Citation for published version (APA):
Using mesenchymal stromal cells in islet transplantation

Ahmed A Arzouni, Andreia Vargas-Seymour, Nance Nardi, Aileen JF King and Peter M Jones

Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK.

Laboratory of Stem Cells and Tissue Engineering, Universidade Luterana do Brasil, Brazil

Corresponding author

Peter M Jones
Department of Diabetes
School of Life Course Sciences
Faculty of Life Sciences and Medicine
King’s College London
Guy’s Campus, Hodgkin Building (HB2.10N)
London SE1 1UL
UK

peter.jones@kcl.ac.uk
+44(0)2078486273

Keywords
Mesenchymal stromal cell; islet transplantation; Type 1 diabetes; extracellular matrix; immunoregulation
Introduction

Islet transplantation and Type 1 diabetes

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterised by hyperglycemia caused by insulin deficiency due to the selective destruction of β-cells within pancreatic islets of Langerhans. People with T1DM are dependent on the administration of exogenous insulin to survive, either by (multiple) daily injection or infusion. However, sporadic administration of exogenous insulin often fails to maintain tight glycaemic control, such that hyperglycemic and hypoglycemic excursions are common, both of which are associated with devastating side effects\(^1,2\). β-cell replacement offers the potential for providing physiological glycemic control, so avoiding hyperglycemic and hypoglycemic episodes. Whole pancreas transplantation is surgically invasive and associated with significant co-morbidity\(^3\) whereas transplantation of the endocrine islets, which comprise only 2-3 % of the total pancreas, is a safe procedure with little or no co-morbidity\(^4\). Transplantation of isolated islets as a therapy for T1DM is therefore an attractive therapeutic option.

The UK islet Transplant Consortium (UKITC) was established in 2000 and the UK National Health Service established the first government-funded islet transplant service focused on people with T1DM with severe hypoglycemia unawareness. Worldwide, over 1,500 people with T1DM have now received intraportal islet transplantation in 40 centres (https://citregistry.org/content/citr-9th-annual-report). Islet transplantation outcomes have improved year-on-year\(^5,6\), with recent reports that approximately 50 % of graft recipients remain insulin independent at 5 years and more, which places the success rate of islet transplantation on par with that of whole pancreas transplantation\(^7\).
Current issues with islet transplantation

The availability of islet transplantation as a therapeutic option to a wider population of people with T1D is severely limited by a shortage of tissue donors. Current isolation techniques recover only around half of the islets from a pancreas, so a single transplantation requires multiple donors. The scarcity of donor islets is exacerbated by the loss of functional islets during the islet isolation and pre-implantation culture period due to ischemia, physical and oxidative stresses and the deleterious effects of inflammatory cytokines. Culturing human islets for 24-72 h prior to transplantation has been adopted by most islet transplant centres. This allows for the initiation of time-dependent immunosuppressive regimens in the graft recipient and enables quality control testing of the donor islets and their shipment to distant transplantation centres. However, maintaining islet viability after isolation remains challenging. It is well documented that islets deteriorate rapidly during culture, with reported average losses of 20 % of the islet cell mass after 20 h, and occasional losses of > 50 % of the islet cell mass resulting in the cancellation of the planned transplantation procedure. There is also convincing evidence that a substantial proportion of the functional islet graft (up to 80 %) is lost in the immediate post-transplantation period (24-48 h), because of deleterious responses of transplanted islet cells to a hypoxic, inflammatory, immunogenic host environment. Strategies which improve the functional survival of islets both before and after transplantation will improve the outcome of individual grafts, and also enable the limited pool of donor islets to treat many more people with T1DM by avoiding the current clinical practice of administering multiple grafts to achieve normoglycemia. Genetic manipulation strategies have been reported to improve the survival and/or function of transplanted islets, but this is unlikely to be acceptable in clinical-grade human transplant
material, whereas autologous, cell-based treatments are clinically attractive. One emerging strategy is the use of mesenchymal stromal cells (MSCs) to take advantage of their anti-inflammatory, immunoregulatory, angiogenic and regenerative properties. This Perspective will focus on the potential of MSC-derived soluble mediators to improve transplantation outcomes primarily by influencing graft function rather than affecting the host environment.

Mesenchymal stromal cells

The International Society for Cellular Therapy has designated the term ‘multipotent mesenchymal stromal cells’ (MSCs) to refer to cells often referred to previously as mesenchymal stem cells, which can be isolated from bone marrow and many other tissues including adipose, placenta, cord blood and the ocular limbus. To define cells as MSCs they must meet three main criteria. First, cells must be plastic-adherent when maintained in standard culture conditions. Second, ≥ 95% of cells must express CD105, CD73 and CD90, whilst they must lack hematopoietic antigen expression that includes CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA class II. Finally, MSCs must be capable of trilineage differentiation potential into osteoblasts, adipocytes and chondroblasts under the standard differentiation conditions in vitro.

Mesenchymal stromal cells and islet transplantation

MSCs are currently being investigated as adjuvants to improve the outcomes of islet transplantation. It is well established from studies in other tissues that MSCs play a major role in tissue repair by migrating to the site of injury and depositing extracellular matrix (ECM) which acts as a repair scaffold and as a reservoir for a wide range of MSC-derived biologically
active molecules with anti-inflammatory, immunomodulatory and angiogenic properties11-13, all of which might be predicted to enhance the functional survival of islet grafts. Studies in rodent models of diabetes have demonstrated that co-transplanting MSCs with islets improves the outcome of islet transplantation in terms of glycemic control 14-19. These beneficial effects have been attributed to the ability of MSCs to enhance revascularisation17,20 or to suppress the host immune responses to the graft21-23. However, MSCs also improve transplantation outcomes of syngenic grafts17, which do not provoke an immune response, and in microencapsulated islet grafts18, which do not revascularise, suggesting that MSCs improve graft outcomes via multiple mechanisms.

Many of these \textit{in vivo} islet transplantation studies use the renal subcapsular graft site because it is surgically accessible, it facilitates the anatomical co-localisation of islets and MSCs, and it enables surgical retrieval of the graft material (and thus reversion to hyperglycemia) by unilateral nephrectomy. However, clinical islet transplantation is almost exclusively via the hepatic portal vein, which does not facilitate co-engraftment of islets and MSCs. Thus, after intraportal delivery the islets (100-200 \(\mu\)m diameter) lodge in the hepatic microcirculation where they re-vascularise, while the much smaller MSCs (15-30 \(\mu\)m) pass through the liver and most likely end up in the lung microcirculation24. Attempts to co-localise islets and MSCs by generating islet:MSC composites have shown limited efficacy \textit{in vitro} with no significant improvement in the \textit{in vivo} transplantation outcomes in diabetic mice46.

An alternative strategy to co-transplanting islets and MSCs is a pre-transplantation co-culture period \textit{in vitro} to enhance islet functional survival before their subsequent engraftment, and several different configurations have been used to investigate the functional effects of co-
culture, as shown in Figure 1. Direct contact co-culture of islets with MSCs is consistently reported to improve glucose-stimulated insulin secretion (GSIS), whether configured as monolayer MSCs, or in suspension culture as composites25–28. However, discrepancies in the effect of MSCs on islet function have been observed in studies using indirect, non-contact co-culture systems (Figure 1), with some reporting MSC-dependent improvements in GSIS17,29, and others reporting no effects 32–34. The efficacy of direct contact co-culture strategies may be due, at least in part, to the ability of MSCs to secrete abundant amounts of ECM30 which interacts with localised islet cells. Thus, elastin microfibril interface 1 (EMILIN-1) and integrin-linked protein kinase (ILK-1) were reported to be highly expressed in MSCs populations with islet regenerative capabilities31, implicating ECM-integrin interactions in mediating the beneficial effects of MSCs on islet function. Consistent with this, MSCs which support islet function secrete protein matrix metalloproteases (MMP1 and MMP13) that are involved in ECM remodelling32, and co-culture of mouse and human islets with de-cellularized MSC-derived ECM is alone sufficient to improve GSIS24.

The ECM secreted by MSCs acts not only as a physical scaffold but also as a reservoir for numerous biologically active molecules to influence the function and regeneration of the surrounding tissues33. Mass spectrometry analysis of human bone marrow MSC-derived ECM33 has identified a wide range of secretory products, including growth factors and anti-inflammatory molecules, which reinforces the notion of MSC-derived ECM acting as a “mobile drug dispensary” for tissue regeneration. Indeed, many of the factors implicated in the beneficial effects on islets are associated with MSC-derived ECM33 (Table 1). This, in turn, raises the possibility of utilising MSC-derived molecules (see Table 1) to improve islet graft function without the requirement for delivering MSCs as part of the graft material. We have
recently used a non-biased qRT-PCR strategy to screen MSC populations for the expression of peptide and protein ligands of G-protein-coupled receptors (GPCRs) known to be expressed by islet β-cells34. The anti-inflammatory molecule annexin A1 (ANXA1) was identified as a highly expressed secretory product in both mouse35 and human36 MSC populations, and has been localised to MSC-derived ECM36. Subsequent functional studies demonstrated that preculturing islets with exogenous ANXA1 improved GSIS \textit{in vitro}24,26, protected islet cells against cytokine-induced apoptosis35, and improved their ability to regulate glycaemia in diabetic mice35. However, ANXA1 is not the sole mechanism through which MSCs influence islet function since genetic deletion or siRNA-induced knockdown of ANXA1 in MSCs impaired, but did not completely abolish, their capacity to enhance islet function35. Two other molecules which are highly expressed by MSCs - stromal cell-derived factor1/C-X-C motif chemokine 12(SDF-1/CXCL12) and collagen type III alpha 1 (Col III A1) - are also reported to have beneficial effects on islet function37, and CXCL12 has been reported to enhance islet graft survival and function in a mouse model of diabetes38. This raises the possibility of defining a “cocktail” of MSC-derived molecules which mimics the beneficial effects of MSC co-culture on islet function, and which therefore offers the prospect of cell-free treatment of islet populations during the isolation and pre-transplantation culture periods.

\textbf{Translation to clinical human islet transplantation protocols}

The use of a precisely-defined cocktail of MSC-derived products could overcome many of the technical hurdles of cellular therapy, such as upscaling MSC production whilst maintaining a stable phenotype, quality control between different MSC populations, the establishment of reliable safety and efficacy profiles, and the challenges of \textit{in vitro} co-culture of MSCs and human islets on the scale required for clinical transplantation. MSC-derived products can be
manufactured in GMP conditions, and evaluated for safety, dosage and potency in a manner similar to that applied to current pharmaceuticals. Indeed, several of these MSC biotherapeutic molecules and/or their receptors are currently under investigation for their therapeutic potential in other clinical situations.

A cell-free “cocktail” treatment of islets prior to transplantation may also offer regulatory advantages over cell-based adjuvant therapy. In the UK, human islets for clinical transplantation are covered by the Tissues and Cells Directive (2004/23/EC) and are considered as graft material rather than medicinal products by the Human Tissue Authority, so are exempt from the stringent regulations covering new medicinal products. If, as seems likely, pre-treating islets with MSC biotherapeutic molecules is maintaining their functional viability rather than inducing any fundamental modification they will continue to be classified as graft material rather than a medicinal product. Thus, for example, the biotherapeutic cocktail could be used as a supplement to the islet culture medium in an analogous manner to the inclusion of human serum albumin which is beneficial for islet survival since it neutralises endogenous pancreatic enzymes. Translation of current experimental studies into modifications to clinical human islet transplantation protocols may therefore be relatively straightforward in regulatory terms.
Summary and conclusions.

There is a convincing body of experimental evidence demonstrating that MSCs can exert beneficial effects on the outcomes of islet transplantation as a therapy for T1D. Most likely through a number of different mechanisms involving MSC-derived molecules having direct effects on the islet graft to improve its functional survival, and on the host environment to suppress inflammatory and immune responses to the graft. The MSC-dependent effects on the graft material may be mimicked, to some extent, by defined modifications to pre-transplantation culture protocols, offering a simple and effective means of improving the clinical outcomes of islet transplantation.

Acknowledgments

Our work on MSCs and islet transplantation has been supported by an MRC Doctoral Training Program studentship (AAA), a CAPES Fellowship from the Government of Brazil (AV-S), and a project grant support from Diabetes UK (PMJ, AJK DUK 15/0005146).
Figure 1 Different co-culture systems for islets and MSCs.

A) Direct contact co-culture system, where MSCs are seeded in adherent monolayers in a treated tissue culture dish and islets are placed in direct contact on the layer of MSCs. B) Direct contact co-culture system, where MSCs are seeded in a non-treated culture and maintained in suspension culture with islets. C) Indirect co-culture system, in this system, MSCs are seeded as adherent monolayers into the bottom of a transwell treated culture dish and islets are placed into the insert in the upper compartment of the well.

Islet of Langerhans Mesenchymal stromal cells
Table 1 Proposed mechanisms of action for MSCs to improve islet function

<table>
<thead>
<tr>
<th>Author/year</th>
<th>MSCs</th>
<th>Proposed underlying mechanisms modulating islet functional viability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arzouni et al 2017<sup>36</sup></td>
<td>Human adipose-derived MSCs</td>
<td>Annexin A1 MSC-derived extracellular matrix</td>
</tr>
<tr>
<td>Lavoie et al 2016<sup>31</sup></td>
<td>Human bone marrow-derived MSCs</td>
<td>EMILIN-1 ILK-1</td>
</tr>
<tr>
<td>Rackham et al 2016<sup>35</sup></td>
<td>Mouse adipose-derived MSC</td>
<td>Annexin A1</td>
</tr>
<tr>
<td>Yamada et al 2014<sup>29</sup></td>
<td>Human adipose-derived MSC</td>
<td>VEGF</td>
</tr>
<tr>
<td>Bell et al 2012<sup>32</sup></td>
<td>Human umbilical cord blood/ Bone Marrow-derived MSCs</td>
<td>Matrix metalloproteases (MMPs) Transforming growth factor-beta (TGF-beta) Epidermal growth factor receptor (EGFR)-activating ligands</td>
</tr>
<tr>
<td>Park et al 2010<sup>17,43</sup></td>
<td>Human umbilical cord blood-derived MSCs</td>
<td>Interleukin-6 (IL-6) Hepatocyte growth factor (HGF) TGF-beta Vascular endothelial growth factor-A (VEGF-A)</td>
</tr>
<tr>
<td>Karaoz et al 2010<sup>44</sup></td>
<td>Rat bone marrow-derived MSCs</td>
<td>IL-6 TGF-beta1 Fibronectin (FN) Phosphoprotein1 (SSP1)</td>
</tr>
</tbody>
</table>
Bibliography

17. Park K-S, Kim Y-S, Kim J-H, et al. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after

32. Bell GI, Meschino MT, Hughes-Large JM, Broughton HC, Xenocostas A, Hess DA.

