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Abstract—Pilot contamination limits the potential benefits of
massive multiple input multiple output (MIMO) systems. To
mitigate pilot contamination, in this paper, an efficient channel
estimation approach is proposed for massive MIMO systems,
using sparse Bayesian learning (SBL) namely coupled hierarchical
Gaussian framework where the sparsity of each coefficient is
controlled by its own hyperparameter and the hyperparameters
of its immediate neighbours. The simulation results show that
the proposed method can reconstruct original channel coefficients
more effectively compared to the conventional channel estimators
in terms of channel estimation accuracy in the presence of pilot
contamination.

Index Terms—Sparse Bayesian learning; massive MIMO; chan-
nel estimation.

I. INTRODUCTION

MASSIVE multiple input multiple output (MIMO) is a
promising technique for achieving fifth generation tar-

gets of peak data rates up to 10 Gbit/s. The channel estimation
process in such systems is performed via usage of uplink
orthogonal pilot signals. However, these pilot signals must be
reused in neighbouring cells as a results of the shortage of
the orthogonal signals that cause pilot contamination. However,
pilot contamination can be mitigated by reducing the number of
pilots. Hence, the development of efficient channel estimation
techniques for massive MIMO that are computationally low
complexity and require a small number of pilots is a challenge
that should be thoroughly addressed [1]-[3].

Compressed sensing (CS) techniques have received much
attention since they can recover unknown signals from just
a small number of measurements, thereby using significantly
fewer samples than is possible via the conventional Nyquist
rate, which is the signal recovery scheme developed for CS
to exploit the sparse nature of signals (that is, only a small
number of components in a signal vector are non-zero). CS
allows for accurate system parameter estimation with less
training, thereby addressing the pilot contamination problem
and improving bandwidth efficiency as a consequence [4],
[5]. However, classical CS algorithms require prior knowledge
of channel sparsity, which is usually unknown in practical

∗This work is supported by Iraqi Higher Committee of Educational Devel-
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scenarios [4]-[6]. In addition, to applying CS algorithms, the
sampling matrix must satisfy the restricted isometry property
(RIP) to guarantee reliable estimation. Such a condition cannot
be easily verified because it is computationally demanding [6],
[7].

Recently, several methods has been proposed to tame the
scarcity of CS-based channel estimation, however, these works
assume dependency between antenna elements, as in realistic
environments MIMO channel is generally correlated and statis-
tically dependent, as the antennas are not sufficiently separated
and the propagation environment does not provide a sufficient
amount of rich scattering [8].

Considering the impact of antenna correlation, in this paper,
we proposed an improved channel estimation technique based
on sparse Bayesian learning (SBL) scheme, namely, a pattern-
coupled hierarchical Gaussian framework [9]-[10], whereby, a
priori probabilistic information regarding channel sparsity and
the feature of the sparsity coefficients are being controlled by
its own hyperparameter, and its neighbouring hyperparameters
can be exploited for more reliable channel recovery to mitigate
the pilot contamination problem. Also, the sampling matrix
condition is efficiently overcome based on probabilistic formu-
lation. We have also proposed enhancing the performance of
the SBL-based estimator through the principle of thresholding
to select the most significant taps to improve channel estimation
accuracy. Furthermore, the cramer Rao bound (CRB) has also
derived as a reference line.

The remainder of this paper is organized as follows. The
multi-cell massive MIMO system model is presented in Section
II. The SBL-based Channel Estimator is analyzed in Section III.
Section IV presents the simulation results and the conclusions
are drawn in Section V.

The following notations are adopted throughout this paper:
for any matrix A, Ai,j denotes the (i,j)th element, while
the superscripts (.)T , (.)−1 and (.)H denote the transpose
operator, the inverse operator and the conjugate transpose
operator, respectively. tr(.) denotes the trace operator. A di-
agonal matrix with a1, ..., aN on the main diagonal is de-
noted diag(a1, ..., aN ). Bold font is used to denote matri-
ces and vectors, lower and upper case represents the time
domain and frequency domain, respectively. The Frobenius
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Fig. 1: Illustration of the system model of a multi-cell multi-user massive
MIMO.

and spectral norms of a matrix x are denoted by ‖x‖F and
‖x‖2 respectively. E{.} denotes the expectation of random
variables within the brackets. A Gaussian stochastic variable
o is then denoted by o ∼ CN(r, q), where r is the mean
and q is the variance. Furthermore, a random vector x hav-
ing the prober complex Gaussian distribution of mean µ
and covariance Σ is indicated by x ∼ N(x;µ,Σ), where
N(x;µ,Σ) = 1

det(πΣ)e
−(x−µ)Σ−1(x−µ), for simplicity we

refer to N(x;µ,Σ) as x ∼ N(µ,Σ).

II. MASSIVE MIMO SYSTEM MODEL

Consider a time division duplexing (TDD) multi-cell mas-
sive MIMO system with C cells as shown in Fig. 1. Each
cell comprises M antennas at the BS and N single-antenna
mobile stations. To improve the spectral efficiency, orthogonal
frequency division multiplexing (OFDM) is adopted [11],[12].

At the beginning of the transmission, all mobile stations in
all cells synchronously transmit V OFDM pilot symbols to their
serving base stations. The v-th pilot symbols of user n in the
c-th cell is given by Xn

c [v] = [Xn
c [v, 1]Xn

c [v, 2]...Xn
c [V,K]]T ,

where K is the number of subcarriers. Let Hn
c∗,c,i[v, k] denotes

the uplink channel frequency response of the n-th user in the
c-th cell sent by the i-th antenna of cell c∗ at the k-th subcarrier
of the v-th OFDM symbol. The received signal Yc∗,i at the i-th
antenna element in the cell c∗ can be expressed as

Yc∗,i[v, k] =

N∑
n=1

Hn
c∗,c∗,i[v, k]Xn

c∗ [v, k]

+

C∑
c=1,c 6=c∗

N∑
n=1

Hn
c∗,c,i[v, k]Xn

c [v, k] +Wc∗,i[v, k],

(1)

for 1 ≤ i ≤M and 1 ≤ c ≤ C, where Wc∗,i[v, k] is the uplink
channel’s additive white Gaussian noise (AWGN). The set of
equations constituted by (1) for 1 ≤ i ≤M can be written as

Y c∗ [v, k] = Xc∗ [v, k]Hc∗,c∗ [v, k]

+

C∑
c=1,c 6=c∗

Xc[v, k]Hc∗,c[v, k] +W c∗ [v, k], (2)

where Y c∗ [v, k] ∈ C1×M and W c∗ [v, k] ∈ C1×M are the two
row vectors hosting Yc∗,i[v, k] and Wc∗,i[v, k] for 1 ≤ i ≤M ,
respectively, Xc∗ [v, k] ∈ C1×N and Xc[v, k] ∈ C1×N are the
two row vectors hosting Xn

c∗ [v, k] and Xn
c [v, k] for 1 ≤ n ≤ N ,

respectively, while Hc∗,c∗ [v, k] ∈ CN×M and Hc∗,c[v, k] ∈
CN×M are the two matrices having their n-th row and i-
th column elements given by Hn

c∗,c∗,i[v, k] and Hn
c∗,c,i[v, k],

respectively. Assuming that the channel is time-invariant during
the channel estimation period, we can drop the OFDM symbol
index v from Hn

c∗,c,i[v, k]. Specifically, Hn
c∗,c,i[k] = Hn

c∗,c,i

for the channel estimation period, where row vector Hn
c∗,c,i =

[Hn
c∗,c,i[1] Hn

c∗,c,i[2]...Hn
c∗,c,i[K]] ∈ C1×K represents the link

between the n-th user in the c-th cell over all K OFDM
subcarriers. OFDM partitions the multipath channel into a set of
parallel and independent sub-channels. The fading coefficient
of these sub-channel are the discrete-time Fourier transform
of the multipath channel taps. Hence, the term Hn

c∗,c,i can be
given as [7],[8]

Hn
c∗,c,i = hnc∗,c,iF

T , (3)

where the row vector hnc∗,c,i =
[hnc∗,c,i, (1) hnc∗,c,i(2), ..., hnc∗,c,i(L)] ∈ C1×L is the CIR
between n-th user at c-th cell and the i-th antenna of the
serving BS at the c∗th cell, L is the number of the paths,
F ∈ CN×L represents the matrix comprising the discrete
Fourier transform (DFT) matrix, the elements of which are
given by [e−j2π∗(k−1)(l−1)/K ] for 1 ≤ k ≤ K and 1 ≤ l ≤ L.
Via exploiting the advantage of cyclic prefix we can omit the
subcarrier index k to simplify our notation. Assuming the
total V consecutive OFDM symbols are dedicated to pilot
subcarriers, so the received signal associated with K OFDM
symbols over 1 ≤ v ≤ V can be written as

Y c∗ = Xc∗Hc∗,c∗ +

C∑
c=1,c 6=c∗

XcHc∗,c +W c∗ . (4)

The channel coefficient is modelled as hnc∗,c,i[`] =√
φnc∗,c,i[`]g

n
c∗,c,i[`] for 1 ≤ ` ≤ L, where φnc∗,c,i captures

the path-loss and shadowing (large-scale fading), while the
term gnc∗,c,i is assumed to be independent identical distribution
(i.i.d) of unknown random variables with CN(0, 1) (small-scale
fading) [3].

The received signal of (4) can be re-written as

Yc∗ = Xn
c∗Fhc∗,c∗ + Zc∗ , (5)

where the term Zc∗ =
∑C
c=1,c6=c∗ XcFh′nc∗,c + Wc∗ in (5)

represents the net sum of inter-cell interference plus the receiver



Fig. 2: Illustration of the rich scatterers wireless channel and the resulting
channel impulse response is sparse.

noise. The variance interference σ2
I of the inter-cell interference

term caused during pilot transmission can be expressed as

σ2
I = E{(

C∑
c=1,c6=c∗

Xn
cFhc∗,c)(

C∑
c=1,c 6=c∗

XcFhc∗,c)
H}. (6)

We define the measurement matrix Ac∗ = Xc∗F, then (5)
can be rewritten as

Yc∗ = Ac∗hc∗,c∗ + Zc∗ . (7)

Based on the physical properties of outdoor electromagnetic
propagation, the channel impulse response (CIR) in wireless
communications usually possesses several significant channel
taps as it shown in Fig. 2, i.e. the CIR are sparse, So,
the number of non-zero channel taps is much smaller than
the channel length, hence CS techniques can be applied for
sparse channel estimation [13]-[15]. This sparsity feature can be
exploited to reduce the necessary channel parameters needing
to be estimated. In this case, we can address the pilot contami-
nation problem by using fewer pilots than the unknown channel
coefficients [13]-[15].

III. SBL-BASED CHANNEL ESTIMATOR

In this section, the pattern-coupled sparse Bayesian learning
method is presented in the context of massive MIMO channel
estimation. Based on Bayesian channel estimation philosophy,
estimated unknown parameters of interest are an expectation
of the posterior probability. As such, to obtain the estimated
channel, we need to infer the posterior probability of the
unknown parameters.

A. Bayesian Inference Model

Following the pattern-coupled sparse Bayesian learning
model and based on Bayes’ rule [10], the full posterior dis-
tribution of hc∗,c∗ over unknown parameters of interest for the
problem at hand is proportional to the prior probability and the
likelihood of the unknown parameters, that can be computed
as

P (hc∗,c∗ |α,γ,Y c∗) = P (hc∗,c∗ |α)P (Y c∗ |hc∗,c∗), (8)

where γ represents the inverse of the net sum of the noise
and interference covariance matrices and α are non-negative

hyperparameters controlling the sparsity of the channel hc∗,c∗ .
According to probability theory, the term P (Y c∗ |hc∗,c∗) can
be written as

P (Y c∗ |hc∗,c∗) = (
1√

2πγ−1
)exp(−||Y c∗ − hc∗,c∗Ac∗ ||22

2γ−1
),

(9)
while, in the pattern-coupled model, the Gaussian prior for each
channel coefficient P (hc∗,c∗ |α) is given by

P (hc∗,c∗ |α) =

M∏
i=1

P (Hc∗,c∗,i[v, k]|αi, αi+1, αi−1) (10)

=(2π)
−M
2

M∏
i=1

((αi, βαi+1, βαi−1))
1
2

exp[
−1

2
(Hn

c∗,c∗,i[v, k])T ((αi, βαi+1, βαi−1))Hn
c∗,c∗,i[v, k]],

i = 1, ...,M (11)

where 0 ≤ β ≤ 1 is a parameter indicating the pattern
relevance between the channel coefficient Hn

c∗,c∗,i[v, k] and
its neighboring coefficients {Hn

c∗,c∗,i+1[v, k], Hn
c∗,c∗,i−1[v, k]}.

For β = 0, the Gaussian prior distribution in (10) is reduced to
the prior for the conventional sparse Bayesian learning (which
represents the uncorrelated channel scenario).

B. Proposed Algorithm of the Pattern-Coupled Hierarchical
Model

We now proceed to perform Bayesian inference for the
proposed pattern-coupled SBL-based estimator. The posterior
P (hc∗,c∗ |α,γ,Y c∗) ∼ N(µ,Σ) follows a Gaussian distribu-
tion with its mean and covariance given respectively by

µ = γΣAc∗
HY c∗ , (12)

Σ = (D + γ(Ac∗)HAc∗)−1, (13)

where D is a diagonal matrix with its ith diagonal element is
given by [αi, βαi+1, βαi−1], for i = 1, ...,M . The maximum a
posterior (MAP) estimate of hc∗,c∗ is the mean of its posterior
distribution, i.e.,

ĥc∗,c∗ = µ = ((Ac∗)HAc∗ + γ−1D)−1(Ac∗)HY c∗ . (14)

To obtain the term ĥc∗,c∗ , we need to jointly estimate
the hyperparameters α and γ, which can be achieved by
exploiting the expectation-maximization (EM) approach (we
refer interested readers to [10] for detailed derivations). So,
the new estimate of α(t+1) and γ(t+1) can be given as

α
(t+1)
i =10−4/0.5(µ̂2

i + Σ̂i,i) + β(µ̂2
i+1 + Σ̂i+1,i+1)

+ β(µ̂2
i−1 + Σ̂i−1,i−1) + 10−4, i = 1, ...,M, (15)

γ(t+1) =M + 2 ∗ 10−4/||Y c∗ − hc∗,c∗Ac∗ ||22 + (γ(t))−1∑
i

(1− Σ̂i,i(α
(t)
i + βα

(t)
i−1 + βαi+1)(t))

+ 2 ∗ 10−4, i = 1, ...,M, (16)

The procedure for implementation of the proposed technique
are summarized in algorithm 1.



Algorithm 1 SBL-based Channel Estimator
INPUTS: Pilot Signal Xc∗ , observation matrix Y c∗ and the
measurement matrix Ac∗ = FXc∗

Initial Configuration:
1: Select a specific convergence value ε.
2: Select a start value for α(t) and γ(t)

3: t = 0
4:While ‖(ĥc∗,c∗)(t+1) − (ĥc∗,c∗)(t)‖ ≤ ε do
5: Obtain a new estimate for α(t+1) and γ(t+1) as in (15) and
(17), respectively.
6: Compute Σ = (D + γ(Ac∗)HAc∗)−1

7: Compute ĥc∗,c∗ = µ = γΣAc∗
HY c∗

8: t← t+ 1
8: end while
OUTPUTS: Return the Estimated Channel ĥc∗,c∗

C. Enhanced SBL-Based Estimator

In contrast to the proposed SBL-based estimator, the perfor-
mance of the proposed SBL-based estimator can be improved
through the principle of thresholding, which can be applied
to retain the most significant taps. The proposed algorithm
therefore implements a threshold approach by conserving the
channel taps that have energies above a threshold value of %
and setting the other taps to zero. The value of % is the energy
of the CIR.

D. CRB For SBL-Based Estimator

To quantify the best performance that can be achieved by
the proposed algorithm, in this section, we derive the CRB of
the pattern-coupled SBL channel estimation. The CRB on the
covariance of any estimator θ̂ can be given as E{(θ̂− θ)(θ̂−
θ)H} ≥ J−1(θ), where J(θ) is the Fisher information matrix
(FIM) corresponding to the observation f , and can be given as

J(θ) = E(
∂

∂θ
logl(θ, f))(

∂

∂θ
logl(θ, f))T , (17)

where l(θ, f) is the likelihood function corresponding to the
observation f , parametrized by θ [16].

Theorem 1: The closed form expression of the Bayesian CRB
for the proposed SBL can be given as

J(hc∗,c∗) ≥ (
1

(αi, βαi+1, βαi−1)
+
Ac∗(Ac∗)H

γ
)−1.

i = 1, ...,M. (18)

Proof: See Appendix A.

IV. SIMULATION RESULTS

In this section, we conduct experiments to evaluate the per-
formance of the proposed algorithm and compare it to existing
methods. The simulation parameters can be summarized as
follows, M = 100 antennas, N = 10 users, L = 10 taps and

Fig. 3: Relative MSE performance comparison between SBL, Modified
SBL, BCS, and the LS versus SNR.

Fig. 4: Relative MSE of the Pattern-Coupled SBL for β = {0, 0.5
and 1}.

K = 100 subcarriers. The simulation scenario is influenced by
strong pilot contamination (φnc∗,c∗,i = 1 and φnc∗,c,i = 0.7). The
simulation results are obtained by averaging over 1000 channel
realizations.

Fig. 3 demonstrates the relative MSE performance compar-
ison of least square (LS) with no pilot contamination, SBL-
based, thresholded-SBL, Bayesian compressed sensing (BCS)
[17] channel estimation techniques along with the BCRB
reference line. The results showed that the proposed SBL
approach provided significant performance enhancement over
LS and BCS with respect to estimation accuracy as a result of
exploiting the correlation between the antennas. In addition, the
results showed that the thresholding approach strengthened the
estimation accuracy of conventional SBL as the CIR possessed
so many taps without a significant energy. By setting the
threshold and neglecting these taps, a huge portion of the noise



and interference from pilot contamination would be eliminated.
Fig. 4 shows the relative MSE performance comparison of

SBL-based channel estimation with different settings for β =
{0, 0.5, and 1}. It can be observed that estimation accuracy is
improved when employing the antennas correlation on a large
scale.

V. CONCLUSION

In this paper, we proposed a SBL-based channel estimation
algorithm for multi-cell massive MIMO systems. The simu-
lation results revealed that the SBL-based channel estimation
algorithm had a tremendous advantage over conventional esti-
mators. Furthermore, the proposed technique can be enhanced
by thresholding the CIR to a specific value. In addition, the
results demonstrated that the estimation accuracy is enhanced
by employing the correlation between antennas on a large scale.

APPENDIX A
PROOF OF THEOREM 1

Following (19), we can write the FIM as

J(hc∗,c) ≥ E(
∂2log(phc∗,c/Yc∗ (hc∗,c, Yc∗))

∂2hc∗,c
). (19)

Based on Bayes’ rule in (8), the FIM can be decomposed
into two terms

E(
∂2log(phc∗,c/Yc∗ (hc∗,c, Yc∗))

∂2hc∗,c
) =

E(
∂2log(pYc∗/h

n
c∗,c

(Yc∗ ,hc∗,c))

∂2Hc∗,c
)+

E(
∂2log(phc∗,c

(hc∗,c))

∂2hc∗,c
). (20)

So, (22) can be expressed in matrix form as

J = JD + JP . (21)

where J, JD and JP represent the Bayesian FIM, data
information matrix and prior information matrix, respectively.

Using (9), the data information matrix JD can be given as

JD = E(
∂2log(pYc∗/hc∗,c

(Yc∗ ,hc∗,c))

∂2hc∗,c
) =

Ac∗(Ac∗)H

γ
.

(22)

Considering (10), the prior information matrix JD can be
given as

JP = E(
∂2log(phc∗,c

(hc∗,c))

∂2hc∗,c
) = (αi, βαi+1, βαi−1)−1.

(23)
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