Antenna design by using specialist tool for the 3D em simulation of high frequency components. In 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2017 (Vol. 2017-November). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/COMCAS.2017.8244828
Antenna design by using specialist tool for the 3D EM simulation of high frequency components

Irina L. Alborova1*, Maria Koutsoupidou2,3, Andrey Rogozin1, Panagiotis Kosmas3,4, Lesya N. Anishchenko1

1Bauman Moscow State Technical University, Moscow, 105005, Russia; 2National Technical University of Athens, 15780, Greece; 3King’s College London, WC2R 2LS, UK; 4MediWiSe | Medical Wireless Sensing Ltd , London, E1 2AX, UK

Abstract — This paper presents the study results of the Self-complementary Bow-tie Antenna (SCBT-antenna) for microwave imaging. The most important milestones are to select the optimal antenna characteristics for MWI and to model and simulate the array element using specialized software packages. The antenna was modelled on an aluminum nitride substrate with a dielectric constant of 8.6 and thickness of 1.5 mm. The breast phantom was presented as a parallelepiped with dimensions of 100x100x52 mm, which consist two layers (adipose tissue and 2 mm thickness skin) and a spherical inclusion imitating the tumor. The simulation results obtained from CST software showed a -10 dB return loss bandwidth from 1.75 to 2.36 GHz in free space and 1.45-1.77 GHz when the antenna was placed at the proximity of the tissue. Penetration depth was approximately 30-40 mm. Further investigation of the antenna is required using phantoms with more anatomical details.

Index Terms — Antenna design, CST simulation, Bow-tie Antenna, tumor detection, dielectric inhomogeneity detection.

I. INTRODUCTION

The development and improvement of imaging modalities for the early detection of breast cancer remains an active area of research. Microwave imaging has attracted significant research interest as a novel modality for breast cancer detection that presents important advantages over other techniques currently applied in clinical practice [1], [2]. It is known that the dielectric properties of normal and malignant breast tissues differ even at the earliest stage of tumor genesis [3]. Thus, microwave imaging, which detects dielectric in the medium, could be used for early stage breast tumor detection.

This paper presents the study results of the Self-complementary Bow-tie Antenna (SCBT-antenna) for microwave imaging. The most important milestones are to select the optimal antenna characteristics for MWI and to model and simulate the array element using specialized software packages.

II. ANTENNA DESIGN

The antenna design is a modification of the simple triangular monopole antenna [4]: the ground plane was extended and a mirror triangular slot was added, while the microstrip feed line was bended by 90 degrees. The antenna was modelled on an aluminum nitride substrate (60 mm x 85 mm) with a dielectric constant of 8.6 and thickness of 1.5 mm. The high epsilon substrate was used in order to achieve good matching with the tissue. Geometry of the antenna and screenshot of the model are shown in Fig. 1, 2.

III. RESULTS

The setup was modelled with CST Microwave Studio® in the 0.1 – 4 GHz range and the S_{11} and E-field results are displayed in Fig. 3 and 4 respectively. The simulation results obtained from the CST software showed a -10 dB return loss bandwidth of 1.75 to 2.36 GHz.
The presence of the tumor resulted in a clear drop of 5 dB at the antenna’s reflection coefficient (Fig. 3c). The E-field distribution inside the tissue is displayed in Fig. 4. The color map was clamped to a maximum of 200 V/m. Penetration depth was approximately 30-40 mm. The lower cut-off frequency was 1.45 GHz and good penetration into the tissue was achieved without immersing the antenna into a matching medium. Further investigation of the antenna is required using phantoms with more anatomical details.

Fig. 3. Simulated return loss: (a) without phantom; (b) phantom without inclusion; (c) phantom with 10 mm inclusion.

Fig. 4. E-field distributions of the SCBT-antenna: (a) without inclusion; (b) with 10 mm inclusion.

IV. CONCLUSION

The simulation results obtained from CST software showed a −10 dB return loss bandwidth from 1.75 to 2.36 GHz in free space and 1.45-1.77 GHz when the antenna was placed at the proximity of the tissue. Penetration depth was approximately 30-40 mm. Further investigation of the antenna is required using phantoms with more anatomical details.

ACKNOWLEDGEMENT

The results, published in the article, have been obtained in the framework of the implementation of the project part of the Russian Foundation for Basic Research (grant No. 26 16-37-00276) and in the framework of Short-Term Scientific Mission programme in MediWiSe (COST Action TD 1301 – MiMed).

REFERENCES

