King's Research Portal

DOI:
10.1016/j.bbi.2018.05.010

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 31. Aug. 2019
Accepted Manuscript

Full-length Article

Effectiveness of Depression Interventions for People Living with HIV in Sub-Saharan Africa: A Systematic Review & Meta-Analysis of Psychological & Immunological Outcomes

Ruth Verity Passchier, Melanie Amna Abas, Ikenna D Ebuenyi, Carmine M Pariante

PII: S0889-1591(18)30183-1
DOI: https://doi.org/10.1016/j.bbi.2018.05.010
Reference: YBRBI 3399

To appear in: Brain, Behavior, and Immunity

Received Date: 3 August 2017
Revised Date: 9 May 2018
Accepted Date: 10 May 2018

Please cite this article as: Passchier, R.V., Abas, M.A., Ebuenyi, I.D., Pariante, C.M., Effectiveness of Depression Interventions for People Living with HIV in Sub-Saharan Africa: A Systematic Review & Meta-Analysis of Psychological & Immunological Outcomes, Brain, Behavior, and Immunity (2018), doi: https://doi.org/10.1016/j.bbi.2018.05.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Effectiveness of Depression Interventions for People Living with HIV in Sub-Saharan Africa:
A Systematic Review & Meta-Analysis of Psychological & Immunological Outcomes

Ruth Verity Passchiera Melanie Amna Abasb, Ikenna D Ebuenyic, Carmine M Parianted

a University of Cape Town, Department of Psychiatry and Mental Health, Anzio Road, Observatory, Cape Town, South Africa

b Health Service & Population Research Department, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, Camberwell, London SE5 8AF, United Kingdom

c Vrije Universiteit Amsterdam, Athena Institute for Research on Innovation and Communication in Health and Life Sciences

d Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London SE5 9RT, United Kingdom
ABSTRACT

This meta-analytic review evaluated the effectiveness of depression interventions on the psychological and immunological outcomes of people living with HIV in sub-Saharan Africa. 14 studies, yielding 932 participants were eligible. A random-effects models indicated that depression interventions were followed by large reductions in depression scores (effect size = 1.86, 95% CI = 1.71, 2.01, p < 0.01). No significant effect on immune outcome was observed, however there was a trend toward immune improvement of medium effect size (effect size on CD4 count and/or viral suppression = 0.57, 95% CI = -0.06, 1.20, p = 0.08). Pharmacological interventions appeared to have a significantly larger improvement in depression scores than psychological interventions. The greatest improvement in immune status was demonstrated in psychological treatments which incorporated a component to enhance HIV medication adherence, however these results did not reach significance. Small sample sizes and highly heterogeneous analysis necessitate caution in interpretation. The results of this meta-analysis should thus be treated as preliminary evidence and used to encourage further studies of immunopsychiatry in HIV in sub-Saharan Africa.

Keywords

CD4; depression; HIV/AIDS; immunopsychiatry; intervention; meta-analysis; psychoneuroimmunology; review; sub-Saharan Africa; viral load
1. INTRODUCTION

Sub-Saharan Africa is the centre of the HIV epidemic, with nearly 26 million people (69% of the global burden) estimated to be infected [1]. Improved access to antiretroviral therapy (ART) [1] is associated with the 34% increase in life expectancy in sub-Saharan Africa over the past 15 years [2]. However, the change in prognosis has revealed vast challenges of this chronic disease endemic in resource limited populations. Major depressive disorder (MDD) is the most common psychiatric manifestation associated with HIV infection [3], and one of such challenges. It is twice as common in people living with HIV as in general populations [4, 5], with a prevalence of up to 36% [6-8], and a treatment gap estimated to be as high as 90% in low and middle income countries [9].

The primary aim of this systematic review and meta-analysis was to evaluate the effectiveness of depression interventions on the psychological and immunological outcomes of people living with HIV in sub-Saharan Africa. The secondary aim was to assess which types of interventions appear to have the largest effect on depression and immunological outcomes.

1.1 Aetiology of Major Depressive Disorder in People living with HIV

Psychological, social and biological factors are all implicated in the aetiology of MDD in HIV [10]. Psychosocial risk factors identified in the sub-Saharan African population include: female gender, older age, unemployment, negative life events, childhood trauma, disability and impaired function, poor social support, low quality of life, life-time attempted suicide, and associated psychiatric illness [10, 11].
The biological aetiology of MDD in people living with HIV is linked, at least in part, to the pro-inflammatory cascade driven by the HIV infection [12, 13]. Rivera-Rivera et al demonstrated a broad panel of pro-inflammatory cytokines in the plasma of individuals with HIV and depression symptoms compared to their non-depressed counterparts [14]. In animal models, a single exposure to HIV Tat-protein in the mouse brain induces brain cytokines signalling of IL-1β, TNF-α, and IL-6, which culminates in depressive-like behaviour [15]. Similarly, elevated levels of IL-1β, IL-6, and TNF-α have been identified in both the plasma and cerebrospinal fluid of depressed patients [16]. The rise in these cytokine levels are thought to induce the sickness behaviour which manifests as depression in people with HIV [13].

1.2 The Effect of Major Depressive Disorder on Immunity

The biological pathways of MDD itself can contribute to low immunity, and increased mortality in people living with HIV [17]. For example, MDD and distress states associated with MDD, influence the regulation of stress hormones, such as cortisol and catecholamines, decreasing pro-inflammatory (anti-viral) immunity [18] while increasing anti-inflammatory immunity [19]. This can lead to alterations in the function and/or number of lymphocytes and natural killer (NK) cells [18, 20-22], and enhance HIV replication [23]. As a result, dual diagnosis patients with HIV and MDD may have increased rates of progression to advanced stages of disease [13, 24, 25].

Furthermore, symptoms of MDD such as impaired concentration, memory, problem-solving and motivation [26] can result in negative HIV related behaviours. Most notable of these, is a delay in initiating [27], and impairment in adhering to, ART [28, 29]. However, poor mental
health predicts faster HIV disease progression even after controlling for adherence [30] and is independently associated with increased HIV mortality [17, 30, 31].

1.3 Management of Major Depressive Disorder in People Living with HIV

The cornerstone of MDD management in people living with HIV is psychopharmacologic treatment using antidepressants [32]. Selective serotonin reuptake inhibitors (SSRI) are first-line due to their efficacy and minimal adverse effects [33]. SSRI treatment may have a direct immunomodulatory effect [34] [35, 36], since serotonin (5-hydroxytryptamine [5-HT]) receptors and the 5-HT transporter are found on monocytes, macrophages, T cells, and possibly NK cells [37]. By downregulation of HIV receptor and co-receptor expression on these immune cells, treatment with SSRI may reduce susceptibility to cellular infection [34] [38].

In contrast, psychological modalities for treatment are recommended as the first-line intervention by the WHO’s Mental Health Gap Action Programme (mhGAP) [39]. In a global review by Sherr et al, of 90 interventional studies for depression in people living with HIV, psychological interventions were assessed to be generally more effective than pharmacological treatments [40] in reducing depression. Furthermore, evidence suggests that psychological interventions for people living with HIV may improve immune status by modulating the associated neuroendocrine pathways [20]. Animal and human studies have demonstrated that stress accelerates HIV-1 disease pathogenesis and impairs the biological impact of ARV treatment [41].

In summary, multiple pharmacological and psychological interventions for depression have been evaluated for people living with HIV, with some studies also assessing the impact of treatment on immune measures. However, to date the majority of reviews of depression
studies for people living with HIV have reported on the population of white males, from the United States (US) or Europe [40]. There has not been a systematic review and meta-analysis examining which treatment modalities result in the most significant improvements in both depression and immune status in the sub-Saharan Africa population, where most HIV patients are.

2. METHODS

2.1 Data Sources

Relevant studies were identified by searching the electronic databases: MEDLINE, EMBASE, PsycINFO, and The Cochrane Library. All searches were conducted on 27 July 2016 and no limits were applied. The search terms (Appendix 2) reflected four categories: (1) HIV/AIDS, (2) Depression, (3) Intervention, and (4) Sub-Saharan Africa. Experts and authors in the field of depression in people living with HIV in sub-Saharan Africa were contacted and asked to respond with any missing literature. A hand search of reference sections from relevant articles was conducted and ‘grey literature’, including conference abstracts, was explored using OpenGrey and WorldCat databases. A repeat search was performed in Pubmed on 5 March 2018 with no relevant new studies found.

2.2 Study Selection

Published and unpublished studies (in any language) were included in the systematic review if they met all 4 of the following criteria: (1) described an intervention aimed at reducing depression in people living with HIV, (2) targeted individuals 18 years of age or older, (3) set in Sub-Saharan Africa and (4) reported outcome data on pre- and post-intervention depression outcomes as a score rating, with or without immunological data. Studies included in the meta-analysis, additionally, required that the mean and standard deviation
of pre- and post-intervention total outcomes, or sufficient information to calculate this, was available.

Participant populations with a specified comorbidity (e.g. drug abuse) as well as perinatal studies, were excluded since this would introduce external physical factors. As this analysis compares change scores within groups, both ART treated and ART naïve patients were included. Research studying the initiation of ARTs was excluded due to expected significant immune status improvement.

2.3 Data Extraction

Studies from the electronic databases, grey literature and hand searching were exported into reference manager, EndNote [42], where duplicates were removed. Study title, abstract and text screening was performed, repeated by a second author (IE), and discrepancies reconciled via discussion. From the selected studies, information was extracted using standardised abstraction table.

2.4 Quality Assessment

The Cochrane Collaboration’s Tool for Assessing Risk of Bias [43] was used to assess level of quality and corresponding levels of bias in each study. This tool assesses methodologic quality variables of random sequence generation, allocation concealment, blinding of participants, personnel and outcomes, incomplete outcome data, selective reporting and other bias.

2.5 Analytic Approach

2.5.1 Outcome Variables
We found that most studies had used more than one instrument to measure immunological and/or depression outcomes (see Table 1 and Table 2). To reduce the measurement variance and optimize the comparison of outcomes, we chose to analyse the instruments used most frequently across studies. For depression outcomes, these were the Beck Depression Inventory-II, Patient Health Questionnaire-9, Self-Reporting Questionnaire-8, and the Hamilton Depression Scale. For immunological outcomes, these were CD4 count and viral suppression. Due to the large variation in intervention time frame and follow up, we analysed the first time point as the outcome, compared to the baseline measure.

2.5.2 Effect Size Calculation

In two separate analyses, the mean immunological and depression outcomes pre- and post-intervention were used to calculate a change-from-baseline effect size (ES) also known as the Standardized Mean Difference (Cohen’s d [44]) (Appendix 3). Only the ‘change scores’ from the interventional arm were analysed. For this, a version of the Cohen’s d calculation known as the Standardised Mean Gain (SMG) was used to calculate ES. The ‘change score’ approach is recommended when participants are not all randomised (Higgins et al., 2011) or for studies with small sample sizes, which are susceptible to baseline imbalances [45]. The method is well suited for this review, as a comparison of outcomes could be made without the need for a control group to be present in every study.

The ES for depression outcomes were calculated from continuous variables (depression score), while immunological outcomes were both dichotomous (viral suppression) and continuous (CD4 count). Immune outcomes were first analysed in separate outcomes of CD4 and viral suppression, before being combined into a unified immune outcome. The ES of
dichotomous data from viral suppression was converted to continuous data (see calculation in Appendix 3) to allow for combination with CD4 count change scores.

The corrected effect size was calculated using Hedge’s g to produce an unbiased [46] final result. By convention, a positive sign is assigned to the effect size when there is improvement from pre- to post-intervention (i.e. the bigger the change from baseline, the better the outcome). A negative sign is assigned when the effect is in the opposite direction.

2.5.3 Cochrane Collaboration Review Manager 5

Data calculated was then entered into Cochrane Collaboration Review Manager 5 [47] for meta-analysis. A weighted effect size for each study is generated (i.e. inverse variance) using Hedges formula [48] based on the standard error (SE) of each ES. The I^2 statistic was chosen to calculate the degree of statistical heterogeneity because of the small number of studies [49]. Since heterogeneity was high between studies, a random effects model was used. This generates a conservative estimate of variance providing more generality [50].

2.5.4 Stratified Analysis

Stratified analyses of depression and immune outcomes was performed to examine whether intervention characteristics moderated the strength of the aggregated effect size. Once the most common treatment groups were identified, we compared the aggregated effect sizes. The subgroups between-group heterogeneity was calculated using the I^2 statistic and the test for subgroup differences was done using the Chi2 statistic.

Due to the large variation in intervention types, wide-ranging treatment subgroups had to be identified. A comparison of pharmacological vs non-pharmacological was the broadest, and most logical, subgroup category. Delivery methods, ARV status, treatment location and
duration, and antidepressant drug groups were considered for stratified analysis, but not conducted, due to lack of information on these factors, or wide varieties (e.g. five different antidepressants), making a comparison number within subgroups too small to assess.

3 RESULTS

3.1 Study and Sample Characteristics

As shown in the PRISMA Flow Diagram (Appendix 1), 14 articles were deemed eligible for review. Of these, 13 studies had sufficient information to be included in the meta-analysis for depression outcomes and five for immunological outcomes, totalling 932 participants.

Data abstraction (Table 3) showed studies took place from 2006-2016 in Sub-Saharan African countries, namely South Africa, Nigeria, Uganda, Tanzania, Zimbabwe, and Cameroon, with the majority in South Africa (43%). Majority of interventions were set in HIV clinics or HIV day clinics within a hospital (57%). The largest study sample size was 184 participants [51] and the smallest was 9 [52]. The majority of participants were female (73%) with age range of 21-56 years. Most studies (57%) included only patients known to be on ART. The remaining studies included mixed ART and non-ART patient samples or did not specify the ART status. Three studies (21%) had patients known with poor adherence at baseline.

3.2 Intervention Characteristics and Components

Study designs were: 36% randomised control trials, 14% non-randomised control trials, and 50% interventional trials without a control arm. Half of the studies used a pharmacological approach. Both selective serotonin reuptake inhibitors (Escitalopram, Citalopram, Fluoxetine) and tricyclic antidepressants (Amitriptyline and Imipramine) were prescribed.

One study (Moosa et al, 2012) compared and independently reported results from a
pharmacological and non-pharmacological intervention within the same study. Results from both arms of this study were analysed separately in the stratified analysis, to avoid over-representation. The components of psychological interventions varied extensively. Problem-solving therapy and cognitive behavioural therapy were most commonly used psychological interventions (28%). Psycho-education, interpersonal therapy, and art psychotherapy were used for the remaining interventions. Task-shifting was the most common delivery approach (57%) across all interventions. In this model, tasks normally performed by a physician are transferred to a health professional with a different or lower level of education and training, or to a person specifically trained to perform a limited task only without having formal health education [53]. The remaining studies (43%) used medical officers, a stepped-care model, or did not specify. All pharmacological treatment was received as a daily dose. The median number of non-pharmacological intervention sessions was 6 (range: 1–8 sessions). The median intervention duration was 12 weeks (range: 4 – 24 weeks).

3.3 Methodologic Quality of Studies

Random sequencing, allocation concealment and blinding was lacking or unclear in over 75% of studies. From the six studies with the highest levels of bias, majority (four) were pharmacological interventions [51, 54-56] and two were non-pharmacological studies [57, 58]. Attrition bias was low (21%), with most studies having small dropout rates, and giving clear explanations thereof. Reporting bias was also low, as 100% of studies state clearly the aim and outcomes being examined. With majority of studies being non-RCT trials (64%), the lack of random assignment and a placebo control groups, results in a generalized poor level of quality.

3.4 Effect Size Analysis of Depression & Immune Outcomes
3.4.1 Depression Outcomes

Analysis of depression outcomes revealed a large aggregated ES reflecting the magnitude of change from pre- to post-intervention and providing strong evidence for post-intervention improvement in depression (SMG = 1.86, 95% CI = 1.71, 2.01; p < 0.0001). Two studies contribute to the majority of the weight of the analysis: Peltzer et al, 2012 and Ngo et al, 2015 (Figure 1).

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Std Mean Difference</th>
<th>SE</th>
<th>Weight</th>
<th>IV, Fixed, 95% CI</th>
<th>Std Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akins et al, 2015</td>
<td>3.9295622</td>
<td>0.7892486</td>
<td>1.0%</td>
<td>3.93 [2.38, 5.46]</td>
<td></td>
</tr>
<tr>
<td>Adams et al, 2012</td>
<td>4.7197314</td>
<td>0.7780557</td>
<td>1.0%</td>
<td>4.72 [2.19, 6.25]</td>
<td></td>
</tr>
<tr>
<td>Andersen et al, 2016</td>
<td>3.54839651</td>
<td>0.7219734</td>
<td>1.1%</td>
<td>3.55 [2.13, 4.96]</td>
<td></td>
</tr>
<tr>
<td>Field and Kuiper, 2008</td>
<td>3.187668</td>
<td>0.7883958</td>
<td>1.0%</td>
<td>3.17 [1.62, 4.71]</td>
<td></td>
</tr>
<tr>
<td>Goyanes et al, 2015</td>
<td>24.747174</td>
<td>2.3737327</td>
<td>0.1%</td>
<td>24.75 [19.38, 30.11]</td>
<td></td>
</tr>
<tr>
<td>Hoare et al, 2014</td>
<td>2.8817586</td>
<td>0.3178547</td>
<td>5.9%</td>
<td>2.88 [2.26, 3.50]</td>
<td></td>
</tr>
<tr>
<td>Ngo et al, 2015</td>
<td>2.7504117</td>
<td>0.1815859</td>
<td>22.9%</td>
<td>2.75 [0.44, 3.06]</td>
<td></td>
</tr>
<tr>
<td>Nyamaya et al, 2018</td>
<td>4.65553565</td>
<td>1.1820202</td>
<td>0.4%</td>
<td>4.65 [2.52, 7.19]</td>
<td></td>
</tr>
<tr>
<td>Oley, 2005</td>
<td>3.3467222</td>
<td>0.2862761</td>
<td>5.8%</td>
<td>3.35 [2.71, 3.99]</td>
<td></td>
</tr>
<tr>
<td>Peltzer et al, 2012</td>
<td>3.4034803</td>
<td>0.1729355</td>
<td>42.9%</td>
<td>3.40 [0.11, 0.67]</td>
<td></td>
</tr>
<tr>
<td>Pence et al, 2014</td>
<td>1.486714</td>
<td>1.1980782</td>
<td>0.4%</td>
<td>1.49 [0.14, 1.45]</td>
<td></td>
</tr>
<tr>
<td>Petersen et al, 2014</td>
<td>1.9657771</td>
<td>0.2674061</td>
<td>8.3%</td>
<td>1.97 [0.44, 2.49]</td>
<td></td>
</tr>
<tr>
<td>Wagner et al, 2014</td>
<td>3.5516234</td>
<td>0.2510301</td>
<td>9.5%</td>
<td>3.55 [2.86, 3.84]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>1.66 [1.71, 2.01]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Chi² = 449.73, df = 12 (P < 0.00001), I² = 97%

Test for overall effect: Z = 24.11 (P < 0.00001)

Figure 1: Forest Plot Depression Outcome Change Scores

3.4.2 Immune Outcomes

Three out of the four studies reporting CD4 count, showed an improvement post-intervention (Figure 2.1). However only one showed a significant ES [59]. The one study eliciting a negative effect on CD4 outcome had a non-significant result [60]. The overall effect was in the direction of favouring post-treatment improvement in CD4 count, but the ES was small (SMG = 0.15, 95% CI = -0.15, 0.44, p = 0.33) and failed to reach statistical
Results from the three studies using viral suppression as an outcome, indicate that the odds of being virally suppressed are four times greater post-treatment of depression. However, the final effect, although favouring post-intervention with a medium ES, had wide confidence intervals and just failed to reach statistical significance. (OR = 4.00, 95% CI =0.82,19.49, p = 0.09) (Figure 2.2).

Combining of immune outcome CD4 count and viral suppression, showed post-intervention immune improvement (Figure 2.3). This analysis provides a narrow 95% CI (-0.06; 1.20), but
the final result just crosses the line of no effect, showing a medium effect size (SMG = 0.57), and trend-level statistical significance (p = 0.08).

![Forest Plot Immune Outcome Change Scores (Combined CD4 Count and Viral Suppression)]

Between study heterogeneity accounted for over 90% of variance in the ES of both depression and immune outcomes, indicating that, although favouring the same direction of effect, diversity between studies is extremely high reflecting the combined construct measures.

3.5 Stratified Analysis

3.5.1 Non-Pharmacological verse Pharmacological Interventions

3.5.1.1 Depression Outcomes

Although both pharmacological and non-pharmacological treatments show significant improvement in depression outcomes post-intervention, the ES of pharmacological treatments is more than double the ES of non-pharmacological treatments. Thus, there was a large and significant subgroup difference (Chi2 = 10.21, df = 1, p < 0.01) favouring pharmacological intervention improvement in depression scores (Figure 3.1).
Figure 3.1: Forest Plot Depression Outcomes: Non-Pharmacological Vs Pharmacological Interventions
3.5.1.2 Immune Outcomes

Neither pharmacological nor non-pharmacological interventions show significant immune effects independently. The pharmacological interventions who reported immune outcomes (two studies both using CD4 count outcomes) have, if anything, a negative effect on immunity, however, this result shows a minute effect size, with no significance (SMG = -0.06, 95% CI = -0.29, 0.18, p = 0.64). In contrast, non-pharmacological interventions (three studies, two of which used CD4 count outcomes, and one using viral suppression as an outcome) show a trend towards immune improvement with a large but non-significant effect size (SMG = 1.02, 95% CI = -0.19, 2.24, p = 0.10). The effects of the interventions are in opposition, making the resulting subgroup difference between interventions large ($\chi^2 = 2.29$, df = 1). However, the small comparison yields a non-significant (p = 0.09) result (Figure 3.2).
Figure 3.2: Forest Plot Immune Outcomes: Non-Pharmacological Vs Pharmacological Interventions
4. DISCUSSION

This study is the first systematic review and meta-analysis of depression interventions for people living with HIV in sub-Saharan Africa. It demonstrates improvements in both mental health and immune status with varying levels of clinical and statistical significance.

4.1 Depression Outcomes

The findings in this study are in keeping with a previous systematic review of depression interventions for people living with HIV, in mainly high-income countries [40], with most interventions being statistically effective in reducing depression. However, contrary to the findings by Sherr et al, which showed psychological interventions to be more effective than pharmacological interventions, our study found that antidepressant treatment was more effective than psychological interventions in the reduction of depression scores. This could suggest that psychotropic treatments for depression could be more effective and offer better outcomes in a sub-Saharan Africa population. However, these findings need to be confirmed in larger samples or future systematic reviews.

The variation in treatment response might be explained by ethnic differences between this study populations and previous studies with majority European/American populations. For example, genetic profile has been shown to predict better antidepressant outcomes in an ethnicity-dependent manner [61]; however, another study found no significant differences between White and African-American MDD patients in their response to pharmacological versus psychological treatments [62]. Of course, the use of Western-developed psychological treatments in an African setting could explain the less significant improvement in our meta-analysis; indeed, Griner et al suggest that mental health treatments should be modified to better match cultural context, with a meta-analysis indicating a moderately
strong benefit of culturally adapted interventions on depression outcomes [63].

Alternatively, delivering high quality psychological treatments may be difficult in the context of sub-Saharan Africa where facilities and trained psychologist are limited. In fact, the majority of the studies using psychological treatment in our meta-analysis recruited lay health workers to deliver the intervention (6 of 8 studies) whereas a much smaller proportion of the pharmacological interventions were delivered by lay health care workers (3 out of 7); and psychosocial informational interventions may require more advanced skill training in lay health workers to achieve superior outcomes in this resource-constrained setting [59]. Furthermore, within our meta-analysis, studies using pharmacological interventions had, on average, a longer treatment duration (mean 14 weeks) compared to studies using a non-pharmacological intervention (mean 10 weeks). Successful treatment of depression, in both pharmacotherapy and psychotherapy treatment, relies heavily on provider contact to be effective [64]. Discrepancies in treatment duration is thus a possible confounder of these results. Lastly, the majority (5/8) of pharmacological intervention studies were assessed to have high levels of selection, performance and/or detection bias, thus results should be treated with caution. We can only speculate the reasons for the greater success of pharmacological depression treatment in this setting, and further research is required to better explain this finding.

4.2 Immunity Outcomes

Five studies measured both depression and immune outcomes, but the correlation between improvement in depression and immune outcomes was not tested statistically in any of the papers. However, the relationship between improvement in depression and immune outcomes was discussed briefly by two individual papers in this review [6, 59]. Gaynes et el
emphasized that this finding is consistent with a model in which effective depression care yields improved HIV outcomes [6].

In the meta-analysis, no significant immunological improvements were observed in either the psychological or pharmacological treatment arms. This finding is endorsed by a meta-analysis of cognitive-behavioural interventions, by Crepaz et al, which showed significant intervention effects on symptoms of depression (d = 0.33) but limited evidence suggesting effects on CD4 cell counts (d = 0.08) [65]. Similarly, two recent, randomized trials of medication-based depression treatment in the US showed no effect on HIV outcomes [66, 67]. In the first study, fluoxetine significantly improved depression but with no statistically significant differences in secondary HIV outcomes between intervention and control arm [66]. In the second study, the largest trial of its kind among HIV-infected adults, a three-year medication based depression treatment did not improve HIV outcomes but achieved clinically significant depression improvements. Notably, these results were thought to be due to high baseline ART adherence in this study population [67].

However, the trend towards immune improvements, particularly demonstrated by psychological interventions, in this review are also in keeping with research in the field. Two RCTs, one providing cognitive-behavioural stress management [68] and another mindfulness meditation training [41], demonstrated an increase in NK cells and CD4+ T-cells (b = 106.27, SE = 56.89, t [66] = 1.87, p = .06), together with evidence of a buffered CD4+ T lymphocyte decline (b = .014, t (74) = 2.09, p = .04), respectively. International studies, in the US, using antidepressant treatment have similarly shown a trend toward improvement in immune status. A prospective cohort study in California showed that treatment with antidepressants (non-specified) resulted in double the odds of achieving viral suppression (95% CI, 1.15-
3.58; \(P = .02 \), and nearly doubled the odds of achieving complete adherence to ART (weighted OR, 1.94; 95% CI, 1.20-3.13; \(P = .006 \)) [69]. Another cohort study found that among depressed patients, those compliant with SSRI had improved ART adherence and statistically greater increases in CD4 cell responses [70]. Furthermore, the CHARTER cohort HIV study reported that individuals taking SSRIs were more likely to have lower HIV viral loads in cerebrospinal fluid and better neuropsychological performance [71].

4.3 Effects of ART Adherence

It is important to note that the psychological treatments included in the meta-analysis all had an adherence component incorporated into the intervention. It is well established that depression in people living with HIV is significantly associated with non-adherence to ART [72]. A recent South African study demonstrated that patients reporting non-perfect adherence were approximately three times more likely to have moderate to severe symptoms of depression than those reporting perfect adherence [73]. After treatment for depression, a meta-analysis by Sin et al [74] has showed that the odds of a person adhering to ART were 83 % better. The resulting immune improvements in depression treatment are thus thought to be primarily mediated through the increased ART adherence when being treated for depression [70, 75]. Relationships between immunity, depression, and adherence appear to be closely intertwined.

The lack of immune improvement seen with primarily psychotropic interventions in this review tentatively suggests that treatment modalities relying solely on antidepressants might not be addressing the underlying issues associated with non-adherence in lower-middle income setting of sub-Saharan Africa. Adherence counselling within depression management in this research and others discussed above, appears to be a necessary and
successful component of treatment, which indirectly improves immune outcomes. In the context of sub-Saharan Africa, perhaps this should be considered an essential requirement in mental health policy. However, these findings are derived from a very small body of evidence and did not reach statistical significance, making evidence preliminary. Whether or not non-pharmacological interventions also improve immune outcomes through additional brain-body connection mechanisms is difficult to assess in this context, and might be better understood if future studies use a homogeneous population of people living with HIV already adherent to ART medication. Future research in the field might help further identify and promote the most effective methods of improving both mental and physical health for this population.

4.4 Limitations

In terms of methodological limitations, the studies in this review were generally of low quality and small sample size. The limited number of studies necessitated the inclusion of non-RCT trials in the meta-analysis, which can compound the biases present and generate misleading results [76]. There were insufficient studies to examine the effects of individual study characteristics (i.e. moderators and confounders) on the effect sizes. This could substantially contribute to better understanding factors underlying the effectiveness of different intervention groups. Comparing two different methods of treatment interventions can result in high levels of heterogeneity. Although sub-group analysis attempted to group similar treatments, there still exists high heterogeneity in sample size, time frame and study design, which calls for caution in interpretation since results being compared were very different in nature.

5. CONCLUSION
The evidence provided in this paper confirms that depression interventions are effective in the treatment of depression for people living with HIV in sub-Saharan Africa. However, the most effective treatment modalities for depression in people living with HIV in sub-Saharan Africa may differ compared with Western countries. Most notably, pharmacological treatment demonstrated a significantly larger improvement in depression score than psychological treatment modalities. These findings, however, are derived from a small body of poor quality research and should thus be treated as preliminary evidence only. Weak evidence exists for the effects of depression intervention on immune status in this population. Future research in sub-Saharan Africa ought to invest in methodologically sound RCTs to allow data collected to be meaningfully interpreted. Furthermore, mental health research could benefit from a broader collection of physical health outcomes to permit better understanding and advances in the field of psychoneuroimmunology.

Acknowledgments

King’s College London Department of Statistics

Jacek Kaminski for grammatical edit

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. CMP is funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at the South London and Maudsley NHS Foundation Trust and King’s College London.

Conflicts of Interest

None known
Reference:

52. Nyamayaro, Abas, and Experience with Adapting and Testing an Intervention to Improve Adherence to Antiretroviral Therapy in People Living with HIV and Depression in Zimbabwe – The TENDAI study, in 5th Annual Malawi Mental Health Research and Practice Development Conference. 2015, 2017 Scotland Malawi Mental Health Education Project: Blantyre, Malawi.

Table 1: Depression Outcomes Measures

<table>
<thead>
<tr>
<th>Depression measure</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDI-II</td>
<td>Olley 2006; Peltzer et al., 2012; Field & Kruger 2008</td>
</tr>
<tr>
<td>PHQ-9</td>
<td>Abas et al., 2016; Ngo et al., 2015; Petersen et al., 2014; Gaynes et al., 2015; Wagner et al., 2014; Pence 2014; Adams et al., 2012</td>
</tr>
<tr>
<td>SRQ-8</td>
<td>Abas et al., 2016; Nyamayaro et al., 2016</td>
</tr>
<tr>
<td>HAM-D</td>
<td>Hoare et al., 2014; Moosa & Jeenha 2012;</td>
</tr>
<tr>
<td>MADRS</td>
<td>Hoare et al., 2014;</td>
</tr>
<tr>
<td>HSC2-25</td>
<td>Petersen et al., 2014</td>
</tr>
<tr>
<td>SCID-I</td>
<td>Moosa & Jeenha 2012;</td>
</tr>
<tr>
<td>CESD-R</td>
<td>Andersen et al., 2016</td>
</tr>
</tbody>
</table>

Table 2: Immune Outcome Measures

<table>
<thead>
<tr>
<th>Immune measure</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4 count</td>
<td>Peltzer et al., 2012; Ngo et al., 2015; Gaynes et al., 2015; Wagner et al., 2014; Hoare et al., 2014; Adams et al., 2012; Nyamayaro et al., 2016; Pence et al., 2014</td>
</tr>
<tr>
<td>CD8 count</td>
<td>Hoare et al., 2014</td>
</tr>
<tr>
<td>HIV RNA viral suppression</td>
<td>Abas et al., 2016; Gaynes et al., 2015; Nyamayaro et al., 2016</td>
</tr>
<tr>
<td>HIV RNA viral load</td>
<td>Gaynes et al., 2015; Pence et al., 2014</td>
</tr>
</tbody>
</table>
Table 3: Data Abstraction

<table>
<thead>
<tr>
<th>Author(s), Year, Country</th>
<th>Participants: Sample size (N):</th>
<th>Intervention: Study type, intervention, control, setting</th>
<th>Delivery: Number of sessions, duration of intervention</th>
<th>Outcomes Measured:</th>
<th>Depression outcomes used in review:</th>
<th>Immunological outcomes used in review:</th>
<th>Result summary</th>
<th>Risk of Bias: The Cochrane Collaboration’s tool for assessing risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Peltzer et al., 2012 KwaZulu-Natal, South Africa</td>
<td>N= 152</td>
<td>Randomised control trial</td>
<td>Sessions = 3 (1/month)</td>
<td>Adherence</td>
<td>BDI ANOVA= 0.018 (p=0.894)</td>
<td>CD4 count ANOVA= 0.675 (p=0.412)</td>
<td>Both treatment and control arms show improvements in immune and depression outcomes. Better immune outcomes in control arm. No significant</td>
<td>Low (L)</td>
</tr>
<tr>
<td>adherence problems</td>
<td>Control: Treatment as usual ART Clinic</td>
<td>Measured at baseline, month 1 and month 4 (SD 17.4) Change: -6.3</td>
<td>F/U= 368 (SD 196) Change= +104 difference between intervention and control conditions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All patients scored as depressed on baseline BDI but not specified as in inclusion criteria</td>
<td>Sessions= 6</td>
<td>Viral load</td>
<td>PHQ9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Nyamayaro et al., 2015 Harare, Zimbabwe</td>
<td>Duration of intervention = 8 weeks</td>
<td>(detectable viral load >200 copies/ml)</td>
<td>I: baseline 13.8 (SD 2.2) F/U 3.1 (SD 3.1) Change: 10.8 (95% CI 12.9, 8.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N = 32 I= 14 C= 18 M= 11 F= 21 Age= 37.8 (24.6-44.9) On ART > 6 months with risk of poor adherence Mild depression at baseline assessed by PHQ-9>9</td>
<td>Problem-Solving therapy combined with Adherence counselling using a stepped care approach Lay health worker/adherence counsellor led Hospital Family Care Centre, government clinic</td>
<td>Patient Health Questionnaire for depression Shona Symptom Questionnaire for common mental disorders</td>
<td>C: baseline 9.2 (SD 3.3) F/U 5.7 (SD 3.9) Change: 3.4 (95% CI 5.8, 1.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-arm pilot randomised controlled trial</td>
<td></td>
<td>Adherence</td>
<td>intervention change (adjusted for baseline): 4.7 points lower (95% CI -8.2, -1.3 p=0.010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Viral suppression I : baseline 7.1% ; F/U: 75% Change : 67.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C : baseline 5.6% ; F/U 50% Change : 44.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data missing from (38% of participants)</td>
<td>Greater improvement in immune and depression outcomes in treatment arm after controlling for baseline scores</td>
<td>Selection: L Performance : H Detection: L Attrition: L Reporting: L Other: L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>N = 102</td>
<td>I = 51</td>
<td>C = 51</td>
<td>M = 12</td>
<td>F = 90</td>
<td>Age = 34 (23-56)</td>
<td>ART: not specified</td>
<td>Major depressive disorder at baseline assessed DSM-IV MINI-international neuropsychiatric interview-plus</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Hoare et al., Stellenbosch, South Africa, 2014</td>
<td>Fixed-dose, placebo-controlled, semi-randomized, double-blind (convenience sampling)</td>
<td>Escitalopram 10mg PO OD</td>
<td>Delivery and monitoring not specified</td>
<td>Hospital based intervention</td>
<td>Duration of intervention = 6 weeks</td>
<td>Daily dose</td>
<td>Montgomery-Asberg depression rating scale</td>
<td>Hamilton depression rating scale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I: baseline 21.3 (SD 5.2) F/U: 12.3 (SD 1.0) Change: -9</td>
<td>C: baseline 19.6 (SD 5.5) F/U: 11.8 (SD 8.4) Change: -8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HAM-D=</td>
<td>ANCOVA model CD4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I: baseline 454.3 (SD 29.5) F/U 433.6 (SD 21.4.9) Change: -10.9</td>
<td>C: baseline 404.1 (SD 218.5) F/U 436.8 (SD 210.6) Change:43.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Treatment difference: -54.0 (SE 35.6) (p=0.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Depression scores improved significantly in both intervention and control arm, however no significant advantage for Escitalopram over placebo. Better immune outcomes in control arm and worse immune outcomes in intervention arm (nonsignificant)</td>
<td></td>
</tr>
</tbody>
</table>

Selection: L
Performance: L
Detection: U
Attrition: L
Reporting: L
Other: L
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N= 76</td>
<td>I= 41</td>
<td>C= 35</td>
<td>Analysis N= 17 (high dropout)</td>
<td>M= 50</td>
<td>F= 25</td>
<td>Age= (range only) 2i-59</td>
</tr>
<tr>
<td>On ART</td>
<td>Major depressive disorder at baseline assessed by SRQ- 20</td>
<td>Randomized controlled trial</td>
<td>Duration of intervention = 3 months</td>
<td>PHQ-9 I: baseline mean 15.47 (SD 4.46) F/U 6.94 (SD 4.14) ANOVA analysis mean difference scores of 8.53</td>
<td>C: baseline mean 15.18 (SD 5.46) F/U 11.06 (SD 4.58) ANOVA analysis difference score of 4.12 (F(1, 32) = 23.88, p<.0001)</td>
<td>NO IMMUNOLOGICAL OUTCOME</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group-based IPT counselling intervention using a task shifting approach</td>
<td>Number of sessions= 8</td>
<td>PHQ-9 HSCL-25 Hopkins symptoms check list</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delivered by HIV clinic counsellors</td>
<td>HIV clinic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selection: L

Performance: L

Detection: L

Attrition: H

Reporting: L

Other: L
5. Moosa and Jeenah 2012
Soweto, South Africa

<table>
<thead>
<tr>
<th>Total N= 62</th>
<th>Intervention 1 = 19</th>
<th>Intervention 2= 13</th>
<th>Control= 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>M= 15</td>
<td>Antidepressant (citalopram) 20mg 2/52</td>
<td>Increase by 10-20mg in the absence of improvement</td>
<td>HIV Clinic</td>
</tr>
<tr>
<td>F= 75</td>
<td>Intervention 2: psychotherapy Interpersonal therapy (IPT)</td>
<td>Delivery and monitoring not specified</td>
<td>Controls: not depressed</td>
</tr>
<tr>
<td>Age= 36.8 (24-53)</td>
<td>1: Daily dose</td>
<td>2: Number of sessions of IPT= 5-12</td>
<td>SCID-I and the Structured Clinical Interview for DSM-IV Axis I Disorders: Hamilton Depression Rating Scale (HAMD)</td>
</tr>
</tbody>
</table>

Duration of study= 8 weeks

HAMD mean score
1: Baseline 25.7 (4.5) F/U 6.2 (4)
2: Baseline 22.5 (4.5) F/U 8.2 (4)
C: Baseline 2.1 (SE 0.30) (95% LCL 1.5; 95% UCL 2.7), with a range from 0 to 5 (F/U: 1.62 (SE 0.49) (95% LCL 0.62; 95% UCL 2.62), range from 0 to 14.
Difference: 0.6

NO IMMUNOLOGICAL OUTCOME

Improvements in depression outcome in both the IPT and antidepressant arm, with greater improvement observed in antidepressant arm.

Selection: H
Performance: H
Detection: U
Attrition: U
Reporting: L
Other: U
<table>
<thead>
<tr>
<th>6. Gaynes et al., 2015</th>
<th>I= 41</th>
<th>M=10</th>
<th>F=31</th>
<th>Bamedinda, Cameroon</th>
<th>I= 41</th>
<th>M=10</th>
<th>F=31</th>
<th>Bamedinda, Cameroon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 39.1 (29, 51)</td>
<td>Pilot interventional cohort</td>
<td>Depression care manager</td>
<td>PHQ9 Baseline score=14.4 (13.1, 15.6)</td>
<td>CD4 count F/U: 1.6 (0.8, 2.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On ART (analysis done only participants with 3 months of treatment)</td>
<td>PHQ9</td>
<td>Duration of intervention</td>
<td>Viral load (log)</td>
<td>Viral load (log)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major depression disorder</td>
<td>Measurment-Based Care Antidepressant (amitriptyline) prescription, follow up and management of side effects</td>
<td>PHQ9 Mean difference: -12.8 (-14, -11.3)</td>
<td>CD4 count Mean difference: +16 (-47, 79)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHQ9> 10 (moderate depressive severity)</td>
<td>Sessions = 6</td>
<td>Duration of intervention</td>
<td>=3 months</td>
<td>F/U: 452 (32, 876)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHQ9 Baseline score=14.4 (13.1, 15.6)</td>
<td>Viral load (log)</td>
<td>Mean difference: -12.8 (-14, -11.3)</td>
<td>CD4 count Mean difference: +16 (-47, 79)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4 count F/U: 1.6 (0.8, 2.4)</td>
<td>Adherence</td>
<td>Remission (PHQ-9 < 5) = 36 (90%)</td>
<td>Viral suppression (% <400 copies/mL) = 5 (18%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean difference: -12.8 (-14, -11.3)</td>
<td>HIV symptoms decrease</td>
<td>Baseline: 0</td>
<td>Baseline: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol use</td>
<td>Mean Difference (95% CI): 18% (4%, 32%)</td>
<td>F/U: 5 (18%)</td>
<td>F/U: 5 (18%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risky sexual behaviour</td>
<td>Significance of results not clarified.</td>
<td>Mean Difference (95% CI): 18% (4%, 32%)</td>
<td>Significance of results not clarified.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Improved depression and immunological outcomes.

<table>
<thead>
<tr>
<th>7.</th>
<th>Abas et al, 2016</th>
<th>N= 9</th>
<th>Open-label pilot trial</th>
<th>Duration of intervention =6 months</th>
<th>Shona Self Report Questionnaire (SRQ-8)</th>
<th>SRQ-8 mean baseline= 5.6 F/U: 1.8 Mean difference: 3.8</th>
<th>CD4 count mean baseline= 398.75 mean follow up= 470.86 Mean difference 72.1</th>
<th>Improved depression and immunological outcomes. Significance of results not clarified.</th>
<th>Selection: H Performance: H Detection: L Attrition: L Reporting: L Other: L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Harare, Zimbabwe</td>
<td>M= 4</td>
<td>Stepped care intervention combining problem-solving therapy for depression with enhanced counselling for antiretroviral therapy adherence ART clinic</td>
<td>Number of sessions= 6</td>
<td>CD4 count</td>
<td>Viral suppression</td>
<td>Viral load suppression baseline= 57.14 at follow up= 100% Mean difference 42.86%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F= 5</td>
<td>Delivered by adherence counsellors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age= 42.1 (35-65)</td>
<td>On ART> 4 months Known with adherence problems Probable depression (SRQ8)</td>
<td>CD4 count mean baseline= 398.75 mean follow up= 470.86 Mean difference 72.1</td>
<td>Viral load suppression baseline= 57.14 at follow up= 100% Mean difference 42.86%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bamenda, Camaroon</td>
<td>M= 11</td>
<td>Measurement-Based Care (MBC) Depression care manager (non-physician)</td>
<td>Daily dose</td>
<td>CD4 count baseline</td>
<td>HIV RNA viral load (copies/mL) HIV RNA viral load400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F= 44</td>
<td>amitriptyline 25–50 mg OD</td>
<td>Number of sessions= 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9. Wagner et al., 2014
Kampala, Uganda
N = 105
M= 19
F= 86
Age= 37 (10)
Major depression
80% of participants on ARVs, all medically stable
Delivered by nurse/social worker
Day hospital AIDS treatment centre
Interventional longitudinal prospective cohort study
Antidepressant: 93% treated with Fluoxetine 20mg OD increasing by 20mg increments
17% treated with imipramine 50 mg increasing to 75mg then 2mg increments
Delivery and monitoring not specified
HIV clinic
Duration of intervention = 6 months
Daily dose
PHQ-9
PHQ9 mean: Baseline= 16.7 (SD 5.2)
F/U= 1.9 (SD 3.6)
Mean difference= -14.8
Baseline: CD4 count baseline = 346 (SD 243)
Significant improvement in depression outcomes: 86% treatment response
Selection: H
Performance: H
Detection: H
Attrition: L
Reporting: L
Other: L

10. Ngo et al., 2014
N= 184
Open label interventional drug trial
Duration of intervention
PHQ-9
PHQ9 mean: Baseline: 14.9 (SD 8.2)
Baseline: CD4 count baseline = 346 (SD 243)
Significant improvement in depression outcomes: 86% treatment response
Selection: H
Performance: H
Detection: H
Attrition: L
Reporting: L
Other: L
<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Gender</th>
<th>M</th>
<th>F</th>
<th>Age Mean (SD)</th>
<th>Depression Rates</th>
<th>Treatment Details</th>
<th>Follow-Up</th>
<th>CD4 Count Mean (SD)</th>
<th>Study Design</th>
<th>Intervention Details</th>
<th>Baseline</th>
<th>Post-Treatment Comparison</th>
<th>Immunological Outcome</th>
<th>Depression Outcomes</th>
<th>Reporting Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Uganda</td>
<td></td>
<td>40</td>
<td>144</td>
<td>36.4 (9.3)</td>
<td>85.9% on ART</td>
<td>Fluoxetine (20 mg/day, increments of 20 mg as warranted) or Imipramine (50 mg/day, increased to 75 mg after two weeks, followed by increments of 25 mg as warranted)</td>
<td>6 months</td>
<td>5.1 (F/U: 2.6 (SD 3.8))</td>
<td>Non-randomised control trial</td>
<td>Newly started on ART, not on ART, or more than 6 months on ART (mixed group)</td>
<td>HIV/non-HIV clinics</td>
<td>CD4 mean at baseline: 243.6 (SD 214.7)</td>
<td>CD4 mean at baseline: 243.6 (SD 214.7)</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>2008</td>
<td>South Africa</td>
<td></td>
<td>0</td>
<td>18</td>
<td></td>
<td></td>
<td>Art therapy</td>
<td>4 weeks</td>
<td></td>
<td>Non-randomised control trial</td>
<td>Recruitment: HIV support group</td>
<td>Delivery and monitoring not</td>
<td>Beck Depression Inventory II-total out of 63 points, >20 depression</td>
<td>Beck Depression Inventory II-total out of 63 points, >20 depression</td>
<td>CHANCE HLOC</td>
<td>H</td>
</tr>
</tbody>
</table>

Field and Kruger, 2008
Limpopo, South Africa
Total N= 18
I= 9
C= 9
M= 0
F= 18

Detection: H
Attrition: L
Reporting: L
Other: L

Selection: H
Performance: L
Detection: L
Attrition: L
Reporting: L
Other: H
(simultaneous
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>29.9 (21-42)</td>
</tr>
<tr>
<td>ART status</td>
<td>not specified</td>
</tr>
<tr>
<td>BDI> 14 (Mild-mod depression)</td>
<td>specified</td>
</tr>
<tr>
<td>PHQ-9</td>
<td>-0.39</td>
</tr>
<tr>
<td>Significance:</td>
<td>$t (16)= 4.11, p<0.05$</td>
</tr>
<tr>
<td>HIV support group sessions</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Adams et al., 2012 Tanzania</td>
<td></td>
</tr>
<tr>
<td>Total N= 20</td>
<td></td>
</tr>
<tr>
<td>M= 6</td>
<td></td>
</tr>
<tr>
<td>F= 14</td>
<td></td>
</tr>
<tr>
<td>Age= ≥18 (not specified further)</td>
<td></td>
</tr>
<tr>
<td>ARV status</td>
<td>not specified</td>
</tr>
<tr>
<td>Depression at baseline assessed by PHQ-9</td>
<td></td>
</tr>
<tr>
<td>Nurse-led antidepressant medication management of depression</td>
<td></td>
</tr>
<tr>
<td>Amitriptyline</td>
<td></td>
</tr>
<tr>
<td>(two-week shortage of medication)</td>
<td></td>
</tr>
<tr>
<td>Duration of intervention</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Daily medication dose</td>
<td></td>
</tr>
<tr>
<td>3 follow up visits</td>
<td></td>
</tr>
<tr>
<td>PHQ-9 CD4 count baseline only</td>
<td></td>
</tr>
<tr>
<td>PHQ9 mean and SD:</td>
<td></td>
</tr>
<tr>
<td>Baseline= 19.76 (3.01)</td>
<td></td>
</tr>
<tr>
<td>F/U= 8.12 (1.83)</td>
<td></td>
</tr>
<tr>
<td>(t = 19.62, df = 16, p < 0.001)</td>
<td></td>
</tr>
<tr>
<td>Mean difference= 11.64</td>
<td></td>
</tr>
<tr>
<td>NO IMMUNOLOGICAL OUTCOME</td>
<td></td>
</tr>
<tr>
<td>Significant improvement in depression outcomes</td>
<td></td>
</tr>
<tr>
<td>Selection:</td>
<td>H</td>
</tr>
<tr>
<td>Performance:</td>
<td></td>
</tr>
<tr>
<td>Detection:</td>
<td>H</td>
</tr>
<tr>
<td>Attrition:</td>
<td>L</td>
</tr>
<tr>
<td>Reporting:</td>
<td>L</td>
</tr>
<tr>
<td>Other:</td>
<td>L</td>
</tr>
</tbody>
</table>
13. Andersen et al., 2016
Western Cape, South Africa

<table>
<thead>
<tr>
<th>N</th>
<th>M</th>
<th>F</th>
<th>Age (mean ± SD)</th>
<th>ART status</th>
<th>Intervention</th>
<th>Duration of intervention</th>
<th>Number of sessions</th>
<th>CES-D Baseline, SD</th>
<th>HAM-D Baseline, SD</th>
<th>F/U: CES-D, MINI</th>
<th>Effect size</th>
<th>Change</th>
<th>Follow-up</th>
<th>Immunological Outcome</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1</td>
<td>13</td>
<td>38.4 (7.81)</td>
<td>Time not specified</td>
<td>Nurse-delivered CBT for adherence and depression</td>
<td>2 months</td>
<td>6-8</td>
<td>26.4 (5.5)</td>
<td>5.8 (5.8)</td>
<td>Large</td>
<td>-0.71</td>
<td>0.18</td>
<td>[−1.15, −0.28]</td>
<td>t(17) = −3.89, p < 0.01</td>
<td>H</td>
</tr>
</tbody>
</table>

IMMUNOLOGICAL OUTCOME
Significant improvement in depression outcomes with a very large effect size.

14. Olley, 2006
Abuja, Nigeria

<table>
<thead>
<tr>
<th>N</th>
<th>I</th>
<th>C</th>
<th>M (mean ± SD)</th>
<th>F (mean ± SD)</th>
<th>ART status</th>
<th>Intervention</th>
<th>Duration of intervention</th>
<th>Number of sessions</th>
<th>BDI Baseline, SD</th>
<th>F/U: BDI</th>
<th>Effect size</th>
<th>Change</th>
<th>Follow-up</th>
<th>Immunological Outcome</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>34</td>
<td>33</td>
<td>27.4 (8.1)</td>
<td>Age > 14</td>
<td>Non-randomised control trial</td>
<td>4 weeks</td>
<td>4 x 1 hour, 1 session a weekly</td>
<td>Inventory II-total out of 63 points, > 20 depression</td>
<td>19.0 (6.4)</td>
<td>5.71 (1.5)</td>
<td>U</td>
<td>0.99</td>
<td>-1.15</td>
<td>t(17) = -2.28, p < 0.05</td>
<td>H</td>
</tr>
</tbody>
</table>

IMMUNOLOGICAL OUTCOME
Significant improvement in depression outcomes compared to control.

Main effect F value: 21.06
| But not inclusion criteria | Delivered by VCT counsellor | F/U 4 weeks | Sexual risk behaviour | Self-disclosure intentions# | Coping behaviours | P<0.00 |
Appendix 1: PRISMA Flow Diagram

Records identified through database searching (n = 962)

Additional records identified through grey literature search (n=163)

Records after duplicates removed (n = 678)

Titles/abstracts of 678 screened

Records excluded (n = 626)

51 Full-text articles assessed for eligibility

Full-text articles excluded:
- Inappropriate study type (n = 24)
- Protocol (n = 1)
- Full text could not be obtained (n = 1)
- Systematic reviews (n = 1)
- Book chapter review (n=1)
- Inappropriate population (n= 9)
- No depression or immunological outcomes (n= 3)

14 Studies included in systematic review

14 Studies included in meta-analysis

Additional records identified through bibliographies/hand search/contacting researchers in the field (n = 3)
Appendix 2: Search Strategy

Search Terms: Embase, PsychInfo, Medline

1. exp HIV/
2. (HIV or AIDS or (acquired adj2 immunodeficiency adj2 syndrome)).mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, tc, id, tm, nm, kf, px, rx, ui]
3. exp HIV Infections/
4. exp Human immunodeficiency virus/
5. exp acquired immune deficiency syndrome/
6. OR/1-5
7. exp depression/
8. depress*.mp.
9. exp Depressive Disorder, Major/
10. exp major depression/
11. OR/7-10
12. exp psychoneuroimmunology/
13. psychoneuroimmunology.mp.
14. immunopsychiatry.mp.
15. exp clinical trials/
16. Experiment controls/
17. exp Placebo/
18. exp intervention/
19. exp psychotherapy/
20. (intervention or trial or treatment).mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, tc, id, tm, nm, kf, px, rx, ui]
21. control groups/
22. exp "clinical trial (topic)/"
23. exp comparative study/
24. control groups/ or double-blind method/ or single-blind method/
25. exp antidepressant agent/
26. exp intervention studies/
27. OR/12-26
28. (Angola or Benin or Botswana or Burkina Faso or Burundi or Cabo Verde or Cameroon or Central African Republic or Chad or Comoros or Congo, Dem Rep or Congo Rep or Cote d'Ivoire or Equatorial Guinea or Eritrea or Ethiopia or Gabon or Gambia or Ghana or Guinea or Guinea-Bissau or Kenya or Lesotho or Liberia or Madagascar or Malawi or Mali or Mauritania or Mauritius or Mozambique or Namibia or Niger or Nigeria or Rwanda or (Sao Tome and Principe) or Senegal or Seychelles or Sierra Leone or Somalia or South Africa or South Sudan or Sudan or Swaziland or Tanzania or Togo or Uganda or Zambia or Zimbabwe).mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, tc, id, tm, nm, kf, px, rx, ui]
29. exp "Africa south of the Sahara="/n30. Sub-Saharan Africa.mp.
31. remove duplicates from 28-30
32. OR/28-31
Appendix 3: Meta-Analysis Formulae

Standardized Mean Gain Depression Outcomes

(d) Cohen’s d av: \(SMG = \frac{Post \ intervention \ mean - Pre \ intervention \ mean}{Pooled \ SD} \)

\[SD_{pooled} = \sqrt{\frac{SD_{baseline}^2 + SD_{final}^2}{2}} \]

\[SE_{gain \ score} = \sqrt{\frac{2(1 - Corr) + d_{gain \ score}^2}{n}} \]

* Corr is the correlation coefficient. No studies included correlation coefficients data, thus a value of 0.5 was assigned as a reasonable and conservative estimate [77].

Unstandardized Mean Gain Immunological Outcomes (where constructs are the same)

Unstandardized mean gain = Post Intervention mean − Pre Intervention mean

Hedge’s g

\[Hedge’s \ g = Cohen’s \ sd \times (1 - \frac{3}{4N - 9}) \]

* N is the total number of participants in the study

Dichotomous Data

\[Odds \ Ratio = \frac{Post \ intervention \ event \ (a)}{Pre \ intervention \ no \ event \ (b)} \div \frac{Post \ intervention \ no \ event \ (c)}{Pre \ intervention \ event \ (d)} \]

\[SE(ln(OR)) = \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}} \]

Approximation of Dichotomous to Continuous Data

\[Effect \ Size = ln(OR) \times \frac{\sqrt{\pi}}{3} \]
Appendix 4.1 : Effect Size Calculations: Depression Outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Pre Intervention Score Mean</th>
<th>Pre Intervention Score Standard Deviation</th>
<th>Post Intervention Score Mean</th>
<th>Post Intervention Score Standard Deviation</th>
<th>Number of Participants</th>
<th>Standardized Mean Gain (Cohen’s d)</th>
<th>Heges g</th>
<th>Standard Error Gain score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abas, 2015</td>
<td>13.8</td>
<td>2.2</td>
<td>3.1</td>
<td>3.1</td>
<td>14</td>
<td>-4.034</td>
<td>-3.93</td>
<td>0.80</td>
</tr>
<tr>
<td>Adams, 2012</td>
<td>19.16</td>
<td>3.01</td>
<td>8.12</td>
<td>1.83</td>
<td>20</td>
<td>-4.81</td>
<td>-4.72</td>
<td>0.77</td>
</tr>
<tr>
<td>Andersen, 2016</td>
<td>40.9</td>
<td>8.45</td>
<td>6.58</td>
<td>7.61</td>
<td>14</td>
<td>-4.27</td>
<td>-4.16</td>
<td>0.85</td>
</tr>
<tr>
<td>Field & Kruger, 2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3.17</td>
<td>-3.04</td>
<td>0.82</td>
</tr>
<tr>
<td>Gaynes, 2015</td>
<td>14.4</td>
<td>0.825</td>
<td>1.6</td>
<td>0.4</td>
<td>41</td>
<td>-24.98</td>
<td>-24.7</td>
<td>2.70</td>
</tr>
<tr>
<td>Hoare, 2014</td>
<td>21.3</td>
<td>5.2</td>
<td>12.3</td>
<td>1</td>
<td>51</td>
<td>-2.90</td>
<td>-2.88</td>
<td>0.28</td>
</tr>
<tr>
<td>Ngo, 2015</td>
<td>14.9</td>
<td>5.1</td>
<td>2.6</td>
<td>3.8</td>
<td>184</td>
<td>-2.76</td>
<td>-2.76</td>
<td>0.16</td>
</tr>
<tr>
<td>Nyamayaro, 2016</td>
<td>5.6</td>
<td>0.5</td>
<td>1.8</td>
<td>1</td>
<td>9</td>
<td>-5.07</td>
<td>-4.86</td>
<td>1.18</td>
</tr>
<tr>
<td>Olley, 2006</td>
<td>19</td>
<td>6.4</td>
<td>5.7</td>
<td>1.5</td>
<td>82</td>
<td>-3.36</td>
<td>-3.35</td>
<td>0.29</td>
</tr>
<tr>
<td>Peltzer, 2012</td>
<td>26.8</td>
<td>22.2</td>
<td>19.7</td>
<td>19.3</td>
<td>76</td>
<td>-0.34</td>
<td>-0.34</td>
<td>0.12</td>
</tr>
<tr>
<td>Pence, 2014</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>0.75</td>
<td>55</td>
<td>-12.57</td>
<td>-12.49</td>
<td>1.20</td>
</tr>
<tr>
<td>Petersen, 2014</td>
<td>15.47</td>
<td>4.46</td>
<td>6.94</td>
<td>14.4</td>
<td>41</td>
<td>-1.98</td>
<td>-1.97</td>
<td>0.27</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td>Value 7</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Wagner, 2014</td>
<td></td>
<td>16.7</td>
<td>5.2</td>
<td>1.9</td>
<td>3.6</td>
<td>105</td>
<td>-3.36</td>
<td>-3.35</td>
</tr>
<tr>
<td>Moosa, 2012 (pharm)</td>
<td></td>
<td>25.7</td>
<td>4.5</td>
<td>6.2</td>
<td>4</td>
<td>19</td>
<td>-4.59</td>
<td>-4.50</td>
</tr>
<tr>
<td>Moosa, 2012 (IPT)</td>
<td></td>
<td>22.5</td>
<td>4.5</td>
<td>14.3</td>
<td>4</td>
<td>13</td>
<td>-1.93</td>
<td>-1.87</td>
</tr>
</tbody>
</table>
Appendix 4.2: Effect Size Calculation: Immune Outcomes, Odds of Viral Suppression

<table>
<thead>
<tr>
<th>Study</th>
<th>Pre Intervention Odds</th>
<th>Post Intervention Odds</th>
<th>Number of Participants</th>
<th>Log (Odds Ratio)</th>
<th>Standard Error of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abas, 2015</td>
<td>1/13</td>
<td>11/3</td>
<td>14</td>
<td>1.68</td>
<td>1.22</td>
</tr>
<tr>
<td>Gaynes, 2015</td>
<td>0/27</td>
<td>5/22</td>
<td>41</td>
<td>1.13</td>
<td>1.50</td>
</tr>
<tr>
<td>Nyamayaro, 2016</td>
<td>0/9</td>
<td>5/4</td>
<td>9</td>
<td>1.19</td>
<td>1.55</td>
</tr>
</tbody>
</table>

Appendix 4.3: Effect Size Calculation: Immune Outcomes, CD4 Count (Abas, 2015 result converted from dichotomous viral suppression (VS) to continuous)

<table>
<thead>
<tr>
<th>Study</th>
<th>Pre Intervention Score Mean</th>
<th>Pre Intervention Score Standard Deviation</th>
<th>Post Intervention Score Mean</th>
<th>Post Intervention Score Standard Deviation</th>
<th>Number of participants</th>
<th>Standardized Mean Gain (Cohen’s d)</th>
<th>Hedges’ g</th>
<th>Standard Error Gain Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peltzer, 2012</td>
<td>308</td>
<td>217</td>
<td>384</td>
<td>186</td>
<td>76</td>
<td>0.38</td>
<td>0.38</td>
<td>0.11</td>
</tr>
<tr>
<td>Hoare, 2014</td>
<td>454.3</td>
<td>29.5</td>
<td>433.6</td>
<td>214.9</td>
<td>51</td>
<td>-0.17</td>
<td>-0.17</td>
<td>0.14</td>
</tr>
<tr>
<td>Gaynes, 2015</td>
<td>436</td>
<td>21405</td>
<td>452</td>
<td>211</td>
<td>41</td>
<td>0.08</td>
<td>0.07</td>
<td>0.16</td>
</tr>
<tr>
<td>Nyamayaro, 2016</td>
<td>398.75</td>
<td>157025</td>
<td>470.86</td>
<td>162.5</td>
<td>9</td>
<td>0.46</td>
<td>0.43</td>
<td>0.33</td>
</tr>
<tr>
<td>Abas, 2015</td>
<td>VS</td>
<td>VS</td>
<td>VS</td>
<td>VS</td>
<td>14</td>
<td>2.28</td>
<td>2.21</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Highlights

- Pharmacological interventions appeared to have a significantly larger improvement in depression scores than psychological modalities of treatment, in sub-Saharan African studies
- Psychological treatment interventions, incorporating an HIV medication adherence component, had the most pronounced, however non-significant, effect on immune status improvement
- Antidepressant treatment might not be addressing the underlying issues associated with non-adherence in lower-middle income setting of sub-Saharan Africa
- A tentative recommendation from this preliminary evidence is combination treatment for MDD in people living with HIV, using both psychological and pharmacological modalities. However, more evidence of better quality is needed to support future policy in this region.