Citation for published version (APA):
https://doi.org/10.1080/09638288.2017.1416185
Assessing self-reported disability in a low-literate population with chronic low back pain: Cross-cultural adaptation and psychometric testing of Igbo Roland Morris Disability Questionnaire

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Disability and Rehabilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>TIDS-02-2017-102.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Research Paper</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Cross-cultural research, Low back pain, Self-reported Disability, interviewer-administration, cross-cultural adaptation, psychometric testing</td>
</tr>
</tbody>
</table>
Assessing self-reported disability in a low-literate population with **chronic low back pain**: Cross-cultural adaptation and psychometric testing of Igbo Roland Morris Disability Questionnaire

Abstract

Purpose
Cross-culturally adapt and validate the Igbo Roland Morris Disability Questionnaire.

Method
Cross-cultural adaptation, test-retest and cross-sectional psychometric testing. Roland Morris Disability Questionnaire was forward and back translated by clinical/non-clinical translators. An expert committee appraised the translations. Twelve participants with chronic low back pain pre-tested the measure in a rural Nigerian community. **Internal consistency using Cronbach’s alpha**; **test-retest reliability using intra-class correlation coefficient and Bland-Altman plot**; and minimal detectable change were investigated in a **convenient sample of 50 people with chronic low back pain** in rural and urban Nigeria. **Pearson’s correlation analyses** using the eleven-point box scale and back performance scale, **and exploratory factor analysis** were used to examine construct validity in a random sample of 200 adults with chronic low back pain in rural Nigeria. Ceiling and floor effects were investigated in the two samples.

Results
Modifications gave the option of interviewer-administration and reflected Nigerian social context. The measure had excellent internal consistency (α = 0.91) and intraclass correlation coefficient (ICC = 0.84), moderately high correlations (r>0.6) with performance-based disability and pain intensity, and a predominant uni-dimensional structure, with no ceiling or floor effects.

Conclusions
Igbo Roland Morris Disability Questionnaire is a valid and reliable measure of pain-related disability.

Keywords
Cross-cultural research; Low back pain; Self-reported disability; interviewer-administration; cross-cultural adaptation; psychometric testing
Introduction

Low back pain (LBP) is the leading cause of years lived with disability in high and low income countries according to global burden of disease studies \(^1\). The impact is likely to be more devastating in low income countries \(^2\). This is more so in rural African contexts where beliefs, culture and common activities such as fetching water, farming, and carrying heavy objects, combined with high levels of poverty and lack of health information may increase the risk and impact of LBP.

The burden of LBP is disproportionately greater in rural Nigeria. The prevalence rate ranging between 70-85\% in rural Nigeria, is twice the prevalence rates in urban Nigeria \(^3\). A qualitative study in rural Nigeria suggested that LBP hindered the ability of individuals to perform their activities of daily living \(^4\).

Despite the significant burden of LBP in rural Nigeria, there are no self-report disability measures to assess its impact in this context. Self-report disability measures such as the Roland Morris Disability Questionnaire (RMDQ) \(^5\) appear to reflect the more comprehensive biopsychosocial disability model defined in the World Health Organisation’s International Classification of Functioning, Disability and Health (ICF). Disability constructs such as participation restriction, may be better measured subjectively through self-reports. In contrast, performance-based disability measures such as the back performance scale \(^6\) appear to be impairment focused.

In contrast to the back performance scale that is objectively measured \(^6\), self-report disability measures would require adaptation in a new language or culture \(^7\). Guidelines, developed from reviewing the cross-cultural adaptation of medical, sociological and
psychological literature, justifies the use of self-report measures in countries, cultures
and/or languages that differ from those where they were initially developed. This requires
unique methods of translation and cultural adaptation to ensure semantic, idiomatic,
experiential, and conceptual equivalence between the source and target questionnaires.
The source questionnaire refers to the original measure, while the target questionnaire
refers to the new questionnaire after it has been adapted into the new language/culture.

Adaptation of self-report measures into interviewer-administered versions may be an
additional requirement for low-literate populations, and may be more labour intensive and
complex. This may explain why studies in most countries including Nigeria have often used
original English disability measures such as the RMDQ among urban English speaking
participants, precluding the low-literate rural populations with the worst health outcomes.
However, previous studies suggest that interviewer-administration of self-report measures
is valid when interviewers are adequately trained to minimise bias to patient responses.
Moreover, interviewer-administration has been shown to reduce missing data, and may
be the only way to administer self-report measures to illiterate people in low resource
settings. Therefore, this study aimed to cross-culturally adapt the RMDQ into Igbo and
investigate its psychometric properties in a low-literate Nigerian population.

Methods

Designs
Cross-cultural adaptation, test-retest measurements and cross-sectional study of
psychometric properties.
Ethical considerations

Ethical approvals were obtained from King’s College London (Ref: BDM/13/14-99) and University of Nigeria Teaching Hospital (Ref: UNTH/CSA/329/Vol.5). Written permission was obtained from the original developers of the RMDQ.

Outcome measures

Roland Morris Disability Questionnaire (RMDQ)

RMDQ is the most commonly used valid measure of LBP disability. It is recommended as a core outcome measure for the standardisation of outcome measurement in LBP clinical trials, meta-analyses, cost-effectiveness analyses and multicenter studies. RMDQ is simple to administer, easily understood, and is the best measure for population or primary care based studies.

RMDQ is a twenty-four item back specific self-report measure with each item having possible scores of 0 or 1. A total maximum score of 24 signifies the highest possible disability level and 0 means that there is no disability. It has good face and content validity, construct validity, internal consistency, test-retest reliability and responsiveness. It has Cronbach’s alpha ranging between 0.84 and 0.93; test-retest reliability ranging between 0.72 and 0.91; and a 2-5point change from baseline is considered clinically important.

Back performance scale

This is an objective back-specific performance-based measure of mobility-related limitation that is scored by an assessor. The measure involves instructing participants to perform five physical performance tests (sock test, pick-up test, roll-up test, finger-tip-to-floor test and lift test) involving mobility of the trunk.
Sock test involves participants simulating putting on a sock from sitting. Pick-up test involves picking up a piece of paper from the floor. Roll-up test entails rolling up slowly from supine lying to a long sitting position with the arms relaxed. In finger-tip-to-floor test, participant stands on the floor with feet 10 centimeters apart, then bends forward with straight knees and tries to touch the floor with the fingertips. The distance between the floor and the fingertips is then measured in centimeters. For the lift test, a participant repeats lifting a 5-kilogram box from the floor to a 76 centimetres table and back to the floor for one minute. The number of lifts is then recorded. Each of the five tests has scores ranging from 0 to 3 depending on the difficulty or ease with which they are performed. A total possible score of 15 signifies maximum disability while 0 means no disability. The measure has good validity and reliability: internal consistency of 0.73, moderate correlations with RMDQ, and test-retest reliability of 0.91.

Eleven-point box scale

The measure is a single eleven-point numeric scale for pain intensity that consists of eleven numbers (0 through 10) surrounded by boxes. Zero represents ‘no pain’ and 10 represents ‘pain as bad as you can imagine’ or ‘worst pain imaginable’. It is easy to comprehend and administer, and may be the measure of choice for population-based studies involving illiterate people such as rural Nigeria.

Cross-cultural adaptation of Roland Morris Disability Questionnaire

Translation involves linguistic paraphrasing of a questionnaire. In contrast, cross-cultural adaptation comprises both translation and cultural adaptation in order to maintain the content validity of the instrument at a similar conceptual level in a different context.
involves adaptation of individual items, instructions for the questionnaire, and the response options.

Participants for cross-cultural adaptation

Participants included clinical and non-clinical translators, and an expert review committee. Translators were one clinical physiotherapist with twenty years of clinical experience practising in Nigeria, and three non-clinical translators including two Igbo linguistic experts who are professional translators experienced in patient reported outcome measures. Expert review committee members included two English experts (academic physiotherapist and health psychologist) working in the United Kingdom, and two Igbo experts (clinical physiotherapist and clinical psychologist) working in Nigeria.

Verbal pre-testing/piloting of the Igbo-RMDQ was done on August 29, 2014 with a convenience sample who participated in a previous study in rural Nigeria \(^4\), and who were willing to give informed consent and participate in this study. Their pain was not due to malignancy, spinal fracture, infection, inflammation or cauda equina syndrome \(^21\).

Procedure for cross-cultural adaptation

The original RMDQ \(^5\) was cross-culturally adapted following evidence-based guidelines for cross-cultural adaptation of patient-reported outcome measures \(^7,22\) (figure 1).

[insert figure 1]

Firstly, the questionnaire was forward translated from English to Igbo by one bilingual clinical physiotherapist and one bilingual non-clinical professional translator. Item definitions were provided for the clinical translator to ensure familiarity with the assessed
construct and provide greater psychometric equivalence with the original RMDQ. Item
definitions were not provided for the non-clinical translator to ensure that the translation
reflected the language used by lay people in Igbo culture. This stage produced two Igbo
RMDQ versions: T1 and T2 respectively.

Secondly, T1 and T2 were synthesized via discussion between the two forward translators,
mediated by the first author who is bilingual in English and Igbo. This produced one Igbo
version: T-12. Translations were compared and discrepancies were noted.

Thirdly, the Igbo (T-12) version of the RMDQ was back translated from Igbo to English by
two back translators, blind to the original version, who were from non-clinical backgrounds,
including one Igbo linguistic expert/professional translator. This produced two back-
translated English versions: BT1 and BT2. This is a validation process ensuring that
translation was consistent, and that the translated version (T-12) was reflecting the meaning
in the original measure.

Fourthly, T1, T2, T-12, BT1 and BT2 were discussed by the expert review committee to
produce the pre-final Igbo-RMDQ. The main purpose of this committee was to achieve
cross-cultural equivalence in terms of semantic, idiomatic, experiential and conceptual
equivalence. For semantic equivalence, the committee explored Igbo and English words to
assess if they meant the same thing, if there were multiple meanings to an item, and if there
were any grammatical difficulties in the translations. Idiomatic equivalence was assured by
the committee formulating alternative Igbo idioms and colloquialisms, where the English
versions were difficult to translate. Experiential equivalence was achieved by the committee
ensuring that questionnaire items were experienced similarly in English and Igbo cultures.
For conceptual equivalence, the committee determined that words in the items,
instructions, and response options had similar conceptual meanings in Igbo and English cultures. The expert committee also ensured that Igbo wordings were simple and could be easily understood regardless of age and educational levels.

Finally, the pre-final Igbo-RMDQ was field tested in rural Nigeria, among the twelve participants who had participated in a previous qualitative study. The first author interviewer-administered the RMDQ using the ‘think-aloud’ cognitive interviewing procedure to assess comprehensibility, acceptability of items and cultural equivalence. Each item was read out, and participants were requested to actively verbalise their thoughts as they attempted to answer each question. Participants were asked if they encountered difficulty comprehending the questionnaire, what was understood by each item, the meaning of the chosen response, and if they found any item offensive. They were encouraged to keep talking while the first author recorded their responses. This stage ensured that equivalence was maintained in the target setting to produce the final Igbo-RMDQ, confirming face and content validity. Technical equivalence (methods of data collection) was assured through data collection using the same format (interviewer-administration) with all participants.

Clarifications were sought from the original developers of the RMDQ and all linguistic changes made to the measure were discussed with them.

Psychometric testing of Igbo Roland Morris Disability Questionnaire
Sample size estimation

Test-retest reliability assessments
Based on a previous reliability study in South Africa, a minimum sample size of 27 was required per language group to detect an intra-class correlation coefficient of 0.9 and a maximum width of 0.23 for the 95% confidence interval. A study was conducted for test-retest reliability assessment, and involved a convenient sample of 50 participants with chronic LBP, between the ages of 18 and 69 years, recruited from rural and urban communities in Enugu State, South-eastern Nigeria.

Construct validity assessments
A sample size of 194 would give an 80% power to detect a very small correlation coefficient of 0.2 at α level of 0.05. To ensure an adequate sample size, construct validity assessment was done as part of another study – a population-based cross-sectional survey of a representative sample of 200 participants recruited from rural communities in Enugu State, South-eastern Nigeria.

Multistage cluster sampling was used to select ten rural communities, representative of rural populations in Enugu State. A sub-sample of twenty participants was selected in each of the ten communities via village announcements facilitated by the traditional head in each community. Stratified sampling of individuals by gender was done to ensure an equal representation of male and female participants.

Training community health workers for data collection
Community health workers were required for data collection through interviewer-administration as a significant proportion of rural dwellers in Nigeria are not literate. Ten community health workers were recruited from the University of Nigeria Teaching Hospital,
Enugu. They were trained for two weeks, for interviewer-administration of the self-report measures, and objective disability assessment with the back-performance scale. The training was daily, face-to-face, group-based, and done by the first author at the University of Nigeria Teaching Hospital Enugu, Nigeria. Training was done to minimise common survey errors: coverage, sampling, measurement and non-response errors.

Coverage error was avoided by obtaining a representative sample of the population through multistage cluster sampling. Sampling error was prevented through adequate sample size and gender stratification ensuring the study was not conducted among only one of many possible samples. Measurement error was reduced by using validated measures and tailoring community health workers’ training to avoid asking questions in ways that could bias participants’ responses or inaccurate objective disability measurements such as guessing measurements rather than using a tape measure. Training the workers to assess all recruited participants whilst ensuring that no items or scales were unanswered prevented non-response errors.

Training ended with question and answer sessions and a classroom clinical examination. Examination questions assessed survey rationale, purpose and protocol, and practical administration of outcome measures.

Participants and data collection procedure

Community health workers met with potential participants, provided information about the study and screened participants, by asking simple questions to rule out back pain due to malignancy, spinal fracture, infection, inflammation or cauda equina syndrome, in line with evidence-based guidelines for diagnosing non-specific LBP. Participants were requested to
describe their pain location with a body chart to confirm pain in the lower back. Informed
consent was subsequently obtained.

The Igbo-RMDQ was then interviewer-administered. The eleven-point box scale was
interviewer-administered to measure pain intensity, and was presented to participants as a
‘flash card’ as the item was read out. The back performance scale was used to objectively
assess performance-based disability.

To assess test-retest reliability, measures were completed at baseline on August 11, 2014
among the convenient sample of urban and rural Nigerian dwellers. Measurements were
repeated seven days after the first measurement among 45 participants. The remaining 5
participants were reassessed after ten days when they were available. The same community
health worker collected data from each participant on the two occasions.

For validity assessment, measures were completed at one time-point in a cross-sectional
design on August 22, 2014 among the 200 rural dwellers.

The two samples were similar in characteristics except that the test-retest sample also
included urban dwellers who routinely have higher literacy levels in Nigeria. Importantly,
recruiting different samples of rural and urban dwellers ensures wide applicability of the
Igbo-RMDQ in rural and urban Nigeria, as well as across all levels of literacy or illiteracy.

Fidelity Assessment

Fidelity checks were done to avoid systematic differences in data collection by the
community health workers. Involving workers that passed the post-training examinations
facilitated adherence to data collection protocols. Additionally, the first author visited each
worker during data collection without prior arrangement, and assessed their interviewing styles, data recording and assessment of performance-based disability. Furthermore, a participant from each community health worker was randomly selected, and the performance-based disability which is expected to be stable over the short period, was re-assessed by the first author and compared with the worker’s records.

Data analyses

Statistical Package for Social Sciences version 22 was used.

Reliability

Reliability assesses the ability of an instrument to measure consistently. Test-retest reliability evaluated how consistent the adapted RMDQ consistently measured disability over time, and was investigated using intra-class correlation coefficient (ICC). ICC was calculated using a two-way random effects model (which assumes that measurement errors could arise from either raters or subjects), using an absolute agreement definition between test-retest scores. 0.7, 0.8 and 0.9 represented good, very good and excellent ICCs. Internal consistency (Cronbach’s alpha), which portrays the extent to which all items in a test measure the same construct, was calculated and rated as low/weak (0-0.2), moderate (0.3-0.6) and strong (0.7-1.0). Bland-Altman plots were used to visually assess the level of agreement between test-retest measurements by plotting mean Igbo-RMDQ scores against difference in Igbo-RMDQ total scores.

Reliability was also evaluated using the standard error of measurement (SEM) and minimal detectable change (MDC). MDC is a statistical estimate of the smallest change detected by a measure that corresponds to a noticeable change in ability which is not due to measurement error. MDC was calculated using the standard error of measurement (SEM)
which is based on the distribution method, and the reliability of the measure which takes precision into account. SEM was based on the standard deviation (SD) of the sample and the test-retest reliability (R) of the Igbo-RMDQ, and was calculated with equation 1 below:

\[
\text{SEM} = \text{SD} \sqrt{1 - R}
\]

Equation 1: Standard Error of Measurement

MDC was subsequently calculated with equation 2 below:

\[
\text{MDC} = 1.96 \times \sqrt{2} \times \text{SEM}
\]

Equation 2: Minimal Detectable Change

Validity

Construct validity evaluates the extent to which a measure assesses the construct it was intended to measure. As there are no "gold standard" Igbo self-reported disability measures, construct validity was investigated. Construct validity of the Igbo-RMDQ was assessed with Pearson’s correlation coefficients (normally distributed data), and was rated as weak (0-0.2), moderate (0.3-0.6), and strong (0.7-1.0). As RMDQ assesses pain-related disability, the Igbo-RMDQ is expected to correlate at least moderately with pain intensity and performance-based disability. There was no Igbo quality of life measure with which to validate the Igbo-RMDQ.

There was no hypothesized factor structure, therefore exploratory factor analysis (EFA) was used to determine the number of factors influencing the Igbo-RMDQ, i.e. the items that go together (dimensionality). EFA was applied according to Kaiser Meyer Olkin (KMO) and the
Bartlett’s test with a minimum eigenvalue for retention set at ≥ 1.0 (Kaiser’s rule) \(^{26}\).

Retained and excluded factors were also explored visually on a scree plot. There was minimal correlation between items, therefore varimax (orthogonal) rotation was done, and factor loadings less than 0.3 were suppressed as recommended \(^{27}\). Extraction was done using principal axis factoring. The number of factors and the underlying relationships between the items were then investigated. Pearson’s correlation analyses (normally distributed data) were used to investigate the relationships between the underlying factors, and pain intensity, and performance-based disability.

Floor and Ceiling effects

Ceiling or floor effect occurs when a high proportion of participants score the highest or lowest score respectively, implying that a measure is unable to discriminate between participants at either extreme of the scale. A ceiling or floor effect was defined as 15% or more of the total sample of 250 participants scoring 0 or 24 on the Igbo-RMDQ \(^{28}\).

Results

Participants for cross-cultural adaptation

Table 1 shows that slightly over half of the participants were males and manual workers, including farmers, panel beaters and welders. Non-manual workers were civil servants and traders. Majority were from the Pentecostal Christian religion, married, with secondary education. Half of them were literate in English only.

[insert table 1 here]
Translation, comprehensibility and cultural equivalence of the Igbo Roland Morris Disability Questionnaire

There were no major translation problems. The expert review committee introduced two extra clauses in the instruction: ‘or when someone reads them to you’ and ‘or tell the person that read it to you to mark your response’ to give the option of interviewer-administration (Supplemental materials).

T1 and T2 translators used different Igbo dialects and sentence structures for many items. These were resolved during syntheses, back translations and expert committee review by using central/official Igbo dialect and sentence structures that retained meaning closest to the original item. In item 1, ‘nearly all the time’ was used to better reflect the original item as the same Igbo phrase means ‘many times’ or ‘most of the time’. Item 5 was translated differently: ‘I hold onto something...’ and ‘I hold onto a stick...’ because there is no Igbo word for ‘handrail’. Through consensus of all translators, ‘I hold onto the step hand...’ was used as the Igbo equivalent means the same thing as the original item. For item 16, a new phrase ‘my foot wear’ was used by the expert review team to better reflect the social context of rural Nigeria where many people do not wear socks. For item 23, a new phrase ‘or uphill’ was added to the original item to reflect rural Nigeria where many dwellers lived in bungalows with hilly terrains. Through consensus of all translators and the review team, ‘I lie down’ was used in place of ‘I stay in bed’ in item 24, as some rural Nigerian dwellers do not lie on beds. During pre-testing of Igbo-RMDQ, the Igbo word for ‘waist pain’ was how participants understood pain in the lower back. Literal Igbo translation of back pain was understood as either upper back pain or pain of the entire back, which made some participants with pain only in the lower back to deselect items. Therefore ‘back pain or back’ and ‘waist pain or waist’ were used in the items (Supplemental materials), but ‘waist pain or
waist’ was read out for this specific lower back pain population. Supplemental materials were produced in consultation with Professor Martin Roland, the developer of the original RMDQ. Supplemental material 1 contains the Igbo-RMDQ. Supplemental material 2 contains the minor changes made to the measure and why, and instructions to researchers and clinicians using the Igbo-RMDQ.

Psychometric properties

Fidelity results

CHWs adhered to the recommended interviewing styles emphasized during the training. Examples include maintaining neutrality during interview, not reacting by gesture or word, either positively or negatively to any responses; discouragement of digression, distraction and inappropriate enquiries, and not changing the wording and sequence of questions in the measures. Data recording was adequate as this was planned a priori. CHWs provided only one answer to each item, marked in the space provided for each item in each measure. The assessment of performance-based disability was adequate. For instance, CHWs used tape measures adequately to assess 10 cm between the feet, and measured the distance between the fingertips and the floor, for the finger-tip-to-floor test. The performance-based disability levels recorded by the first author and the CHWs were similar for the randomly selected subsample of participants (exact values or differences of not more than 2 in the back-performance scale were observed).

Participants for psychometric testing

The demographic characteristics of the two samples are presented in tables 2 and 3 below. Table 2 presents the test-retest sample of 50 participants, and shows that a majority were females, married, in paid work or self-employed. Slightly less than half were rural dwellers in
Enugu state. Participants were mostly middle aged with secondary level of education. Table 3 presents 200 participants in the cross-sectional validity testing. They were all rural dwellers in Enugu state. Nearly equal numbers were males. They were middle aged with primary level of education. A majority were married and self-employed.

[insert table 2 here]

[insert table 3 here]

Reliability

Table 4 below shows that internal consistency was excellent (α = 0.91), and intraclass correlation coefficient was very good (ICC = 0.84). Standard error of measurement and minimal detectable change were 2.53 and 7.01 respectively.

[insert table 4 here]

Figure 2 below suggests acceptable agreement between test-retest values of the Igbo-RMDQ as the mean difference was close to zero and most points were within the 95% limits of agreement of the mean difference.

[insert figure 2]
Construct validity

Table 5 below shows that Igbo-RMDQ had moderately high correlations (r>0.6) with performance-based disability and pain intensity.

[insert table 5 here]

The Scree Plot in Figure 3 below suggests a predominant one-factor structure and a secondary four-factor solution of the Igbo-RMDQ.

[insert figure 3]

Table 6 below also suggests one dominant factor structure of the Igbo-RMDQ with four underlying factors because the amount of explained variance drops sharply after the first factor (from 32.41% to 5.56%). However, all four factors had eigenvalues >1.

Factor 1 had six items (5, 23, 3, 16, 7, 12) loading on it; and represents ‘mobility problems related to climbing stairs, walking, wearing socks, sit-to-stand transfer. Factor 2 had five items (24, 20, 2, 6, 13) loading on it; and signifies sensory function of pain, and reduced activity and frequent change of position to alleviate pain. Factor 3 had eight times (15, 18, 8, 19, 9, 22, 1, 14) loading on it; and corresponds to mental functions related to appetite, sleep, emotions and relationships; self-care related to dressing and getting people to help; and transfer-in-bed aspects of mobility. Factor 4 had five items (10, 21, 17, 11, 4) loading on it. This factor represents problems with performing household tasks and avoidance behaviour in relation to maintaining or sustaining a body position or movement, including bending/kneeling.
Table 7 below shows the mobility factor had the strongest correlation \((r \approx 0.6) \) with back performance scale, a measure of mobility-related limitation. Similarly, the pain sensation factor had the strongest correlation \((r \approx 0.6) \) with eleven-point box scale, a measure of pain intensity. In contrast, the lowest correlations \((r \approx 0.4) \) with pain intensity and mobility-related limitation were with the mental functions/self-care factor and household tasks/avoidance behaviour factor respectively. All factors had at least a moderate correlation with pain intensity and mobility-related limitation and had high moderate correlations with each other.

Ceiling and floor effects

5.6% (14) and 0.8% (2) of participants scored 0 and 24 respectively on the Igbo-RMDQ.

Discussion

Low literacy is a common exclusion criterion in clinical trials and epidemiological studies in both high income and low income countries due to the difficulty with completing self-report measures. This study enabled the cross-cultural adaptation of a self-report disability measure – the RMDQ into an interviewer-administered version for Igbo populations with low literacy rates.

The RMDQ was easy to translate, culturally adapt, comprehend and was generally acceptable in this population, similar to other adaptations. Pain in the lower back was generally described with the Igbo word for ‘waist pain’ in this population possibly due to
limited Igbo adjectives, and the Igbo cultural connotation of the ‘waist’ as a body part that does important human movements/activities, believed to be hampered by LBP. LBP is commonly regarded as ‘waist pain’ in other rural African contexts such as rural Botswana.

The internal consistency of the Igbo-RMDQ (α= 0.84) corresponds with the 0.84-0.93 of the original English measure, similar to other adaptations. The Igbo-RMDQ is reliable, evidenced by high ICC (0.80); and Bland-Altman plots suggesting agreement which concurs with the original measure, and other adaptations.

The minimal detectable change (MDC: 7.00) and Bland-Altman limits of agreement (-8.58 to 9.54) are greater than 4-5 reported in Norwegian translation, 5 points minimal clinically important difference (MCID), and the 30% reduction of baseline score MCID criteria (Igbo-RMDQ mean score of 11.12 in this population). SEM and MDC of the original RMDQ has been reported as 1.79 and 5 respectively. Inflated SEM and MDC of the Igbo-RMDQ observed in this study may be due to high sample variability (standard deviation), probably due to low literacy rates, interviewer-administration in place of self-administration, and data collection by several raters. Although stringent efforts via rigorous training and fidelity checks were made to avoid systematic differences in data collection, it is possible that different personalities of the community health workers may have influenced participants’ responses in dissimilar ways. Future studies should compare interviewer-administration involving a single rater with administration by multiple raters to determine if there are differences in sample standard deviations. However, the SEM (2.53) of Igbo-RMDQ in this study is below the reported MCID of the RMDQ suggesting clinical utility.

MCID combines both anchor-based methods (patients’ rating of improvement) and distribution-based method (dependent on the SEM), and has not been determined in this
population. MDC should be sufficiently small to detect MCID. However, MDC solely
determined using distribution-based methods may lead to patients with actual
improvement being rated as not improved, as measurement error is not constant across
scores and populations. The Igbo-RMDQ has a SEM (2.53) that is smaller than its Bland
and Altman agreement limits and MCID of the original RMDQ. Importantly, change within
measurement error, believed to be real by patients, likely reflect true change.

The construct validity of the Igbo-RMDQ was confirmed as it had moderately high positive
correlations with performance-based disability and pain intensity suggesting that it is a
measure of pain-related disability. The moderate correlation of Igbo-RMDQ with
performance-based disability suggests that self-reported and performance-based disability
are related but distinct constructs. However, the lack of any Igbo quality of life measure
with which to validate the Igbo-RMDQ is a limitation as individuals’ perception of their
functional ability may reflect how chronic back pain impacts on quality of daily life.
Moreover, performance-based disability and pain intensity measures assessed mobility and
pain-related functional capacity, whereas Igbo-RMDQ included life activities that may be
more affected by negative emotions, more in line with the construct of quality of life.
Therefore, future studies should cross-culturally adapt Igbo quality of life measures which
can then be compared with the Igbo-RMDQ.

The original RMDQ was developed and has been routinely scored as a unidimensional
disability measure which is supported by this study. The dimensionality of the RMDQ has
been a topic of debate among researchers. Whereas some authors support a
unidimensional structure of the RMDQ, others support a three-factor structure. In this
study, one dominant factor structure of the Igbo-RMDQ with a secondary four-factor
structure was suggested because the amount of explained variance dropped sharply after the first factor which explained nearly three times the variance of the other three factors combined although all four factors had eigenvalues >1. This implies that the Igbo-RMDQ measured an overall disability construct with several related underlying constructs. The four underlying factors within the overall disability construct were problems with mobility (factor 1), sensory function of pain (factor 2), mental functions and self-care (factor 3), and household tasks and avoidance behaviour (factor 4). Problems with mobility, self-care and household tasks are at the level of activity limitation and participation restriction, whereas sensory function of pain and mental functions are at the level of body functions. In the study by Magnussen, et al. 34 mental functions were split into ‘symptoms’ including poor appetite and ‘functional limitations’ including relationships/conflict handling; whereas self-care tasks were classified under activity limitations and participation restrictions.

The high moderate correlations of the four secondary factors with each other and the cross loading of items again corroborate one dominant factor structure of the Igbo-RMDQ. Mobility factor was not completely distinct as one mobility item (item 14) ‘I find it difficult to turn around when I am lying down because of my waist(back)’ also loaded on factor 3. Factor 3 also had mental functions related to appetite, sleep, emotions and relationships; and self-care related to dressing and getting people to help. The interpretation of this construct is not straightforward as mental functions, self-care and mobility were represented as one factor. It is possible that the difficulty people in this population encountered in ‘turning around in bed’ impacted on the quality of the mental function of sleep. The fact that mental functions of appetite, sleep, emotions and relationships; and self-care loaded on the same factor; and therefore, represented related constructs could be
because reduced ability to perform self-care activities such as dressing, and involving other people in performing such intimate activities may have stimulated feelings of dependence, low self-esteem and helplessness in this population. This supports the literature suggesting that some forms of social support can paradoxically reinforce a sense of dependence and undermine self-esteem, leading to feelings of helplessness.

The strongest correlation of the mobility factor and pain sensation factor with the measures of mobility-related limitation and pain intensity respectively; and the comparative weaker correlations of mental functions/self-care factor and household tasks/avoidance behaviour factor with pain intensity and mobility-related limitation suggest that secondary constructs of pain sensation, mobility, self-care, household tasks and avoidance behaviour contribute to the one dominant factor structure of the Igbo-RMDQ. To some extent, these findings support the ICF multidimensional concept of disability, however no item in the RMDQ explicitly represented occupational or community aspects of participation, body structure and environmental components of the ICF.

In agreement with other studies, there was no floor and ceiling effects observed with the Igbo-RMDQ. However, the literature shows that the RMDQ may not discriminate among patients with different levels of severe disability suggesting that a ceiling effect may exist for people with severe disability. In this study, the mean RMDQ score was 11.12 (SD=6.5), suggesting low to moderate disability levels, and therefore a low risk for ceiling effect.

This study has some limitations including the inability to compare self-administration with interviewer-administration of the Igbo-RMDQ due to the few number of people that were literate in Igbo. This should be the focus of future research to clarify whether interviewer-
administration increased measurement error. Studies could also compare self-administration of the original RMDQ with interviewer-administration of the Igbo-RMDQ in populations that are literate in Igbo and English to further validate the Igbo-RMDQ. Sensitivity-to-change clinical studies of the Igbo-RMDQ may be needed with single raters, and using more rigorous analysis such as receiver operating characteristic (ROC) curves, which includes patients’ own global impression of change to determine the MCID of the Igbo-RMDQ. Future studies are required to confirm the factor structure of the Igbo-RMDQ utilising Rasch and confirmatory factor analysis.

Conclusions

The Igbo-RMDQ (Supplemental material 1) is a valid and reliable measure of disability that will be useful for clinical and global health research purposes. This study found support for one dominant factor that legitimise the use of a single sum score as in the original measure.

References

Figure captions

Figure 1: Cross-cultural adaptation stages adapted from Beaton et al

Figure 2: Bland-Altman plot for test-retest agreement of Igbo-RMDQ
Figure 3: Scree Plot of Igbo-RMDQ
Implications for rehabilitation

- Low back pain is the leading cause of years lived with disability worldwide, and is particularly prevalent in rural Nigeria, but there are no self-report measures to assess its impact due to low literacy rates. This study describes the cross-cultural adaptation and validation of a core self-report back pain specific disability measure in a low-literate Nigerian population.

- The Igbo Roland Morris Disability Questionnaire is a reliable and valid measure of self-reported disability in Igbo populations as indicated by excellent internal consistency ($\alpha = 0.91$) and intra-class correlation coefficient (ICC = 0.84), moderately high correlations ($r>0.6$) with performance-based disability and pain intensity that supports a pain-related disability construct, a predominant one factor structure with no ceiling or floor effects.

- The measure will be useful for researchers and clinicians examining the factors associated with low back pain disability or the effects of interventions on low back pain disability in this culture. This measure will support global health initiatives concurrently involving people from several cultures or countries, and may inform cross-cultural disability research in other populations.
Table 1: Demographic characteristics of participants that pre-tested the measure

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age= 45 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENDER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>7</td>
<td>58.33</td>
</tr>
<tr>
<td>Female</td>
<td>5</td>
<td>41.67</td>
</tr>
<tr>
<td>MAIN OCCUPATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual workers</td>
<td>7</td>
<td>58.33</td>
</tr>
<tr>
<td>Non-manual workers</td>
<td>5</td>
<td>41.67</td>
</tr>
<tr>
<td>RELIGION (CHRISTIAN DENOMINATION)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protestant Pentecostal</td>
<td>10</td>
<td>83.33</td>
</tr>
<tr>
<td>Catholic</td>
<td>2</td>
<td>16.67</td>
</tr>
<tr>
<td>MARITAL STATUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>11</td>
<td>91.67</td>
</tr>
<tr>
<td>Single</td>
<td>1</td>
<td>8.33</td>
</tr>
<tr>
<td>EDUCATIONAL LEVEL COMPLETED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>4</td>
<td>33.33</td>
</tr>
<tr>
<td>Primary</td>
<td>3</td>
<td>25.00</td>
</tr>
<tr>
<td>None</td>
<td>3</td>
<td>25.00</td>
</tr>
<tr>
<td>Tertiary</td>
<td>2</td>
<td>16.67</td>
</tr>
<tr>
<td>LITERACY (ABILITY TO READ AND WRITE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiterate (inability to read and write)</td>
<td>4</td>
<td>33.33</td>
</tr>
<tr>
<td>English</td>
<td>6</td>
<td>50.00</td>
</tr>
<tr>
<td>English and Igbo</td>
<td>2</td>
<td>16.67</td>
</tr>
</tbody>
</table>
Table 2: Demographic characteristics of participants for test-retest reliability testing

<table>
<thead>
<tr>
<th></th>
<th>Frequency (%)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>32 (64.0)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18 (36.0)</td>
<td></td>
</tr>
<tr>
<td>Habitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>20 (40.0)</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>30 (60.0)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td>45.2 (11.55)</td>
</tr>
<tr>
<td>Education (years)</td>
<td></td>
<td>13.3 (7.14)</td>
</tr>
<tr>
<td>Current marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currently married</td>
<td>37 (74.0)</td>
<td></td>
</tr>
<tr>
<td>Never married</td>
<td>8 (16.0)</td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>4 (8.0)</td>
<td></td>
</tr>
<tr>
<td>Separated</td>
<td>1 (2.0)</td>
<td></td>
</tr>
<tr>
<td>Work status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paid work</td>
<td>25 (50.0)</td>
<td></td>
</tr>
<tr>
<td>Self-employed (own business or farming)</td>
<td>19 (38.0)</td>
<td></td>
</tr>
<tr>
<td>Keeping house/homemaker</td>
<td>2 (4.0)</td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>2 (4.0)</td>
<td></td>
</tr>
<tr>
<td>Non-paid work (volunteer or charity)</td>
<td>1 (2.0)</td>
<td></td>
</tr>
<tr>
<td>Unemployed (health reasons)</td>
<td>1 (2.0)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Demographic characteristics of participants for cross-sectional validity testing

<table>
<thead>
<tr>
<th></th>
<th>n=200</th>
<th>n (%)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>112</td>
<td>(56.0)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>88</td>
<td>(44.0)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td>48.6 (12.0)</td>
</tr>
<tr>
<td>Education (years)</td>
<td></td>
<td></td>
<td>7.0 (6.4)</td>
</tr>
<tr>
<td>Current marital status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currently married</td>
<td>143</td>
<td>(71.5)</td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>31</td>
<td>(15.5)</td>
<td></td>
</tr>
<tr>
<td>Never married</td>
<td>22</td>
<td>(11.0)</td>
<td></td>
</tr>
<tr>
<td>Cohabiting</td>
<td>2</td>
<td>(1.0)</td>
<td></td>
</tr>
<tr>
<td>Separated</td>
<td>2</td>
<td>(1.0)</td>
<td></td>
</tr>
<tr>
<td>Work status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-employed (own business or farming)</td>
<td>125</td>
<td>(62.5)</td>
<td></td>
</tr>
<tr>
<td>Paid work</td>
<td>31</td>
<td>(15.5)</td>
<td></td>
</tr>
<tr>
<td>Non-paid work (volunteer or charity)</td>
<td>16</td>
<td>(8.0)</td>
<td></td>
</tr>
<tr>
<td>Keeping house/homemaker</td>
<td>13</td>
<td>(6.5)</td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>7</td>
<td>(3.5)</td>
<td></td>
</tr>
<tr>
<td>Unemployed (health reasons)</td>
<td>4</td>
<td>(2.0)</td>
<td></td>
</tr>
<tr>
<td>Unemployed (other reasons)</td>
<td>3</td>
<td>(1.5)</td>
<td></td>
</tr>
<tr>
<td>Retired</td>
<td>1</td>
<td>(0.5)</td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Reliability of Igbo-RMDQ

<table>
<thead>
<tr>
<th>Number of items: 24; Cronbach’s alpha global score: 0.91; ICC (95% CI): 0.84 (0.71, 0.91)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronbach’s alpha if item deleted</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>8.9 8.9 9.0 9.0 8.9 8.9 8.9 9.0</td>
</tr>
<tr>
<td>0.9 10 11 12 13 14 15 16</td>
</tr>
<tr>
<td>0.9 8.9 8.9 8.9 8.9 8.9 8.9 9.0</td>
</tr>
<tr>
<td>17 18 19 20 21 22 23 24</td>
</tr>
<tr>
<td>0.9 9.0 9.0 8.9 8.9 8.9 9.0 8.9</td>
</tr>
<tr>
<td>SEM: 2.53 MDC: 7.01</td>
</tr>
</tbody>
</table>
Table 5: Pearson’s correlation between Igbo-RMDQ, performance-based disability and pain intensity

<table>
<thead>
<tr>
<th></th>
<th>Back Performance Scale</th>
<th>Eleven-point box scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Igbo-RMDQ</td>
<td>646**</td>
<td>.608**</td>
</tr>
</tbody>
</table>

**p<0.01
Table 6: Exploratory factor analysis of the Igbo-RMDQ

<table>
<thead>
<tr>
<th></th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Igbo-RMDQ5</td>
<td>.773</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ23</td>
<td>.644</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ3</td>
<td>.579</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ16</td>
<td>.515</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ7</td>
<td>.503</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ12</td>
<td>.450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ24</td>
<td>.691</td>
<td>.567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ20</td>
<td>.613</td>
<td>.561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ2</td>
<td>.533</td>
<td>.469</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ6</td>
<td>.519</td>
<td>.446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ13</td>
<td>.488</td>
<td>.437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ15</td>
<td></td>
<td>.431</td>
<td>.396</td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ18</td>
<td></td>
<td>.350</td>
<td>.396</td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ8</td>
<td>.469</td>
<td>.350</td>
<td>.396</td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ9</td>
<td>.437</td>
<td>.350</td>
<td>.396</td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ22</td>
<td></td>
<td>.350</td>
<td>.396</td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ1</td>
<td></td>
<td>.350</td>
<td>.396</td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ10</td>
<td></td>
<td>.350</td>
<td>.396</td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ21</td>
<td></td>
<td>.350</td>
<td>.396</td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ17</td>
<td></td>
<td>.350</td>
<td>.396</td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ11</td>
<td></td>
<td>.350</td>
<td>.396</td>
<td></td>
</tr>
<tr>
<td>Igbo-RMDQ4</td>
<td>.405</td>
<td>.350</td>
<td>.396</td>
<td></td>
</tr>
</tbody>
</table>

KMO= 0.91
χ²= 1913.583***

Eigenvalue of each factor:
- Factor 1: 8.301
- Factor 2: 1.901
- Factor 3: 1.467
- Factor 4: 1.296

% explained variance of factor:
- Factor 1: 32.416
- Factor 2: 5.558
- Factor 3: 4.064
- Factor 4: 2.950

Only factor loadings above 0.3 are shown; KMO= Kaiser-Meyer-Olkin measure of sampling adequacy; χ²= Bartlett’s test of sphericity tested with chi-square ***p<0.001; Extraction Method: Principal Axis Factoring; Rotation Method: Varimax with Kaiser Normalisation; Rotation converged in 8 iterations.
Table 7: Pearson’s correlation analyses between the underlying factors of Igbo-RMDQ, and pain intensity, and performance-based disability

<table>
<thead>
<tr>
<th>Factor 1 Mobility</th>
<th>Back Performance Scale</th>
<th>Eleven-point box scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.585**</td>
<td>.523**</td>
</tr>
<tr>
<td>Factor 2 Pain sensation</td>
<td>.542**</td>
<td>.553**</td>
</tr>
<tr>
<td>Factor 3 Mental functions and self-care</td>
<td>.539**</td>
<td>.397**</td>
</tr>
<tr>
<td>Factor 4 Household tasks and avoidance behaviour</td>
<td>.352**</td>
<td>.458**</td>
</tr>
</tbody>
</table>

Correlation matrix of factors

<table>
<thead>
<tr>
<th></th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1</td>
<td>.639**</td>
<td>.633**</td>
<td>.577**</td>
</tr>
<tr>
<td>Factor 2</td>
<td></td>
<td>.607**</td>
<td>.572**</td>
</tr>
<tr>
<td>Factor 3</td>
<td></td>
<td></td>
<td>.490**</td>
</tr>
</tbody>
</table>

**p<0.01
Stage 1: Two forward translations of original RMDQ to Igbo
 i. T1 (Igbo) version: bilingual Physiotherapist
 ii. T2 (Igbo) version: bilingual non-clinical translator

Stage 2: Synthesis of the two forward translations (T1 & T2) by the two translators, with
 CNI-C mediating discussion, to produce T-12 (Igbo) version

Stage 3: Two back translations of T-12 (Igbo) version to English
 i. BT1 (English) version: non-clinical translator
 ii. BT2 (English) version: non-clinical translator
 iii. CNI-C: reviewed and summarised differences in BT1 and BT2 versions

Stage 4: Expert committee review produced pre-final Igbo RMDQ.
 CNI-C mediated discussion of translations and discrepancies in T1, T2, T-12, BT1 and BT2
 versions with experts in UK and Nigeria.

Stage 5: Pretesting of pre-final Igbo RMDQ with patients by CNI-C to produce the final Igbo
 RMDQ.

CNI-C: The first author

Figure 1: Cross-cultural adaptation stages adapted from Beaton et al

119x141mm (300 x 300 DPI)
Figure 2: Bland-Altman plot for test-retest agreement of Igbo-RMDQ.
Mean: 0.48 (-0.83, 1.79); SD: 4.62.
Upper limit: (+1.96 SD): 9.54
Lower limit: (-1.96 SD): -8.58.

118x95mm (300 x 300 DPI)
Figure 3: Scree Plot of Igbo-RMDQ

115x92mm (300 x 300 DPI)
Supplemental file 1: Igbo Roland Morris Disability Questionnaire

Mgbe o bula ukwu na egbu gi mgbu, I nwere ike ihu na ufodu ihe i na eme mgbe mbu nweziri ike ihia gi ahu ime. Ihe ndia edeputara bu etu ndi mmadu siri kowaa onwe ha mgbe ha na enwe ukwu mgbu. Mgbe i guo ha ma o bu mmadu aguoro gi ha, I nwere ike ifu na ufodu kowara ka o di gi ubochi taa. I na agu ihe ndia, ma o bu mmadu ana aguru gi ha, chee maka onwe gi ubochi taa. Mgbe o bula i guru, ma o bu mmadu guru gi nke kowara gi ubochi taa, kanye ihe ine na ya ma o bu gwa onye guputara gi ya ka o kanye ihe na ya. O buru na okwu o bula akowaghi gi, harpu okwu aha ma jee na nke ozo. Chetakwa ka i kanye ihe soso mgbe i kwetara na o kowara gi ubochi taa.

1. Ana m ano n’ulo, o foro ntakiri ka o buru mgbe nile n’ihi ukwu m.
2. Ana m anoghari otutu oge iji nweta onodu ga adiri ukwu m mma.
3. Eji m nwayo aga ije karia etu okwesiri maka ihi ukwu m.
4. Maka ihi ukwu m, anaghi m aru oru o bula m na arubu n’ulo ma o bu akuku ulo.
5. Maka ihi ukwu m, ana m ejide ihe aka step ma m na arigo ulo elu.
6. Maka ihi ukwu m, ana m edina ala izu ike mgbe mgbe karia na mbu.
7. Maka ihi ukwu m, ana m ejide ihe aka wee bilie na oche nwere aka.
8. Maka ihi ukwu m, ana m ejisi ike achota ndi ozo ka ha mere m ihe.
9. Ana m eji nwayo nwayo eyiri akwa karia ka m kwesiri maka ihi ukwu m.
10. Ana m akwu oto obere oge maka ihi ukwu m.
11. Maka ihi ukwu m, ana m ejisi ike ghara ihu ehu ma o bu sepkuru ala.
12. O na ahia m ahu isi na oche ebili maka ihi ukwu m.
13. Ukwu m na-egbu m mgbu, oforo ntakari ka o buru mgbe nile.
14. Ona ahia m ahu itughari ma m dina ala maka ihi ukwu m.
15. Agu anaghi agu m nke oma maka ihi ukwu mgbu m.
16. Ana m enwe nso gbogbo iyinye akpukpu ukwu m maka ihi mgbe di na ukwu m.
17. Ana m aga soso ije eteghi aka maka ihi ukwu mgbe m.
18. Anaghi m arahu ura nke oma maka ihi ukwu m.
19. Maka ihi ukwu mgbe m, onye ozo na enyere m aka i yiri akwa.
20. Ana m anodu ala otutu oge na ubochi maka ukwu m.
21. Ana m ezere oru ihe di n’ulo maka ihi ukwu m.
22. Maka ihi ukwu mgbe m, ana m enwe mgbakasi ahu na iwe oku ebe ndi mmadu no karia mgbe mbu.
23. Maka ihi ukwu m, ana m ejisi nwayo nwayo arigo ulo elu ma o bu igbago ugwu karia na mbu.
24. Ana m edina ala otutu oge maka ihi ukwu m.
Supplemental file 2: Alterations made to the Igbo Roland Morris Disability Questionnaire (Igbo-RMDQ) during cross-cultural adaptation

<table>
<thead>
<tr>
<th>Item no</th>
<th>Original RMDQ</th>
<th>English equivalent of the Igbo-RMDQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I stay at home most of the time because of my back</td>
<td>I stay at home, nearly all the time, because of my waist pain (or back pain)*</td>
</tr>
<tr>
<td>2</td>
<td>I change position frequently to try and get my back comfortable</td>
<td>I change my position often to get a position that will be comfortable for my waist (or back)</td>
</tr>
<tr>
<td>3</td>
<td>I walk more slowly than usual because of my back</td>
<td>I walk slowly more than usual because of my waist (or back)</td>
</tr>
<tr>
<td>4</td>
<td>Because of my back, I am not doing any of the jobs that I usually do around the house</td>
<td>Because of my waist (or back), I am not doing any of the house work that I usually do around the house</td>
</tr>
<tr>
<td>5</td>
<td>Because of my back, I use a handrail to get upstairs</td>
<td>Because of my waist (or back), I hold onto the step hand to climb the stairs</td>
</tr>
<tr>
<td>6</td>
<td>Because of my back, I lie down to rest more often</td>
<td>Because of my waist (or back), I lie down to rest more frequently</td>
</tr>
<tr>
<td>7</td>
<td>Because of my back, I have to hold on to something to get out of an easy chair</td>
<td>Because of my waist (or back), I hold onto something when getting out of a chair</td>
</tr>
<tr>
<td>8</td>
<td>Because of my back, I try to get other people to do things for me</td>
<td>Because of my waist (or back), I try to get other people to do things for me</td>
</tr>
<tr>
<td>9</td>
<td>I get dressed more slowly than usual because of my back</td>
<td>I wear my clothes more slowly than usual because of my waist (or back)</td>
</tr>
</tbody>
</table>
I only stand up for short periods of time because of my back

Because of my back, I try not to bend or kneel down

I find it difficult to get out of a chair because of my back

My back is painful almost all the time

I find it difficult to turn over in bed because of my back

My appetite is not very good because of my back pain

I have trouble putting on my socks (or stockings) because of the pain in my back.

I only walk short distances because of my back

I sleep less well because of my back

Because of my back pain, I get dressed with help from someone else

I sit down for most of the day because of my back

I avoid heavy jobs around the house because of my back

Because of my back pain, I am more irritable and bad tempered with people than usual.

Because of my back, I go upstairs more slowly than usual

I stay in bed most of the time because of my back.

Coloured text are modifications. Changes in the instructions gave the option of interviewer-administration of the Igbo-RMDQ. The expert review committee introduced two extra clauses in the instruction: ’or when someone reads them to you’ and ’or tell the person that read it to you to mark your statement’ to give the option of interviewer-administration.

*During pre-testing of Igbo-RMDQ, the Igbo word for ‘waist pain’ was how participants understood pain in the lower back. Literal Igbo translation of back pain was understood as either upper back pain or pain of the entire back. Therefore ‘back pain or back’ and ‘waist pain or waist’ were used in the items but ‘waist pain or waist’ was read out to this specific low back pain population.

Clinicians/researchers using the measure in a general back pain population could use ‘back/back pain or waist/waist pain’ in the relevant items as shown above. Used together, the Igbo equivalents of ‘back/back pain and waist/waist pain’ reflect the general back pain population. ‘Waist pain’/’waist’ should be used when investigating only a low back pain population.
In item 1, ‘nearly all the time’ was used to better reflect the original item as the same Igbo phrase means ‘many times’ or ‘most of the time’.

Item 5 was translated differently: ‘I hold onto something…’ and ‘I hold onto a stick…’ because there is no Igbo word for ‘handrail’. Through consensus of all translators, ‘I hold onto the step hand…’ was used as the Igbo equivalent means the same thing as the original item.

For item 16, a new phrase ‘my foot wear’ was used by the expert review team to better reflect the social context of rural Nigeria where many people do not wear socks.

For item 23, a new phrase ‘or uphill’ was added to the original item to reflect rural Nigeria where many dwellers lived in bungalows with hilly terrains.

Through consensus of all translators and the review team, ‘I lie down’ was used in place of ‘I stay in bed’ in item 24, as some rural Nigerian dwellers do not lie on beds.