Case Report

Peripheral neuropathy in diabetes: it’s not always what it looks like

G. Maltese¹, S. V. Tan², E. Bruno², A. Brackenridge¹ and S. Thomas¹

¹Department of Diabetes and Endocrinology, Guy’s and St Thomas’ NHS Trust, London, UK

²Department of Clinical Neurophysiology and Epilepsies, Guy’s and St Thomas’ NHS Trust, London, UK

Correspondence to: Dr Giuseppe Maltese. Email: giuseppe.maltese@kcl.ac.uk

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/dme.13701

This article is protected by copyright. All rights reserved.
What’s new?

- For the first time a case of Type 1 diabetes and Hereditary Neuropathy with liability to Pressure Palsies (HNPP) is described.
- Longstanding motor and sensory symptoms were previously attributed to golfer’s elbow, diabetic neuropathy and spinal degenerative disease.
- Many cases of HNPP are thought to remain undiagnosed.
- This case suggests that the differential diagnosis of peripheral neuropathy in people with diabetes and other co-morbidities may be challenging and requires a careful and comprehensive approach.

Abstract

Background Hereditary Neuropathy with liability to Pressure Palsies (HNPP) is an autosomal dominant neuropathy, associated with deletion of the Peripheral Myelin Protein-22 (PMP-22) gene, causing recurrent painless palsies with age of onset between 10 and 30 years old. Only a few cases of Type 2 Diabetes and HNPP have been described and the coexistence of HNPP and Type 1 diabetes has never been reported.

Case report A 54-year old man with a history of Type 1 diabetes, managed with continuous subcutaneous insulin infusion (CSII), presented with deterioration of long-standing motor and sensory symptoms, previously attributed to golfer’s elbow, diabetic neuropathy and spinal degenerative disease. He had multilevel severe spine degenerative changes and L4/L5 and L5/S1 root impingements with a L4/L5 discectomy performed when he was 25 years old. On physical examination he had normal power and distal hypoaesthesia of the digits and plantar aspect of the feet. Investigations revealed normal full blood count, liver and renal function, electrolytes, vitamin B12 and serum folate. He suffered from primary hypothyroidism and thyroid function tests indicated adequate levothyroxine replacement. Nerve conduction studies revealed a generalized demyelinating
sensorimotor neuropathy, with more severe involvement of nerves over entrapment sites. Further
history that his father suffered from episodes of weakness and numbness was elicited. Genetic
analysis revealed one copy of the PMP22 gene at 17p11.2 confirming the diagnosis of HNPP.

Conclusion In people with diabetes the evaluation of peripheral neuropathy should include a careful
history, a comprehensive physical examination, blood tests and in some cases nerve conduction
studies and genetic testing.

<H1>Background

Hereditary Neuropathy with liability to Pressure Palsies (HNPP) is an autosomal dominant
neuropathy associated with deletion of the Peripheral Myelin Protein-22 (PMP-22) gene causing
recurrent painless palsy with age of onset between 10 and 30 years old (1,2). PMP-22 is a gene
encoding the peripheral myelin protein which plays a crucial role in the formation of myelin. The
prevalence of HNPP is estimated between 7.3 to 16 cases per 100,000, although many cases are
thought to remain undiagnosed (3,4). While the coexistence of HNPP and Type 2 diabetes has
previously been described (5), this is the first report of a person with Type 1 diabetes, HNPP and
diabetic peripheral neuropathy.

<H1>Case report

A 54-year old man with a 14-year history of Type 1 diabetes, managed with continuous subcutaneous
insulin infusion (CSII), was seen at the authors’ clinic. He presented with deterioration of
longstanding motor and sensory symptoms which had previously been attributed to golfer’s elbow
and spinal degenerative disease. He reported recent worsening of an intermittent right leg numbness
after prolonged sitting and episodes of paraesthesia of his right arm after nocturnal sleep. He was
known to have multilevel vertebral degenerative changes with L4/L5 and L5/S1 root impingements.
At the age of 25 years old he had a L4/L5 discectomy for low back pain and right leg numbness

This article is protected by copyright. All rights reserved.
associated with weakness. Previous lumbar MRI scans had shown degenerative changes with foraminal impingement at various levels, with no significant progression over time. Nerve conduction studies performed in other hospitals had documented findings suggestive of a superimposed diabetic peripheral neuropathy. His medical history also included primary hypothyroidism, adequately replaced with levothyroxine. On examination, he had bilateral pes cavus, hammer toes and mild muscle wasting in the lower limbs. Power was normal in all four limbs. Deep tendon reflexes were reduced but symmetrical. There was hypoesthesia of the toes and soles. The plantar responses were downgoing. A panel of blood tests including full blood count, renal and liver function, ESR, vitamin B₁₂, methylmalonic acid and serum protein electrophoresis was unremarkable. His HbA1c was 71 mmol/mol (8.6%). Repeat nerve conduction studies revealed a generalized demyelinating sensorimotor neuropathy with more severe involvement of nerves over entrapment sites (median neuropathy at the wrist, ulnar at the elbow and peroneal at the knee) (Table 1). The findings, although compatible with a diabetic neuropathy, showed rather slower velocities than were typical. Further questioning revealed history of recurrent right foot drop at the age of 18–20 years old, particularly after sitting with the right leg crossed over the left. The weakness recovered over several weeks. He had also experienced recurrent painless weakness of right shoulder abduction or elbow flexion following gym sessions with a weight over his shoulders. He recalled that his father had had similar symptoms of recurrent numbness and weakness. His history raised the suspicion of a demyelinating hereditary neuropathy. A subsequent multiplex ligation-dependent probe amplification analysis revealed one copy of the PMP22 gene at 17p11.2, confirming the diagnosis of HNPP.

Discussion

HNPP leads to episodic, painless, focal motor and sensory peripheral neuropathy and causes attacks of numbness and weakness (6). It is known that the most vulnerable nerves are the peroneal and the ulnar nerves (30–48% and 21–28%, respectively), followed by the brachial plexus, radial nerve and median nerve (2,7). In this case, the neurological symptoms had been attributed to a spinal

This article is protected by copyright. All rights reserved.
degenerative process, recurrent tendinitis of the right elbow, and a superimposed diabetic neuropathy. HNPP and diabetic neuropathy may have similar neurophysiological features and, although sensory nerve conduction velocity slowing and distal motor latency prolongation is said to be more marked in HNPP (8), the distinction is not absolute. The main clue to the correct diagnosis came from the history of typical recurrent pressure palsies and his detailed family history. Some unusual associations of HNPP with other pathologies such as hypothyroidism have been described and are believed to aggravate HNPP neurological symptoms (9). As the concurrence of HNPP and diabetes is rare, it is not known if diabetes exacerbates the nerve injury in this genetic condition. This case confirms that the differential diagnosis of peripheral neuropathy in a person with diabetes can be challenging and warrants specialist consultation in the presence of atypical features (Table 2) (10-12). Nerve conduction studies represent an easy and accurate method for determining which patients may have HNPP but genetic testing is the most reliable tool for the diagnosis. In the present case, the correct diagnosis allowed the adoption of strategies (activity modification and protective padding) to prevent further progression in nerve injury and facilitated appropriate genetic counselling and management (4). Furthermore, beyond the uncommon concomitancy of Type 1 diabetes, HNPP and peripheral diabetic neuropathy and the misleading presence of spine disease, this report provides the reader with an important key clinical message. In people with diabetes and nerve damage the diagnostic process is not always straightforward and should include meticulous history taking, a comprehensive physical examination and consideration of nerve conduction studies.

Funding sources

No funding was received for this work.

Competing interests

The authors confirm that there are no conflicts of interest.

This article is protected by copyright. All rights reserved.
<H1>References</H1>

This article is protected by copyright. All rights reserved.

Table 1 Neurophysiology results

<table>
<thead>
<tr>
<th>Sensory studies</th>
<th>Amplitude (uV)</th>
<th>Norm (uV)</th>
<th>CV (m/s)</th>
<th>Norm (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digit II (index finger)</td>
<td>absent</td>
<td>> 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digit III (long finger)</td>
<td>absent</td>
<td>> 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid palm</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulnar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digit V (little finger)</td>
<td>3</td>
<td>> 6</td>
<td>35</td>
<td>> 50</td>
</tr>
<tr>
<td>Mid palm</td>
<td>6</td>
<td></td>
<td>39</td>
<td>> 50</td>
</tr>
<tr>
<td>Radial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forearm</td>
<td>4</td>
<td>> 13</td>
<td>34</td>
<td>> 50</td>
</tr>
<tr>
<td>Superficial peroneal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower leg</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sural</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower leg</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor studies</td>
<td>DML (ms)</td>
<td>CMAP (mV)</td>
<td>Segment</td>
<td>MCV* (m/s)</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wrist</td>
<td>9.9</td>
<td>2.3</td>
<td>Abductor pollicis brevis-Wrist</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLI 0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elbow</td>
<td>16.6</td>
<td>1.4</td>
<td>Wrist-Elbow</td>
<td>38</td>
</tr>
<tr>
<td>Ulnar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wrist</td>
<td>4.4</td>
<td>10.2</td>
<td>Abductor DM-Wrist</td>
<td></td>
</tr>
<tr>
<td>Below elbow</td>
<td>9.3</td>
<td>7.8</td>
<td>Wrist-Below elbow</td>
<td>49</td>
</tr>
<tr>
<td>Above elbow</td>
<td>13.5</td>
<td>5.5</td>
<td>Below elbow-Above elbow</td>
<td>29</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
Peroneal

Ankle 6.5 0.1 Extensor Digitorum Brevis-Ankle
Fibula (head) 22.4 0.1 Ankle-Fibula (head) 25

Peroneal

Fibula (head) 4.9 2.0 Tibialis anterior-Fibula (head)
Popliteal fossa 7.8 2.3 Fibula (head)-Popliteal fossa 29

Tibial

Ankle 5.3 1.2 Abductor Hallucis-Ankle

Median-Ulnar comparison

<table>
<thead>
<tr>
<th>Nerve</th>
<th>Minimum F-Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td></td>
</tr>
<tr>
<td>Wrist</td>
<td>6.4</td>
</tr>
<tr>
<td>Ulnar</td>
<td></td>
</tr>
<tr>
<td>Wrist</td>
<td>2.8</td>
</tr>
</tbody>
</table>

DML difference:

- Wrist-2nd Lumbrical 3.6 ms
- Wrist-2nd Interosseous

F-Wave Studies

<table>
<thead>
<tr>
<th>Nerve</th>
<th>Minimum F-Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>40.8</td>
</tr>
<tr>
<td>Ulnar</td>
<td>35.7</td>
</tr>
</tbody>
</table>

+All results shown were from the right side.

*Normal values for upper limbs > 50 m/s, lower limbs > 40 m/s.

CV, conduction velocity; Norm, normative data; DML, distal motor latency; CMAP, compound muscle action potential; MCV, maximum conduction velocity to onset of CMAP; TLI, terminal latency index (normal > 0.34).
Table 2 Features suggesting further investigation of peripheral neuropathy in diabetes

- Acute or subacute onset of symptoms
- Rapidly progressive symptoms
- Family history of sensory and motor symptoms
- Asymmetry of signs or symptoms
- Motor greater than sensory neuropathy
- Multifocal symptoms
- Sensory neuropathies causing gait ataxia and proprioceptive dysfunction
- Symptoms associated with severe dysautonomia
- Severe symptoms, functionally limiting