Systematic review

The World Health Organization mental health gap action programme (mhGAP) intervention guide: a systematic review of evidence from low- and middle-income countries

Roxanne Keynejad1, Tarun Dua2, Corrado Barbui3, Graham Thornicroft1.

1: Centre for Global Mental Health, Institute of Psychiatry, Psychology and Neuroscience, King’s College London
2: Department of Mental Health and Substance Abuse, World Health Organization
3: Cochrane Global Mental Health and WHO Collaborating Centre for Research and Training in Mental Health and Service Evaluation, University of Verona, Verona, Italy

Correspondence: roxanne.keynejad@kcl.ac.uk

Key words: global mental health, mhGAP, systematic review, LMIC, mental health services

Word count: Abstract 250, Main article 2500, excluding tables and references.

Funding: None

Competing interests: TD is a staff member of the World Health Organization.

Disclaimer: The authors alone are responsible for the views expressed in this publication and they do not necessarily represent the decisions, policy or views of the World Health Organization.
Abstract

Question: Despite mental, neurological and substance use (MNS) disorders being highly prevalent, there is a worldwide gap between service need and provision. The World Health Organization (WHO) launched its Mental Health Gap Action Programme (mhGAP) in 2008, and the Intervention Guide (mhGAP-IG) in 2010. mhGAP-IG provides evidence-based guidance and tools for assessment and integrated management of priority MNS disorders in low and middle income countries (LMICs), using clinical decision-making protocols. It targets a non-specialized primary healthcare audience, but has also been used by ministries, non-governmental organizations and academics, for mental health service scale-up in 90 countries. This review aimed to identify evidence to date for mhGAP-IG implementation in LMICs.

Study selection and analysis: We searched MEDLINE, Embase, PsycINFO, Web of Knowledge/Web of Science, Scopus, CINAHL, LILACS, ScieELO/Web of Science, Cochrane, Pubmed databases and Google Scholar for studies reporting evidence, experience or evaluation of mhGAP-IG in LMICs, in any language. Data were extracted from included papers, but heterogeneity prevented meta-analysis.

Findings: We conducted a systematic review of evidence to date, of mhGAP-IG implementation and evaluation in LMICs. 33 included studies reported 15 training courses, nine clinical implementations, three country contextualisations, three economic models, two uses as control interventions and one use to develop a rating scale. Our review identified the importance of qualitative reports of contextual challenges in the field, alongside detailed protocols, qualitative studies and randomised controlled trials.

Conclusions: The mhGAP-IG literature is substantial, relative to other published evaluations of clinical practice guidelines: an important contribution to a neglected field.
Background

Despite mental, neurological and substance use (MNS) disorders being highly prevalent, a vast gap exists between the need for services and their provision, worldwide. Whilst one in ten people has a mental health problem, only one percent of the global health workforce provides mental healthcare. The World Health Organization (WHO) launched its Mental Health Gap Action Programme (mhGAP,1) in 2008, and the Intervention Guide (mhGAP-IG,2) in 2010, to bridge this gap. The mhGAP-IG provides evidence-based guidance and tools for the assessment and integrated management of priority MNS disorders in low and middle income countries (LMICs), using clear protocols for clinical decision-making. It is aimed at a non-specialized audience of primary care workers, but is also used by government ministries, non-governmental organizations and academic centres, to scale up mental health services in over 90 countries worldwide. Version 2.0 was published in 2016,(3) reflecting updated evidence and feedback from field users.

The first mhGAP-IG was used by over 80 countries and translated into more than 20 languages, as part of a package of work to develop nation-specific mental health action plans. However, it was observed that few research studies had directly assessed the use of the mhGAP-IG in LMICs, emphasising the need for evidence.(4) In particular, reports of barriers and facilitators to mhGAP-IG use, adherence and patient outcomes are required, to inform local, regional, national, and global improvements.

Implementation science is defined as “the scientific study of methods to promote the uptake of research findings into routine healthcare in clinical, organisational or policy contexts”.(5) WHO increasingly recognises the effects of ‘real world’ contextual factors on the implementation of evidence-based health interventions in clinical practice.(6) Acceptability, adoption, appropriateness, feasibility, fidelity, implementation cost, penetration, and sustainability have been proposed as key outcomes for implementation research.(7) These outcomes are particularly important for learning from research conducted in heterogeneous LMIC settings, but may not be widely reported.
Objectives

Recently, Cochrane, the global network which produces systematic reviews of primary health care and policy research, launched Cochrane Global Mental Health. This was an acknowledgement of the need for evidence-based mental health research in LMICs, and in particular, for systematic reviews. We set out to identify evidence for the practical implementation of the WHO mhGAP-IG in LMICs, in terms of how it has been used, evaluated and reported.

Study selection and search strategy

This work was registered on the PROSPERO international prospective register of systematic reviews (Registration Number: CRD42017068459).

Eligibility criteria

We included any type of study design, review or report of evidence, experience or evaluation of using the mhGAP-IG in LMICs. No papers were excluded based on language, and no relevant papers from high-income settings were identified.

Search strategy

We searched the following databases on 16-18 May 2017: Cochrane Library, CINAHL, EMBASE (1974 to May 2017), LILACS, Medline (1946 to May 2017), PsycInfo (1806 to May 2017), PubMed, SciELO, SCOPUS and Web of Science. Search terms were “mental health gap action programme” OR “mental health gap action program” OR “mhGAP”. Searches were conducted in English but studies written in other languages were eligible for inclusion. The term “intervention guide” was not included, due to its variable use in literature and in the field. In addition to database searches, the reference lists of relevant excluded papers were searched for relevant studies. Grey literature, including book chapters, conference workshops and web-based resources were identified by repeating the search on Google.
Studies published in LMICs were additionally sought through hand-searching of non-Western online sources.

Study selection and data extraction

Figure 1 shows the flow of studies from identification to screening, eligibility and inclusion. The titles and abstracts of the 117 non-duplicated papers were screened by RK, excluding 71, which did not review or report on the evidence, experience or evaluation of using the WHO mhGAP-IG. No papers were excluded which met inclusion criteria but came from a high-income setting. The remaining 46 full-text articles were assessed for eligibility by RK, excluding a further 13 studies, which also did not review or report on the evidence, experience or evaluation of using the WHO mhGAP-IG. Data were extracted from the 33 papers eligible for inclusion, in the qualitative synthesis presented here, but the heterogeneity of mhGAP-IG uses, outcome measures and evaluations precluded meta-analysis. Data extracted included country involved, participants, sample size, nature of use, evaluation conducted and summary of findings.

Findings

The uses of the mhGAP-IG reported by the 33 included papers fell into six categories. These were mhGAP-IG use in training (15 studies), mhGAP-IG use in clinical practice (nine studies), local mhGAP-IG adaptation (three studies), economic modelling (three studies), use as a control intervention in randomised controlled trials (two studies) and in one case, as a model to develop a new rating scale. We review the included studies using these categories.

Use in Training
Of the 33 included papers, 15 reported mhGAP-IG use in training (Table 1). Studies were conducted in seven African or Middle Eastern countries and four Asian countries. Ten courses trained non-medical primary health care (PHC) staff, two trained doctors (17,22), one trained university student volunteers(13), one trained volunteer ‘champions’(15) and another, school teachers.(18) Sample sizes ranged from 12 in Sri Lanka to 1328 in the Philippines. Most studies reported experimental study designs, providing detail regarding participants, training and evaluation methods; three were more descriptive accounts, which did not include quantitative data.(12,17,19)

Only two studies explicitly stated that learners were trained using all modules of the mhGAP-IG,(10,14) although some studies did not clarify this. Most included papers used a sub-set of mhGAP-IG modules, with depression, psychosis, drug and alcohol use disorders, epilepsy and suicide being the most common,(9,14,20-22); three focused on developmental and behavioural disorders.(15,18,23)

Course durations varied from three hours’ training for teachers about ADHD, followed by a 1.5 hour booster session,(18) to five full days’ ‘base course’ followed by the mhGAP ‘standard course’(10) or 40 hours’ child psychiatry training over two weeks.(23) Most training lasted two or three days, combining didactic lecture teaching with videos, role plays, communication exercises and discussions. Only five studies provided supervision to participants after training.(10,11,15,17,22)

Ten included papers measured participant learning using pre- and post-training knowledge assessments, the commonest of which came from the WHO mhGAP monitoring and evaluation toolkit. Five studies reported the number of patients with priority MNS disorders diagnosed and treated following training(9,10,14,20,22) but only three reported or measured learner feedback. (11,17,23) One study provided detailed information about the subsequent career paths of learners on a two year child psychiatry MSc programme, and their contributions to local mental health services and research.(23)

Two studies were protocols, but were included for their rich descriptions of the planned training intervention and evaluation.(20,22) One protocol’s final results paper was also included.(21) The authors candidly outlined operational challenges arising during initial recruitment, which resulted in the ultimate published research differing significantly from the original protocol. They included a table comparing differences between what was planned and what was conducted, reflection on lessons
learned and listed challenges including lack of administrative support, lack of interest among PHC staff, difficulties with participant retention, unforeseen geopolitical eventualities, lack of locally-tailored training resources and financial constraints. Another study reported local challenges, including the fact that training attendance was influenced by low per diem payments, which needed to cover accommodation and other expenses.(10) They noted that master trainers (experienced senior psychiatrists) were expected to cascade training without specific preparation, and recommended a formal introduction to the mhGAP-IG and its training approach. Methodological challenges highlighted by authors included selection of course attendants for prior interest in, or commitment to, mental health work, rather than a representative sample of health care staff.(9,22) One study developed avatar-assisted cascade training, a tablet-based tool.(15) mhGAP-IG guidelines for developmental disorders were incorporated into animated, interactive narratives about three children and families, with training scenarios addressing psychoeducation, parent skills training, community participation, stigma and rights. ‘Champion’ volunteers delivered training to families of children with developmental disorders in their area. High initial costs of the system, which, once developed, provided an intervention at low cost, were addressed using a social franchise model. The authors summarise steps to replicate this public-private collaboration in other settings.

Use in Clinical Practice

Nine included papers described uses of the mhGAP-IG in clinical practice (Table 2). Studies were conducted in three African, one Asian and one South American country. Although most also included mhGAP-IG use in training, they were distinguished from the previous section for focusing on clinical outcomes of mhGAP-IG use by staff, following training. Five studies used the mhGAP-IG to address a set of priority MNS disorders (24-26,27,28) and four addressed a single diagnosis, namely depression,(29-31) or alcohol use disorder.(32) Six studies measured rates of case identification (24,25,27-29,30), three measured rates of follow-up (25,27,30) and three, clinical outcomes.(26,30,32)
Of the included clinical papers, seven worked with health care staff in a biomedical model and two from the same research group worked with traditional health practitioners (THPs; traditional and faith healers) in Kenya. (30, 31) These studies showed that the mhGAP-IG depression module can be effectively used by THPs as well as more biomedical PHC workers, with depression diagnostic accuracy measures showing 86% specificity and 46% sensitivity.

Patient sample sizes varied from 65 (25) in Haiti, to 1664 in Kenya, (29) and staff sample sizes from 11 (27) in Nepal, to 360 in Ethiopia. (24) Two studies described clinical applications of the mhGAP-IG using a mobile phone-operated ‘app’. In Afghanistan, (28) an android-based mobile application using the mhGAP-IG, developed by a private enterprise, had been pre-tested for functionality and acceptability at Aga Khan Health Services in Pakistan and Afghanistan. Smart phones provided by the study were used by about 125 PHC staff in community and facility-based roles. The app featured capability for patient registration, blended learning, interactive mhGAP-IG use for screening and management decision-making, store-and-forward, and teleconsultation. In Kenya, (29) a simple mhGAP-IG app was used for depression screening. Focus group discussions and key informant interviews supported its acceptability and feasibility.

Several studies reported a range of implementation factors. One listed context-related strengths and challenges, (24), such as political commitment, healthcare infrastructure, supervision, and medication supply. Others conducted detailed evaluation of service user and health worker views and experiences. (26, 27)

Local adaptation

Three papers reported local adaptations of the mhGAP-IG for their setting in Africa, the Middle East, and Asia (Table 3). One study (33) provided a detailed account of six steps taken to contextualise the mhGAP-IG in Nigeria, from situational analysis and stakeholder focus group discussions, to national consultation, pilot training and evaluation. It had a wider scope than the training (Table 1) and clinical (Table 2) studies, but involved a smaller sample size and was only conducted in one state. The other two studies were more descriptive in nature. One described the use of the mhGAP-IG in the Eastern
Mediterranean, in new community mental health services in Gaza and the West Bank, without presenting any evaluations, or details of how the mhGAP-IG was tailored to the setting.(34) Another study described the adaptation of the mhGAP-IG dementia module for the Nepalese context, alongside cognitive assessment tools, post-diagnostic carer support and treatment protocols.(35) The authors expressed the intention to evaluate its acceptability, suitability and impact, but did not report any evaluation data or details on how contextualisation took place.

Economic modelling

Three included papers used the mhGAP-IG to conduct economic modelling (Table 4). One paper used the mhGAP-IG epilepsy module to calculate the costs of full implementation and maintenance of recommended treatments in Zambia, as less than $25.00 per patient, per year.(36) The other two studies both used similar approaches (and had a researcher in common), with the first being an abstract describing economic modelling for India,(37) and the second a full publication of modelling for five LMICs participating in the PRIME (PRogramme for Improving Mental health carE) consortium: Ethiopia, India, Nepal, South Africa and Uganda.(38) This study used a dedicated tool to derive estimated total and incremental costs of scaled-up mental health service provision, broken down by mhGAP-IG diagnosis, type of expenditure and year of scale-up. Using identical methods for economic modelling in five diverse LMICs enabled the authors to calculate differences in costs of training, supervision and management, hospital-based services and inflation in different settings. They found that additional costs per year to reach target service coverage were less than $0.10 per head of population, in each country.

Other uses

Two papers used the mhGAP-IG as a control intervention for comparison in randomised controlled trials,(39,40) and one used its training model to pilot and develop a new rating scale, of therapist competence in global mental health (Table 5). The first two studies, based in India and Pakistan,(39) and Zimbabwe,(40) are examples of next steps taken in the field to conduct robust, randomised
controlled trials of the low-intensity psychosocial interventions advocated by the mhGAP-IG alongside consideration of pharmacotherapy. The use of the mhGAP-IG for controlled implementation of ‘enhanced treatment as usual’ represents a valuable opportunity to acquire rigorous evidence of its utility in a range of LMICs. The development of the ENACT rating scale,(41) is a further important step in the growth of evidence-based practice and high quality implementation science in the field of global mental health.

Conclusions and clinical implications

WHO’s mhGAP-IG constitutes a landmark evidence-based tool to further its Comprehensive Mental Health Action Plan 2013-2020, aiming ultimately to achieve Universal Health Coverage. A recent review found only six published experimental studies of non-communicable disease clinical practice guideline implementation in LMICs.(42) The literature of 33 studies using the mhGAP-IG identified by our systematic review, is therefore relatively substantial. Our narrative synthesis demonstrates how the mhGAP-IG has been enthusiastically taken up by clinicians, government ministries, trainers, educators and academics in a range of LMICs. Uses range from anticipated uses for local adaptation, training, and clinical practice, to more creative mobile applications for isolated PHC workers, tablet-based avatar-assisted family training, economic modelling to support the case for funding, novel rating scales and comparison interventions in randomised controlled trials. Despite uptake in 90 countries, the literature is dominated by studies from a small proportion, indicating that much implementation is either not evaluated, or evaluations have not been as widely shared as they could be, with potential to benefit practitioners in other LMICs. In some cases, reliance on relatively limited pre- and post-training knowledge assessments misses the opportunity for rich, contextual implementation research, which discusses real-world contextual challenges to widespread uptake and scale-up; there are notable exceptions.(9,10,21) The increasing publication of research protocols(20,22,26,39,40) prior to study completion, featuring valuable implementation details, and encouraging openness about lessons learned, enhances global mental health literature considerably. Our narrative review identified the
importance of reporting contextual strengths and challenges to implementation facing practitioners in the field, alongside protocols, qualitative studies and randomised controlled trials. We welcome the new Cochrane Global Mental Health focus on high quality evidence in this neglected research field. A next step in the evolving journey to integrate research into clinical practice in global mental health, is standardised evaluation methods for use with the mhGAP-IG. This could facilitate collection of large datasets, informing wider insights into contextual adaptation and optimal implementation of this enthusiastically-adopted tool for evidence-based mental health.
References

<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Study design</th>
<th>Participants</th>
<th>Sample size</th>
<th>Intervention details</th>
<th>Evaluation details</th>
<th>Summary of findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adebowale 2014<sup>9</sup></td>
<td>Nigeria</td>
<td>Quasi-experimental study. 3 day training course developed from mhGAP-IG. Aimed to improve diagnosis and management of priority conditions: Psychosis, Depression, Alcohol & Substance abuse, Epilepsy and Other Significant Emotional Complaints (OSEC). Knowledge and skills to diagnose and treat mental health case vignettes assessed pre and post-course.</td>
<td>Primary Health Care (PHC) Workers</td>
<td>80</td>
<td>4 PHC workers nominated by 20 local government areas, based on interest. Collaboration with mental health professionals interested in PHC from Lancashire Care NHS Foundation Trust/University of Manchester under a British Council Health Link Scheme. Written support materials included locally adapted assessment flow charts, case records, follow-up sheets to guide and record practice. 3 day training course delivered as a 1 day introductory lecture and four 2 day regional training sessions, by Aro Hospital and Lancashire faculty. Didactic and participatory methods included lectures, videos, role plays, discussions.</td>
<td>Knowledge tests pre- and post-course Caseloads of patients seen over the following 12 months</td>
<td>Post-training rates of accurate diagnosis by PHC workers significantly improved: 12.5% for psychosis(p=0.018), 12.5% for substance abuse(p=0.018), 30% for OSEC(p=0.001). Mean scores for appropriate intervention improved by 114% for psychosis(p=0.001), 109% for depression(p=0.001), 78% for substance abuse(p=0.001), 103% for epilepsy(p=0.001) and 92% for OSEC(p=0.001). 473 patients were treated in the following 12 months (46% psychosis, 10% depression, 3% OSEC, 2.5% alcohol and substance abuse).</td>
</tr>
<tr>
<td>Bruni 2014<sup>10</sup></td>
<td>Ethiopia</td>
<td>Analysis of test scores pre- and post-mhGAP-IG training.</td>
<td>General health workers</td>
<td>61</td>
<td>2 separate cycles of training: mhGAP Base Course: 5 day sequential training, followed by 6 months’ supervision and mentorship, before the mhGAP Standard Course, which builds on the Base Course with revision and addition of further mhGAP-IG modules and building skills through participatory techniques.</td>
<td>Qualitative observations that: Attendance was closely related to per diem payments for attendance, which was low despite needing to cover accommodation and other expenses. Master trainers (experienced senior psychiatrists) were expected to cascade mhGAP training without formal preparation. A formal introduction to familiarize trainers with the mhGAP-IG and its training formula was recommended.</td>
<td>Statistically significant improvement in participants’ knowledge scores post-training on the WHO standardised knowledge test from the mhGAP training and evaluation toolkit. A table of 592 MNS cases detected and treated or referred following training, by region and diagnoses, was provided.</td>
</tr>
<tr>
<td>Budosan 2016<sup>11</sup></td>
<td>Philippines</td>
<td>Evaluation of an intervention to strengthen mental health service availability, accessibility and affordability in Eastern Visayas.</td>
<td>Community workers. Non-specialized healthcare providers.</td>
<td>1038 + 290</td>
<td>10 months’ mhGAP training (groups of 7-50+) and supervision on assessment and management of common mental health conditions and conditions specifically related to stress for non-specialized health workers. Existing training module for community workers reviewed and training materials piloted. Modules modified for midwives and health workers. 3-point Likert scale survey of training quality, duration, trainer, participation, confidence to assess and manage priority conditions. Acceptability was noted as government and health stakeholders were motivated to improve local mental health services.</td>
<td></td>
<td>155 of 159 (98%) PHC units, 21 of 24 District Hospitals (88%) and all 8 provincial hospitals had a doctor and nurse trained in mental health assessment and management. Variable confidence of participants in mental health assessment and management post-course. Higher confidence among community workers than non-specialized staff. Local services increased inpatient, pharmacy and referral pathway...</td>
</tr>
<tr>
<td>El Chammary 2016</td>
<td>Lebanon and Syria</td>
<td>Descriptive account</td>
<td>Nurses, social workers, GPs at 50 PHC centres; Other staff at 30 PHC centres; Frontline staff</td>
<td>106 + staff at 30 PHC centres</td>
<td>mhGAP-IG training of health workers in PHC centres. Psychological first aid training for staff in a further 30 centres. 4Ws (Who’s doing What, Where, and until When) assessment to map existing resources. Training modules on suicide risk management for frontline healthcare staff. Supervision unit will support >100 PHC centres in Lebanon.</td>
<td>Nil.</td>
<td>Lebanon’s mental health system is growing, despite challenges, due to: Momentum and interest created by the Syrian crisis. Policy to avoid parallel care systems. Collaboration between Ministry, UN, national and international NGOs. National consensus mental health strategy involving all stakeholders. High level Ministry support for mental health reform.</td>
</tr>
</tbody>
</table>

| Ekore 2016 | Nigeria | Quasi-experimental study. Volunteer trainees completed socio-demographic, Eysenck personality (short-form) questionnaires, focus group discussions and knowledge pre-test questionnaires. Received mental health peer counselling training before knowledge post-course test. | University student volunteers | 20 45% male 55% female Mean age 20.2 years | 2 day training (3 hours/day) course by clinical staff. Focus Group Discussions informed training, aimed at identification and referral of students having mental health problems, counselling and psychosocial support. Training covered epilepsy, psychosis, bipolar disorder, stress, alcohol and drugs, principles of care, communication, emergencies and peer counselling. Relaxation techniques were taught, record keeping, roles and responsibilities and an emphasis on commitment and altruism. | Nil. | The mean knowledge pre-test score was 24/30 (±2.3) points while the mean knowledge post-test score was 27.5/30 (±1.2) points. Mean difference 3.5/30 (t=6.4, p=0.00). |
Gureje 201514 Nigeria Supervised mhGAP-IG cascade training model delivered over 18 months in 8 local government areas in Osun state. Training focused on detection and management of moderate to severe depression, psychosis, epilepsy and alcohol use disorders. Master Trainers (mental health specialists) trained Facilitators, who delivered training for front-line PHC workers. Initial training was supervised and mentored by Master Trainers. Refresher training was provided after 9 months.

CPC workers from 68 PHC clinics. 198 3 planning workshops of key mental health stakeholders, including PHC workers and policy makers occurred, before a pilot training course to test methods including role plays. Facilitators were trained in all 9 modules of the mhGAP-IG, teaching skills, role play organisation and conduct. Training materials were contextualized and adapted by Master Trainers before giving them to Facilitators and delivering 2 day workshops. Facilitators attended de-briefing following initial, supervised training, to receive training observations and discuss areas for clarification. Midway refresher workshop reinforced knowledge and skills, with reference to clinical challenges and experiences.

1) Clinical notes review for proper documentation.
2) Non-intrusive supervisor observation of clinical assessments using the mhGAP-IG.
WHO mhGAP monitoring and evaluation toolkit knowledge tests, contextualized for the Nigerian setting, were conducted midway and at the end of the project, alongside mhGAP-IG fidelity, patient flow and referral information.

Hamdani 201515 Pakistan Pilot service for children with developmental disorders in a rural area.

Supervised ‘champion’ volunteers. Families of children with developmental disorders. 10 champions 70 families Avatar-assisted Cascade Training (ACT): Standardised, intuitive tablet-based training and delivery tool developed. mhGAP-IG guidelines for developmental disorders incorporated into animated, interactive ‘avatar’ narratives about 3 children and families, divided into training scenarios on psychoeducation, parent skills training, community participation, stigma, rights. Master’s level psychologist trainer delivered 8 days’ training for champions using ACT, to cascade the same 8 days’ training to 5-7 families, each. Champions received monthly supervision and met families regularly after training.

Pre- and post-training knowledge, attitudes and practices questionnaire. WHODAS-Child at baseline and 3-monthly. Pre-post training child and family outcome evaluation: Strengths and Difficulties questionnaire, inventory of stigmatising experiences, family empowerment scale, WHO-5 wellbeing index. Summary table of steps to replicate the innovation in other settings.

1) Clinical notes review for proper documentation.
2) Non-intrusive supervisor observation of clinical assessments using the mhGAP-IG.
WHO mhGAP monitoring and evaluation toolkit knowledge tests, contextualized for the Nigerian setting, were conducted midway and at the end of the project, alongside mhGAP-IG fidelity, patient flow and referral information.

Hughes 201516 Sierra Leone Descriptive account.

Psychiatric nurses and community health workers 20 + 150 mhGAP-IG and PFA used for training. A range of providers and approaches acknowledged.

Positive feedback forms mentioned. More evaluation recommended.

Markedly improved knowledge and skills of health workers (mean difference pre/post: -4.90, p<0.001). Significant increase in numbers identified and treated for MNS disorders (0 in 2011 versus 96 in 2013), and number of referrals (0 versus 45). Substantial retention of gained knowledge observed nine months after initial training but some knowledge loss with time, so the refresher training was needed (mean difference: 1.98, p<0.001)

Significant improvement in trained family member knowledge scores (n = 24) from 23.29 +/-3.22 to 27.17 +/-2.11 (t = 8.36, p<.001). Significant decrease in WHO-DAS global disability score from baseline (56.89 +/- 22.02 to 50.57 +/- 24.62, 95% CI 3.63 to 9.0; P< .001) in families receiving 6 month intervention. Reduction in parent-reported socioemotional difficulties scores in children (19.67 +/-5.24 to 13.40 +/- 4.76, 95% CI =-7.68 to 4.87; P<.001).
<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>Study Design</th>
<th>Participants</th>
<th>Intervention</th>
<th>Outcome Measures</th>
<th>Control</th>
<th>Training Knowledge and Attitude Scores</th>
<th>Feedback</th>
<th>Literature Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humayun 2017</td>
<td>Pakistan</td>
<td>2 months’ pre-training joint consultations with District Health Office.</td>
<td>51 doctors working in: PHC (18); Hospitals (11); secondary care (14); administration (3); North Waziristan tribal area (5).</td>
<td>Three 2-day training workshops over 3 months, featuring: Large and small group discussions, individual exercises, seminars, role-play demonstrations. 3 psychiatrists adapted modules to local needs. Master trainer supervised guideline adaptation for use in the camps. 1 day training of trainers (ToT) workshop on rationale, content, method of mhGAP-IG. 2 external reviewers gave independent feedback on course, trainers and materials, before review by senior staff. Supervision: formal and informal case discussion, emphasising holistic assessment, psychosocial intervention, timely referral. Following camps, a local psychiatrist continued to supervise PHC staff informally and follow up difficult cases.</td>
<td>Mean pre- and post-test knowledge scores were 15.43, 62% (p value 0.000, S.D. 4.05) and 19.48, 78% (p value 0.000, S.D. 3.13) respectively. mhGAP-IG was implemented to train PHC doctors in Pakistan. Lack of PHC resources hindered complete integration of mental health services into PHC. Pilot implementation of mhGAP-IG in PHC was initiated across five districts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasisi 2017</td>
<td>Nigeria</td>
<td>Randomised controlled trial.</td>
<td>Public and private primary school teachers in Kaduna.</td>
<td>Intervention: initial 3 hour training; 1.5 hour booster session 2 weeks later. Used mhGAP-IG module on behavioural disorders, focusing on ADHD, plus classroom management strategies for ADHD. Delivered using PowerPoint presentations, clinical vignettes, role plays, small group discussions and videos. Outcome measures: knowledge of ADHD, attitude towards ADHD, knowledge of behavioural intervention. Control: waiting list.</td>
<td>Pre- and post- training knowledge and attitude scores.</td>
<td>Controlling for baseline scores, intervention group had significantly higher post-intervention scores on ADHD (SRAQ) and intervention knowledge (KBIQ) and less negative attitudes towards ADHD, compared with the control group. Intervention showed moderate to large effect sizes. Booster training was associated with a statistically significant increase in ADHD knowledge only.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryland 2015</td>
<td>India</td>
<td>Descriptive account.</td>
<td>Health professionals</td>
<td>Training course using mhGAP-IG delivered by UK trainee psychiatrists who had attended a two day ‘train the trainer’ course in the UK. Duration and training methods not described (conference abstract).</td>
<td>Not described.</td>
<td>UK trainees gained experience of global mental health: cultural factors, stigma, differences in resources and health systems. Trainees developed competencies relevant to UK practice, by teaching and being assessed for workplace-based assessment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Type</td>
<td>Description</td>
<td>Sample size</td>
<td>Intervention</td>
<td>Protocol</td>
<td>Primary outcomes</td>
<td>Additional findings</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Siriwardhana et al. 2013<sup>30</sup></td>
<td>Sri Lanka</td>
<td>Protocol for a pilot randomised controlled trial</td>
<td>PHC staff working with displaced and returning conflict-affected populations in Puttalam and Mannar districts.</td>
<td>86</td>
<td>Intervention arm: structured training based on mhGAP-IG depression, medically unexplained symptoms, alcohol abuse, and suicide modules. 5 full consecutive days' training by 2 psychiatrists. Control: waiting list. Initial 3 month monitoring from the date of recruitment pre-training. All patients with common mental disorders (CMD) reported to study coordinator. After training, both arms monitored again for 3 months. Intervention arm will use mhGAP-IG to diagnose, treat, and refer suspected CMD seen in routine PHC. Control arm will continue current practice. Both arms will report CMD diagnoses to coordinator. Consent identified patients will be reassessed by the study psychiatrist, who will also assess them using mhGAP-IG.</td>
<td>A qualitative study exploring the attitudes, views, and perspectives of PCP on integrating mental health and primary care will be nested within the pilot study. An economic evaluation will be carried out by gathering service utilization information.</td>
<td>Protocol: Primary outcomes: rates of correct identification, adequate management based on set criteria, correct CMD referrals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siriwardhana et al. 2016<sup>21</sup></td>
<td>Sri Lanka</td>
<td>Pilot and qualitative study, with curtailed training duration and no pre- or post-training monitoring and evaluation</td>
<td>PHC practitioners serving post-conflict populations, including internally displaced people and returnees.</td>
<td>12</td>
<td>Using mhGAP-IG depression, stress-related disorders, medically unexplained symptoms, substance misuse and suicide modules, a 24 hour training programme was held over 3 days. Modules were selected as relevant to the setting based on prior research into priority conditions, conflict-related context and participant backgrounds. WHO materials and videos were used. Training was delivered by a mhGAP-trained trainer and a local psychiatrist with clinical and research experience.</td>
<td>mhGAP-IG pre- and post-training knowledge tests were used. Feedback on training, materials and content gathered after each module. A small-scale qualitative evaluation with participants highlighted experiences of conflict and displacement, discussed health needs of post-conflict populations and provided insight into mental health care and training needs in PHC.</td>
<td>Mean pre- and post-test knowledge scores were 72.8 and 77.2%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spagnolo 2017<sup>22</sup></td>
<td>Tunisia</td>
<td>Cluster randomized controlled trial to evaluate the effectiveness of training based on the mhGAP-IG. Multiple case study design to explore how contextual factors impact successful implementation of training and desired outcomes.</td>
<td>GPs with 5+ years' experience, dedicating a minimum 1h per week to mental health. Selected by psychiatrist-trainer who works with GPs, or by Ministry of Health.</td>
<td>722 (19 per 38 clusters)</td>
<td>Implementation and evaluation of pilot mhGAP-IG training adapted to the local context in Tunis and Sousse before country-wide scale-up. Modules chosen by MoH, reflecting pressing needs: depression; psychosis; suicide/self-harm; alcohol use disorders; drug use disorders, alongside general principles of care and introduction to mhGAP. 3 trained Tunisian psychiatrists will deliver training 1 afternoon/week over 5 weeks in a total 17.5 hours, followed by 2 hours' supervision to present mental health cases to trainer-psychiatrists, engage in additional role plays, and review training materials.</td>
<td>Multiple sources of data, including focus groups with GPs and qualitative cluster RCT data will be triangulated to develop ‘converging lines of inquiry.’ Focus groups with 7 GPs in a delegation at a time will be recorded, transcribed and analysed using thematic analysis.</td>
<td>Protocol: Demographic details. GPs knowledge using adapted WHO questionnaire, attitudes towards mental illness (Mental Illness Clinicians' Attitudes Scale (MICA)v4), and perceived clinical self-efficacy (developed for this trial) in detecting, treating, and managing selected disorders. Tested pre-, post- and 1 year later. WHO Mental, Neurological and Substance User Patient Visit Summary to log cases pre- and post-training.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tesfaye 2014<sup>23</sup></td>
<td>Ethiopia</td>
<td>2 week child psychiatry course and 4 week child psychiatry clinical internship implemented during 1st and 2nd years of MSC program in mental health for non-physician clinicians.</td>
<td>Participants had degrees in nursing/health officer training. After the 2 year course, graduates were expected to establish district hospital services, train and supervise PHC staff and conduct research.</td>
<td>24 over three years</td>
<td>Child psychiatry training designed and implemented by Jimma, Addis Ababa and Ludwig-Maximilian's University expertise. mhGAP-IG adapted for Ethiopian context modules on developmental disorders and behavioural problems were main training materials. 40 hours’ child psychiatry course over 2 weeks, including behavioural observation and mental state examination at different ages. Instructor assessment of clinical and presentation skills performed at course end and during 4 week clinical internship in the 2nd year. Training used lectures, case discussions, seminars. Clinical skills taught through videos and clinic demonstrations.</td>
<td>Overall outcome measures: Trainees' satisfaction and expansion of child mental health training and services throughout the country. Direct feedback from trainees post-course and follow-up. 2010 course revised, based on feedback and staff input. 2012 course increased time to discuss patient management. Classroom teaching reduced to increase time for clinical activities. 2013 course extended to 3 weeks and modified to emphasize decision making, problem management, lecture time reduced. Guest lecturers' growing cultural awareness improved their skills.</td>
<td>Trainees rated the course 'very good' to 'excellent'. Many graduates became faculty at universities in Ethiopia. Case discussions on video and patient material, and interactive teaching were highly appreciated. Trainees recommended an overview, including DSM diagnoses, at the end of case discussions. Others suggested reducing course content and increasing specific subject content, e.g. epilepsy, enuresis. Course considered too short. Some trainees said they learned how to better manage their time. Follow-up feedback from program graduates showed that out of 16, all were working in clinical, academic or managerial positions in-country.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Country</td>
<td>Study design</td>
<td>Participants</td>
<td>Sample size</td>
<td>Intervention details</td>
<td>Evaluation details</td>
<td>Summary of findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ayano 2016</td>
<td>Ethiopia</td>
<td>Survey of experiences, strengths and challenges of integrating mental health in PHC. Phase 1 (scale up): PHC staff trained in priority disorders (alcohol, depression, psychosis, epilepsy)</td>
<td>PHC workers in 180 institutions</td>
<td>360 staff</td>
<td>No detail on training</td>
<td>Strengths: political commitment; system-wide approach with health extension workers, referral network, infrastructure, support and supervision; medication available in a proportion of health centres; developed infrastructure. Challenges: staff turnover; lack of understanding of the programme by regional health bureaus; inadequate promotion and follow-up of mhGAP scale-up by stakeholders; inadequate supportive supervision for trainees; limited budget for supervision and mentoring; interrupted medication supply; inadequate demand.</td>
<td>In 9 months, 1576 cases were identified and treated by trained PHC staff in 3 regions. The commonest disorder was epilepsy, followed by psychosis and alcohol use disorders.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grelotti 2015</td>
<td>Haiti</td>
<td>Retrospective chart review of outpatient assessments using mhGAP-IG as a reference, during a pilot mental health service expansion.</td>
<td>Patients referred to NGO-run psychiatry clinics.</td>
<td>65</td>
<td>mhGAP-IG used to orient an oversees psychiatrist and local non-specialist staff, to the model. Clinicians consulted the mhGAP-IG clinically. Patients referred by local PHC staff to clinics run on 16 days, or self-presented. Psychiatrist conducted evaluations and/or supervised psychologists and physician evaluations, with Haitian Creole translation.</td>
<td>Nil</td>
<td>49 patient records reviewed (75%) diagnosed an mhGAP-IG condition, 15 (23%) had headache and 3 (5%) reported earthquake-related distress. 59 patients (90%) were recommended follow-up and 45 (69%) prescribed medication. Only 13 patients (29%) who were prescribed medication had ever been prescribed medication for their diagnosis before. 8 patients reported non-adherence due to costs of psychiatrist clinics, medication and travel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanlon 2016</td>
<td>Ethiopia</td>
<td>A randomised, controlled, non-inferiority trial will be carried out in a predominantly rural area of Ethiopia</td>
<td>People with severe mental disorder (SMD; psychotic or affective disorders) recruited from population cohort study and nurse-led out-patient</td>
<td>324</td>
<td>Task-sharing model of locally-delivered MHC for people with SMD, integrated into PHC for 18 months. TaSCS intervention: PHC-based health centre nurses and health officers will be trained to deliver mhGAP-IG MHC, supported by community-based health extension workers. 4 day mhGAP-IG base course, 5 days' on-the-job training. Active control arm: established, specialist nurse-led hospital outpatient MHC. 2 days' refresher</td>
<td>Hypothesis: people with SMD who receive MHC integrated into PHC will show non-inferior clinical outcome (mean Brief Psychiatric Rating Scale score no more than 6 points higher than controls) after 12 months. Service satisfaction, quality of care, cost-effectiveness evaluation performed. Sustainability and cost-effectiveness evaluated at 18 months.</td>
<td>Protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Country</td>
<td>Methodology</td>
<td>Participants</td>
<td>Intervention</td>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jordans</td>
<td>Nepal</td>
<td>Mixed methods formative study. Routine monitoring and evaluation data, including client flow and satisfaction, obtained from patients during pilot-testing phase in 2 health facilities.</td>
<td>Patients and health workers: 135 patients (clinical 45 patients (evaluation) 11 health workers (evaluation) 28 patients (drop-outs)</td>
<td>Multifaceted intervention: formative research, pilot mental health care plan (MHCP), theory of change workshops, in-depth interviews, focus groups. Routine monitoring obtained for all patients during pilot phase; evaluation questionnaires given to random selection. MHCP includes 2 day training for all staff on service provider awareness and stigma reduction. Clinical staff then trained using mhGAP-IG. All PHC staff trained in basic psychosocial support and psychoeducation.</td>
<td>Most patients somewhat/very satisfied. Large majority (87%, n = 39) would seek help again from this health facility. A subgroup (15 - 22% (n = 7-10) rated relevance and appropriateness of care and overall satisfaction low. Main reason: unavailability of medicines. Satisfaction with privacy lower than other indicators: almost 64% (n = 29; many consultations in waiting areas. Health worker evaluations showed that providing MHC was not easy. 36% (n = 4) 'somewhat distressed' and perceived additional time spent as burdensome. 73% (n = 8) somewhat/very satisfied with outcomes of care provided.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khoja</td>
<td>Afghanistan</td>
<td>Android-based mobile application using mhGAP-IG, pre-tested for functionality and acceptability at Aga Khan Health Services, Pakistan and Afghanistan. Cluster randomisation in 4 intervention and 3 control districts: 70-90 intervention district, 40-60 members in each control district.</td>
<td>550 surveys across study. 329 young adults surveyed about effectiveness of SMS text messages. 95 PHC staff surveyed about mhGAP-IG use and referrals.</td>
<td>mhGAP-IG app via project-provided smart phones used by ~100 PHC staff, 25 facility-based PHC staff. App features: patient registration, blended learning capability, interactive mhGAP-IG for screening and management, teleconsultation capability. mhGAP-IG adapted, with input from MoPH. Mental health incorporated into existing community meetings. Brief, informative mental health-related SMS messages developed by a consultant psychiatrist, approved by AKHSA and MoPH, periodically sent to young adults using automated program.</td>
<td>Survey of 95 community- and facility-based healthcare providers in intervention districts. Survey of 95 community- and facility-based healthcare providers in intervention districts. Survey of 95 community- and facility-based healthcare providers in intervention districts. Survey of 95 community- and facility-based healthcare providers in intervention districts. Survey of 95 community- and facility-based healthcare providers in intervention districts.</td>
<td>Diagnoses by PHC staff trained in mhGAP-IG use: depression (37%), psychosis (24%). Dropping out (21%) commonest for alcohol use disorders (36%, n = 10), epilepsy, psychoses (both 25%, n = 7) and depression (14%, n = 4). 79% attended at least 1 follow-up (basic, focused or advanced psychosocial care/ pharmacological treatment): average 4.24 (s.d. = 3.35, median 4.0) health facility visits. High rates of treatment of depression, psychosis, epilepsy and alcohol use disorders. Patients receiving community counselling (n = 35) attended average 5.5 sessions; 37% termination rate. Reasons for dropping out (n = 28) included side-effects (antipsychotic and anti-epileptic medication; n = 6), time constraints (n = 5), unavailability of medication (n = 5), believed they can solve the problem (n = 4), improved (n = 4), denied symptoms (n = 3) and distance (n = 1).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Setting</td>
<td>Methods</td>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musyimi 2016<sup>20</sup></td>
<td>Kenya</td>
<td>Adult patients recruited from 4 rural public health facilities in Kenya using systematic random sampling over 3 months and screened for depression.</td>
<td>THPs trained to identify depression and deliver evidence-based mhGAP-IG interventions to patients screening positive on the BDI. Training on causes of depression and mental illness to alleviate misconceptions that might interfere with treatment. 2 day training involved highly interactive experiential learning with small group work and role-plays. (Musyimi et al. 2017b) Psychosocial interventions included cognitive behaviour therapy and problem solving, as listed in the mhGAP-IG depression module.</td>
<td>Only efficacy for patient depression (no evaluation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musyimi 2017a<sup>20</sup></td>
<td>Kenya</td>
<td>Longitudinal non-randomized interventional study of adults seeking care from traditional health practitioners (THPs). Over 3 months, THPs identified patients with depression using mhGAP-IG, who were screened at 0, 6, 12 weeks Beck Depression Inventory.</td>
<td>THPs trained to identify depression and deliver evidence-based mhGAP-IG interventions to patients screening positive on the BDI. Training on causes of depression and mental illness to alleviate misconceptions that might interfere with treatment. 2 day training involved highly interactive experiential learning with small group work and role-plays. (Musyimi et al. 2017b) Psychosocial interventions included cognitive behaviour therapy and problem solving, as listed in the mhGAP-IG depression module.</td>
<td>Only efficacy for patient depression (no evaluation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musyimi 2017b<sup>21</sup></td>
<td>Kenya</td>
<td>All adult patients seeking care from trained THPs over a period of 3 months screened for depression using the mhGAP-IG and sociodemographic characteristics recorded.</td>
<td>THPs' pre-training confidence about clinical practice, knowledge, and skills assessed. 2 day training involved highly interactive experiential learning with small group work and role-plays. Training included taking consent, gathering sociodemographic data and screening for depression using the mhGAP-IG depression module. THPs were later retrained using the same techniques and received monthly supportive supervision and mentorship.</td>
<td>Statistically significant (p < .0005) increase (12.27%) in THPs' confidence about their practice, knowledge, and skills, from M = 16.6, SD = 3.2 before training, to M = 19.2, SD = 2.4, 3 months after training.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prevalence of depression:

- Depression prevalence 25%; suicidal behaviour: commonest comorbidity (67.1%; OR 22.0; p < 0.0001).
- Older age, personal and family history of mental disorder significantly correlated with depression. At least 1 psychotic symptom in 61.8% of depressed patients.
- Mobile based screening feasible and affordable, therefore sustainable. Branching logic technique saved skipping steps for depression screening, ensured response to all items, enabled communication with specialists and real-time data transfer for monitoring.
- Saved consultation time, travel and improves access to quality screening in the existing health system.
<p>| Sheikh 2017 | Zambia | Randomized control trial of mhGAP-IG brief family intervention for alcohol problems, recruiting from consecutive admissions at Chainama Hills Hospital, Lusaka, Zambia with 8-week follow-up post-discharge. | All consecutive admissions with primary alcohol problems agreed to take part, and provide follow-up information at 8 weeks. | 114 patients | Control: treatment as usual, with diazepam and vitamin detox. Intervention: treatment as usual plus brief relapse prevention intervention from mhGAP-IG with close family member. mhGAP-IG intervention involved single 20-minute interview with patient and carer. Intervention by diploma-trained psychosocial counsellor pre-discharge. Relatives asked to help patient remain abstinent and seek help if signs of relapse. | Nil | Intervention group: average time to first drink: 51 days (standard deviation = 14). Non-intervention group: average time to first drink: 10 days (standard deviation = 16). Significant difference between the groups: intervention group had long abstinence period (t = 14.368; df = 112; p = 0.001). Alcohol consumption assessed using first 3 items of AUDIT questionnaire (0 to 12). Average scores fell from 10.3 (SD = 1.6) to 1.3 (SD = 3.1) in the intervention and 8.9 (SD = 3.9) for non-intervention (effect size 1.5; p < 0.001). |</p>
<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Study design</th>
<th>Participants</th>
<th>Sample size</th>
<th>Intervention details</th>
<th>Evaluation details</th>
<th>Summary of findings</th>
</tr>
</thead>
</table>
| Abdulm 2013 | Nigeria | Presentation of the process of contextualization and adaptation of the mhGAP-IG for Nigeria, and lessons learnt. | PHC staff (nurses, CHO, CHEW), doctors, social workers, senior staff. | 19 | Step I: Situational analysis in Osun state
Step II: 8 focus group discussions with PHC providers
Step III: preliminary review of mhGAP-IG
Step IV: national 5-day consultative workshop
Step V: pilot testing of adapted manual in Osun, training of PHC providers
Step VI: second workshop to evaluate training, modifications and adaptations for a final manual. | Training evaluated using pre- and post-test assessments, using the WHO knowledge assessment test.
Language was simplified and adapted to suit the context.
Participants (trainers and trainees) provided feedback on using mhGAP-IG. Asked if adapted guide was a feasible tool, specifically in regard to applicability for routine use in primary care.
Verbal feedback during interactive sessions and written comments after post-training test. | The contextualization experience described provides a pragmatic step-by-step guide for potential users of the mhGAP-IG. It details what needs to be done to optimize the use of this tool in a given context. |
| Gavlak 2016 | Gaza, West Bank, Libya | Descriptive report | Mental health workers in Gaza and the West Bank | Not stated | Description of new stand-alone community mental health centres (13 in West Bank, 6 in Gaza), use of mhGAP-IG, Master's degree in psychotherapy, Libya adaptation. | Nil | Description of mhGAP-IG impact in the region (includes use in Afghanistan, Egypt, Hordan, Kuwait, Lebanon, Pakistan, Qatar, Somalia, Syria, Tunisia) and several additional activities. |
| Jha et 2013 | Nepal | Review of dementia care in Nepal to propose mhGAP-based dementia protocol for hospital/clinic settings, with post-diagnostic advice for dementia caregivers. | No participants mentioned | | Adapted mhGAP dementia-IG and Montreal Cognitive Assessment (MoCA) for Nepalese context, with Mild Cognitive Impairment diagnosis guidance.
Model of post-diagnostic education and training for people with dementia and family caregivers, based on mhGAP-IG | Nepalese protocol adapted to suit the local context and workforce training limitations.
Evaluation of acceptability and suitability, and impact on caregiver burden and quality of life is planned.
Plan for presentation at Psychiatric Association of Nepal annual conference, and discussion at stakeholder meetings before routine clinical use. | No evaluation data |
Table 4: Summary of included studies using the mhGAP-IG to conduct economic modelling

| Authors | Country | Study design | Participants | Sample size | Intervention details | Evaluation details | Summary of findings |
|-------------|------------------|---|--|--|--|
| Birbeck | Zambia | All direct costs associated with epilepsy care provision, cost of healthcare worker training and social marketing estimated based on mhGAP-IG. Model for epilepsy care delivery by PHC staff developed. Used varied sources to develop as comprehensive as possible a cost estimate for actual implementation and maintenance. Sensitivity analyses to understand how changes in costs for individual aspects impact overall. Group consensus including Zambian clinicians, health service researchers, neurologists healthcare economists. | 6 | Nil | Sensitivity analyses to determine which items/activities, subject to reasonable variability, would substantially change overall programme costs | Even after including the costs of healthcare worker retraining, social marketing and capital expenditures, epilepsy care can be provided at less than $25.00 per person with epilepsy per year. This is substantially less than for drugs alone for other common chronic conditions. Implementation of epilepsy care guidelines for patients receiving care at the primary care level is a cost effective approach to decreasing the epilepsy treatment gap in high gap, low income countries. |
| Nanda | India | mhGAP-IG was used to programme resource need and health impact for key MNS disorders and interventions into the United Nations-One Health Tool. Parameters were adapted to reflect local data, experiences and priorities, enabling potential health system implications of scaled-up mental health services to be reviewed. | Nil | Nil | Nil | Per capita total expenditure of $1.70 over six years from 2014-2020 to scale up care packages for psychosis and depression, would gain 1519 healthy life years per million people. |
| Chisolm | Ethiopia, India, Nepal, South Africa, Uganda | An adapted mhGAP-IG for local district needs in each country site was used to indicate interventions. Resource quantities associated with each site’s mhGAP-IG care package were identified and costed at current and target coverage. | Nil | Nil | Programme costs of training, supervision and management added 5–15% to baseline cost estimates, except in India (28%). Hospital-based services added 8–13% to baseline costs of Ethiopian, Nepalese and Ugandan districts but double the costs in Indian and South African districts Sensitivity analysis assessed the impact of inflation. Over 15 years of scale up, inflation of 3% increases final year costs by 50%, whereas 6% inflation more than doubles them. | The cost of the care package at target coverage ranged from US$0.21 to 0.56 per head of population in four of the districts (in the higher-income context of South Africa, it was US$1.86). In all districts, the additional amount needed each year to reach target coverage goals after 10 years was below $0.10 per head of population. |
Table 5: Summary of included studies reporting other uses of the mhGAP-IG

<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Study design</th>
<th>Participants</th>
<th>Sample size</th>
<th>Intervention details</th>
<th>Evaluation details</th>
<th>Summary of findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sikander 2015<sup>99</sup></td>
<td>India and Pakistan</td>
<td>2 randomised controlled trials: 1 cluster trial in Rawalpindi. 1 individually randomised trial in Goa.</td>
<td>Pregnant women registered with lady health workers in the study area in Pakistan. Pregnant women attending outpatient antenatal clinics in India.</td>
<td>560 and 280 women in Pakistan and India, respectively.</td>
<td>Intervention arm: Thinking Health Programme Peer Delivered (THPP). 10 individual +4 group sessions (Pakistan) or 6–14 individual sessions (India) delivered by a peer (trained, supervised mother from same community). Control arm (enhanced usual care) will receive health care as usual, enhanced by adding the mhGAP-IG depression module to PHC/gynaecological treatment, providing women with their diagnosis and information on help-seeking.</td>
<td>In Pakistan, quality of sessions will be assessed using a specifically designed competency checklist based on 6 areas of THPP and the ENACT scale (18-item assessment for common factors in psychological treatments). In India, quality of sessions will be assessed using the therapy quality scale, an 18-item scale with 2 subscales: treatment-specific skills (e.g. reviews previous session, assigns homework, involves family members), and treatment approach skills: common counselling skills (e.g. active listening, appropriate language, collaborative approach).</td>
<td>Protocol. Primary outcomes: remission and severity of depression symptoms at 6 month postnatal follow-up. Secondary outcomes: remission and severity of depression symptoms at 3 month postnatal follow-up, functional disability, perceived social support, breastfeeding rates, infant height and weight, costs of health care at 3 and 6 month postnatal follow-ups.</td>
</tr>
<tr>
<td>Madhobiro 2017<sup>60</sup></td>
<td>Zimbabwe</td>
<td>Cluster randomised controlled trial at 16 HIV care clinics.</td>
<td>Treatment-seeking HIV positive adults who were positive for alcohol use disorders (AUDs).</td>
<td>240 patients (120 intervention, 120 control). 15 participants randomly selected at each clinic from a patient number list.</td>
<td>Motivational interviewing and cognitive behavioural therapy based intervention for AUDs, adapted and piloted in Zimbabwe, administered to PLWHA with AUDs recruited at HIV clinics. Administered over 16 sessions at 8 HIV clinics. Control arm: equal attention control: mhGAP-IG adapted for Zimbabwean context. Booster sessions for both groups at 3 and 6 months.</td>
<td>2 Nepali expert therapists used ENACT to rate non-specialists conducting role-plays after mhGAP-IG training. Each rated 8 non-specialist role-plays. Focus group discussion (FGD) qualitatively explored validity, feasibility, reliability. Then 5 Nepali expert therapists rated 2 videotaped role-plays of Nepali expert therapists and participated in FGDs. 7 American psychiatrist with psychotherapy training viewed Nepali videos with subtitles and participated in a FGD.</td>
<td>Protocol: Primary outcomes: Alcohol Use Disorder Identification Test (AUDIT) score. Secondary outcomes: World Health Organisation Disability Assessment Schedule 2.0 (WHODAS 2.0), World Health Organisation Quality of Life (WHOQoL) HIV, viral load, and CD4 counts.</td>
</tr>
<tr>
<td>Kohrt 2015<sup>41</sup></td>
<td>Nepal</td>
<td>ENhancing Assessment of Common Therapeutic factors (ENACT) scale for training and supervision.</td>
<td>Specialists and non-specialists</td>
<td>41</td>
<td>ENACT scale piloted by rating role-play videotapes, patient session transcripts, and live observations of PHC staff training in mhGAP-IG use. mhGAP-IG coded to identify skills needed to implement task-sharing programmes. Holistic health assessment and assessment of suicidal behaviour and safety included because these responsibilities fall to non-specialists using the mhGAP-IG.</td>
<td>2 Nepali expert therapists used ENACT to rate non-specialists conducting role-plays after mhGAP-IG training. Each rated 8 non-specialist role-plays. Focus group discussion (FGD) qualitatively explored validity, feasibility, reliability. Then 5 Nepali expert therapists rated 2 videotaped role-plays of Nepali expert therapists and participated in FGDs. 7 American psychiatrist with psychotherapy training viewed Nepali videos with subtitles and participated in a FGD.</td>
<td>Qualitative results in early stages, then quantitative inter-class correlations</td>
</tr>
</tbody>
</table>