Featured Article

Amyloid beta synaptotoxicity is Wnt–planar cell polarity dependent and blocked by fasudil

Katherine J. Sellersa,1, Christina Elliotta,1, Joshua Jacksonb,1, Anshua Ghosha,1, Elena Ribec, Ana Rojo-Sanchísd, Heledd H. Jarosz-Griffithse, Iain A. Watsona, Weiming Xiaf, Mikhail Semenovf, Peter Morinf, Nigel M. Hoopere, Rod Porterg, Jane Prestonh, Raya Al-Shawii, George Bailliej, Simon Lovestonec, Antonio Cuadradod, Michael Harteb, Paul Simonsi, Deepak P. Srivastavaa,***, Richard Killicka,**

aMaurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
bFaculty of Biology, Medicine and Health, Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
cDepartment of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
dInstituto de Investigaciones Biomédicas “Alberto Sols”, Madrid University, Madrid, Spain
eFaculty of Biology, Medicine and Health, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
fNew England Geriatric Research Education and Clinical Center, Boston University School of Medicine, Boston, MA, USA
gRod Porter, Rod Porter Consultancy, Baldock, England, UK
hInstitute of Pharmaceutical Science, King’s College London, London, UK
iCentre for Amyloidosis and Acute Phase Proteins, Royal Free Campus, University College London, London, UK
jInstitute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, Scotland, UK

Abstract

Introduction: Synapse loss is the basis of the cognitive decline indicative of dementia. In the brains of Alzheimer’s disease (AD) sufferer’s amyloid beta (A\textsubscript{\textbeta}) peptides aggregate to form senile plaques but as soluble peptides that are toxic to synapses. We previously demonstrated that A\textsubscript{\textbeta} induces Dickkopf-1 (Dkk1), which in turn activates the Wnt–planar cell polarity (Wnt-PCP) pathway to drive tau pathology and neuronal death.

Methods: We compared the effects of A\textsubscript{\textbeta} and Dkk1 on synapse morphology and memory impairment while inhibiting or silencing key elements of the Wnt-PCP pathway.

Results: We demonstrate that A\textsubscript{\textbeta} synaptotoxicity is also Dkk1 and Wnt-PCP dependent, mediated by the arm of Wnt-PCP regulating actin cytoskeletal dynamics via Daam1, RhoA, and ROCK, and can be blocked by the drug fasudil.

Discussion: Our data place Wnt-PCP signaling at the center of AD neuropathology and indicate that fasudil could be repositioned as a treatment for AD.

© 2017 Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Dickkopf-1; Amyloid; Synapse; Synaptotoxicity; Wnt; Planar cell polarity; ROCK; DAAM1; Fasudil; Alzheimer’s

1. Background

Amyloid beta (A\textsubscript{\textbeta}) has long been associated with Alzheimer’s disease (AD) through a propensity to form insoluble deposits, senile plaques, a hallmark of the AD brain. Overwhelming genetic and experimental evidence indicate that A\textsubscript{\textbeta} and its parent molecule, the amyloid precursor...
protein (APP), are key players in the neuropathogenic processes driving AD. Aβ readily self-associates to form a range of soluble oligomers and insoluble fibers, and the current consensus view holds that these are the small soluble oligomeric forms of Aβ rather than the plaques themselves that are the neurotoxic species [1–3]. We have previously found that Aβ-driven increases in tau phosphorylation (a second hallmark of the disease) and neuronal death are dependent on activation of a branch of Wingless/Wnt signaling known as the Wnt–planar cell polarity (Wnt-PCP) pathway, specifically the arm of Wnt-PCP acting through JNK and its target c-Jun to regulate gene transcription [4]. We have shown that Aβ activates Wnt-PCP through the ability of Aβ to induce Dickkopf-1 (Dkk1), which by blocking the binding interaction between LRP6 and frizzled prevents canonical Wnt–β-catenin activity and concomitantly activates Wnt-PCP signaling [5,6]. Furthermore, our data indicate that Dkk1 and Wnt-PCP shape the transcriptional profile of the AD brain and the activity of pathways within it most associated with the disease [4,7]. The top four most significant of these pathways being the Adherens Junction, Wnt signaling, TGF-β signaling, and LTP, which are all intimately involved in synaptic plasticity [8–10].

Aβ synaptotoxicity is thought to be a very early event in the disease process, central to disease etiology, and possibly the driver of many other neurotoxic properties attributed to Aβ [2,11,12]. Indeed, the degree of cognitive impairment in AD correlates more closely with synapse number than with amyloid load or extent of tau pathology [2,13,14]. However, although widely studied, the underlying mechanisms of Aβ synaptotoxicity have yet to be fully determined [2,15].

The synaptic effects of Aβ have been reported to be Dkk1 dependent [16]. In addition to influencing transcription via JNK/c-Jun, the Wnt-PCP pathway also regulates cytoskeletal dynamics through ras homolog family member A (RhoA) and rho-associated coiled-coil containing protein kinase (ROCK), two key regulators of synapse formation [17,18], shown to be responsive to Aβ [19]. Given this, we investigated the possibility that Aβ may exert its synaptotoxicity by activating the Wnt-PCP/RhoA/ROCK pathway and present evidence that this is the case. Furthermore, we have evaluated the potential of the ROCK inhibitor drug, fasudil, as a therapeutic approach to ameliorate both the synaptic and cognitive effects of Aβ.

2. Methods

2.1. Dkk1 measures

Rat Dkk1 messenger RNA expression was performed by quantitative RT-PCR and protein levels determined using a DuoSet enzyme-linked immunosorbent assay Kit (R&D Systems, DY1906), both as previously described [4].

2.2. Neuronal culture and transfections

Primary cortical neuronal cultures were prepared from Sprague-Dawley rat E18 embryos as described previously [20]. Cells were seeded onto coverslips coated with poly-D-lysine (0.2 mg/mL, Sigma), at a density of 3 × 10^5 cells/cm^2equating to 857/mm^2. Cells were cultured in feeding media: neurobasal medium (21103049) supplemented with 2% B27 (17504044), 0.5 mM glutamine (2503024), and 1% penicillin/streptomycin (15070063) (all reagents from Life technologies, UK). After 4 days in vitro (DIV) 200 μM D,L-aminophosphonovalerate (ab120004; Abcam) was added to media to maintain neuronal health over long-term culture and to reduce cell death because of excitotoxicity [20]. Fifty percent media changes were performed twice weekly until desired time in culture was reached (DIV 23). Cells were then transfected with an eGFP expression construct driven by the synapsin 1 promoter using Lipofectamine 2000. Transfections were allowed to proceed for 2 days, resulting in 5% to 10% transfection efficacy [20,21].

2.3. Pharmacologic treatments of neuronal cultures

All pharmacologic treatments were performed in artificial cerebral spinal fluid: 125 mM NaCl, 2.5 mM KCl, 26.2 mM NaHCO3, 1 mM NaH2PO4, 11 mM glucose, 5 mM Heps, 2.5 mM CaCl2, 1.25 mM MgCl2, and 0.2 mM aminophosphonovalerate. Neuronal cultures were pretreated with inhibitor compounds for 30 minutes before application of Dkk1 recombinant protein, Aβ1-42 oligomers (AβO), or fibrillar Aβ25-35 to culture media. All compounds were dissolved in water or DMSO at a concentration of 10 or 1 mM, and serially diluted to a 10 times working concentration in artificial cerebral spinal fluid and applied directly to neuronal cultures. Final concentration of solvent was <0.01%, as also used in vehicle control. Treatments were allowed to proceed for indicated times before being fixed for immunocytochemistry.

2.3.1. Immunocytochemistry

Neurons were washed in phosphate-buffered saline and then fixed in either 4% formaldehyde/4% sucrose in phosphate-buffered saline for 10 minutes at room temperature followed by incubation in methanol prechilled to −20°C for 10 minutes at 4°C or in methanol (−20°C) only for 20 minutes at 4°C. Fixed neurons were then permeabilized and blocked simultaneously (2% nonimmune goat serum, Sigma, and 0.2% Triton X-100) before incubation in primary antibodies overnight and subsequent incubation with secondary antibodies the following day [20]. In the green/purple color scheme, colocalization is indicated by white overlap.

2.4. Antibodies used

The following antibodies were used: GFP, chicken polyclonal (ab13972; Abcam); PSD95, mouse monoclonal...
(clone K28/43; 73-028; NeuroMab); PSD-95, rabbit polyclonal (2507; Cell Signaling Technology); Bassoon, mouse monoclonal (ab82958; Abcam); and GluA1, rabbit polyclonal (ABN241; Millipore).

2.5. Spine morphology and immunofluorescence

Images were acquired with a Leica SP-5 confocal microscope using a 63× oil-immersion objective (Leica, N.A. 1.4) as z-series. Two-dimensional maximum projection reconstructions of images were generated, and morphometric analysis (spine number, area, and breadth) was performed using MetaMorph software (Universal Imaging Corporation, West Chester, PA, USA) [20]. Morphometric analysis was performed on spines from at least two dendrites (secondary or tertiary branches), totaling 100 μm in length, per neuron. For each condition, 9 to 12 neurons from at least three separate experiments (each performed in duplicate) were used. Experiments were carried out blind to condition. Linear density and total gray value of each synaptic protein cluster was measured automatically using MetaMorph [20]. Cultures undergoing direct comparison were stained simultaneously and imaged with the same acquisition parameters.

2.6. Pharmacodynamics

Fasudil and hydroxyfasudil were administered separately at 10, 30, and 100 mg/kg by intraperitoneal (IP) injection to young adult male CD1 mice. Animals were sacrificed 20 minutes after dosing and terminal plasma and brain samples were taken. Proteins were extracted using acetoniitrile precipitation, and fasudil and hydroxyfasudil levels were measured by UHPLC-TOF mass spectrometry using electrospray ionization.

2.7. Behavioral testing

2.7.1. Animals

Female Lister Hooded rats (Charles River, UK; weighing ≈215 ± 20 g at the start of experimentation) were housed in groups of five in individually ventilated two-story home cages, on a 12 hours light cycle (illuminated 07:00–19:00 hours) with controlled temperature (21 ± 2°C) and humidity (55 ± 5%). Water and food (Special Diet Services, UK) were given ad libitum. All experiments were undertaken during the illuminated period and conducted in accordance with UK Animals (Scientific Procedures) 1986 Act and the University of Manchester ethical guidelines.

2.7.2. AβO preparation

Biotin-Aβ1-42 (AN2A24640) was purchased from AnaSpec, USA, disaggregated in hexafluorosopropanol for 1 hour, aliquoted, hexafluorosopropanol removed by evaporation under N2, and monomeric peptide solubilized in DMSO at 1 mM, diluted to 100 μM in Ham’s F12, and allowed to oligomerize at room temperature for 16 hours.

2.7.3. Surgical procedure

Rats were anesthetized using 4% isoflurane in O2 in an induction chamber, mounted in a stereotaxic frame and anesthesia maintained with 2% to 3% isoflurane. Ten microliters of 100 μM AβO was injected into the left lateral ventricle using Bregman coordinates, H-0.8, Tr-1.5, V-4.5, at a flow rate of 2.5 μL/minute (total administered = 10 μmol). Surgery date was defined as day 0. Rats were treated with IP injections of vehicle or fasudil at 10 mg/kg twice daily from days 1 to 6. The novel object recognition test was performed on day 7 as previously described [22]. In brief, rats were placed in a 52 × 52 × 51 cm PVC arena for 5 minutes with two identical objects. Animals were taken out of the box for an intertrial interval of 1 minute, then placed back in the same box for a further 3 minutes with an identical copy of the previous object and a novel object. Both sessions were digitally recorded and the time spent exploring each object scored. The discrimination index was calculated as (novel − familiar)/(novel + familiar).

2.8. Statistical analyses

Statistical analyses were performed in GraphPad or SPSS. Differences in quantitative immunofluorescence, dendritic spine number, and morphology were identified by Student’s unpaired t-tests. For comparisons between multiple conditions the main effects and simple effects were probed by one-way or two-way analysis of variance with Tukey’s correction for multiple comparisons. Error bars represent standard errors of the mean.

3. Results

3.1. Aβ drives Dkk1 production

Aβ drives Dkk1 expression [4,16,23], and Dkk1 protein levels are raised in the brains of Aβ/APP-based mouse models of AD pathology [24]. We extend these observations by showing that increases in both Dkk1 messenger RNA and protein are readily detectable in cultured rodent neurons after treatment with the active portion of Aβ, Aβ25-35, and by soluble AβO within 2 to 3 hours, and within 4 hours by AβO at nanomolar concentrations (Fig. 1A and B).

3.2. Synaptic effects of Aβ and Dkk1 are similar

To compare the synaptic effects of Aβ and Dkk1 protein, rat cortical neurons (24 DIV) were transfected with eGFP and 48 hours later treated with either 2 μM AβO for 4 hours or with 400 ng/mL recombinant Dkk1 protein for 3 hours. The additional 1 hour given for Aβ treatments was to allow time for endogenous Dkk1 expression, thereby rendering the two treatments more comparable. AβO and Dkk1 had potent, significant, and very similar
Fig. 1. Aβ synaptotoxicity is Dkk1 dependent. (A) Rat primary cortical neuronal cultures (14 DIV) were treated with 10 μM Aβ25-35 for 2 and 3 hours, cells harvested for RNA extraction, and media collected for protein analysis. Complementary DNA was generated and qRT-PCR performed to determine rat Dkk1 mRNA levels (left). Secreted Dkk1 protein levels in media were measured by enzyme-linked immunosorbent assay (right). (B) Similar cultures were treated at 3 μM and 300 nM with an Aβ1-42 oligomer (AβO) preparation for the times indicated and harvested and Dkk1 mRNA levels were determined as mentioned previously (C–E). Similar cultures were transfected with eGFP at 24 DIV, 48 hours later treated for 4 hours with 2 μM AβO, or for 3 hours.
3.3. Aβ synaptotoxicity is Dkk1 dependent

Antibody neutralization of Dkk1 blocks Aβ-induced synapse loss [16]. To extend this, we knocked down Dkk1 expression in primary cortical neuronal cultures using a previously validated penetrating peptide-coupled small interfering RNA (siRNA) duplex targeting rat Dkk1 with a scrambled form as control [4]. Assessing synapse number by phalloidin-488 labeling of F-actin puncta in the presence of the control siRNA, 2 μM Aβ1-42 caused a substantial and significant reduction in synapse number in more than 4 hours. This was significantly blocked in neurons treated with the Dkk1 siRNA (Fig. 1E and F), confirming that Dkk1 is required for Aβ synaptotoxicity to occur.

3.4. Dkk1 synaptotoxicity is Daam1 dependent

Activation of the Wnt-PCP/RhoA/ROCK pathway requires an interaction between Disheveled and Daam1 or Daam2 (Fig. 2A). The only known role of Daam1 and Daam2 is that within the Wnt-PCP pathway [25–27]. To determine if Dkk1-driven synapse loss is Wnt-PCP dependent we individually knocked down DAAM1 and DAAM2 in rat primary cortical cultures using penetrating siRNA duplexes against each. Western blotting of treated cultures demonstrates that only Daam1 is expressed at detectable levels in these cells and that the DAAM1 siRNA potently reduced Daam1 protein expression (Fig. 2B). Daam1 is the predominant neuronal isoform [28]. Using DAAM2si as a control, 24 DIV cultures were treated with each siRNA for 48 hours and subsequently with recombinant Dkk1 protein (400 ng/mL) or vehicle for 3 hours, fixed and synapse number again assessed by counting of phalloidin-labeled F-actin puncta. Neither siRNA significantly affected puncta count compared with untreated control subjects, Dkk1 substantially reduced puncta after DAAM2 siRNA treatment but had no effect after DAAM1 siRNA treatment (Fig. 2C and D). Consistent with this observation the overexpression of Daam1 reduces the synapse number in hippocampal neurons in a Rho-dependent fashion [28], whereas Aβ has been shown to increase the expression levels of DAAM1 in human neuroblastoma cells [29].

3.5. Aβ-driven, Dkk1-dependent spine loss is mediated by RhoA/ROCK

Downstream of Daam Wnt-PCP regulates actin cytoskeletal dynamics through RhoA and ROCK [30,31]. Next, we investigated whether pharmacologic inhibition of the RhoA/ROCK pathway would inhibit both Aβ1-42-driven and Dkk1-driven spine losses. Cortical cultures were transfected with eGFP at 23 DIV and 48 hours later pretreated with the well characterized ROCK inhibitor, Y-27632, or with vehicle for 30 minutes, and then with 2 μM Aβ1-42 for 4 hours or with 400 ng/mL Dkk1 recombinant protein for 3 hours. Assessment of dendritic spine linear density showed that Y-27632 blocked both Aβ1-42-induced and Dkk1-induced spine losses, with similar potency; Y-27632 alone had no effect on spine number (Fig. 3A and B). Together with Figs. 1C–G and 2C and D these data provide strong evidence that Aβ synaptotoxicity is dependent on Dkk1-driven activation of a Wnt-PCP/Daam1/RhoA/ROCK pathway.

3.6. Dkk1 drives GluA1 and PSD-95 relocation

Acute Aβ exposure causes a reduction in synaptic transmission through the internalization of AMPA receptors [32,33], whereas Dkk1 has been suggested to cause a removal of PSD-95 from synapses [16]. However, whether acute exposure to Dkk1 drives the removal of PSD-95 away from dendritic spines and the internalization of AMPA receptors is not known. To investigate this and determine whether effects on PSD-95 and GluA1-containing AMPA receptors could also be blocked by ROCK inhibition, 26 DIV eGFP-expressing cortical neurons were pretreated with Y-27632 or vehicle and subsequently by Dkk1 for 3 hours. After fixation and immunolabeling for PSD-95 and GluA1, confocal imaging revealed that Dkk1 treatment causes a significant reduction in the total number of PSD-95 positive puncta, with significantly fewer PSD-95 positive spines, although concurrently increasing PSD-95 immunoreactive puncta within dendrites. These effects were blocked by Y-27632 (Fig. 3C and D). Dkk1 did not effect the total level of GluA1 puncta but did similarly reduce the number of GluA1 positive spines and increase GluA1 immunolabeling within the dendritic shaft, which was again blocked by Y-27632 (Fig. 3C and E). Dkk1 then, as
does Aβ, induces the removal of PSD-95 and GluA1 proteins from synapses and promotes their trafficking into dendrites. This also confirms that Dkk1-induced dendritic spine loss is concomitant with a loss of synapses via a RhoA/ROCK-dependent mechanism.

3.7. Aβ and Dkk1-induced spine withdrawal are blocked by fasudil

To confirm that effects of Y-27632 (hexane carboxamide) are via ROCK we selected a second structurally dissimilar ROCK inhibitor, fasudil (an isouquinoline), one of only two ROCK inhibitors approved for use in man [34]. eGFP expressing cortical cultures were pretreated with 5 μM fasudil or vehicle for 30 minutes and subsequently with either 2 μM AβO or 400 ng/mL Dkk1 recombinant protein, fixed, and imaged by confocal microscopy. Fasudil alone, like Y-27632, had a little effect on spine density. AβO and Dkk1 both significantly reduced spine number and the effects of each were again blocked by fasudil (Fig. 4A and B). These data support our contention that the synaptic effects of both Aβ and Dkk1 are dependent on the Wnt-PCP/RhoA/ROCK pathway and substantiate the synaptoprotective properties only very recently attributed to fasudil [35].

3.8. Fasudil rescues Aβ-driven cognitive deficits

Because fasudil has clinical approval and protects against Aβ synaptotoxicity make it a promising candidate for repositioning in AD. To further assess its usefulness we examined its ability to protect against AβO-induced cognitive impairment in vivo using a novel acute rat model [36]. Despite the predicted low central nervous system penetration of fasudil [37], both it [38] and its active metabolite hydroxyfasudil [39] appear to be centrally active after peripheral administration. Given the paucity of data concerning brain availability of either compound and to inform on dosing for in vivo...
experimentation we evaluated brain penetrance of fasudil and hydroxyfasudil. Each was administered at a range of doses intraperitoneally to CD1 mice and levels of each were measured in brain and plasma by mass spectrometry. Data obtained demonstrate that fasudil is brain penetrant with a plasma:brain ratio of 8.5% at the 10 mg/kg dose (Fig. 4C). This figure is better than that of a number of compounds widely used to treat a number of central nervous system disorders. The data also show that hydroxyfasudil is less brain penetrant than fasudil, with a plasma:brain ratio of 1.8% at the 10 mg/kg dose (Fig. 4D).

Fig. 3. Aβ and Dkk1 synapic effects are ROCK dependent. (A and B) Rat primary cortical neurons were transfected with eGFP at 24 DIV and 48 hours later treated with Y27632 or vehicle and 15 minutes later with 2 μM AβO or 400 ng/mL Dkk1 for 4 hours, fixed, and imaged by confocal microscopy for the examination of spine morphology. AβO and Dkk1 caused a significant reduction in dendritic spine linear density. Y27632 alone had no significant effect on spine density but in combination with AβO and Dkk1 blocked the effect of both (scale bar = 5 μm). (C–E) Rat primary 26 DIV neurons expressing eGFP were treated with Y27632 and Dkk1 as mentioned in (A). Concurrent with a loss of spine density, Dkk1 caused a significant reduction in total PSD-95 puncta (total PSD-95 density/10 μm: control, 5.5 ± 0.34; control + Y-27632, 6.2 ± 0.55; Dkk1, 4.3 ± 0.39; Dkk1 + Y-27632, 6.6 ± 0.43). Interestingly, the number of spines containing PSD-95 was also reduced, with a concurrent increase in the density of dendritic PSD-95, after treatment with Dkk1. This effect was blocked by Y27632 (% spines containing PSD-95: control, 79.8 ± 2.4; control + Y-27632, 78.2 ± 2.7; Dkk1, 59.1 ± 3.7; Dkk1 + Y-27632, 78.9 ± 2.1). Dendritic PSD-95 puncta/10 μm: control, 0.93 ± 0.11; control + Y-27632, 0.89 ± 0.11; Dkk1, 1.67 ± 0.17; Dkk1 + Y-27632, 0.95 ± 0.15. (E) Dkk1 did not significantly affect the total level of GluA1 immunoreactive puncta but did reduce the number of spines positive for GluA1 and increased levels of GluA1 in dendrites, which was again blocked by inhibition of ROCK. GluA1 linear density/10 μm: control, 5.0 ± 0.34; control + Y-27632, 4.6 ± 0.40; Dkk1, 4.2 ± 0.40; Dkk1 + Y-27632, 4.9 ± 0.44; p = .0574; % spines containing GluA1: control, 67.8 ± 4.3; control + Y-27632, 68.4 ± 3.7; Dkk1, 47.9 ± 4.4; Dkk1 + Y-27632, 65.6 ± 3.1. Dendritic GluA1 puncta/10 μm: control, 1.25 ± 0.13; control + Y-27632, 1.20 ± 0.15; Dkk1, 2.09 ± 0.26; Dkk1 + Y-27632, 0.99 ± 0.22. Abbreviations: Aβ, amyloid beta; AβO, Aβ1-42 oligomer; DIV, days in vitro; Dkk1, Dickkopf-1.
disorders such as clozapine (1.1%), haloperidol (1.1%), and diazepam (3.6%) and is similar to that of donepezil, 12.6% [40], one of the few drugs currently licensed for AD.

On the basis of these data 40 adult female rats of 250 to 300 g body weight were administered fasudil (10 mg/kg) or vehicle (saline) intraperitoneally twice daily for 7 days. After the initial IP injection, all animals underwent surgery on day 1 to receive a single intracranial injection into the left lateral ventricle of either 10 nmol AβO or vehicle in a volume of 10 μL (at 2.5 μL/minute) resulting in four groups (n = 10/group). On day 7, all 40 animals were presented with a NOR task, schematized in (D). Rats receiving vehicle and AβO showed profound deficit in this task, whereas the performance of rats receiving AβO and fasudil was not different to that of control subjects (E). Abbreviations: Aβ, amyloid beta; AβO, Aβ_{1-42} oligomer; DIV, days in vitro; Dkk1, Dickkopf-1; dsld, dendritic spine linear density; IP, intraperitoneal; NOR, novel object recognition.

4. Discussion

Opposing roles for the canonical and noncanonical Wnt signaling pathways in synapse homeostasis have been previously recognized, with canonical Wnt promoting synapse formation and stabilization [42] and noncanonical promoting synapse disassembly/pruning [43,44]. Under normal physiological conditions both pathways likely act in a highly regulated and concerted manner to achieve the appropriate levels of synaptic plasticity and resultant cognitive functioning to occur. Inappropriate levels of Aβ is able to block AβO-driven cognitive impairment. Given the supporting evidence presented previously, we propose that fasudil is able to protect against Aβ-induced cognitive impairment through its ability to antagonize an Aβ activated Dkk1/Wnt-PCP/Daam1/RhoA/ROCK-dependent pathway that drives dendritic spine withdrawal and synapse loss.

![Fig. 4. Fasudil is central nervous system penetrant and blocks Aβ synaptotoxicity and cognitive impairment.](image-url)
result in cognitive impairment and memory deficits by disrupting these processes.

Our data demonstrate that α-syn driven synapse

withdrawal involves the Dkk1-dependent activation of the Wnt-PCP/RhoA/ROCK pathway. We show that at nanomolar levels, oligomeric forms of α-syn regard to be the most

synaptotoxic form of α-syn [45,46] rapidly upregulate neuronal Dkk1 expression, leading to dendritic spine retraction and altered localization of the postsynaptic proteins, PSD-95 and GluA1, in a Daam1-dependent and ROCK-dependent manner.

It has been postulated that Dkk1 alters synapse stability predominantly through antagonism of the canonical Wnt-β-catenin pathway [16], which will contribute to the process given the role of canonical Wnt in synapse formation and stability [42,47]. Our data significantly advance on this idea, demonstrating that Dkk1-mediated synapse loss involves the simultaneous and necessary activation of the Wnt-PCP/RhoA/ROCK pathway. This is in line with previous reports specifically pointing to a role of Wnt-PCP signaling in Wnt-PCP/RhoA/ROCK pathway. We show that at nanomolar levels, oligomeric forms of α-syn regard to be the most synaptotoxic form of α-syn [45,46] rapidly upregulate neuronal Dkk1 expression, leading to dendritic spine retraction and altered localization of the postsynaptic proteins, PSD-95 and GluA1, in a Daam1-dependent and ROCK-dependent manner.

We previously reported that α-syn through Dkk1, aberrantly activates the JNK/c-Jun arm of Wnt-PCP, and this then drives the expression of genes required for α-syn-induced neuronal death and increases in tau phosphorylation in vitro and in vivo [4]. Furthermore, we also presented evidence that the signaling pathways most associated with disease in the AD brain are shaped, if not driven by Dkk1/Wnt-PCP activity [4]. We now argue then that the α-syn-driven Dkk1-dependent activation of Wnt-PCP underpins several of the key neuropathologic characteristics of AD, including possibly the most fundamental of all, synapse loss. This concept is depicted schematically in Fig. 5. Given the familial AD gene, APP, the α-syn parent molecule, has itself recently been shown to be a modulatory component of the Wnt-PCP coreceptor complex [48], surely underpins the importance of this pathway in the disease process and indicates that a better understanding of the roles of both α-syn and APP in it, will shed further light on the process and our ability to intervene therapeutically to slow it down or prevent it.

Here, not only do we shed new light on these mechanisms but have also identified fasudil, a drug approved for clinical use in Japan and China since 1994 for cerebrovascular vasospasm, as a strong candidate for repositioning/repurposing in AD. We assessed the pharmacodynamics of fasudil and its active metabolite hydroxysafudil and found that both have good brain penetrance. Because of legal infringements within the pharmaceutical industry fasudil has not received the Food and Drug Administration or European approval. However, in China it has been used in a small clinical trial in patients with AD in combination with a second vasodilator, nimodipine, and in this study, based on the cognitive assessment, was found to give benefit compared with nimodipine alone [49].

Given the recent report that ROCK inhibitor Y-27632 can reverse Dkk1-induced synapse loss in vivo [47] and that fasudil is a well tolerated in man [50], the data we present here concerning its ability to protect against α-synaptotoxicity, to be brain penetrant, and to protect against α-syn-induced cognitive impairment warrant serious assessment of its utility as a much needed treatment for AD.

Acknowledgments

This work was supported by MRC grants MR/M013944/1, award to R.K., and MR/L021064/1 awarded to D.P.S., and ARUK studentship grant no. ARUK-PhD2016-4 to D.P.S. and R.K.
RESEARCH IN CONTEXT

1 Systematic review: Several decades of medical research strongly indicate that synapse loss is an early and key event in Alzheimer’s disease, and that this is driven by soluble oligomeric forms of the amyloid beta (Aβ) peptide. However, the molecular mechanisms underlying Aβ synaptotoxicity are not clear, nor has any medication been identified that can halt this.

2 Interpretation: We present strong evidence that Aβ-driven synapse loss is dependent on a branch of Wnt signaling known as the planar cell polarity pathway. In elucidating this mechanism we found that synapses and cognition in rats are protected from the effects of Aβ by a drug in clinical use, fasudil.

3 Future directions: These findings will allow us to more clearly understand the mechanisms controlling the synaptic effects of Aβ to be determined. Importantly, they indicate that fasudil, which is safe in man and readily enters the brain, is a very promising candidate treatment for Alzheimer’s disease.

References