<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>CNM-D-17-00916R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>F-18-FDG PET/CT detected delayed endoleak in an aorto-iliac endovascular aneurysm repair (EVAR)</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Interesting Image</td>
</tr>
<tr>
<td>Keywords:</td>
<td>F-18-FDG PET/CT; EVAR; angiogram; endoleak; abdominal aortic aneurysm; diagnosis</td>
</tr>
</tbody>
</table>
| **Corresponding Author:** | Byung Jin Kim, BA
University of Oxford
Oxford, Oxfordshire UNITED KINGDOM |
| **Corresponding Author’s Institution:** | University of Oxford |
| **First Author:** | Byung Jin Kim, BA |
| **Order of Authors:** | Byung Jin Kim, BA
Kevin M Bradley, FRCP, FRCR
Manil Subesinghe, MRCP, FRCR |
| **Abstract:** | We present a case of a type Ia endoleak detected by F-18-FDG PET/CT 10 years following an abdominal aorto-iliac EVAR in an 83-year-old man. The F-18-FDG PET/CT scan was performed to evaluate a solitary pulmonary nodule but in addition demonstrated unexpected blood pool activity outside of the stent graft and within the abdominal aortic aneurysm (AAA) sac, indicating an endoleak; no FDG activity should be present within the aneurysm sac following stent graft placement. A subsequent CT angiogram confirmed the endoleak. This case illustrates the value of PET/CT in unexpectedly demonstrating this serious, late complication of EVAR. |
F-18-FDG PET/CT detected delayed endoleak in an aorto-iliac endovascular aneurysm repair (EVAR).

Authors

Byung Jin Kim, BA (Hons), Medical Sciences Division, John Radcliffe Hospital, OX3 9DU

Kevin M Bradley, FRCP, FRCR, Department of Radiology, Churchill Hospital, Oxford, OX3 7LE

Manil Subesinghe, MRCP, FCR, Department of Radiology, Churchill Hospital, Oxford, OX3 7LE

Correspondence

Byung Jin Kim, BA (Hons), Medical Sciences Division, John Radcliffe Hospital, OX3 9DU

Email: byungjin.kim@ccc.ox.ac.uk

Short title

PET/CT detected delayed endoleak

Conflicts of Interest

None
F-18-FDG PET/CT detected delayed endoleak in an aorto-iliac endovascular aneurysm repair (EVAR).
Abstract

We present a case of a type Ia endoleak detected by F-18-FDG PET/CT 10 years following an abdominal aorto-iliac EVAR in an 83-year-old man. The F-18-FDG PET/CT scan was performed to evaluate a solitary pulmonary nodule but in addition demonstrated unexpected blood pool activity outside of the stent graft and within the abdominal aortic aneurysm (AAA) sac, indicating an endoleak; no FDG activity should be present within the aneurysm sac following stent graft placement. A subsequent CT angiogram confirmed the endoleak. This case illustrates the value of PET/CT in unexpectedly demonstrating this serious, late complication of EVAR.

Key words

F-18-FDG PET/CT, EVAR, angiogram, endoleak, abdominal aortic aneurysm, diagnosis
Figure Legend

An 83-year-old man underwent a whole-body F-18-Fludeoxyglucose (FDG) PET/CT scan to characterise/stage an enlarging 1.4cm pulmonary nodule. As well as demonstrating the pulmonary nodule, the PET/CT scan revealed blood pool activity extending for approximately 7 cm within the left side of the original large AAA sac (A coronal, B axial; standard routine non-contrast PET images acquired at 90 minutes; SUV 0-6 scale; arrows to abnormal, extraluminal blood pool activity; C corresponding unenhanced axial CT image from PET/CT), which had undergone an abdominal aorto-iliac EVAR ten years previously. The left iliac limb was known to be chronically occluded, and had been successfully treated by a femoral-femoral crossover graft. The abnormal activity was localised to within the aneurysm sac and outside of the EVAR stent graft. A CT angiogram was performed (D and E) and confirmed there was an active, type Ia endoleak. The patient underwent open aortic neck banding but subsequently deceased due to pneumonia.

Endoleak is a unique complication of EVAR, caused by non-resolving pressure on the aneurysmal sac and it remains a significant problem in approximately 25% of patients, who have undergone EVAR to treat AAA with most endoleaks occurring in the first 30 days post-EVAR. A type 1 endoleak results from blood entering the aneurysm sac from an attachment site with consensus suggesting that this occurs in approximately 7.5% of procedures. Type 1a is from the proximal attachment site. Endoleak predisposes to post-operative morbidities, including aneurysmal sac expansion and subsequent rupture, making identification and treatment important. Various methods of investigation exist to monitor for endoleaks, including magnetic resonance angiography and duplex ultrasound with or without contrast. However, the gold standard to detection remains multiphase CT angiography. Increased FDG uptake involving the aortic wall, resulting from inflammation, has been suggested to be a predictor for an endoleak and AAA rupture risk. Recently, early, dynamic PET/CT and PET angiography for endoleak detection after EVAR has been proposed although is only likely to find utility
if intravenous contrast is contraindicated. Given the increasing use of endovascular techniques for the repair of AAA, with their associated endoleaks, the recognition of delayed endoleaks, outside of routine CT surveillance programmes, on PET/CT scans performed for other indications is of critical importance.
References

