A note on contemporary psychometrics

Silia Vitoratou¹,* and Andrew Pickles¹

¹Psychometrics & Measurement Lab,
Department of Biostatistics and Health Informatics,
Institute of Psychiatry, Psychology, and Neurosciences,
King’s College London, UK

*Corresponding author
Silia Vitoratou, PhD
Lecturer in Psychometrics
Psychometrics & Measurement Lab,
Department of Biostatistics and Health Informatics
IoPPN, King’s College London,
Room S2.10
SE5 8AF, London, UK.
Phone: 0207 848 0309
Fax: 0207 848 0281
Email: silia.vitoratou@kcl.ac.uk
Psychometrics provide the mathematical underpinnings for psychological assessment. From the late 19th century, a plethora of methodological research achievements equipped researchers and clinicians with efficient tools whose practical value becomes more evident in the era of the internet and big data. Nowadays, powerful probabilistic models exist for most types of data and research questions. As the usability of the psychometric scales is better comprehended, there is an increased interest in applied research outcomes. Paradoxically, while the interest in applications for psychometric scales increases, publishing research on the development and/or evaluation of those scales per se, is not welcomed by many relevant journals. This special issue in psychometrics is therefore a great opportunity to briefly review the main ideas and methods used in psychometrics, and to discuss the challenges in contemporary applied psychometrics.

Main ideas in psychometrics

In mental health sciences, as we cannot measure perceptions, emotions, attitudes, personality traits directly, we need to rely on their indirect assessment through the responses to a set of observed variables (items, questions, symptoms). These observed variables are often referred to as indicators, as they are designed to reflect the latent trait being assessed. But how do we learn about a trait via such observed items? Imagine looking out of a window towards a field of crops. Being indoors, one cannot feel or see the wind directly, yet by observing the movement of the crops, one can infer not only the existence of wind but also the wind’s direction and magnitude. This is only possible because we naturally assume that the wind is the common cause which makes the crops move. Based on the movement of individual plants and as a group, we can measure the wind. Likewise, in psychometrics we assume that the latent trait affects the responses in our observed items and makes them vary. Therefore, based on our items’ variation and covariation, we can measure their common cause, that is, the non-directly measurable trait.

Apart from the common cause, another idea essential for psychometrics, is the idea of measurement error. According to the classical test theory, our observed measurement is only partly the true value because our observation also includes random errors. The equation observation equals true value plus error is the core of classical test theory. This was the idea which prompted the field of psychometrics and provides the foundation for the definitions of reliability (precision) and validity (accuracy).

Psychometric properties and latent trait models
Reliability refers to the question: **are we measuring the trait with precision?** It entails the reproducibility of the results, which is fundamental in all fields of science. Test-retest reliability (stability), inter-rater (equivalence) reliability, and internal consistency (equivalence/stability), all embody the classical test theory ideas for random error (each attributing it to different sources) and are estimated using standard statistical tests. The reliability of a scale is estimated specifically for a target population. A change in the target population from one setting to another (inpatient to community, for instance) will require further reliability assessments, evaluated independently.

With respect to validity, the question to be answered is: **do we really measure what we intend to?** The validity assessment is essentially our attempt to gather evidence to answer this question and we do so by utilising the broader scientific knowledge in our area of research. In this sense, the validity assessment of a scale is never actually finalised. It is always subject to new findings and understanding. Unlike reliability, validity does not address the random error; in fact, validity is employed to avoid systematic error. There are many different types of validity: face and content, predictive and concurrent, convergent, discriminant (or divergent), and discriminative, among others. Among the different types of validity, the importance of the face validity (*valid in the eyes of the target population*) is now widely comprehended (see also Neale and Strang, 2015). Patients’ involvement in the item development stage has become a standard practice, improving the comprehension of the items and the psychometric properties of the instrument. This way the measurement reflects not only the clinician but also the patient experience. The validity assessment can be based in simple methods such as correlations and regressions, or extended to more sophisticated methods such as receiver operating characteristic curves to compare with gold-standard criteria or anchoring vignettes to address cross-cultural bias.

Knowledge of psychometric properties is vital in our attempt to minimise the measurement error. The measurement itself is achieved using multivariate statistical models, which belong to the family of the generalised latent trait models (Moustaki & Knott, 2000). The important task here is to choose the appropriate model for each application, based on the **type of data** and on the hypothesis under consideration. Binary data can be handled with the item response theory model or with item factor analysis, ordinal data with the partial credit or graded response models, continuous data with the common factor analysis model, exploratory and/or confirmatory. These models allow us to study the relationship of each item with the latent trait, to evaluate whether our trait is unidimensional or multidimensional, to address the measurement error and the psychometric properties in a sophisticated manner, and eventually to **produce the measurement scores.**
More advanced models are used to study further important aspects of measurement, such as the
measurement bias. This refers to the bias introduced to our measurement due to respondent
characteristics such as gender, age, ethnicity, or conditions (different raters, re-assessments). To test
for score differences between groups or conditions, we need first to make sure that the scale we use
functions similarly in all cases. For instance, if our scale underestimates aggression in women, then
any comparisons of their scores with scores from men is not to be trusted. Multiple group factor
analysis models are used to ensure measurement invariance between groups. For continuous
variables, such as age for instance, invariance can be evaluated using multiple responses-multiple
indicators models (MIMIC). Longitudinal factor analysis can evaluate bias in time or in the presence of
multiple raters.

Computing advances have facilitated the development of even more complex models, including the
computationally demanding analogues under the Bayesian paradigm. Models can be fitted for either
side of the debate: such as, “under what circumstances does it make sense to regard psychopathology
as being scalar and under what circumstances does it make sense to regard psychopathology as being
categorical” (Pickles and Angold, 2003).

Psychometrics in the literature

There is an increased interest with respect to measurement. For instance, a recent literature review
conducted by the Psychometrics and Measurement Lab (PML) at the IoPPN, revealed that the **number of publications in applied psychometrics affiliated with the institute almost doubled over the past five years.** At the same time, however, many funders will not support measure development work and
many relevant journals appear to be reluctant to publish articles referring solely to newly developed
scales. This discuorges researchers from investing in the learning and application of modern
psychometric methodology and in undertaking the systematic development work necessary to
produce the best measurement tool for the task. This is disappointing, since the accomplishments of
theoretical (methodological) research enable us to develop powerful psychometric instruments. We
are now able to measure the traits of interest with precision and accuracy, to understand better their
characteristics and properties, and to use this knowledge in clinical practice. Provided, however, that
the **proper methods are used and that they are used properly.**

It is not rare in the literature, for instance, to see categorical data being analysed using common factor
analysis (suitable for continuous data) leading to biased estimates and non-reproducible structures.
Even when the correct method is used, following blindly the numerous indices and criteria, without a
proper understanding of their meaning, purpose, and interpretation, can lead to conflation or needless fragmentation of dimensions. Another problem is that whilst reliability, validity, and dimensionality are often studied and reported, measurement bias is commonly neglected. In a clinical setting, a consistent bias in measurement leads to over or under-diagnosis and consequent treatment in one group compared to another. A less than adequate evaluation of the properties of a scale can also lead to the artefactual generation of evidence for or against categorical or dimensional disorders, or even to inappropriate use of a measure designed for one setting or purpose, for another. These difficulties, along with the sustained flow of new methods provided by theoretical psychometrics and the widespread applications, call for *guidelines for researchers*, such as the COSMIN guidelines (Mokkink, 2010). Updated comprehensive methodological checklists are not only crucial for the development of new scales, but also vital in the *re-evaluation* and improvement of existing popular scales, in view of new methods and software. This will improve the quality of the scales eventually available to clinicians and researchers.

The Journal of Mental Health traditionally encourages and supports research in applied psychometrics (Cao et al, 2016; Fitzgerald et al, 2015; O’Connor et al, 2014; Roncalli et al, 2013; Lloyd et al, 2012, among others). This special issue adds to this effort and presents a variety of different research scenarios often occurring in applied psychometrics. Barber et al, (2017) and Newman-Taylor et al. (2017) present newly developed scales. Giromini et al, (2017) and Goossens et al, (2017) present the psychometric properties of pre-existing scales, which are currently translated in a different language. The process of translating a psychometric instrument is a rigorous one and entails all stages of evaluating a new instrument, apart from item development. Joshanloo & Jovanović, (2017) in addition to presenting a cross-cultural adaptation of a pre-existing scale, investigate the measurement invariance of the scale with respect to gender. Kocalevent et al, (2017) and Kim et al, (2017) on the other hand, examined the psychometric properties of pre-existing scales in different populations than the populations targeted when the scales were originally developed. Tomizawa et al, (2017) revise a pre-existing scale to adjust for multi-nationality, that is, to overcome cultural differences in the measurement. Wei et al, (2017) give an example of a systematic review of psychometric scales. Furnham & Crump (2017) give an example of using psychometric analysis to reduce uncertainty and finally Kelly presents a large cross-sectional psychometric study which spans in 21 European countries.

Conclusion

Psychometrics is a valuable tool for psychological assessment in three distinct ways. First in everyday clinical practice, where standardised psychometric measures add evidence which can help the
clinician with diagnosis or formulation. Second in applied research, where psychometric scales offer a powerful tool for screening and/or evaluating the **prevalence of a certain trait in a population**, as a one-to-one expert assessment is not feasible. Third psychometrics provide the methods to measure, study, **understand, and explore a latent trait per se**, facilitating our effort to advance our knowledge in mental health sciences. Our raw data are complex, and though the methods too can appear overwhelming, they have the capacity to both justify and achieve great simplification. Developing a scale demands the co-evaluation of many results over an extended sequence of development stages, following both general and trait-specific, purpose-tailored, rules. There are no shortcuts, no generic or automated procedures to fit all applications and any available guidelines need to be adjusted to the task at hand. Exploring the magnificent world of identifying and measuring abstract concepts may be seeking simplicity but was never itself going to be simple.

References

