Citation for published version (APA):
Letter to the Editor

Excessive daytime sleepiness, sympathetic nervous system activation and arterial stiffening in patients with mild-to-moderate obstructive sleep apnoea. Reply

Valeria Bisogni a,⁎, Martino F. Pengo a, Panagis Drakatos b, Giuseppe Maiolino a, Brian Kent b, Giacomo Rossitto a, Joerg Steier b,c, Gian Paolo Rossi a

aClinica dell'Ipertensione Arteriosa, Dept. of Medicine—DIMED, University of Padua, Italy
bGuy's and St. Thomas' NHS Foundation Trust, Lane Fox Respiratory Unit/Sleep Disorders Centre, London, UK
cKing's College London, Faculty of Life Sciences and Medicine, London, UK

Article history:
Received 14 June 2017
Accepted 15 June 2017
Keywords:
Mild-to-moderate obstructive sleep apnoea
Excessive daytime sleepiness
Arterial stiffness
Heart rate variability

To Dr. Kawada, Department of Hygiene and Public Health, Nippon Medical School
We are grateful to Dr. Kawada for his comments [1] and interest in our work [2]. Multiple potential confounders of excessive daytime sleepiness (EDS) have been established besides obstructive sleep apnoea (OSA) and may include gender, age [3], sleep habits, psychiatric disorders, obesity, and diabetes [4]. In our study [2] selected patients without these factors were studied; they had high sleep efficiency during full polysomnographic sleep recording. However, in this sample of patients the respiratory disturbance index (RDI) did not correlate with the Epworth Sleepiness Scale (ESS) score (RDI 16.1 ± 7.1 vs 17.2 ± 6.7/h, p = 0.59, comparing “nonsleepy” (ESS ≤ 10) with “sleepy” (ESS ≥ 10) patients).
A multivariate regression analysis with adjustment for confounders (body mass index, apnoea/hypopnea index, and oxygen desaturation index) proved that the ESS, as a continuous variable, did not significantly predict the arterial stiffness derived index (F = 2.41, adjusted R² = 0.028, p = 0.127) and heart rate variability indices (F= 0.34, adjusted R²= –0.014, p= 0.564), which supports our conclusions.
Finally, it has been established that severe OSA is an independent cardiovascular (CV) risk factor [5]. Hence, we investigated mild-to-moderate OSA patients and whether there was any difference in markers of CV risk, including detectable signs of increased sympathetic nervous system activity and arterial stiffness, and whether this was related to EDS. Although our study is a “proof-of-principle study”, the results obtained were clear-cut and tested the hypothesis that mild-to-moderate OSA and EDS have a role in CV risk. Further stratification of OSA patients in terms of CV risk will help to focus future therapeutic strategies in these patients.

Author contributorship
These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Conflicts of interest
The authors report no relationships that could be construed as a conflict of interest.

Acknowledgements and founding
Dr. Steier’s contribution was partially supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

References