internal jugular vein with a fat plane separating the nodes and the vein.</td>
</tr>
<tr>
<td>Level III</td>
<td>These nodes extend from the level of the bottom of the body of the hyoid bone to the level of the bottom of the cricoid arch. They lie anterior to the back of the sternocleidomastoid muscle.</td>
<td></td>
</tr>
<tr>
<td>Level IV</td>
<td>These nodes extend from the level of the bottom of the cricoid arch to the level of the clavicle. They lie anterior to a line connecting the back of the sternocleidomastoid muscle and the inner table of the manubrium.</td>
<td></td>
</tr>
</tbody>
</table>
the sternocleidomastoid muscle and the posterior-lateral margin of the anterior scalene muscle. They are also lateral to the carotid.

Level V Posterior triangle group.	These nodes lie posterior to the back of the sternocleidomastoid muscle from the skull base to the level of the bottom of the cricoid arch. From the level of the bottom of the cricoid arch to the level of the clavicle as seen on each axial scan, they lie posterior to a line connecting the back of the sternocleidomastoid muscle and the posterior-lateral margin of the anterior scalene muscle. They also lie anterior to the anterior edge of the trapezius muscle.	V A- Extend from the skull base to the level of the bottom of the cricoid arch. They are posterior to the back of the sternocleidomastoid muscle. V B- extend from the level of the bottom of the cricoid arch to the level of the sternocleidomastoid muscle and the posterior-lateral margin of the anterior scalene muscle clavicle as seen on each axial scan.
Level VI Central Compartment.	These nodes lie between the carotid arteries from the level of the bottom of the body of the hyoid bone to the level of the top of the manubrium (previously known as the visceral nodes).	
Level VII	These nodes lie between the carotid arteries below the level of the top of the manubrium and above the level of the innominate vein (previously known as the superior mediastinal nodes).	
Supraclavicular.	These nodes lie at or caudal to the level of the clavicle as seen on each axial scan and lateral to the carotid artery on each side of the neck. They are also above and medial to the ribs.	
Retropharyngeal.	These nodes lie within 2 cm of the skull base and they are medial to the internal carotid arteries.	

1.2.8 Pattern of Metastases

The head and neck contains nearly two-fifths of the lymph nodes of the whole body, hence has a rich lymphatic network (Grodski, Cornford et al. 2007; Grubbs, Rich et al. 2008). The thyroid gland has an extensive lymphatic drainage which can follow a number of directions (Sakorafas, Sampanis et al. 2010). The risk of metastases to cervical LN in PTC has varied according to different studies. The incidence of LN
metastases has been reported to be between 20%-90% of cases (Rotstein 2009). According to some reports the risk is greatest for lateral LN of levels II, III, and IV (Qubain, Nakano et al. 2002; Caron, Tan et al. 2006; Roh, Park et al. 2007). Overall central LN are more commonly involved and usually before lateral LN involvement (Goropoulos, Karamoshos et al. 2004). Bilateral central LN metastases is reported anywhere between 30-46% of patients (Noguchi, Kumaki et al. 1990; Machens, Hinze et al. 2002; Sadowski, Snyder et al. 2009). Other reports have suggested the ipsilateral central neck as the most common site of metastatic PTC. In about 20% of patients lateral LN are involved in isolation without any central LN involvement. They are also known as ‘skip metastases’ (Machens, Holzhausen et al. 2004).

Micro-Metastasis

It is defined as histological presence of metastatic deposits <2mm in diameter in a lymph node (Sakorafas, Sampanis et al. 2010). The incidence varies according to the technique used to identify them. The incidence rates described in literature has varied between 50-66% (Qubain, Nakano et al. 2002; Cranshaw and Carnaille 2008).

1.2.9 Cervical Lymph Node Dissection

Cervical LND in PTC has evolved from radical surgery to more refined procedures with fewer complications. It is important to understand some of the surgical procedures that are practised. A summary of individual procedures is described below.

Radical Neck Dissection

This procedure was initially described in 1906 by George Crile (Soto-Ruiz and Varon 2009). This involves removal of all the lymph nodes in the neck along with three important anatomic structures namely the sternocleidomastoid muscle, the internal jugular vein and the spinal accessory nerve. This has major side effects including dysmorphymy and shoulder dysfunction due to sacrifice of the spinal accessory nerve.
Vagus nerve injuries can occur resulting in significant dysphonia from ipsilateral vocal cord paralysis and dysphagia with pooling of secretions from pharyngeal paralysis.

Extended Radical Neck Dissection

In this, additional lymph node groups or non-lymphatic structures relative to the radical neck dissection are removed. Other LN groups may include superior mediastinal, retropharyngeal, peri-pharyngeal, post-auricular etc. Other non-lymphatic structure may include vagus nerve, hypoglossal nerve or external carotid artery. It is a more aggressive procedure than radical neck dissection.

Modified Radical Neck Dissection

First described in 1962 by Oswaldo Suarez, an Argentinian surgeon (Byers 1991) this procedure has gained popularity in Europe and in the United States of America. Here, dissection of Levels II-V cervical LN is done with sparing of the following structures: sternocleidomastoid muscle, internal jugular vein or spinal accessory nerve (CN XII) (Sitges-Serra, Lorente et al. 2013). Depending on which non-lymphatic structure is preserved, MRND is further subdivided into type I (preservation of the spinal accessory nerve), type II (preservation of the spinal accessory nerve and internal jugular vein), and type III (preservation of the spinal accessory nerve, internal jugular vein, and sternocleidomastoid muscle) (Sakorafas, Sampanis et al. 2010).

Selective Neck Dissection

This involves preservation of one or more lymph node groups routinely removed in the radical neck dissection. The procedures are based on a ‘compartment-oriented’ dissection of LN. For example the central compartment LN dissection would involve removal of LN in level VI with preservation of the recurrent laryngeal nerve and at least one parathyroid gland.

Berry Picking

In this procedure, only suspicious and enlarged lymph nodes are removed. This type of surgery cannot achieve complete removal of metastatic disease and results in a
high incidence of recurrent disease requiring further surgery (Musacchio, Kim et al. 2003). The incidence of recurrences after this procedure has been reported to be as high as 86% (Davidson, Park et al. 2008). Hence this procedure is now of historical importance only.

1.2.10 Terminology of Neck Dissection

Central lymph node dissection is the removal of the level VI LN that lies in a central position in the neck. Level VI LNs includes pre-tracheal and para-tracheal nodes, the pre-cricoid (Delphian) node and the peri-thyroidal nodes including nodes along the recurrent laryngeal nerves (White, Gauger et al. 2007; Carty, Cooper et al. 2009). Lateral lymph node dissection (lateral LND) is defined as removal of the jugular lymph nodes corresponding to lymph nodes in level II-IV.(Robbins, Shaha et al. 2008; Cooper, Doherty et al. 2009).

There is now a consensus amongst leading endocrine organisations namely ATA (American Thyroid Association), AAES (American Association of Endocrine Surgeons) and AAO (American Academy of Otolaryngology) regarding the terminology used for neck dissection in thyroid cancer.

A ‘therapeutic compartment neck dissection’ also known as ‘selective’ implies that nodal metastasis is apparent clinically (preoperatively or intra-operatively) or by imaging (Carty, Cooper et al. 2009). In this all apparent LN, fatty tissue and fascia are removed from an anatomically defined compartment.

A ‘prophylactic’, also known as ‘elective’ compartment dissection implies nodal metastases are not detected clinically or by imaging pre-operatively (Carty, Cooper et al. 2009). This means removal of all lymph nodes from an anatomically defined compartment as part of the surgical procedure.

1.2.11 Staging of Papillary Thyroid Cancer

The most widely used and accepted staging of PTC is the TNM classification provided by the Union for International Cancer Control (UICC) and used by American Joint Committee on Cancer (AJCC) as shown in Table 1.8.
Table 1.8 Staging of Papillary Thyroid Cancer (Edge SB 2010)

<table>
<thead>
<tr>
<th>T - Primary tumour</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx</td>
<td>Primary tumour cannot be assessed.</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumour.</td>
</tr>
<tr>
<td>T1</td>
<td>≤2 cm or less, limited to thyroid.</td>
</tr>
<tr>
<td>T1a</td>
<td><1 cm.</td>
</tr>
<tr>
<td>T1b</td>
<td>>1 cm but <2 cm.</td>
</tr>
<tr>
<td>T2</td>
<td>>2 cm but ≤4 cm, limited to thyroid.</td>
</tr>
<tr>
<td>T3</td>
<td>> 4 cm, limited to thyroid or any tumour with minimal extra-thyroidal extension.</td>
</tr>
<tr>
<td>T4a</td>
<td>Extends beyond thyroid capsule and invades the following subcutaneous soft tissues, larynx, trachea, oesophagus and recurrent laryngeal nerve.</td>
</tr>
<tr>
<td>T4b</td>
<td>Invades prevertebral fascia, mediastinal vessels or encases carotid artery.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N - Regional Lymph Nodes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nx</td>
<td>Regional LN cannot be assessed.</td>
</tr>
<tr>
<td>N0</td>
<td>No regional LN metastases.</td>
</tr>
<tr>
<td>N1</td>
<td>Regional LN metastases.</td>
</tr>
<tr>
<td>N1a</td>
<td>Metastases in Level VI.</td>
</tr>
<tr>
<td>N1b</td>
<td>Metastases in other unilateral, bilateral or contralateral cervical LN (Levels I, II, III, IV or VI).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M - Distant Metastasis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>No distant Metastases.</td>
</tr>
<tr>
<td>M1</td>
<td>Distant Metastases.</td>
</tr>
</tbody>
</table>

Once the T, N and M values are determined, grouping from I to IV is done as shown in Table 1.9.
Table 1.9 Group Staging- Papillary Thyroid Cancer

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 45 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage I</td>
<td>Any T</td>
<td>Any N</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
<tr>
<td>45 years and older</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage I</td>
<td>T1a, T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III T3 N0 M0</td>
<td>T-3 N1a M0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IVA T-3 N1b M0</td>
<td>T4a N0 M0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IVC</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

As is evident from the Table 1.9, thyroid cancers are grouped in stages in a way that also considers the subtype of cancer and the patient's age. There are several systems which aim to stratify thyroid cancer patients according to risks to predict the treatment and outcomes. The most commonly used in PTC is the MACIS system (Table 1.10).

Table 1.10 Risk Stratification systems for Differentiated Thyroid cancer (Sakorafas, Sampanis et al. 2010)

<table>
<thead>
<tr>
<th>AGES</th>
<th>AMES</th>
<th>MACIS</th>
<th>DAMES</th>
<th>GAMES</th>
<th>TNM/UICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Age</td>
<td>Metastases</td>
<td>Diploid</td>
<td>Grade</td>
<td>Tumour</td>
</tr>
<tr>
<td>Metastases</td>
<td>Metastases</td>
<td>Age</td>
<td>Age</td>
<td>Age</td>
<td>size</td>
</tr>
<tr>
<td>Extent</td>
<td>Extent</td>
<td>Completeness of Surgery</td>
<td>Metastases</td>
<td>Metastases</td>
<td>Nodal</td>
</tr>
<tr>
<td>Size</td>
<td>Size</td>
<td>Invasion</td>
<td>Extent</td>
<td>Extent</td>
<td>status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Size</td>
<td>Size</td>
<td>Size</td>
<td>Metastases</td>
</tr>
</tbody>
</table>

As is evident from the Table 1.9, thyroid cancers are grouped in stages in a way that also considers the subtype of cancer and the patient's age. There are several systems which aim to stratify thyroid cancer patients according to risks to predict the treatment and outcomes. The most commonly used in PTC is the MACIS system (Table 1.10).
1.3 Treatment of Differentiated Thyroid Carcinoma

The pre-operative assessment and imaging methodology employed in the evaluation of thyroid cancer has been discussed in the previous chapters. The general principles and guidelines for surgery in thyroid cancer are described below. The terminology related to thyroid cancer surgery as recommended by British Thyroid Association is described in Table 1.11 (Perros, Boelaert et al. 2014)

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemi-thyroidectomy</td>
<td>Complete removal of one thyroid lobe including the isthmus.</td>
</tr>
<tr>
<td>Near-total lobectomy</td>
<td>Total lobectomy leaving behind only the smallest amount of thyroid tissue (significantly less than 1 g) to protect the recurrent laryngeal nerves.</td>
</tr>
<tr>
<td>Near-total thyroidectomy</td>
<td>Complete removal of one thyroid lobe (lobectomy) with a near-total lobectomy on the contralateral side or a bilateral near-total procedure. This should be clearly defined in the operation note.</td>
</tr>
<tr>
<td>Total thyroidectomy</td>
<td>Removal of both thyroid lobes, isthmus and pyramidal lobe.</td>
</tr>
</tbody>
</table>

1.3.1 Surgery for Papillary Thyroid Cancer

The guidelines for the treatment of PTC from well renowned endocrine organisations are summarised in Table 1.12.
Table 1.12 Guidelines for Thyroid Surgery in Papillary Thyroid Cancer

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total or near total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-risk cancer</td>
<td></td>
<td>T >1 cm</td>
<td>Age ≥ 45</td>
<td>Age <15 or >45</td>
</tr>
<tr>
<td>Ex (+)</td>
<td></td>
<td>Ex (+)</td>
<td>T >1–1.5 cm</td>
<td>T >4 cm</td>
</tr>
<tr>
<td>N (+)</td>
<td></td>
<td>N (+)</td>
<td>N (+)</td>
<td>Ex (+)</td>
</tr>
<tr>
<td>M (+)</td>
<td></td>
<td>Multiple lesions</td>
<td>M (+)</td>
<td>N (+)</td>
</tr>
<tr>
<td>Bilateral nodularity</td>
<td></td>
<td>Radiation history</td>
<td>Bilateral nodularity</td>
<td>M (+)</td>
</tr>
<tr>
<td>Bilateral cancer</td>
<td></td>
<td>Family history</td>
<td>Radiation history</td>
<td>Bilateral nodularity</td>
</tr>
<tr>
<td>Lobectomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+isthmusectomy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T ≤1 cm</td>
<td>T ≤1 cm</td>
<td>Other than the Above</td>
<td>Other than the Above</td>
<td>N (+)</td>
</tr>
<tr>
<td>Ex0</td>
<td>N0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymph node dissection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central compartment</td>
<td>N (+)</td>
<td>N (+) or T >4cm</td>
<td>N (+) or T3 and T4</td>
<td>N (+)</td>
</tr>
<tr>
<td>Lateral compartment</td>
<td>N (+)</td>
<td>N (+)</td>
<td>N (+)</td>
<td></td>
</tr>
</tbody>
</table>

AACE-American Association of Clinical Endocrinologists
AAES- American Association of Endocrine Surgeons
BTA- British Thyroid Association (Perros, Boelaert et al. 2014)
ATA- American Thyroid Association (Cooper, Doherty et al. 2009)
NCCN- National Comprehensive Cancer Network
Ex- Extension of cancer beyond thyroid capsule
N (+) - Metastatic Lymph node on imaging

BTA recommends total thyroidectomy for large tumours or tumours of any size with additional risk factors. This has shown to be associated with fewer recurrences and better survival (Bilimoria, Bentrem et al. 2007; Pelizzo, Boschin et al. 2007).
According to ATA, patients with thyroid cancer >4 cm, or with gross extrathyroidal extension or clinically apparent metastatic disease to nodes or distant sites, the initial surgical procedure should include a near-total or total thyroidectomy (Haugen, Alexander et al. 2016).

For patients with tumours 4 cm or smaller and no risk factors, hemi-thyroidectomy without radioidine remnant ablation (RRA) is reported to have an equally favourable outcome to total thyroidectomy (Nixon, Ganly et al. 2012; Matsuzu, Sugino et al. 2014).

1.3.2 Central Lymph Node Dissection

Guidelines from renowned endocrine associations regarding central LN dissection are tabulated in Table 1.12.

ATA recommendation is ‘therapeutic central-compartment (level VI) neck dissection for patients with clinically involved central or lateral neck lymph nodes’ (Cooper, Doherty et al. 2009). ‘pCLND (ipsilateral or bilateral) may be performed in patients with papillary thyroid carcinoma with clinically uninvolved central neck lymph nodes, especially for advanced primary tumours (T3 or T4)’ (Cooper, Doherty et al. 2009). The recommendation has ‘B’ and ‘C’ respectively which implies the strength is limited by the number, quality, or consistency of the individual studies or is based on expert opinion (Cooper, Doherty et al. 2009).

British Thyroid Association (BTA) guidelines do not recommend prophylactic central neck LN dissection for patients without clinical or radiological evidence of lymph node involvement, who have all of the following characteristics: classical type PTC, <45 years, unifocal tumour, ≤4 cm, no extra-thyroidal extension on US (Perros, Boelaert et al. 2014).

The evidence is based on databases and retrospective cohort studies and hence not of the highest level (Costa, Giugliano et al. 2009; Moo, McGill et al. 2010; Moreno, Edeiken-Monroe et al. 2012; Barczynski, Konturek et al. 2013). For patients deemed to be high risk based on one or more of the following (adverse histological sub type, age ≥ 45 years, multifocal, tumours greater than 4 cm in diameter, extra-thyroidal extension).
extension), the recommendation is ‘personalised Decision Making’. The level of evidence is described by BTA is ‘4,D’ which is again based on cohort studies. ‘Personalised Decision making’ involves multidisciplinary team meeting, expert opinion and available expertise locally (Perros, Boelaert et al. 2014).

Guidelines from the Japan Society of Thyroid Surgeons (JSTS) however recommend prophylactic central LND at initial surgery because reoperation for recurrence to this compartment may induce severe complications-‘recommendation rating= B’(Takami, Ito et al. 2011)

1.3.3 Lateral Lymph Node Dissection

ATA recommends therapeutic lateral LND for (Cooper, Doherty et al. 2009) biopsy proven metastatic lateral cervical lymphadenopathy. This recommendation has a ‘B’ rating according to ATA guidelines and relies on the detection of cervical LN on US. (Cooper, Doherty et al. 2009). As highlighted in our previous literature review, US has poor sensitivity and hence cannot be relied upon for staging PTC tumours (Mulla M 2012).

British Thyroid Association in its guidelines concludes that pLLND in patients without central LN metastases is not recommended (Perros, Boelaert et al. 2014). For patients with central LN metastases, the recommendation for pLLND is ‘personalised decision making’ (evidence Level ‘4D’) which is based on multidisciplinary team meeting, expert opinion and available expertise (Perros, Boelaert et al. 2014). Guidelines from the Japanese Society of Thyroid Surgeons (JSTS) regarding the role of prophylactic lateral LND remains undetermined. However JSTS guidelines recognises the significance of pLLND in reducing recurrences (Ito Y 2010).

1.3.4 Treatment of Follicular Thyroid Carcinoma

FNAC cannot distinguish follicular adenoma or benign hyperplastic nodules from carcinoma. Follicular cytology (Thy3) usually mandates at least a diagnostic hemithyroidectomy (Perros, Boelaert et al. 2014). If definitive histology reveals a follicular adenoma or a hyperplastic nodule, no further treatment is required.
Patients with tumours ≤4 cm, in the absence of other adverse risk factors appear to have an excellent prognosis (Sugino, Kameyama et al. 2012; Goffredo, Cheung et al. 2013). BTA recommends hemi-thyroidectomy for these patients (Perros, Boelaert et al. 2014).

Patients with follicular tumours >4 cm appear to have worse prognosis (D'Avanzo, Treseler et al. 2004; Mete and Asa 2011) and should be treated with total thyroidectomy (Perros, Boelaert et al. 2014).

Patients with tumours >1–≤4 cm and adverse risk factors (age >45 years, widely invasive, lymph node/distant metastases, angioinvasion) should be treated with total thyroidectomy (Perros, Boelaert et al. 2014).

1.3.5 Treatment of Hurthle Cell Carcinoma

Recommendations from British Thyroid Association (BTA) on the surgical treatment of HCC are as follows (Perros, Boelaert et al. 2014)

- In patients with tumour less than 1 cm hemi-thyroidectomy or total thyroidectomy is recommended.
- For carcinomas > 1 cm, total thyroidectomy is recommended
- Therapeutic lymph node dissection is advocated in patients with clinical or radiological evidence of lymph node involvement and confirmed metastasis.
- Evidence for prophylactic neck dissection is unclear.

1.3.6 Medullary Thyroid Carcinoma

Medullary thyroid cancer (MTC) accounts for nearly 5%–10% of all thyroid cancers (Sippel, Kunnimalaiyaan et al. 2008). It is a malignancy of the parafollicular ‘C’ cells of the thyroid. The C cells originate from the embryonic neural crest, hence MTC’s often have the clinical and histological features of other neuro-endocrine tumours. The C cells secrete a variety of peptides and hormones with calcitonin being the most common. Serum calcitonin levels are elevated in patients with MTC and can be used to confirm the diagnosis as well as for follow-up of patients. Most medullary thyroid carcinomas are sporadic, however about 25 percent are familial and form part of the Multiple Endocrine Neoplasia type 2 (MEN2) syndrome.
Their clinical course varies from an extremely indolent tumour to an aggressive variant that is associated with a high mortality rate.

Sporadic MTC's - They form nearly 75% of all cases of the disease. The typical age of presentation is in the fourth and sixth decades of life (Leboulleux, Baudin et al. 2004). The most common presentation is that of a solitary thyroid nodule which occurs in 75-95% of patients (Dottorini, Assi et al. 1996; Kebebew, Ituarte et al. 2000).

In most patients with MTC, metastasis has already occurred at the time of diagnosis. About 70% of patients have cervical metastases and 10% have distant metastases (Moley 2010). Central and lateral compartment lymph node metastases are present in 86% and 93% of patients with T4 tumours respectively (Machens, Hinze et al. 2002). Nodal metastases are reported to be more common in patients with multifocal disease (Machens, Hauptmann et al. 2007). Site of distant metastases are often the liver, lung, bones and less commonly to the brain and skin.

Hereditary or Familial MTC

As previously mentioned majority of MTC’s are sporadic but about 20-25% are familial and form part of the MEN 2 syndrome (Multiple Endocrine Neoplasia). MEN2 is sub-classified into two distinct syndromes namely MEN2A and MEN2B) each of which is transmitted in an autosomal dominant pattern and associated with MTC. MEN2A is more common accounting for about 75% cases (Sippel, Kunnimalaiyaan et al. 2008). MEN2A, is associated with MTC, pheochromocytoma, and primary parathyroid hyperplasia. These tumours are typically bilateral and multicentric, age of presentation is variable but it is usually in early adulthood. Pheochromocytomas are seen in up to 50% of cases and can be screened for using either plasma metanephrines or 24-hour urine collections for catecholamines and metanephrines (Sippel, Kunnimalaiyaan et al. 2008). Screening for hyperparathyroidism can be performed with serum calcium and parathyroid hormone levels. Some other variants of MEN2A are also associated with cutaneous lichen amyloidosis or Hirschsprung’s disease.
In MEN2B, there is similar inherited predisposition to MTC and pheochromocytoma as MEN2A, but does not include hyperparathyroidism. The tumour develops at an earlier age and has an aggressive course than in MEN2A. A characteristic feature of MEN-2B is the development of diffuse ganglioneuromas of the lips, tongues, eyelids, and gastrointestinal tract. These patients have a characteristic appearance, including a Marfanoid habitus, everted eyelids, and thick lips (Sippel, Kunnimalaiyaan et al. 2008).

Treatment of Medullary Thyroid Carcinoma

Unlike most other thyroid cancers, medullary thyroid cancer does not absorb RAI and therefore the best chance of curing a patient is completely removing the cancer at the first operation.

A summary of recommendations provided by British Thyroid association recommendation (BTA) (Perros, Boelaert et al. 2014) is as follows-

- Minimum of Total thyroidectomy and central LN dissection for established MTC.

- Patients with clinical or radiologically involved lymph nodes in the lateral compartment, patients should undergo selective lateral neck dissection of levels IIa–Vb in addition to total thyroidectomy and central lymph node dissection.

- Ipsilateral prophylactic lateral neck dissection is recommended in the presence of central compartment node metastases on the basis that the risk of lateral node involvement is at least 70%.

- About 35% patients with central compartment node metastases will have contralateral lateral compartment node metastases (Machens, Hauptmann et al. 2008). Studies have shown that bilateral lateral neck dissection in patients will achieve biochemical cure in 50% of patients (Machens and Dralle 2010). Although this will reduce calcitonin levels, its impact on survival is less certain. Therefore, prophylactic bilateral lateral compartment node dissection in the presence of central compartment node metastases is unclear.
• Children with MEN2B should undergo prophylactic thyroidectomy preferably within the first 6 months but within the first year of life (Leboulleux, Travagli et al. 2002; Brauckhoff, Machens et al. 2014)

• Children with MEN 2A should undergo thyroidectomy before the age of 5 years (Rohmer, Vidal-Trecan et al. 2011)

• Prophylactic lymph node dissection at the time of thyroidectomy should be considered in gene carriers based upon the basal calcitonin level.

Routine adjuvant external beam radiotherapy EBRT should be considered only once optimal surgery has been performed and if there is significant risk of local recurrence (Wilson, Millar et al. 2004)

1.3.7 Radioiodine Remnant ablation (RRA) for Differentiated Thyroid cancer

Also known as RRA, it is used as an adjunct to near total or total thyroidectomy in differentiated thyroid cancer (Perros, Boelaert et al. 2014). Iodine is concentrated by differentiated thyroid cancers but not by poorly differentiated carcinoma, medullary carcinoma, lymphomas and anaplastic carcinomas (Carballo and Quiros 2012). Hence these cancers which do not concentrate iodine are not candidates for Radio-iodine treatment (Carballo and Quiros 2012). After surgery for Differentiated Thyroid Cancer (DTC), some 131I uptake is usually demonstrable in the thyroid bed. 131I-induced destruction of this residual thyroid tissue is known as ‘radioiodine remnant ablation’ (RRA) (Perros, Boelaert et al. 2014).

Mechanism of Radio- Iodine Treatment

Radioiodine (RAI) is taken up and concentrated in thyroid follicular cells via a membrane called sodium-iodide transporter (Carballo and Quiros 2012). Thyroid Stimulating Hormone (TSH) stimulates thyroid tissue and cancer cells to take up radioactive iodine. RAI therapy is most effective when circulating levels of TSH or
thyrotropin are high in blood. The most effective form of iodine isotopes used in the treatment for papillary thyroid cancer is I-131 (Silberstein 2012).

Optimisation of patients for RRA

- All patients should have undergone total thyroidectomy before administration of radio-iodine therapy. It has been shown that complete surgical removal of normal and pathologic thyroid tissue increases the efficacy of RAI treatment in destroying metastatic disease (Sakorafas, Sampanis et al. 2010). RAI treatment can be inefficient in tumours without radio-iodine uptake in 25-30% of cases (Jallon, Bonnet et al. 2009).
- Exogenous Iodine: Radio-iodine uptake is suppressed by increased endogenous stores or exogenous iodide. Exposure to iodinated intravenous contrast and treatment with drugs like amiodarone which is rich in iodine content may compromise the efficacy of radio-iodine (Perros, Boelaert et al. 2014). Generally, a low iodine diet two weeks prior to RRA is advised.

1.3.8 TSH stimulation with recombinant human TSH (rhTSH) or Thyroid Hormone Withdrawal (THW)

For ablative RAI treatment to be most effective, high TSH levels are required to maximise uptake by thyroid remnants or residual tumour cells (Reiners, Dietlein et al. 2008). This can be achieved by two different methods.

TSH can be stimulated exogenously by injection of rhTSH. Recombinant human TSH is a synthetic drug that is used to provide TSH stimulation without withdrawal of thyroid hormone and the associated symptoms and morbidity (Carballo and Quiros 2012). Alternatively, TSH can be stimulated endogenously by withholding thyroid hormone (T4) approximately 3 weeks after thyroidectomy (Serhal, Nasrallah et al. 2004). This is termed as ‘Thyroid Hormone Withdrawal’ (THW). This can cause hypothyroidism and the symptoms associated with it. Randomised trials have shown that RAI therapy is equally effective after rhTSH or THW for selected patients with DTC (Mallick, Harmer et al. 2012; Schlumberger, Catargi et al. 2012).
Recombinant TSH is the recommended method of preparation for RRA in patients with T1 to T3 tumours with no lymph node or distant metastases (Perros, Boelaert et al. 2014). It is not currently used for patients with high risk of recurrence, or for the treatment of recurrent or metastatic DTC (Perros, Boelaert et al. 2014).

1.3.9 Indications for RRA

There is no clear evidence that all patients will benefit from RRA. In a significant group, the evidence is inadequate and conflicting. Therefore clear recommendation cannot be made (Perros, Boelaert et al. 2014) and are not available (Haugen 2004; Hackshaw, Harmer et al. 2007). For these reasons, RRA patients can be classified into three categories: (a) definite indications for RRA (b) uncertain indications for RRA (c) no indication for RRA as in Table 1.13.

Table 1.13 Indications of RRA (Perros, Boelaert et al. 2014)

<table>
<thead>
<tr>
<th>Definite Indications</th>
<th>No Indications</th>
<th>Uncertain Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any one of the criteria below should be met</td>
<td>All below criteria Should be met</td>
<td>All other cases- May benefit from RRA</td>
</tr>
<tr>
<td>• Tumour >4cm</td>
<td>• Tumour <1cm unifocal or multifocal</td>
<td>• Large tumour size</td>
</tr>
<tr>
<td>• Any tumour size with gross extra thyroidal extension</td>
<td>• Classical papillary or follicular variant of papillary carcinoma, or follicular carcinoma</td>
<td>• Extra-thyroidal extension</td>
</tr>
<tr>
<td>• Distant metastases present</td>
<td>• Minimally invasive without angioinvasion</td>
<td>• Unfavourable cell type (tall cell, columnar or diffuse sclerosing papillary cancer, poorly differentiated elements)</td>
</tr>
<tr>
<td></td>
<td>• No invasion of thyroid capsule (extra thyroidal extension)</td>
<td>• Widely invasive histology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiple lymph node involvement, large size of involved lymph nodes, high ratio of positive to negative nodes, extracapsular nodal involvement.</td>
</tr>
</tbody>
</table>
The benefits and side effects of RRA treatment is summarised in Table 1.14.

Table 1.14 Advantages and Disadvantages of RRA (Perros, Boelaert et al. 2014)

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages/Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Eradication of all residual thyroid cells subsequent reduced risk of local and distant tumour recurrence (Hackshaw, Harmer et al. 2007)</td>
<td>- Nausea</td>
</tr>
<tr>
<td>- Possible prolonged survival (Sawka, Thephamongkhol et al. 2004)</td>
<td>- Radiation cystitis, gastritis, bleeding</td>
</tr>
<tr>
<td>- Destruction of all thyroid tissue providing reassurance to patients</td>
<td>- Need to avoid pregnancy (6 months) or fathering a child (4 months)</td>
</tr>
<tr>
<td>- Increased sensitivity of Tg monitoring facilitating early detection of recurrent or metastatic disease (Mazzaferri 1999)</td>
<td>- Increased risk of miscarriage in the first year</td>
</tr>
<tr>
<td>- Increased sensitivity of subsequent iodine scanning if required</td>
<td>- Painful thyroiditis</td>
</tr>
<tr>
<td></td>
<td>- Sialadenitis</td>
</tr>
<tr>
<td></td>
<td>- Xerostomia</td>
</tr>
<tr>
<td></td>
<td>- Dysgeusia</td>
</tr>
<tr>
<td></td>
<td>- Pulmonary fibrosis</td>
</tr>
<tr>
<td></td>
<td>Second malignancies</td>
</tr>
</tbody>
</table>

RAI has shown to reduce the risk of local and distant metastases in high risk tumours (Sawka, Thephamongkhol et al. 2004). It’s role in low risk tumours however remains less convincing (Hay, McConahey et al. 2002). It has shown to effective in dealing with recurrences and undetected metastases (Mazzaferri 1997). However, there is lack of firm evidence for the above and the treatment is not firmly established (Pacini, Schlumberger et al. 2005). A systematic review by Sawka et. al failed to confirm the use of radioiodine ablation in decreasing recurrences and cause specific mortality (Sawka, Brierley et al. 2008).

As is evident from Table 1.14, RAI is associated with significant side-effects ranging to neck pain and sialadenitis (Reiners, Dietlein et al. 2008) to serious and largely dose dependent complications including leukaemia and secondary solid tumours (Rubino, de Vathaire et al. 2003).
1.3.10 TSH suppression

In patient with thyroid cancer after thyroidectomy, thyroid hormone replacement therapy is required. This is not only to replace endogenous thyroid hormone but it is generally thought to inhibit tumour growth indirectly by its negative feedback effects on pituitary Thyroid Stimulating Hormone (TSH) secretion (Cooper, Specker et al. 1998). Thyroid hormone replacement is usually in the form of levothyroxine (T4). Usually a large T4 dose is required to suppress blood TSH levels below the normal range. This is called ‘TSH suppression’.

Rationale and evidence for TSH suppression

DTC’s express TSH receptor on the cell membrane and respond to TSH stimulation. This stimulation leads to increase in expression of several thyroid specific proteins namely thyroglobulin and sodium-iodine symporter, and increases rates of cell growth (Biondi and Cooper 2010). Hence suppression of TSH with high doses of T4 hormone is used in thyroid cancer patients in an attempt to decrease the risk of recurrences (McGriff, Csako et al. 2002; Piccardo, Arecco et al. 2013).

Evidence from many studies has shown that there are long term benefits from TSH suppression especially in high risk tumours. In one study, TSH suppression was an independent predictor of disease progression in patients with stage III or IV PTC, but not in those with low-risk tumours (Jonklaas, Sarlis et al. 2006; Hovens, Stokkel et al. 2007).

Another study by Pujol et al. showed that thyroid cancer patients with TSH levels that were consistently low had an improved rate of relapse-free survival compared with those whose with higher levels (Pujol, Daures et al. 1996). Decreased recurrences and mortality after TSH suppression is evident only in patients with high-risk differentiated thyroid cancers (Biondi and Cooper 2010).

BTA guidelines recommend evaluation of response and risk of recurrence according to Dynamic risk Stratification 9-12 months after initial treatment (Perros, Boelaert et al. 2014). In patients with an incomplete response serum TSH should be suppressed below 0.1 mU/l indefinitely. In patients who have an indeterminate response, it is
recommended to maintain serum TSH concentrations between 0.1 and 0.5 mU/l. In patients with an excellent response to treatment for thyroid cancer, the serum TSH should be maintained in the low-normal range between 0.3-2 mU/l. The ATA recommends initial TSH suppression to below 0.1 mU/L for high and intermediate risk thyroid cancer patients, while maintenance of the TSH at or slightly below the lower limit of normal (0.1–0.5 mU/L) is considered appropriate for low-risk patients (Haugen, Alexander et al. 2016).

1.3.11 Thryoglobulin

Thyroglobulin (Tg) is commonly used in the follow-up of patients with PTC. It is a glycoprotein produced only by normal or neoplastic thyroid follicular cells (Ibrahimpasic, Nixon et al. 2012). Detection of Tg post total thyroidectomy and LN dissection indicates the presence of persistent thyroid tissue or disease (Francis and Schlumberger 2008). Therefore, it is of importance when less than total thyroidectomy has been performed. When proper total thyroidectomy and LN dissection is done, Tg level should be undetectable and hence any rise subsequently can be a good indicator of recurrent disease.
Chapter 2
Design and Aims of the Thesis
There are two types of surgical approaches employed in the treatment of cervical lymph node metastasis in PTC namely ‘prophylactic’ and ‘therapeutic’ cervical lymph node dissection. The aim of the thesis was to investigate the role of cervical Lymph Node Metastasis and their long-term outcomes in the context of the above mentioned surgical approaches.

2.1 Primary Aims

1. To determine the incidence of cervical lymph node metastases in Papillary Thyroid Carcinoma.
2. To compare the long-term outcomes between prophylactic and therapeutic cervical lymph node dissection in PTC.

2.2 Secondary Aim

To establish if preoperative imaging reliably predicts nodal metastasis in the central and lateral compartment of the neck in papillary thyroid cancer.

The study is divided into two parts-

2.3 Part A

Systematic reviews

We conducted three systematic reviews as part of the thesis-

1. Systematic review of Central Cervical LN metastases in PTC
2. Systematic review of Lateral Cervical LN metastases in PTC
3. Systematic review of Imaging of cervical LN metastases in PTC

2.4 Part B

Multicentre Retrospective Cohort Study

This study covered a period of 9 years and data was collected from three major hospitals in London.

The individual systematic reviews and the Cohort study are discussed in separate chapters below.
Chapter 3
Systematic Review of Central Cervical Lymph Nodes Dissection in Papillary Thyroid Cancer
3.1 Aims and Objectives

1. To determine the extent of central cervical Lymph Node involvement in Papillary Thyroid cancer
2. To compare the outcomes between prophylactic and therapeutic central cervical LN dissection in PTC.

3.2 Inclusion and Exclusion Criteria

The following inclusion and exclusion criteria were applied:

Inclusion Criteria

- All studies of patients with papillary thyroid cancer undergoing either prophylactic or therapeutic lymphadenectomy of the central cervical lymph nodes published over 40 years from 1970-2009.
- Studies involving imaging modalities in the detection of central cervical LNs in PTC published over the last 10 years.

Exclusion Criteria

- All studies with less than 100 patients and/or less than 2 years follow up were excluded.

Keywords:

The following search terms were used always in combination with ‘Papillary thyroid cancer’ (PTC)- ‘therapeutic central lymph node dissection’, ‘prophylactic central lymph node dissection’ ‘Recurrence’, ‘death’, ‘recurrence’ and survival’, ‘radioiodine therapy’ and ‘radiotherapy’.

3.3 Methods

- An extensive search was conducted on the MEDLINE database via the Pubmed interface (http://www.ncbi.nlm.nih.gov/pubmed). ISI web of knowledge was used for forward and backward quotation search (http://apps.isiknowledge.com/).
• The search covered a 40-year period from 1970 up to October 2009 with the combination of above mentioned search terms. The search was restricted to the presence of these key words in the title or abstract of the articles.
• Preliminary search using these terms yielded 11,924 publications of which 1402 were identified according to the inclusion and exclusion criteria.
• Abstracts of all 1402 publications were further scrutinised for presence of relevant data. Out of these, 95 publications containing relevant data were read in full-text.
• This process identified 23 studies appropriate for analysis based on the criteria set out above. All 23 publications were subjected to forward and backward quotation searches using the Thompson resource ‘ISI Web of Knowledge’ (http://apps.isiknowledge.com/). This identified three further studies which are included. Hence a total of 26 studies were included in the analysis.
• Out of these 26 included studies, 21 provided data for central cervical lymph node dissection and 5 were imaging studies.
• A standard proforma was used to extract data from the articles including details of the study population, type of surgical approach, imaging used to detect metastatic cervical LN, number of cervical lymph nodes positive on histology and any comparative results if available. All were retrospective cohort studies with no direct comparable data. There were no randomised controlled trials found in literature to enable a meta-analysis.
There were no studies comparing outcomes between prophylactic and therapeutic cervical LN dissection.

3.4 Statistical Methods

For analysis, standard procedures were not used as there was no study with combined comparative data for prophylactic and therapeutic LN dissection. To simplify the results, we have used simple percentages.

3.5 Results

Literature search yielded 21 studies which provided data were included in this review. Data was available for 4188 patients from 21 studies for prophylactic and therapeutic central LND. Fourteen studies provided results for only prophylactic central LND. Four studies provided results for therapeutic central LND and in three studies results were available for both prophylactic and therapeutic central LND. Figure 3.1 shows a flow chart detailing the process of inclusion and exclusion of studies for this review.
Figure 3.1 Flow chart illustrating the process of inclusion and exclusion of studies
The baseline characteristics and methodology of the included studies for central cervical LN are shown in Table 3.1

Table 3.1: Characteristics of included studies for central lymph nodes

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Study Design</th>
<th>n</th>
<th>Imaging used in Pre-operatively</th>
<th>Type of Surgical Procedure</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shindo M</td>
<td>2006</td>
<td>Retrospective</td>
<td>100</td>
<td>None</td>
<td>Prophylactic</td>
<td>Study investigated incidence of positive LN in <45yrs vs >45yrs. Results showed 39% had positive LN in >45 yrs and 29% showed positive LN in 29%.</td>
</tr>
<tr>
<td>Swyak M</td>
<td>2006</td>
<td>Retrospective</td>
<td>447</td>
<td>USS</td>
<td>Prophylactic</td>
<td>Patients with tumours >1cm included. Patients were divided in two groups; Group A-TT+ Ipsilateral CLND, Group B-TT alone Study compared postablative stimulate Tg level and number of radioiodine treatments. The authors found Tg levels lower in Group A compared to the other group. No difference was found in the complication rates.</td>
</tr>
<tr>
<td>Lee YS</td>
<td>2007</td>
<td>Retrospective</td>
<td>103</td>
<td>USS</td>
<td>Prophylactic</td>
<td>Tumours <2 cms; USS negative for central LNM. Looked Serum Tg-concluded extent of CLND has no effect on Tg</td>
</tr>
<tr>
<td>Low TH</td>
<td>2008</td>
<td>Retrospective</td>
<td>100</td>
<td>USS</td>
<td>Prophylactic</td>
<td>This study looked at Tg levels at 12 months postop. They concluded that LN metastases is associated with increased postoperative Tg levels.</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Study Type</td>
<td>Number</td>
<td>Modality</td>
<td>Procedure</td>
<td>Details</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
<td>------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Son Yi</td>
<td>2008</td>
<td>Retrospective</td>
<td>114</td>
<td>USS</td>
<td>Prophylactic</td>
<td>Patients divided into two groups; Group A- Comprehensive CLND (bilateral) and Group B (Unilateral). Complications and recurrence rates were compared at 2 years. Study found no difference in recurrence rates between the two groups.</td>
</tr>
<tr>
<td>Costa S</td>
<td>2009</td>
<td>Retrospective Cohort</td>
<td>244</td>
<td>USS</td>
<td>Prophylactic LND</td>
<td>Study divided into two groups Group A- TT+ pCLND Group B- TT without CND</td>
</tr>
<tr>
<td>Koo BK</td>
<td>2009</td>
<td>Prospective</td>
<td>111</td>
<td>USS+CT</td>
<td>Prophylactic</td>
<td>Prospective non-randomised trial. Clinically and radiologically node negative patients included.</td>
</tr>
<tr>
<td>Zuniga S</td>
<td>2009</td>
<td>Historical Cohort</td>
<td>266</td>
<td>USS</td>
<td>Prophylactic LND</td>
<td>pCLND showed no advantage for neck recurrence</td>
</tr>
<tr>
<td>Moo TAS</td>
<td>2009</td>
<td>Prospective</td>
<td>104</td>
<td>USS</td>
<td>Prophylactic</td>
<td>Investigated if ipsilateral CLND was sufficient in tumours <1cm. They concluded that in tumours <1cm Ipsilateral CLND maybe sufficient.</td>
</tr>
<tr>
<td>Choi JS 2008</td>
<td>2009</td>
<td>Retrospective</td>
<td>101</td>
<td>USS</td>
<td>Prophylactic</td>
<td>All patients had micro-carcinoma (<1cm). Patients divided into two groups- one with CLND and the other without CLND. There was no randomisation, the decision of CLND was based on surgeon’s and patient’s agreement. 37.5% with CLND had positive LN.</td>
</tr>
<tr>
<td>Bonnet S</td>
<td>2009</td>
<td>Retrospective</td>
<td>115</td>
<td>USS</td>
<td>Prophylactic</td>
<td>This study looked at RAI ablations treatment in patients with tumours <2cms. Central LN metastasis was found in nearly 37% of</td>
</tr>
</tbody>
</table>
patients. These findings allowed selection of patients for RAI and modified the Indication for RAI in 30% of patients.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Study Design</th>
<th>N</th>
<th>Imaging</th>
<th>Type of CLND</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perrino M</td>
<td>2009</td>
<td>Retrospective</td>
<td>251</td>
<td>USS</td>
<td>Prophylactic</td>
<td>This study evaluated the predicator of outcomes after CLND in Tumours <2 cms. They concluded that only lymph node metastases and extracapsular invasion were strongly associated with persistence and recurrence.</td>
</tr>
<tr>
<td>Mercante G</td>
<td>2009</td>
<td>Retrospective</td>
<td>445</td>
<td>USS</td>
<td>Prophylactic</td>
<td>All patients were micro-carcinoma (<1cm). Surgical treatment was variable according to time period it was performed. CLNM were present in 40% of patients. Recurrence was seen in 2.7%.</td>
</tr>
<tr>
<td>Chung YS</td>
<td>2009</td>
<td>Retrospective</td>
<td>245</td>
<td>USS+CT</td>
<td>Prophylactic CLN and Therapeutic LLND</td>
<td>This study included PTMC patients only. They looked at the incidence of skip metastases to lateral LN which was found to be 7.7%. The study recommended imaging to look for LN metastasis in all patients with PTMC.</td>
</tr>
<tr>
<td>Palestini N</td>
<td>2008</td>
<td>Retrospective Cohort study</td>
<td>305</td>
<td>NA</td>
<td>Mixture of Prophylactic and therapeutic</td>
<td>This study compared the complication rates between prophylactic and therapeutic CLND. No significant difference was found between the two groups.</td>
</tr>
<tr>
<td>Wada</td>
<td>2003</td>
<td>Retrospective</td>
<td>259</td>
<td>USS and Palpation</td>
<td>Mixture of Prophylactic and therapeutic</td>
<td>All included patients had PTMC. Patients were divided into two groups namely pCLND (Group A) and TT alone (Group B). They found no difference in terms of nodal recurrence between the two groups.</td>
</tr>
<tr>
<td>Wada</td>
<td>2009</td>
<td>Retrospective</td>
<td>120</td>
<td>USS+CT</td>
<td>Mixture of</td>
<td>All included patients were <20 years old. The study compared at</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Study Design</td>
<td>Sample Size</td>
<td>Methodology</td>
<td>Intervention</td>
<td>Outcome</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Rosenbaum</td>
<td>2009</td>
<td>Retrospective</td>
<td>110</td>
<td>USS, Palpation</td>
<td>Therapeutic</td>
<td>Disease Free Survival between patients undergoing prophylactic and therapeutic LND. They found DFS to be significantly better in pLND compared to tLND. Patients were divided into two groups-TT +CLND (Group A) and TT alone (Group B). The study concluded that recurrences were uncommon after CLND but had higher rates of complications.</td>
</tr>
<tr>
<td>Roh JL</td>
<td>2007</td>
<td>Retrospective</td>
<td>155</td>
<td>Palpation</td>
<td>Therapeutic</td>
<td>The study Patients were divided in two groups- TT+CLND (Group A) and TT alone (Group B). They found that overall morbidity and hypocalcaemia was higher in the CLND group.</td>
</tr>
<tr>
<td>Sadowski BM</td>
<td>2009</td>
<td>Retrospective</td>
<td>310</td>
<td>USS, Palpation</td>
<td>Therapeutic</td>
<td>Patients were divided into two groups- CLND and no CLND-46.7% of patients with CLND had positive LN. All recurrences occurred in patients without CLND.</td>
</tr>
<tr>
<td>Davidson C</td>
<td>2008</td>
<td>Retrospective</td>
<td>183</td>
<td>USS, Palpation</td>
<td>Therapeutic</td>
<td>The study looked at incidence of LN metastases after different surgical procedures namely LN plucking, CLND and LLND. The highest rate of recurrence was found after LN plucking.</td>
</tr>
</tbody>
</table>

CLND-Central Lymph Node Dissection; LLND-Lateral Lymph Node Dissection; PTMC-Papillary Thyroid MicroCarcinoma
LND-Lymph Node Dissection; Tg-Thyroglobulin; RAI-Radio-iodine
NA-Not Available
Table 3.2 shows results of prophylactic and therapeutic central lymph node dissection in patients with papillary thyroid cancer (Mulla and Schulte 2012).

Table 3.2: Results of Central Lymph Node Dissection in Papillary Thyroid Carcinoma

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients Total (n)</th>
<th>Methods to guide therapeutic central LND</th>
<th>Prophylactic central LND</th>
<th>Therapeutic central LND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>p LN +</td>
<td>N</td>
</tr>
<tr>
<td>Costa S 2009</td>
<td>244</td>
<td></td>
<td>126</td>
<td>59</td>
</tr>
<tr>
<td>Zuniga S 2009</td>
<td>266</td>
<td></td>
<td>136</td>
<td>112</td>
</tr>
<tr>
<td>Koo BK 2009</td>
<td>111</td>
<td></td>
<td>111</td>
<td>60</td>
</tr>
<tr>
<td>Lee YS 2007</td>
<td>103</td>
<td></td>
<td>103</td>
<td>39</td>
</tr>
<tr>
<td>Shindo M 2006</td>
<td>100</td>
<td></td>
<td>94</td>
<td>33</td>
</tr>
<tr>
<td>Moo TAS 2009</td>
<td>104</td>
<td></td>
<td>104</td>
<td>47</td>
</tr>
<tr>
<td>*Choi JS 2008</td>
<td>101</td>
<td></td>
<td>48</td>
<td>18</td>
</tr>
<tr>
<td>Son YI 2008</td>
<td>114</td>
<td></td>
<td>114</td>
<td>52</td>
</tr>
<tr>
<td>Bonnet S 2009</td>
<td>115</td>
<td></td>
<td>115</td>
<td>42</td>
</tr>
<tr>
<td>Perrino M 2009</td>
<td>251</td>
<td></td>
<td>92</td>
<td>39</td>
</tr>
<tr>
<td>Mercante G 2009</td>
<td>445</td>
<td></td>
<td>226</td>
<td>112</td>
</tr>
<tr>
<td>Low TH 2008</td>
<td>100</td>
<td></td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>Swyak M 2006</td>
<td>447</td>
<td></td>
<td>56</td>
<td>21</td>
</tr>
<tr>
<td>Chung YS 2009</td>
<td>245</td>
<td></td>
<td>206</td>
<td>45</td>
</tr>
<tr>
<td>Palestini N 2008</td>
<td>305</td>
<td></td>
<td>93</td>
<td>20</td>
</tr>
<tr>
<td>Wada 2009</td>
<td>120</td>
<td>US, CT</td>
<td>47</td>
<td>30</td>
</tr>
<tr>
<td>*Wada 2003</td>
<td>259</td>
<td>Palpation</td>
<td>235</td>
<td>143</td>
</tr>
<tr>
<td>Σ1</td>
<td>3430</td>
<td></td>
<td>1946</td>
<td>898</td>
</tr>
</tbody>
</table>
A total of 4188 patients underwent therapeutic and/or prophylactic central LND, out of which 1244 had positive LN on histology (29.7%). Prophylactic central LND alone was performed in 1946 patients, of which 898 had positive central LN at surgery (46.1 %). A total of 1442 patients were assessed by various pre-operative methods for the presence of central LN. Therapeutic central LN dissection was performed in 438/1442 (30.4 %) patients guided by clinical examination and/or imaging. Of the 438 patients who underwent therapeutic central LND, positive central LN were found in 79% (346/438). Hence 24% (346/1442) of patients who were evaluated for therapeutic central LND were found to have positive central LN at surgery.
There were six studies in the review that provided results of primary tumours less than 2 cms. These include two studies with papillary microcarcinoma (Wada 2003 and Choi 2008). Table 3.3 shows the results of CLND of these six studies. Out of 819 patients with small primary tumours, LN metastases were found to be positive in 48% of patients (393/819).

Table 3.3 Results of Central Lymph Node Dissection (CLND) for papillary carcinoma <2 cm

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients Total (n)</th>
<th>Prophylactic central LND</th>
<th>Therapeutic central LND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>p LN +</td>
<td>N</td>
</tr>
<tr>
<td>Mercante (2009)</td>
<td>445</td>
<td>226</td>
<td>112</td>
</tr>
<tr>
<td>Bonnet (2009)</td>
<td>115</td>
<td>115</td>
<td>42</td>
</tr>
<tr>
<td>Perrino (2009)</td>
<td>251</td>
<td>92</td>
<td>39</td>
</tr>
<tr>
<td>Choi (2008)</td>
<td>101</td>
<td>48</td>
<td>18</td>
</tr>
<tr>
<td>Lee (2007)</td>
<td>103</td>
<td>103</td>
<td>39</td>
</tr>
<tr>
<td>Wada (2003)</td>
<td>259</td>
<td>235</td>
<td>143</td>
</tr>
<tr>
<td>Total</td>
<td>1274</td>
<td>819</td>
<td>393</td>
</tr>
</tbody>
</table>

Percentages: 393/1274 = 30.8% 393/819 = 48%

na-Not available/applicable

In Table 3.4 are shown results of CLND according to primary tumour size. The results provided from three studies with patients classified as having tumours less than or greater than 1 cm. In tumours <1 cm, out of a total of 143 patients, 37 were found to have positive central lymph nodes (CLN) (26%). Out of 143 patients with tumours >1 cm, 106 were found to be positive for metastases (74%).
Two included studies provided results according to the T stages as shown in Table 3.5. In patients classified as T1–T2, a total of 50 patients showed metastases out of 88 (57%). In T3–T4 patients, 38 were positive out of a total of 88 (43%).

The results of imaging for both central and lateral cervical lymph nodes are discussed collectively in chapter 5.
3.6 Discussion-Central Cervical Lymph Node Dissection

3.6.1 Advantages of prophylactic Central LND

There are several arguments in favour of pCLND. The high incidence of metastatic central cervical LN is one of the strong arguments. From our systematic review of central LND, the frequency of metastatic LN was 46.1% in prophylactic and 79% in the therapeutic approaches (Table 3.2). In tumours <2cms, which is T1 stage according to AJCC Cancer Staging (Cooper, Doherty et al. 2009), 48% patients showed metastases in CLN. According to ATA, 90% of patients with PTC will have microscopic metastatic disease in the cervical LN. (Cooper, Doherty et al. 2006). It is quite clear from these figures that central cervical metastases are found in a large proportion of patients with PTC. It is worth pointing out that even in T1 patients nearly half would be found to have metastatic LN if central LN are dissected prophylactically. Performing pCLND would therefore be crucial in complete staging and guide adjuvant radio-iodine treatment (Bonnet, Hartl et al. 2009).

Another important argument is high loco-regional recurrence found in PTC. Loco-regional recurrence rates in PTC are nearly 30% (Hay, Bergstralh et al. 1999; Leboulleux, Rubino et al. 2005). Several studies have shown that patients with initial nodal involvement have a higher rate of recurrence (Scheumann, Gimm et al. 1994; Hughes, Shaha et al. 1996; Davidson, Park et al. 2008; Soyluk, Selcukbiricik et al. 2008). Leaving behind occult metastatic LN hence would predispose these patients to recurrences. An older study of 1,355 patients with 30 years of follow-up showed the likelihood of cancer death was increased by regional lymph-node metastases in patients without distant metastases (Mazzaferri and Jhiang 1994).

Studies have shown that performing neck dissection on patients with lymph node metastases decreases the rate of regional recurrences and improves survival (Pereira, Jimeno et al. 2005; White, Gauger et al. 2007).

Re-operative surgery to remove central LN is more challenging and puts the recurrent laryngeal nerve and parathyroid glands at increased risk (Shindo, Wu et al. 2006; White and Doherty 2007). This higher incidence of recurrent laryngeal nerve
and hypo-parathyroidism after re-operative surgery is another reason to perform pCLND. (Pattou, Combemale et al. 1998; Kim, Mandel et al. 2004).

3.6.2 Disadvantages of prophylactic Central LND

Complications that can arise from central LN dissection are important factors which prevents against widespread adoption of prophylactic CLND (pCLND). Transient hypo-parathyroidism is a common complication associated with CLND (Chan, Lang et al. 2013), incidence of this has been reported anywhere between 14-44% (Mazzaferri EL 2009). Other complications include transient and permanent recurrent laryngeal nerve palsy. The incidence is 4-7.3% to 0-3.6% respectively.

Many studies have shown no difference in the complication rates between pCLND and therapeutic CLND when performed by experienced surgeons (Roh, Park et al. 2007; Xiao and Gao 2010). A recent systematic review showed a significant increase of transient hypocalcaemia in pCLND patients compared to those who underwent total thyroidectomy alone (Zhu, Zhong et al. 2013). However, the same review also found no significant difference in the incidence of permanent hypocalcaemia, temporary and permanent vocal cord palsy (Zhu, Zhong et al. 2013).

Another argument against pCLND is that the presence of positive lymph nodes does not affect prognosis and survival in papillary thyroid carcinoma (Shaha, Shah et al. 1996; Sato, Oyamatsu et al. 1998). Some conclude that there is limited benefit for either disease recurrence or survival outcomes (Grebe and Hay 1996) and hence should be performed only in patients deemed high risk: larger tumours, extrathyroidal extension or aggressive histological subtypes (Iyer and Shaha 2011).

Despite the above arguments, evidence from a large database of more than five thousand patients indicated that LN metastases has a negative impact on survival and a significantly higher mortality (Odds ratio=2.5; 95% CI, 1.6-4.1) (Lundgren, Hall et al. 2006). A literature review by White and colleagues concluded that addition of pCLND will add survival benefit to PTC patients (White, Gauger et al. 2007). pCLND has shown to reduce morbidity associated with potential reoperation, reduces the risk of central neck lymph node recurrence, provides more accurate information for staging, and facilitates postoperative radioactive iodine administration as well as
long term follow-up (Moo and Fahey; Hughes, Shaha et al. 1996; Sawka, Brierley et al. 2008). A recent systematic review on the oncologic outcomes after pCLND showed that recurrence free survival may improve after pCLND although this was supported by low level evidence (Mamelle, Borget et al. 2015).

A recent consensus report by the European Society of Endocrine Surgeons (ESES) analysed thirty studies and five meta-analyses on pCLND (Sancho, Lennard et al. 2014). It acknowledged the lack of randomized clinical trials on the subject, and the heterogeneity of study populations was the main limiting factors to draw clear conclusions. However, based on the available literature, they suggest that pCLND should be risk-stratified. Larger tumours (T3,T4), patients aged 45 years and older or 15 years and younger, males, bilateral or multifocal tumours and patients with known involved lateral lymph nodes were all clear candidates for pCLND (Sancho, Lennard et al. 2014). On the other hand, very low risk patients, <45-year-old females with unilateral unifocal T1a tumours will probably not benefit from pCLND (Sancho, Lennard et al. 2014). They also recommend the procedure should be limited to surgeons who have the available expertise and experience.

As is clear from the above discussion, pCLND is still an unresolved issue but it is becoming a more common practice amongst surgeons (Moo and Fahey 2011).

3.7 Limitations

1. The review was not registered in accordance with PRISMA guidelines on databases such as PROSPERO. However, in hindsight it would have been better to have registered these on similar databases to ensure the consistency and quality of reporting.

2. The quality of the included studies has not been assessed.

3. There were no studies found comparing outcomes between prophylactic and therapeutic central cervical LN dissection. Hence outcomes comparing the two methods were not evaluated.
Chapter 4 Systematic Review of Lateral Cervical Lymph Nodes Dissection in Papillary Thyroid Cancer
4.1 Aims and Objectives

1. To determine the extent of lateral cervical Lymph Node involvement in Papillary Thyroid Carcinoma
2. To compare the outcomes between prophylactic and therapeutic lateral cervical LN dissection in PTC.

4.2 The following inclusion and exclusion criteria were applied to the review:

Inclusion Criteria
- All studies of patients with papillary thyroid cancer undergoing either prophylactic or therapeutic lymphadenectomy of the lateral cervical lymph nodes published over 41 years (1970-2011).
- Studies involving imaging modalities in the detection of lateral cervical LNs in PTC published over the 12 year (1999-2011).

Exclusion Criteria
- All studies with less than 100 patients and/or less than 2 years follow up were excluded.

Keywords:

4.3 Methods
- An extensive search was conducted on the MEDLINE database via the Pubmed interface (http://www.ncbi.nlm.nih.gov/pubmed). ISI web of knowledge was used for forward and backward quotation search (http://apps.isiknowledge.com/).
- The search covered over a 41-year period (1970-2011). A combination of above mentioned search terms was used. The search was restricted to the presence of these key words in the title or abstract of the articles.
• Preliminary search using these terms yielded 11,924 publications of which 1402 were identified according to the inclusion and exclusion criteria.

• Abstracts of all 1402 publications were further scrutinised for presence of relevant data. Out of these, 95 publications containing relevant data were read in full-text.

• This process identified 27 studies appropriate for analysis based on the criteria set out above. All 27 publications were subjected to forward and backward quotation searches using the Thompson resource ‘ISI Web of Knowledge’ (http://apps.isiknowledge.com/). This identified four further studies, which are included in the analysis. Hence a total of 31 studies were included in the analysis.

• Out of these 31 included studies, 19 provided data for lateral cervical lymph node dissection and 12 were imaging studies.

• A standard proforma was used to extract data from the articles including details of the study population, type of surgical approach, imaging used to detect metastatic cervical LN, number of cervical lymph nodes positive on histology and any comparative results if available.

• There were no randomised controlled trials found in literature to enable a meta-analysis. All were retrospective cohort studies with no direct comparable data.

• There were no studies comparing outcomes between prophylactic and therapeutic cervical LN dissection.
4.4 Statistical Methods For analysis, the standard procedures were not used as there was no study with combined comparative data for prophylactic and therapeutic LN dissection. To simplify the results, we have used simple percentages.

4.5 Results

Nineteen studies provided data for lateral cervical LND and were included in this systematic review. Data was available for 5587 patients from 19 studies for prophylactic and therapeutic lateral LND. All were cohort studies and no randomised controlled trials were found in the literature. Three studies provided results for prophylactic lateral LND alone. In fifteen studies the results were mixed for therapeutic and prophylactic lateral LND or therapeutic lateral LND alone. One study provided results for prophylactic lateral LND in 50% of the patient cohort; the remaining half underwent therapeutic LN dissection for which the results were unavailable (Attie 1988). Figure 4.1 shows flow chart illustrating the process of inclusion and exclusion of studies in the systematic review for lateral LN.
Figure 4.1 Flow chart detailing the process of inclusion and exclusion of studies

Initial Pubmed search=11924

- Excluded on the basis of title n=10232 (11924-10232=1692)
 1402 abstracts read in detail

- Excluded after reading abstract n=1307 (1402-1307=95)
 95 articles read in detail

- 68 studies excluded after reading
 95 articles
 Initial studies included=27
 (95-68=27)

27 studies subjected to backward and forward citation search

- The identified 4 more studies fulfilling the inclusion criteria n=4

Total number of included studies=31

- Total number of literature studies included n=19

- Imaging studies included n=12
The baseline characteristics and methodology of the included studies for lateral cervical LN are shown in Table 4.1

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Study Design</th>
<th>n</th>
<th>Imaging used in Pre-operatively</th>
<th>Type of Surgical Procedure</th>
<th>Study Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attie, J. N</td>
<td>1998</td>
<td>Retrospective</td>
<td>313</td>
<td>Palpation</td>
<td>Prophylactic and Therapeutic</td>
<td>Historical study-patient cohort included other types of thyroid cancers in addition to PTC(287/313). Nine patients with PTC died of the disease.</td>
</tr>
<tr>
<td>Bonnett S</td>
<td>2009</td>
<td>Retrospective</td>
<td>115</td>
<td>USS</td>
<td>Prophylactic</td>
<td>Cohort included T1 tumours only (<2 cms). All patients underwent CLND in addition to pLLND. Only one patient had laryngeal palsy. pLND modification the indication for RAI in 30% of patients.</td>
</tr>
<tr>
<td>Ito Y</td>
<td>2007</td>
<td>Retrospective</td>
<td>1231</td>
<td>USS</td>
<td>Prophylactic</td>
<td>The study investigated the incidence of lateral LN metastasis. All included patients were N0. The authors concluded that incidence of LLNM increased significantly with tumour size as did Lymph Node DFS.</td>
</tr>
<tr>
<td>Patron V</td>
<td>2011</td>
<td>Retrospective</td>
<td>131</td>
<td>USS, Palpation</td>
<td>Prophylactic</td>
<td>This study looked at the pattern of lateral LNM in N0 patients. Only tumours >1cm were included. They concluded occult LNM was most common in neck levels III, IIa, IV and Vb.</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Study Design</td>
<td>Sample Size</td>
<td>Method</td>
<td>Type</td>
<td>Summary</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>Wada</td>
<td>2003</td>
<td>Retrospective</td>
<td>259</td>
<td>USS, Palpation</td>
<td>Mixture of Prophylactic and therapeutic</td>
<td>All included patients had PTMC. Patients were divided into two groups namely MRND (Group A) and TT alone (Group B). They found no difference in terms of nodal recurrence between the two groups; pLLND was not recommended.</td>
</tr>
<tr>
<td>Wada</td>
<td>2008</td>
<td>Retrospective</td>
<td>231</td>
<td>USS, Palpation</td>
<td>Prophylactic and therapeutic</td>
<td>This study included patients with tumours >1cm. Clinical outcomes according to age and nodal status were evaluated. The study concluded that prognosis was worse in patients aged >45 and palpable LN.</td>
</tr>
<tr>
<td>Wada</td>
<td>2009</td>
<td>Retrospective</td>
<td>120</td>
<td>USS, CT</td>
<td>Mixture of Prophylactic and therapeutic</td>
<td>All included patients were <20 years old. The study compared at Disease Free Survival between patients undergoing prophylactic and therapeutic LND. They found DFS to be significantly better in pLND compared to tLND.</td>
</tr>
<tr>
<td>Roh JL</td>
<td>2007</td>
<td>Retrospective</td>
<td>155</td>
<td>Palpation</td>
<td>Therapeutic</td>
<td>The study Patients were divided in two groups- TT+CLND+LLND (Group A) and TT alone (Group B). They found that overall morbidity and hypocalcaemia was higher in the CLND group. Prophylactic LND was not recommended based on recurrences, pattern etc.</td>
</tr>
<tr>
<td>Perrino M</td>
<td>2009</td>
<td>Retrospective</td>
<td>251</td>
<td>USS</td>
<td>Therapeutic</td>
<td>This study evaluated the predictor of outcomes after CLND</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Design</td>
<td>N</td>
<td>Technique</td>
<td>Approach</td>
<td>Findings</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-----------------</td>
<td>----</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Sadowski BM</td>
<td>2009</td>
<td>Retrospective</td>
<td>310</td>
<td>USS, Palpation</td>
<td>Therapeutic</td>
<td>Patients in this study had routine CLND and tLLND. They complications rates especially recurrent laryngeal nerve injury was low and the study concluded that CLND can be performed safely in experienced hands.</td>
</tr>
<tr>
<td>Palestini N</td>
<td>2008</td>
<td>Retrospective Cohort Study</td>
<td>305</td>
<td>NA</td>
<td>Prophylactic and Therapeutic</td>
<td>This study compared the complication rates between prophylactic and therapeutic CLND. In addition, patients also had tLLND if lateral LN were ‘evident’. No significant difference was found in terms of permanent morbidity between the two groups.</td>
</tr>
<tr>
<td>Davidson C</td>
<td>2008</td>
<td>Retrospective</td>
<td>183</td>
<td>USS, Palpation</td>
<td>Therapeutic</td>
<td>The study looked at incidence of LN metastases after different surgical procedures namely LN plucking, CLND and LLND. The highest rate of recurrence was found after LN plucking</td>
</tr>
<tr>
<td>Chung YS</td>
<td>2009</td>
<td>Retrospective</td>
<td>245</td>
<td>USS+CT</td>
<td>Prophylactic CLN and Therapeutic</td>
<td>This study included PTMC patients only. They looked at the incidence of skip metastases to lateral LN which was found to be 7.7%. The study recommended imaging to</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Study Type</td>
<td>Patients</td>
<td>Imaging</td>
<td>Therapeutic/Prophylactic</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>---------------</td>
<td>----------</td>
<td>---------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Low TH</td>
<td>2008</td>
<td>Retrospective</td>
<td>100</td>
<td>USS</td>
<td>Therapeutic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This study looked at Tg levels at 12 months follow-up. Patients underwent pCLND and tLLND. They concluded that LN metastases is associated with increased postoperative Tg levels.</td>
<td></td>
</tr>
<tr>
<td>Kwak JY</td>
<td>2009</td>
<td>Retrospective</td>
<td>671</td>
<td>USS</td>
<td>Therapeutic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Study included only PTMC patients. Only patients with USS confirmed LN underwent LND. The study evaluated USS features in PTMC that could predict lateral LNM.</td>
<td></td>
</tr>
<tr>
<td>Sugitani I</td>
<td>2008</td>
<td>Prospective</td>
<td>361</td>
<td>USS</td>
<td>Therapeutic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PTMC patients were excluded from the study. This study evaluated the accuracy of USS in predicting LNM. They concluded CLND was sufficient if no lateral LN were found on USS.</td>
<td></td>
</tr>
<tr>
<td>Choi JS</td>
<td>2009</td>
<td>Retrospective</td>
<td>299</td>
<td>USS, CT</td>
<td>Therapeutic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Study compared diagnostic accuracy of USS versus CT in evaluating metastatic cervical LN. All patients underwent pCLND and tLLND as indicated. They concluded that high resolution USS was better than CT for lateral LNM and vice versa for central LNM.</td>
<td></td>
</tr>
<tr>
<td>Roh JL</td>
<td>2009</td>
<td>Prospective</td>
<td>133</td>
<td>USS, CT</td>
<td>Prophylactic and therapeutic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Study evaluated use of USS in detecting cervical LNM. All patients had pre-operative USS and underwent CLND. Pre-operative USS findings were compared to final histology.</td>
<td></td>
</tr>
</tbody>
</table>
This study compared diagnostic accuracy of USS versus CT in evaluating metastatic cervical LN. Pre-operative USS and CT findings were compared to final histology results. The study concluded that combination of USS and CT was superior to USS alone in the detection of metastatic lateral cervical LN.

| Kim E | 2008 | Retrospective | 165 | USS, CT | Therapeutic |

CLND-Central Lymph Node Dissection
LLND-Lateral Lymph Node Dissection
LLNM-Lateral Lymph Node Metastasis
PTMC-Papillary Thyroid MicroCarcinoma
LND-Lymph Node Dissection
pLND- prophylactic Lymph Node Dissection
Tg-Thyroglobulin
RAI-Radio-iodine
NA-Not Available
DFS-Disease Free Survival
Table 4.2 shows results of prophylactic and therapeutic lateral lymph node dissection in patients with papillary thyroid cancer.

Table 4.2: Results of Lateral Lymph Node Dissection in Papillary Thyroid Carcinoma (Mulla, Knoefel et al. 2012)

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients Total (n)</th>
<th>Methods to guide therapeutic lateral LND</th>
<th>Prophylactic lateral LND</th>
<th>Therapeutic lateral LND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>p LN +</td>
</tr>
<tr>
<td>Bonnet S 2009</td>
<td>115</td>
<td></td>
<td>115</td>
<td>12</td>
</tr>
<tr>
<td>Ito Y 2007</td>
<td>1231</td>
<td></td>
<td>1231</td>
<td>790</td>
</tr>
<tr>
<td>Patron V 2011</td>
<td>140</td>
<td></td>
<td>131</td>
<td>26</td>
</tr>
<tr>
<td>Attie JN 1998</td>
<td>313</td>
<td>Palpation</td>
<td>155</td>
<td>94</td>
</tr>
<tr>
<td>Wada 2003</td>
<td>259</td>
<td>Palpation</td>
<td>185</td>
<td>86</td>
</tr>
<tr>
<td>Wada 2008</td>
<td>231</td>
<td>Palpation</td>
<td>201</td>
<td>151</td>
</tr>
<tr>
<td>Wada 2009</td>
<td>120</td>
<td>US, CT</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>Total (Σ1)</td>
<td>2409</td>
<td></td>
<td>2048</td>
<td>1177</td>
</tr>
<tr>
<td>Roh JL 2007</td>
<td>155</td>
<td>Palpation</td>
<td>Na</td>
<td>na</td>
</tr>
<tr>
<td>Perrino M 2009</td>
<td>251</td>
<td>US, Palpation</td>
<td>Na</td>
<td>na</td>
</tr>
<tr>
<td>Sadowski BM 2009</td>
<td>310</td>
<td>US, Palpation</td>
<td>Na</td>
<td>na</td>
</tr>
<tr>
<td>Palestini N 2008</td>
<td>305</td>
<td>Na</td>
<td>Na</td>
<td>na</td>
</tr>
<tr>
<td>Davidson C 2008</td>
<td>183</td>
<td>US, Palpation</td>
<td>Na</td>
<td>na</td>
</tr>
<tr>
<td>Low TH 2008</td>
<td>100</td>
<td>US, Palpation</td>
<td>Na</td>
<td>na</td>
</tr>
<tr>
<td>Chung YS 2009</td>
<td>245</td>
<td>US, CT</td>
<td>Na</td>
<td>na</td>
</tr>
<tr>
<td>Kwak JY 2009</td>
<td>671</td>
<td>US</td>
<td>Na</td>
<td>na</td>
</tr>
<tr>
<td>Sugitani I 2008</td>
<td>361</td>
<td>US</td>
<td>Na</td>
<td>na</td>
</tr>
<tr>
<td>Choi JS 2009</td>
<td>299</td>
<td>US, CT</td>
<td>Na</td>
<td>na</td>
</tr>
<tr>
<td>Roh JL 2009</td>
<td>133</td>
<td>US, CT</td>
<td>Na</td>
<td>na</td>
</tr>
<tr>
<td>Kim E 2008</td>
<td>165</td>
<td>US, CT</td>
<td>Na</td>
<td>na</td>
</tr>
<tr>
<td>Total (Σ2)</td>
<td>3178</td>
<td></td>
<td>566</td>
<td>446</td>
</tr>
<tr>
<td>Total (Σ)</td>
<td>5587</td>
<td></td>
<td>1177/2048=57.5%</td>
<td>446/566= 78.8%</td>
</tr>
</tbody>
</table>
US-ultrasonography; CT-computerised tomography; pLN-patients with histologically proven positive LN; Σ1- total number of patients included in the prophylactic LN dissection group only; Σ2- total number of patients included in the therapeutic LN dissection group only; Σ, grand total number of patients in both groups; na- not available.

*Only T1 tumours were included; of these, 44% were micro-carcinomas, i.e., <1 cm.
†Results of patients undergoing only prophylactic surgery (n = 155) available.
‡PTMC: papillary thyroid micro carcinoma. The remaining 50 patients underwent prophylactic central LN dissection
§Data from children.

Total of 5587 patients underwent therapeutic and/or prophylactic lateral LND, out of which 1,623 had positive LNs on histology (29.1%). Prophylactic lateral LND alone was performed in 1447 patients, of which 828 had positive lateral LN at surgery (57.2%). In total, 2048 patients underwent prophylactic lateral LND out of which 1177 were found to have metastatic positive lateral LN on histology (57.5%). In the therapeutic category, a total of 4101 patients were assessed by various pre-operative methods for the presence of lateral LN. From the available data, therapeutic lateral LN dissection was performed in 566/3437 (16.5%) patients guided by clinical examination and/or imaging. Of these 566 patients, positive lateral LN were found in 446 (78.8%). Table 4.3 shows results of prophylactic lateral LN metastases depending on stage of the tumour. The percentage of lateral LN metastases in T1, T2 and T3/T4 tumours was 49·2%, 72·5% and 86·5%, respectively.
Table 4.3 T stage-dependent frequency of lateral lymph node (LN) metastases detected by prophylactic LN dissection (Ito 2007) Total n = 1231

<table>
<thead>
<tr>
<th>Size of primary (cms)</th>
<th>Patients with positive lateral LNs/total number of patients</th>
<th>T stage (UICC VI)</th>
<th>Patients with positive lateral LNs/total number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>53/131 (40·5%)</td>
<td>T1</td>
<td>261/530 (49·2%)</td>
</tr>
<tr>
<td>1.1-2.0</td>
<td>208/399 (52·1%)</td>
<td>T2</td>
<td>401/553 (72·5%)</td>
</tr>
<tr>
<td>2.1-3.0</td>
<td>257/368 (69·8%)</td>
<td>T2</td>
<td></td>
</tr>
<tr>
<td>3.1-4.0</td>
<td>144/185 (77·8%)</td>
<td>T2</td>
<td></td>
</tr>
<tr>
<td>>4.1</td>
<td>128/148 (86·5%)</td>
<td>T3+T4</td>
<td>128/148 (86·5%)</td>
</tr>
<tr>
<td>Total</td>
<td>790/1231 (64·2%)</td>
<td>T1-T4</td>
<td>790/1231 (64·2%)</td>
</tr>
</tbody>
</table>

4.6 Discussion-Lateral cervical LN dissection

The treatment of lateral LN metastases is the most contentious area in the management of PTC. For decades, there has been considerable controversy regarding the type of surgical approach and the extent of lateral cervical lymph node dissection in PTC. One of the main reasons for this controversy is the lack of conclusive data which will provide us with useful information to formulate treatment plans.

The site of metastases to cervical LN varies according to studies. Some authors report ipsi-lateral central neck to be the most common site of metastases. (Qubain, Nakano et al. 2002; Roh, Park et al. 2007). The risk is reported to be greatest for lateral LN of levels II, III, and IV (Wada, Duh et al. 2003). Tumours arising from the upper pole often spread to the ipsi-lateral lateral compartment whereas those arising from the mid and lower pole favour the central compartment (Park, Lee et al. 2012; Zhang, Wei et al. 2012). This pattern of metastatic LN involvement can be attributed to the lymph drainage of the thyroid gland, which follows its venous
system. The frequency of skip metastases has been reported between 11.1%- 37.5% (Lee, Shin et al. 2014).

The frequency of metastatic LN found in the lateral compartment varies. In our systematic review, the frequency of metastatic LN in the lateral compartment was found to be 57.5% where prophylactic LND was performed. One study (Ito, Higashiyama et al. 2007) provided the results according to T stage; they found the incidence of metastatic lateral LN to be 40% even in T1 tumours. From our own data, metastatic lateral LN were found to be positive in 70% of patients who had prophylactic LND which confirms the finding from published work.

This high percentage of lateral metastatic LN found on prophylactic LND exposes significant pitfalls in the staging and subsequent management of these patients. Leaving behind these metastatic LN will lead to gross under-staging in these patients. Survival in different stages of PTC varies considerably according to the AJCC cancer staging (Edge SB 2010). Stage I and II have excellent prognosis but the survival drops to as low as 50% in stage IV. The staging progresses from I to III in the presence of LN metastases except in women <45 years of age who remain stage I. Under-staging of these patients will have a negative impact on their long-term outcomes and survival (Mulla and Schulte 2012).

Studies have shown that patients with clinically proven metastases to the lateral compartment are more likely to have recurrences and have shorter disease free survival (Ito Y 2010; de Meer, Dauwan et al. 2012). Clinically proven cervical LN metastasis at the time of initial surgery has been shown to be an independent risk factor of tumour recurrence (Ito Y 2010; Bozec, Dassonville et al. 2011). A recent study of over 800 cases of PTC found that N1 patients treated with only TT and RAI had about 60% a risk of persistent disease (Guy, Hirsch et al. 2014). From our own cohort, there were no recurrences in patients who had prophylactic LND; whereas there were 9 recurrences in those with therapeutic LND.

Loco-regional recurrent disease in PTC can vary anywhere between 8-23% (Kwang-Min Kim 2012) and about 75% of these local recurrences occur in the cervical lymph
nodes (Hong SJ 2001). Although the majority of the recurrences happen in the first ten years after surgery, about 20% of these can happen between 10-20 years (Grogan, Kaplan et al. 2013). It has been reported that 10% of patients with local recurrences and 50% with distant recurrence will die of the disease (Mazzaferri and Jhiang 1994). Recurrences in the lateral cervical compartment are twice as common as the central compartment (Kruijff, Petersen et al. 2013). Patients with clinically proven metastases to the lateral compartment are more likely to develop recurrences and have shorter disease free survival (Ito Y 2010; de Meer, Dauwan et al. 2012). Also presence of central metastases has shown to be an independent prognostic factor for lateral node recurrence disease (Barczynski, Konturek et al. 2013). Advanced age, male sex, cervical metastasis and tumour size are the most important factors for higher recurrence (Ito, Higashiyama et al. 2007; Kim, Park et al. 2012).

4.6.1 Disadvantages of prophylactic LND

Complications that can arise from lateral cervical LND is one of the main arguments against adopting prophylactic LND. Minor chyle leak occurs in the region of 2.3%. Thoracic duct injury needing re-operation for repair is low, reported to be around 0.6%. (Ito, Higashiyama et al. 2007; Ducoudray, Tresallet et al. 2013). The incidence of phrenic nerve injury, facial nerve paralysis, accessory nerve paralysis and Horner syndrome is also low in the range between 0.2% and 0.3% (Simon, Goretzki et al. 1996; Ito, Miyauchi et al. 2007).

Another source of controversy against the rationale for prophylactic LND is the uncertainty of the long-term outcomes from microscopic lateral LN metastases. (Lundgren, Hall et al. 2006; Bardet, Malville et al. 2008). There are no clinical predictive factors for LN recurrences and the role of imaging in detecting these metastasis is limited. The above argument is flawed on two levels. Firstly, the lack of high level of evidence notably from randomised controlled trials makes it impossible to draw definitive conclusions on survival and outcomes. The available data is from cohort studies which are mostly retrospective hence rendering results open to debate. Secondly PTC being a slow growing tumour, recurrence and not survival is considered to the outcome of interest in PTC (Sakorafas, Sampanis et al. 2010).
4.6.2 Advantages of prophylactic Lateral LND

There are several advantages of prophylactic LLND. It reduces the risk of recurrences in the cervical LN hence reducing the morbidity associated with re-operations (Ito, Kudo et al. 2012). About 10% of patients with local recurrence and 50% of those with distant metastasis will die of the disease (Mazzaferri and Jhiang 1994). Reoperations may be associated with high complication rates, such as injury to the recurrent laryngeal and spinal accessory nerve, hypoparathyroidism, and unsightly surgical scars (Esnola, Cantor et al. 2001). For these mentioned reasons recurrence and not survival is considered to the outcome of interest in PTC (Sakorafas, Sampanis et al. 2010).

pCLND provides more accurate information for staging more than half of patients with positive central LN who will have metastatic lateral LN. Imaging methods namely Ultrasonography and Computerised Tomography do not have the required sensitivity and specificity to detect metastatic cervical LN (Hartl, Leboulleux et al. 2012). Hence performing pLLND remains the most reliable method of accurately staging patients with PTC (Hartl, Leboulleux et al. 2012).

Re-operations in the cervical compartments are usually performed for recurrences and persistent disease. This is technically challenging and is associated with increased incidence of recurrent laryngeal nerve injury, persistent hypoparathyroidism, spinal accessory nerve injury, thoracic duct injury and unsightly scars. (Shindo, Wu et al. 2006; White and Doherty 2007; Sakorafas, Sampanis et al. 2010).

There are several studies which recommend prophylactic (Simon, Goretzki et al. 1996; Lundgren, Hall et al. 2006) lateral LND and have shown improved disease free survival (DFS) particularly in older male patients with larger tumours (Ito, Higashiyama et al. 2007). Studies have shown that prophylactic LND reduces the chances of recurrences and re-operations in both central and lateral compartment (Ito Y 2010; Popadich, Levin et al. 2011).

A recent in-depth review on surgical management of metastatic lateral LN recommends prophylactic lateral LND in tumours arising from upper pole, extensive ipsi-lateral or bilateral involvement of central compartment (Dralle and Machens...
This was based on the observation that tumours of the upper thyroid pole skip the central compartment spreading directly to the superior lateral nodes (Park, Lee et al. 2012; Zhang, Wei et al. 2012).

The complications and morbidity rates quoted against pLLND are low in experienced hands and can be tolerated in view of the benefit achieved by the operation (Harness, Fung et al. 1986; Attie 1988; Ducoudray, Tresallet et al. 2013).

The case to limit cervical LND to therapeutic as opposed to prophylactic is not evidence based. The evidence in support of prophylactic LN dissection is provided by many studies especially in high risk groups namely men, multi-focal tumour and extra-thyroidal tumour extension (So YK 2010), in which they have been shown to improve disease free survival (Ito, Higashiyama et al. 2007). Most clinicians agree that prophylactic LND allows for accurate staging of the disease that may guide subsequent treatment and follow-up (Pacini, Schlumberger et al. 2006).

4.7 Limitations of the review
1. The review was not registered in accordance with PRISMA guidelines on databases such as PROSPERO. In hindsight we would have preferred to have this registered on similar databases to ensure the consistency and quality of reporting.
2. The quality of the included studies has not been assessed.
3. There were no studies found comparing outcomes between prophylactic and therapeutic lateral cervical LN dissection. Hence outcomes comparing the two methods were not evaluated.
Chapter 5
Systematic Review of Imaging of Metastatic Cervical Lymph Nodes metastases in Papillary Thyroid Cancer
5.1 Aims and Objectives

Primary Objectives
1. To understand if the commonly reported ‘sensitivity’ of imaging techniques is based on factual evidence.

Secondary Objective
1. To determine the diagnostic accuracy of USS and CT in detecting metastatic cervical LN.
2. To determine the usefulness of other imaging modalities namely MRI, 18-FDG PET/CT in detecting metastatic cervical LN.

5.2 Inclusion/Exclusion Criteria

The following inclusion criteria were used for this systematic review.
- Studies involving imaging modalities in detection of cervical lymph nodes in Papillary Thyroid Cancer published over a 17-year period (1995-2011)
- All studies had to be published in English.

Keywords
The following search terms were used always with combination with ‘papillary thyroid cancer’ (PTC)- ‘LN dissection’, ‘sensitivity’, ‘specificity’, ‘therapeutic LN dissection, ‘Ultrasound’(USS), ‘Computerised Tomography’ (CT), Magnetic Resonance Imaging’ (MRI) and ‘18FDG PET–CT’. The search was restricted to the presence of one or more of these key words in the title or abstract of the articles.

5.3 Methods
- An extensive search was conducted on the MEDLINE database via the Pubmed interface (http://www.ncbi.nlm.nih.gov/pubmed). ISI web of knowledge was used for forward and backward quotation search (http://apps.isiknowledge.com/).
• The search covered a period of 17 years. A combination of above mentioned search terms was used. The search was restricted to the presence of these key words in the title or abstract of the articles.

• Preliminary search using these terms yielded 1129. Abstracts of all 1129 publications were scrutinised for presence of relevant data. Out of these, 32 publications containing relevant data were identified.

• These 32 publications were read in full text and scrutinised for the presence of relevant data. This process identified 28 studies appropriate for analysis based on the criteria set out above.

• Sixteen studies looked at sensitivity of USS, eight studies provided data for CT scan, one study involved MRI (31) and three studies provided data for 18FDG PET–CT

• A standard proforma was used to extract data from the articles including details of the study population, number of LN detected by imaging, site of metastatic LN detected, percentage of positive LN on histology, sensitivity, specificity, positive predictive value and negative predictive value.

• There were no randomised controlled trials found in literature to enable a meta-analysis.

• The included studies are as follows-

One study involved MRI(Gross, Weissman et al. 2001) and 3 studies provided data for 18 FDG PET-CT(Yeo, Chung et al. 2001; Jeong, Baek et al. 2006; Lee, Kang et al. 2009).
5.4 Statistical Methods

There was no statistical analysis done for this review.
5.5 Results
The type of surgical procedure varied between studies. Some studies had prophylactic whilst others had therapeutic LND. The study details and validity of included studies and the validity are shown in Tables 5.1 and 5.2.

Table 5.1 Study details and validity-Central and combined (central and lateral) cervical LN

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients included</th>
<th>Study hypothesis</th>
<th>TP</th>
<th>TN</th>
<th>FP</th>
<th>FN</th>
<th>Sen</th>
<th>Spec</th>
<th>PPV</th>
<th>NPV</th>
<th>Validity of conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross ND 2001</td>
<td>28</td>
<td>To determine the ability of MRI imaging to detect the presence of metastatic thyroid cancer in cervical LN</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Ito Y 2006</td>
<td>600</td>
<td>Investigate the clinical significance of LN in the central compartment</td>
<td>27</td>
<td>339</td>
<td>3</td>
<td>231</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>Valid</td>
</tr>
<tr>
<td>Sugitani I 2008</td>
<td>231</td>
<td>To prospectively analyse the outcomes of selective LND to determine when prophylactic lateral neck dissection is advisable</td>
<td>40</td>
<td>86</td>
<td>9</td>
<td>96</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Roh JL 2009</td>
<td>133</td>
<td>Evaluation of preoperative US in detecting cervical LN metastases in PTC</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>Valid</td>
</tr>
<tr>
<td>Choi JS 2009</td>
<td>299</td>
<td>To compare the diagnostic accuracy of US, CT and combined US and CT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>Valid</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Case</td>
<td>Method</td>
<td>Diagnostic.Accuracies</td>
<td>Sensitivity</td>
<td>Specificity</td>
<td>PPV</td>
<td>NPV</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>-----------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Kim E 2008</td>
<td>165</td>
<td>Determine the diagnostic accuracies of US, CT and combine US and CT</td>
<td>20</td>
<td>75</td>
<td>6</td>
<td>32</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Ahn JE 2008</td>
<td>9</td>
<td>Investigate the diagnostic ability of CT and US of cervical LN in thyroid cancer</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Choi YJ 2010</td>
<td>589</td>
<td>To evaluate the diagnostic accuracy of preoperative US and CT of the neck</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Soler ZM 2008</td>
<td>102</td>
<td>Investigate the ability of CT to detect subclinical nodal disease in PTC.</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Kessler A 2003</td>
<td>63</td>
<td>The usefulness of US in diagnosing cervical LNM in PTC was investigated</td>
<td>14</td>
<td>43</td>
<td>0</td>
<td>6</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Shimamoto K 1998</td>
<td>77</td>
<td>To evaluate the usefulness of US for preoperative staging of PTC</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>b</td>
<td>b</td>
<td>NA</td>
<td>NA</td>
<td>Invalid</td>
</tr>
<tr>
<td>Torlontano M 2004</td>
<td>456</td>
<td>Determine the sensitivity of neck US to detect LN metastases</td>
<td>38</td>
<td>NA</td>
<td>NA</td>
<td>418</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Lee DH 2009</td>
<td>11</td>
<td>If PET-CT is more accurate than CT for detecting metastatic cervical LN in PTC</td>
<td>21</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Yeo JS 2001C</td>
<td>22</td>
<td>Evaluate whether FDG-PET is feasible as a pre surgical evaluation modality for I-131 scan-negative thyroid carcinoma patients</td>
<td>45</td>
<td>24</td>
<td>5</td>
<td>11</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Gonzalez 60</td>
<td>To determine the frequency of occult macroscopic metastasis</td>
<td>11</td>
<td>47</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
<td></td>
</tr>
</tbody>
</table>
HE 2007 detected by preoperative US

Stulak JM 2006
Preoperative US will increase detection and assessment of the extent of LNM in PTC

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients included</th>
<th>Study hypothesis</th>
<th>TP</th>
<th>TN</th>
<th>FP</th>
<th>FN</th>
<th>Sen</th>
<th>Spec</th>
<th>PPV</th>
<th>NPV</th>
<th>Validity of conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahn JE 2008</td>
<td>28</td>
<td>Investigate the diagnostic ability of CT and US of cervical LN in thyroid cancer</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Kim E 2008</td>
<td>165</td>
<td>Determine the diagnostic accuracies of US, CT and combined US and CT</td>
<td>20</td>
<td>75</td>
<td>6</td>
<td>32</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Ito Y 2005</td>
<td>560</td>
<td>Investigate the prognostic impact of lateral LMN detected by US</td>
<td>98</td>
<td>194</td>
<td>7</td>
<td>261</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>Valid</td>
</tr>
<tr>
<td>Sugitani I 2008</td>
<td>130</td>
<td>To prospectively analyse the outcomes of selective LND to determine when prophylactic lateral neck dissection is advisable</td>
<td>127</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>Invalid</td>
</tr>
<tr>
<td>Roh JL</td>
<td>34</td>
<td>Evaluation of preoperative US in detecting cervical metastases in</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

Sen-Sensitivity; Spec-specificity; PPV-positive predictive value; NPV, negative predictive value

a incorrectly calculated
b correctly calculated
c figures available by levels, no overall figures

Table 5.2 Study Details and Validity- Lateral LN
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Study Design</th>
<th>Sensitivity; Specificity; PPV; NPV</th>
<th>TP; TN; FP; FN</th>
<th>a; b; c</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Choi JS</td>
<td>To compare the diagnostic accuracy of US with that of CT in patients with PTC</td>
<td></td>
<td></td>
<td></td>
<td>Invalid</td>
</tr>
<tr>
<td>2008</td>
<td>Soler ZM</td>
<td>Investigate the ability of CT to detect subclinical nodal disease in PTC.</td>
<td></td>
<td></td>
<td></td>
<td>Invalid</td>
</tr>
<tr>
<td>2010</td>
<td>Yoon JH</td>
<td>To evaluate the most accurate criteria using US and CT in predicting lateral LN in PTC.</td>
<td></td>
<td></td>
<td></td>
<td>Invalid</td>
</tr>
<tr>
<td>2011</td>
<td>Lee K</td>
<td>To investigate the usefulness and limits of US in PTC</td>
<td></td>
<td></td>
<td></td>
<td>Invalid</td>
</tr>
<tr>
<td>2006</td>
<td>Jeong HS</td>
<td>To compare the diagnostics of 18F-FDG PET-CT with US</td>
<td></td>
<td></td>
<td></td>
<td>Invalid</td>
</tr>
</tbody>
</table>

Sen-Sensitivity; Spec-specificity; PPV-positive predictive value; NPV, negative predictive value;
TP-true positives; TN- true negatives; FP-false positives; FN-false negatives: NA-Not available/applicable

a incorrectly calculated; b correctly calculated

c figures available by levels, no overall figures
5.5.1 USS (Table 5.3): For central LN, there were seven studies which provided the
data (Mulla and Schulte 2012). Out of these, only 4 studies calculated sensitivity and
NPV correctly. The mean sensitivity and NPV of these 4 studies was 38.4% and
60.9% respectively.

11 studies providing data for lateral LN detection by US were included. Of these only
one (Ito, Tomoda et al. 2005) was accurate in their calculation of sensitivity and NPV.
The sensitivity and NPV for this study were 27.2% and 43%, respectively. Five studies
provided clustered results for both central and lateral cervical LN detection, out of
which only one (Shimamoto, Satake et al. 1998) calculated the sensitivity (36.7%)
correctly.
Table 5.3 Ultrasonography in detection of cervical LN in PTC (Mulla and Schulte 2012)

<table>
<thead>
<tr>
<th>Study</th>
<th>Total Patients (n)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ito Y 2006</td>
<td>600</td>
<td>10.5</td>
<td>99.1</td>
<td>90</td>
<td>59.5</td>
</tr>
<tr>
<td>Sugitani I 2008</td>
<td>231</td>
<td>29</td>
<td>91</td>
<td>82</td>
<td>47</td>
</tr>
<tr>
<td>Roh JL 2009</td>
<td>133</td>
<td>61</td>
<td>93</td>
<td>92</td>
<td>63</td>
</tr>
<tr>
<td>Kim E 2008</td>
<td>165</td>
<td>(38)</td>
<td>93</td>
<td>77</td>
<td>(70)</td>
</tr>
<tr>
<td>Ahn JE, 2008</td>
<td>37</td>
<td>(55)</td>
<td>69</td>
<td>77</td>
<td>(44)</td>
</tr>
<tr>
<td>Choi JS 2009</td>
<td>299</td>
<td>53</td>
<td>80</td>
<td>61</td>
<td>74</td>
</tr>
<tr>
<td>Choi JY 2010</td>
<td>589</td>
<td>(47.2)</td>
<td>94.8</td>
<td>90.4</td>
<td>(63.5)</td>
</tr>
<tr>
<td>Lateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ito Y 2005</td>
<td>560</td>
<td>27.2</td>
<td>96.5</td>
<td>93.3</td>
<td>43</td>
</tr>
<tr>
<td>Jeong HS 2006</td>
<td>26</td>
<td>(41.3)</td>
<td>97.4</td>
<td>73.1</td>
<td>(90.6)</td>
</tr>
<tr>
<td>Stulak JM 2006</td>
<td>551</td>
<td>(83.5)</td>
<td>97.7</td>
<td>88.8</td>
<td>NA</td>
</tr>
<tr>
<td>Sugitani I 2008</td>
<td>361</td>
<td>NA</td>
<td>NA</td>
<td>98</td>
<td>NA</td>
</tr>
<tr>
<td>Roh JL 2009</td>
<td>133</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Kim E 2008</td>
<td>165</td>
<td>(64)</td>
<td>92</td>
<td>83</td>
<td>(82)</td>
</tr>
<tr>
<td>Ahn JE 2008</td>
<td>37</td>
<td>(65)</td>
<td>82</td>
<td>86</td>
<td>(59)</td>
</tr>
<tr>
<td>Choi JS 2009</td>
<td>299</td>
<td>(93.9)</td>
<td>25</td>
<td>93.9</td>
<td>(25)</td>
</tr>
<tr>
<td>Choi JY 2010</td>
<td>589</td>
<td>(69.1)</td>
<td>94.8</td>
<td>57.6</td>
<td>(96.8)</td>
</tr>
<tr>
<td>†Lee K 2010</td>
<td>70</td>
<td>(78.3)</td>
<td>98.7</td>
<td>99.5</td>
<td>(58.2)</td>
</tr>
<tr>
<td>Yoon JH 2011</td>
<td>113</td>
<td>(74.3)</td>
<td>82.7</td>
<td>85.3</td>
<td>(70.5)</td>
</tr>
<tr>
<td>Combined Central</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Lateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shimamoto K, 1998</td>
<td>77</td>
<td>36.7</td>
<td>89.3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Kessler A 2003</td>
<td>63</td>
<td>(70)</td>
<td>100</td>
<td>100</td>
<td>(87.6)</td>
</tr>
<tr>
<td>Torlontano M, 2004</td>
<td>456</td>
<td>(100)</td>
<td>100</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>†Stulak JM 2006</td>
<td>219</td>
<td>(90.4)</td>
<td>78.9</td>
<td>93.9</td>
<td>NA</td>
</tr>
<tr>
<td>Gonzalez HE 2007</td>
<td>60</td>
<td>(92)</td>
<td>98</td>
<td>92</td>
<td>(98)</td>
</tr>
</tbody>
</table>
Figures in brackets indicate erroneous calculations; *Re-operated group of patients; †Unclear if all LN were dissected; NA-not available/applicable

5.5.2 CT (Table 5.4): Eight studies provided data on CT scan for detecting cervical LN. For central LN, five provided data out of which in only one (Choi, Kim et al. 2009) the calculations were correct. The sensitivity and NPV in this study was 67% and 80% respectively.

Table 5.4 CT in the detection of cervical LN metastases in PTC (Mulla and Schulte 2012)

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients Total (n)</th>
<th>Sensitivity %</th>
<th>Specificity %</th>
<th>PPV %</th>
<th>NPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central LN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim E 2008</td>
<td>165</td>
<td>(50)</td>
<td>91</td>
<td>79</td>
<td>(74)</td>
</tr>
<tr>
<td>Soler ZM 2008</td>
<td>102</td>
<td>(58)</td>
<td>72</td>
<td>72</td>
<td>(58)</td>
</tr>
<tr>
<td>Ahn JE 2008</td>
<td>37</td>
<td>(74)</td>
<td>44</td>
<td>72</td>
<td>(47)</td>
</tr>
<tr>
<td>Choi JS 2009</td>
<td>299</td>
<td>67</td>
<td>79</td>
<td>65</td>
<td>80</td>
</tr>
<tr>
<td>Choi JY 2010</td>
<td>589</td>
<td>(41.9)</td>
<td>97.4</td>
<td>93.6</td>
<td>(65.1)</td>
</tr>
<tr>
<td>Lateral LN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeong HS 2007</td>
<td>26</td>
<td>(42.3)</td>
<td>96.6</td>
<td>57.9</td>
<td>(93.8)</td>
</tr>
<tr>
<td>Kim E 2008</td>
<td>165</td>
<td>(74)</td>
<td>95</td>
<td>89</td>
<td>(86)</td>
</tr>
<tr>
<td>Soler ZM 2008</td>
<td>102</td>
<td>(50)</td>
<td>71</td>
<td>50</td>
<td>(63)</td>
</tr>
<tr>
<td>Ahn JE 2008</td>
<td>37</td>
<td>(78)</td>
<td>78</td>
<td>86</td>
<td>(68)</td>
</tr>
<tr>
<td>Choi JS 2009</td>
<td>299</td>
<td>(81.7)</td>
<td>100</td>
<td>100</td>
<td>(30.8)</td>
</tr>
<tr>
<td>Choi JY 2010</td>
<td>589</td>
<td>(78.2)</td>
<td>93.3</td>
<td>54.4</td>
<td>(97.7)</td>
</tr>
<tr>
<td>Study</td>
<td>N</td>
<td>Sensitivity</td>
<td>PPV</td>
<td>NPV</td>
<td>(Accuracy)</td>
</tr>
<tr>
<td>---------------</td>
<td>----</td>
<td>-------------</td>
<td>-----</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>Yoon JH</td>
<td>113</td>
<td>(68.6)</td>
<td>78.8</td>
<td>81.4</td>
<td>(65.1)</td>
</tr>
<tr>
<td>Lee DH</td>
<td>11</td>
<td>(75)</td>
<td>87.5</td>
<td>95.9</td>
<td>(50)</td>
</tr>
</tbody>
</table>

Combined Central and Lateral LN

Out of the seven studies included for lateral LN, none calculated the sensitivity and NPV correctly. There was one study with combined results for both central and lateral LN which again calculated inaccurately.

5.5.3 MRI (Table 5.5): We found one study by Gross N. D et. al (Gross, Weissman et al. 2001) in literature providing data for use of Magnetic Resonance Imaging in detection of cervical LN which again failed to calculate it in a correct manner.

5.5.4 18 FDG PET-CT (Table 5.5): Three studies provided results, one for lateral LN and two for combined central and lateral LN. In neither of these were the calculations correct.
Table 5.5: 18-FDG PET/CT and MRI in the detection of CLN in Papillary Thyroid Cancer.

<table>
<thead>
<tr>
<th>Study</th>
<th>Total Patients (n)</th>
<th>Sensitivity %</th>
<th>Specificity %</th>
<th>PPV %</th>
<th>NPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18-F PET/CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeong HS 2006</td>
<td>27 (50)</td>
<td>97</td>
<td>65 (94.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined Central and Lateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Yeo JS 2001</td>
<td>22 (80)</td>
<td>83</td>
<td>90 (69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Lee DH 2009</td>
<td>11 (35.7)</td>
<td>87.5</td>
<td>90.9 (28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross ND 2001</td>
<td>105 (95)</td>
<td>51</td>
<td>84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Figures in brackets indicate erroneous calculations

5.6 Discussion

In any cancer management, it is crucial to have accurate staging as it impacts on the treatment strategy and hence on long-term outcomes and survival. Imaging modalities are integral part of this initial assessment and staging. Accurate diagnostic evaluation can often lead to stage migration from a lower to higher stage. Stage migration will be reflected in the overall cancer specific survival rates (Chan, Lang et al. 2013). The importance of a thorough preoperative evaluation in PTC and subsequent neck dissection to an appropriate extent during initial surgery has been emphasized in many studies (Chow, Law et al. 2003; Mazzaferri 2009). As previously mentioned, cervical lymph node status at presentation affects long term outcomes (Lundgren, Hall et al. 2006).
In our systematic review, we assessed the ‘usefulness’ and ‘diagnostic accuracy’ of these imaging modalities. There are four parameters namely sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV), which define the diagnostic accuracy of a test. Of these parameters sensitivity and NPV are important as these represent those cases ‘NOT’ missed by the test (Mulla and Schulte 2012).

For any imaging modality to be widely used for cancer staging, it would be expected to score high on all the four parameters. A false high sensitivity or negative predictive value of the tests employed would lead to under-staging.

Sensitivity is the ‘proportion of true positives that are correctly identified by the test’ (Altman and Bland 1994). Put in plain language, it is the ability of a test to identify those patients with the disease (Lalkhen A.G 2008), defined by the formula TP/TP+FN (TP-True positives; FN- False negatives).

‘NPV’ is defined as the ‘proportion of subjects with a negative test result who are correctly diagnosed’ (Altman and Bland 1994). In other words it is the likelihood of a patient not having the disease when the test result is negative (Lalkhen A.G 2008) and is defined by the formula TN/TN+FN (TN- True Negatives).

For calculation of sensitivity and NPV, ‘False negatives’ (FN) values are required as is evident from the above formulae. The only practical method to obtain FN values is to dissect all cervical LN during surgery irrespective of image findings followed by comparison of histology results to those detected by pre-operative imaging. This alone will ascertain that all ‘FN’ cases are included. This can only be achieved by performing prophylactic lymph node dissection alone.

From our systematic review on imaging, it is evident that out of the 16 studies providing values for sensitivity and NPV of US, only 6 studies calculated these values accurately leaving 10 studies with either incomplete or inaccurate data (Table 5.3). Results from studies involving CT, only one (Choi JS 2009) out of 8 studies provided accurate results for sensitivity and NPV. The remaining 7 studies provide incorrect results (Table 7.4). The same applies to 18 FDG PET-CT and MR studies; all 4 included calculated the values incorrectly (Table 7.5). In summary, only 7 out of 28 imaging studies included have performed the calculations correctly leaving with 21 studies with incorrect calculations. In all the studies, which did not calculate the sensitivity
and NPV accurately, patients had therapeutic LND, hence ‘FN’ cases could not have been obtained.

When correct scientific methodology was applied, the mean sensitivity and NPV of US was 36.2% and 57.3%, respectively. The only study, which provided correct results for CT had a sensitivity of 67% and NPV of 80% for central compartment only (Choi, Kim et al. 2009).

The results from our review clearly shows that US and CT are not ideal imaging for the detection metastatic cervical LN. The discrepancies in calculating reflect a misunderstandings or simply incorrect definitions of the terms ‘sensitivity’ and ‘NPV’ in the context of imaging cervical LN in PTC.

Ultrasound is operator dependent and hence individual results may be better than what has been published in literature. There are no set diagnostic criteria for detecting metastatic cervical LN although there are suspicious features as described previously. This adds to the problem of subjectivity in detecting suspicious LN even further. However, such operator dependency puts obvious limitations to the use of the results in cancer staging and management which will affect outcomes and survival. It is clear from the above findings that properly designed studies calculating FN correctly and thereby providing accurate values for sensitivity and NPV are required to resolve this issue.

Some newer methods of evaluating metastatic cervical LN like dual-energy spectral CT and USS guided FNA thyroglobulin washout are still in their early phases and not well established (Liu, Ouyang et al. 2014; Jun, Kim et al. 2015).

The role of sentinel lymph node (SLN) biopsy in PTC has been investigated and debated for a long time. The aim of this is to identify cervical LN metastasis without performing a formal LN dissection thus in theory avoiding unnecessary operations. It relies on the progression of metastases in an orderly fashion from the primary organ to the sentinel LN or groups of LN’s. Several methods have been used in the detection of SLN in PTC namely methylene blue, radio-isotope and combination of techniques (Balasubramanian and Harrison 2011). This method has not gained popularity for a variety of reasons. Dye spillage during injection causes problems with identification of SLN in addition to causing difficulty in defining other groups of LN. Lymphatic disruption during dissection and blockage of the lymph channels with
tumour can lead to non-visualisation of the SLN (Abdalla 2006; Peparini, Maturo et al. 2006). False identification of SLN for stained parathyroids can lead to excision of these glands (Lee, Choi et al. 2009). Rigorous studies are needed to establish this technique to be used in management of PTC.

5.7 Limitations
1. The review was not registered in accordance with PRISMA guidelines on databases such as PROSPERO.
2. The quality of the included studies has not been assessed.
Chapter 6

Multicentre Retrospective Cohort Study
6.1 Aims and Objectives

1. To compare the outcomes between prophylactic lateral cervical LN dissection versus no lateral LND.
2. To determine the extent of lateral cervical LN metastasis after prophylactic lateral LN Dissection.

6.2 Methods and Methodology

Study period was 9 years from 2004-2012.

We conducted a retrospective study at two large hospitals in London namely

- King’s College Hospital (KCH)
- Guy’s and St. Thomas’ Hospital (GSTT)

A comprehensive list of all patients treated for PTC was obtained in liaison with the histopathology department from the above centres. All patients had undergone surgery for PTC. All available information and data was collected from individual patient case notes, Electronic Patient Records (EPR), radiology reporting system, histopathology reporting system, letters from Thyroid Multidisciplinary team (MDT) meetings and nuclear medicine department. Histological classification was done according to World Health Organisation (WHO) classification of thyroid tumours (Hedinger 1989). Staging was done according to TNM classification (7th Edition) of thyroid cancer (Sobin L 2002). The data was collected in accordance with the National and regional guidelines of these trusts. Ethical approval was sought and was deemed not necessary by the ethics committee. All data was anonymised and stored in a password protected hard drive and on an encrypted USB.

The data collected included:

- Demographics
- Pre-operative imaging
- Type of surgical procedure i.e Lobectomy, TT, LN Dissection
- Type of Lymph Node dissection whether prophylactic or therapeutic
- Extent of cervical LN dissection
- Prevalence of LN metastases in central and lateral compartment
• Recurrence and methods used for its detection
• Follow-up data was collected to the last clinic letter
• Outcomes of surgery relating to recurrence and survival.

Management regimes at the two centres

The surgical management of thyroid cancer at the two centres differed mainly for tumours T3 and above. Patients from King’s College Hospital with tumours pT3 and above, were likely to have prophylactic MRND although this was found not to be consistent for all patients. At the other centre, namely GSTT similar cohort of patients were likely to have lateral cervical LN dissection only if metastatic LN were detected pre-operatively on imaging or clinical examination.

It must be emphasised that it is not possible to discuss here, the individual scenarios that might have transpired or influenced the surgical management of individual cases discussed and decided in the multi-disciplinary meetings.

For our analysis, we divided the patients into two Cohorts as follows-

Cohort A (Prophylactic Lateral Cervical LND) - In this group the surgical approach was prophylactic MRND. These patients had total thyroidectomy and Modified Radical Neck Dissection along with central LN dissection. This group included only those patients who did NOT have any suspicious or metastatic lateral LN on clinical examination, imaging and intra-operatively.

Prophylactic MRND was defined as type III MRND with removal of cervical LN from levels II to V irrespective of pre-operative/intra-operative findings or pre-operative imaging with preservation of the spinal accessory nerve, internal jugular vein and sternocleidomastoid muscle (Sakorafas, Sampanis et al. 2010). Neck levels were defined according to the consensus statement on classification of cervical LN as defined by Robbins et. al (Robbins, Shaha et al. 2008). The surgeon removed all upper, middle, lower jugular LN including those from the posterior triangle of the neck corresponding to levels II to V.

Cohort B (Central Cervical LND)-This group of patients had total thyroidectomy and therapeutic central cervical LND. None of these patients had suspicious or confirmed lateral LN metastasis on pre-operative imaging or clinical examination.
This operative procedure involved dissection of the level VI compartment to remove pre-tracheal, para-tracheal nodes, pre-cricoid (Delphian) and the peri-thyroidal nodes along with fatty tissue and fascia.

Recurrence
Cervical LN or loco-regional recurrence was defined as evidence of LN metastases at least six months after completion of initial treatment (surgery+/-RAI treatment). Recurrence was suspected by clinical or ultrasound examination and confirmed by aspiration cytology, resection, high levels of Tg or by imaging studies, such as post I 131 treatment whole body scan or Positron Emission Tomography (PET). Histological confirmation of nodal metastases was confirmed in all cases after surgery. In case of suspicious or metastatic cervical LN detected prior to this period of six months, this was considered as ‘persistence of disease.’

6.3 Statistical Methods
All statistical analysis was performed using the software SPSS version 21 (SPSS Inc., Chicago, IL). We calculated mean, median, standard deviation and the range for the descriptive variables. For univariate analysis of the risk factors, chi-square values and Pearson’s correlation coefficient (p-values) were calculated for comparison between the two groups. \(P < 0.05 \) was considered statistically significant. To calculate the recurrence free survival, we used Kaplan-Meier survival curves.

6.4 Results
There were 224 patients in total who had surgery for thyroid cancer in the two centres over a 9-year period. There were 51 males and 173 female patients. 74 patients belonged to KCH and 150 were treated at GSTT. The demographics and other patient characteristics are as shown in Table 6.1.
Table 6.1: Demographics and other patient characteristics of all patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>KCH* LND (n=74)</th>
<th>GSTT‡ (n=150)</th>
<th>Chi square/p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male / Female</td>
<td>24 / 50</td>
<td>27 / 123</td>
<td>5.9 P=0.01</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n of patients</td>
<td>74</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Mean ±SD</td>
<td>48.5 ±15.8</td>
<td>50.0 ±15.1</td>
<td></td>
</tr>
<tr>
<td>Range ±SD</td>
<td>20 – 86</td>
<td>22 – 88</td>
<td></td>
</tr>
<tr>
<td>Focality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>70</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Uni /Multifocal</td>
<td>40 / 29</td>
<td>77 / 65</td>
<td></td>
</tr>
<tr>
<td>Laterality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>69</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>Unilateral / Bilateral</td>
<td>49 / 20</td>
<td>84 / 57</td>
<td></td>
</tr>
<tr>
<td>Size of primary tumour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>60</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Mean ±SD</td>
<td>2.0 ±1.7</td>
<td>2.2 ±1.8</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.1 – 7.5</td>
<td>0.1 – 12.5</td>
<td></td>
</tr>
<tr>
<td>T Staging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>74</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>36</td>
<td>59</td>
<td>8.5 P<0.05</td>
</tr>
<tr>
<td>T2</td>
<td>10</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>23</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>5</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Imaging for LN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USS</td>
<td>40/4</td>
<td>65/13</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>4/0</td>
<td>35/14</td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td>7/0</td>
<td>20/5</td>
<td></td>
</tr>
<tr>
<td>Any imaging</td>
<td>46/4</td>
<td>85/25</td>
<td></td>
</tr>
<tr>
<td>Imaging for LN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performed / Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow up (months)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>74</td>
<td>148</td>
<td></td>
</tr>
</tbody>
</table>

* KCH: King's College Hospital
‡ GSTT: Great Smith's Teaching Hospital
<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
<th>Range</th>
<th>Mean ± SD</th>
<th>Range</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31.5 ±21.8</td>
<td>1.0 – 84.4</td>
<td>40.4 ±22.7</td>
<td>2.0 – 95.9</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.8</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Recurrence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>74</td>
<td>148</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No recurrence</td>
<td>71</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio-iodine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Number of doses)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>70</td>
<td>150</td>
<td>6.7</td>
<td>P = 0.02</td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>1.1 ±1.0</td>
<td>1.5 ±1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0 - 4</td>
<td>0 - 7</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio-iodine (Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dose)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>48</td>
<td>129</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>6.8 ±5.2</td>
<td>7.6 ±6.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.2 – 29.6</td>
<td>3.6 – 38.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>74</td>
<td>148</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dead</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alive</td>
<td>74</td>
<td>145</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†-King's College Hospital
‡-Guy's and St. Thomas' Hospital

There were total of 13 recurrences, 3 in the KCH and 10 in the GSTT cohort. All 3 recurrences in the KCH cohort were loco-regional. There were no deaths in this cohort. Out the 10 recurrences in the GSTT cohort, 2 patients had both loco-regional and distant recurrence; 6 patients had locoregional recurrence only with no distant recurrence; 2 had distant recurrence with no locoregional recurrence. There were 3 deaths in this cohort; all three patients had advanced disease (T4N1b) on presentation and had undergone LND. All developed recurrence and had RAI treatment for the same.
The flow of patients and the outcomes for all patients from KCH are as shown in Figure 6.1. The available TNM staging of all patients as per the surgical procedure performed is shown in Table 6.2.

Figure 6.1 Flow of all patients at King’s College Hospital (KCH)

- Includes Hemithyroidectomies
- Includes Ipsilateral and Bilateral CLND
- Includes Ipsilateral, Bilateral, prophylactic and therapeutic LLND
Table 6.2: Tumour Staging (TNM) and the surgical procedure performed at King’s College Hospital

<table>
<thead>
<tr>
<th>Stages</th>
<th>Lobectomy n=2</th>
<th>TT n=17</th>
<th>CLND n=17</th>
<th>LLND n=33</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>13</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>T3</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>T4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Nx</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>N0</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>N1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>N1a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>N1b</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Missing Data</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mx</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>M0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>M1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Missing Data</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

Similarly, the flow of patients and the outcomes for all patients from Guy’s and St. Thomas’ hospitals (GSTT) are as shown in Figure 6.2.
Figure 6.2 Flow of all patients at Guy’s and St. Thomas’ (GSTT) Hospitals

The available TNM staging of all patients from GSTT as per the surgical procedure performed is shown in Table 6.3.

†-Includes Hemithyroidectomies
‡-Includes Ipsilateral and Bilateral CLND
±-Includes Ipsilateral, Bilateral LLND and selective compartmental LND
Table 6.3 Tumour Staging (TNM) and the surgical procedure performed at GSTT

<table>
<thead>
<tr>
<th>Stages</th>
<th>Lobectomy n=8</th>
<th>TT n=23</th>
<th>CLND n=71</th>
<th>LLND n=41</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>4</td>
<td>16</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>T2</td>
<td>3</td>
<td>2</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>T3</td>
<td>1</td>
<td>4</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>T4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Nx</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>N0</td>
<td>2</td>
<td>13</td>
<td>36</td>
<td>2</td>
</tr>
<tr>
<td>N1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>N1a</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>N1b</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>Missing Data</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Mx</td>
<td>1</td>
<td>7</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>M0</td>
<td>1</td>
<td>4</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>M1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Missing Data</td>
<td>6</td>
<td>12</td>
<td>26</td>
<td>17</td>
</tr>
</tbody>
</table>
Results of Analysis of the two Cohorts

Figure 6.3 shows the flow of patients and the process of inclusion in the two cohorts.

Total of 44 patients fulfilled the above inclusion and exclusion criteria and hence were included in the analysis. 31 patients had TT and central LND whilst 13 patients had TT+CLND prophylactic lateral LND. There were 10 males and 34 female patients with a mean age of 43.3 years. The median follow-up period was 28 months (Range: 1-96 months). Of the 13 patients who had prophylactic lateral LND, 7 (53.8%) were found to have positive LN on histology. Among the central LND group, out of 31 patients 9 (29%) were found to have positive LN. Uni-variate analyses between gender, tumour size and focality did not show any significant difference among the two groups (Table 6.4). Patients undergoing central LND were older and there was a significant difference in the ages between the two cohorts (p<0.01).
Table 6.4 Demographics and Uni-variate analyses of risk factors for the two Cohorts

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Prophylactic Lateral LND n=13</th>
<th>Central LND n=31</th>
<th>Chi square (p value)</th>
<th>All Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male/female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/8</td>
<td>5/26</td>
<td>n.s</td>
<td>10/34</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n of patients</td>
<td>13</td>
<td>31</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>36.5±9.5</td>
<td>50±15.3</td>
<td>8.7</td>
<td>46.0±15.3</td>
</tr>
<tr>
<td>Median</td>
<td>35</td>
<td>47.0</td>
<td>(<0.01)</td>
<td>45.0</td>
</tr>
<tr>
<td>Range</td>
<td>20-53</td>
<td>26-85</td>
<td></td>
<td>20-85</td>
</tr>
<tr>
<td>Size of primary tumour (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n of patients</td>
<td>11</td>
<td>28</td>
<td>n.s</td>
<td>39</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>2.8±1.4</td>
<td>2.4±1.6</td>
<td></td>
<td>2.4±1.5</td>
</tr>
<tr>
<td>Median</td>
<td>2.5</td>
<td>2.1</td>
<td>n.s</td>
<td>2.2</td>
</tr>
<tr>
<td>Range</td>
<td>1.1-5.5</td>
<td>0.1-7.0</td>
<td></td>
<td>0.1-7.0</td>
</tr>
<tr>
<td>Focality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n of patients</td>
<td>13</td>
<td>29</td>
<td>n.s</td>
<td>24/18</td>
</tr>
<tr>
<td>Unifocal/Multifocal</td>
<td>7/6</td>
<td>17/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total LN Removed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n of patients</td>
<td>13</td>
<td>29</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Mean± SD</td>
<td>23.9±13.5</td>
<td>7.5±6.9</td>
<td>27.4 (<.0001)</td>
<td>12.6±12.1</td>
</tr>
<tr>
<td>Median</td>
<td>20</td>
<td>5.0</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Range</td>
<td>4-50</td>
<td>0-26</td>
<td></td>
<td>0-50</td>
</tr>
<tr>
<td>Total LN Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n of patients</td>
<td>13</td>
<td>29</td>
<td>n.s</td>
<td>42</td>
</tr>
<tr>
<td>Mean± SD</td>
<td>1.5±1.8</td>
<td>1.1±2.1</td>
<td></td>
<td>1.1±2.1</td>
</tr>
<tr>
<td>Median</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Range</td>
<td>0-5</td>
<td>0-8</td>
<td></td>
<td>0-8</td>
</tr>
<tr>
<td>Follow-up (Months)</td>
<td>n of patients</td>
<td>Mean± SD</td>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>24.2±15.2</td>
<td>23.3</td>
<td>1-54</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>41.7±24.1</td>
<td>35.9</td>
<td>2-96</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>36.5±23.2</td>
<td>28</td>
<td>1-96</td>
</tr>
</tbody>
</table>

n: number of patients with available data
n.s: not statistically significant
LN: lymph nodes

Table 6.5 Results of Central Lymph Nodes Dissection-part of LLND from the KCH Cohort

<table>
<thead>
<tr>
<th>Total LN removed</th>
<th>n</th>
<th>Mean± SD</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13</td>
<td>7.7±9.6</td>
<td>4</td>
<td>0-34</td>
</tr>
<tr>
<td>Total LN Positive</td>
<td>n of patients</td>
<td>13</td>
<td>1.1±1.7</td>
<td>0</td>
</tr>
</tbody>
</table>

n: Number of patients with available data
LN-lymph nodes

There were no recurrences in the prophylactic group whilst there was one recurrence in the CLND group. Kaplan-Meir analysis showed that recurrence free survival was not significant between the two groups (Fig. 6.4).
Figure 6.4 Recurrence free survival in between the two cohorts
Results of Radio-iodine treatment

The mean dose of Radio-iodine (RAI) in the prophylactic lateral LND and central LND groups was 5.0 GBq (SD±2.8) and 6.0 GBq (SD±5.5) respectively. This was not statistically significant. The mean number of RAI doses in the prophylactic lateral LND and central LND groups was 1.2 (SD±0.7) and 1.2 (SD±1.0) respectively. The difference also was not statistically significant (Table 6.6).

Table 6.6 Radio-iodine (RAI) treatment between the two groups

<table>
<thead>
<tr>
<th>RAI</th>
<th>Prophylactic</th>
<th>Therapeutic</th>
<th>Chi square (p value)</th>
<th>All patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio-iodine number of doses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>12</td>
<td>31</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Mean±SD</td>
<td>1.2±0.7</td>
<td>1.2±1.0</td>
<td>n.s</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0-3</td>
<td>0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio-iodine dose (GBq)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>11</td>
<td>25</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Mean±SD</td>
<td>5.0±2.8</td>
<td>6.0±5.5</td>
<td>n.s</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>3.8</td>
<td>3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>1.1-11.6</td>
<td>3.6-27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n-number of patients with available data
n.s: not statistically significant

6.5 Discussion

For decades, there has been considerable controversy regarding the type of surgical approach and the extent of lateral cervical lymph node dissection in PTC. This debate is compounded by lack of data on long term outcomes and survival. In this study, more than half of patients who underwent pLLND had metastatic lateral LN. We have also shown from previous systematic review that lateral cervical
LN metastases were found in nearly 50% of patients when prophylactic LND was performed (Mulla, Knoefel et al. 2012). Other studies have shown that more than half of PTC patients with metastatic central LN also had metastatic lateral LN (Hartl, Leboulleux et al. 2012).

There was only one recurrence in central LND cohort and no recurrences in the pLLND group. Kaplan Meir analysis showed ‘recurrence free survival’ between the two cohorts not to be significant.

We could not perform any meaningful analysis of known risk factors for recurrence of disease as there was only one recurrence in the two cohorts combined. We also could not perform five or 10-year recurrence free survival because of very small of patients in the data with long enough follow-up period for any meaningful statistical analysis. There were no deaths in either cohort; hence overall ‘Overall Survival’ was 100%.

The pros and cons of prophylactic lateral LND have been discussed in the preceding chapters. Although lateral LN metastasis appears to be quite common, their significance in relation to long-term outcomes is not very clear. The main reason for this is the lack of long term follow-up data required to obtain any meaningful results. In an ideal scenario, data from randomised controlled trials with long term follow-up would be required to assess long term outcomes. For a slow growing tumour such as PTC, it is difficult to organise RCT as this would need long term follow-up to achieve any meaningful statistical significance (Shaha 2004). The feasibility of conducting a prospective randomized controlled trial comparing prophylactic central node dissection versus no prophylactic central node dissection for cN0 PTC has been analyzed by a multidisciplinary subcommittee of the ATA Surgical Affairs Committee (Carling, Carty et al. 2012). They concluded that ‘given the low rates of both newly identified structural disease, prohibitively large sample sizes would be required for sufficient statistical power to demonstrate significant differences in outcomes’ (Carling, Carty et al. 2012). ‘Thus, a prospective RCT of prophylactic central lymph node dissection in cN0 PTC was not readily feasible’ (Carling, Carty et al. 2012).

Out of the studies providing long term data, some have shown that cervical LN metastases were related to a higher recurrence rate, but did not adversely influence survival (Hay, Grant et al. 1992). Other authors have documented that the presence
of lymph node metastases adversely influenced disease free and overall survival (Scheumann, Gimm et al. 1994; Ito, Higashiyama et al. 2007). There is evidence in literature from large studies and reviews confirming that lateral cervical involvement (II-V) has poor survival and an increased risk of death from PTC (Smith, Sessions et al. 2012; Eskander, Merdad et al. 2013). In our study the because of small number of patients and short follow-up period, (Median=28 months) it was not possible to draw any meaningful long term conclusions.

There are also studies from large registries like SEER (Surveillance, Epidemiology, and End Results) database from United States of America. One such study demonstrated lymph node status to be an independent predictor of survival in PTC patients >45 years of age but did not affect survival in <45 years (Zaydfudim, Feurer et al. 2008). A similar recent SEER based study with nearly 26,000 PTC patients demonstrated a significant association between lymph node involvement and cumulative incidence of death from thyroid cancer (P<0.001). There are other studies which show that cervical LN metastases were related to a higher recurrence rate, but did not adversely influence survival (Hay, Grant et al. 1992). Others have reported that the presence of lymph node metastases adversely influenced survival (Scheumann, Gimm et al. 1994). A study by Ito Y and colleagues demonstrated that clinically identified lymph node metastases are associated with a worse disease free and overall survival (Noguchi, Murakami et al. 1998; Ito and Miyauchi 2007). A recent study of a large series of more than 11,000 PTC patients concluded that patients aged >45 years with lateral/mediastinal cervical involvement have an increased risk of death from PTC (Smith, Sessions et al. 2012). These studies however do not provide a comparison between prophylactic and therapeutic LND in PTC.

There are few studies comparing prophylactic to therapeutic LND with regards to long term outcomes. One such is a study conducted by Barczynski and colleagues (Barczynski, Konturek et al. 2013) who looked at central LN only. This was a retrospective cohort study of patients who underwent total thyroidectomy (TT) with bilateral prophylactic CND (n=358) compared with patients who had TT without CND (n=282). The 10-year disease-specific survival rate for patients who had TT without CND was 92.5% compared with 98% in patients with CND (P = 0.034), and the loco-regional control rate was 87.6 and 94.5% respectively (P = 0.003). They concluded
that bilateral pCND, improved both 10-year disease-specific survival and loco-regional control, without increasing the risk of permanent morbidity.

A recent study with cohort similar to our analysis was performed by Lim YC and colleagues (Lim, Liu et al. 2016). They studied all patients who underwent TT+CLND without any clinical evidence of lateral LN involvement; the study found lateral LN recurrence in 4.5% of patients. Tumour size >1 cm and central LN metastasis were independent predictors of lateral LN recurrence.

6.6 Limitations of Cohort Study

-As this was a retrospective study, it had significant deficiencies.

-Collection of data was reliant on the availability of complete histology reports, accurate imaging reports, operative notes and follow-up data. This was found to be significantly deficient on all the above parameters in spite of our best efforts to gather all the data.

-There was a lot of variability in terms of information provided on the histology reports. This meant that all the required information could not be collected consistently and there was a lot of missing data.

-Some of the imaging reports were also not available. This again meant missing data which could not be collected.

-The median follow-up period for the prophylactic groups was less than 2 years. This obviously has an impact on the results and outcomes.
6.7 Summary of Conclusions

- Prophylactic lymph node dissection yielded metastatic central and lateral lymph nodes in about half of all patients with Papillary Thyroid Carcinoma. Frequency of cervical LN metastasis increases proportionately with the stage of disease.
- Imaging modalities currently utilised for detection of both central and lateral metastatic cervical LN namely US and CT have low sensitivities and hence not entirely reliable in detecting metastatic cervical LN.
- There was no difference in the clinical outcomes between prophylactic lateral LND versus no lateral LND in our study. This must be viewed within limitations of the study with small numbers involved and the short follow-up.
- A randomised controlled trial comparing prophylactic versus therapeutic LND would be necessary to provide any meaningful results on long term outcomes.
Summary of Publications

Book Chapter

Book-Thyroid Cancer: Diagnosis, Treatment and Prognosis.

Chapter: Papillary Thyroid Cancer-The problem of regional LN metastases- Chapter ID 11135. *Mulla M*, Schulte KM

Haymart, M. R., D. J. Repplinger, et al. (2008). "Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of
differentiated thyroid cancer and advanced tumor stage." J Clin Endocrinol Metab 93(3): 809-814.

Lim, Y. C., L. Liu, et al. (2016). "Lateral lymph node recurrence after total thyroidectomy and central neck dissection in patients with papillary thyroid

