https://doi.org/10.1016/j.pupt.2018.04.010
Impact of doxofylline in COPD: A pairwise meta-analysis

Mario Cazzola, Luigino Calzetta, Paola Rogliani, Clive Page, Maria Gabriella Matera

ABSTRACT

Doxofylline is an effective bronchodilator for relieving airway obstruction in patients with asthma or chronic obstructive pulmonary disease (COPD), and displays a better safety profile with respect to theophylline. Herein, we performed a pairwise meta-analysis of the currently available data to provide consistent and homogeneous findings on the impact of this xanthine in COPD patients. Results obtained from 820 patients were selected from 20 clinical trials. Meta-regression was performed to examine the source of heterogeneity between-studies and identify potential confounder covariates. The quality of the evidence was assessed by the GRADE system. Doxofylline induced a significant (P < 0.001) increase in forced expiratory volume in 1 s (FEV1) of 8.20% (95%CI 4.00–12.41; I² 93%) and 317 ml (95%CI 19–439; I² 87%) compared with baseline. The total administered dose of doxofylline significantly (P < 0.001) interacted with the size of the effect estimates detected for FEV1. Doxofylline induced a significant (P < 0.001), although moderate, increase in adverse events (AEs) frequency (proportion 0.03, 95%CI 0.02–0.04; I² 88%), but only epigastralgia, nausea, dyspepsia and headache were statistically significant (P < 0.05). The GRADE analysis indicated high quality of evidence (+ + + +) for the impact of doxofylline on FEV1, and moderate quality of evidence (+ + +) for the safety profile in COPD patients. Doxofylline is an effective and safe medicine when administered to patients with COPD and can be considered as an alternative to theophylline.

1. Introduction

Doxofylline is a xanthine that is structurally different from theophylline by having a dioxalane group at position 7 of the xanthine ring [1]. Consequently, it has mechanisms of action distinct from those of theophylline [2–4] in that lacks adenosine receptor antagonism or the ability to inhibit any of the known PDE isoforms, which may contribute to the better safety profile. Furthermore, unlike theophylline, doxofylline does not interact with histone deacetylases [3], but is able to positively interact with β-2-adrenoceptors [5].

The narrative analysis of literature has suggested that doxofylline is an effective bronchodilator for relieving airway obstruction in patients with asthma or chronic obstructive pulmonary disease (COPD) and displays a better safety profile with respect to theophylline, having a favourable risk-to-benefit ratio [2,4,6]. Unfortunately, narrative reviews primarily focused on the conclusions reached in various studies [7] and, furthermore, mainly related with the researchers’ personal preference. Therefore, in evaluating this type of research, one needs to examine how the critical analysis was done, ensuring the rigor in the methodology and the review process, and checking for possible bias stemming from the researchers’ choices surrounding the development of the research aim/question, the selection of articles to review, and the transparency in their process or lack of it [8].

Meta-analysis, which is an analytical technique designed to summarize the results of multiple studies, represents a powerful way to effectively increase sample size to provide a more valid pooled estimate [9]. Meta-analysis can be considered as a systematic study of all studies that have been conducted to answer a specific question or hypothesis [10]. Actually, the meta-analytic approach usually has four main goals: (1) to evaluate the consistency/variability of the results between the primary studies included in the review (i.e., the between-study heterogeneity); (2) to investigate and explain (if feasible) the causes of any observed heterogeneity (e.g., through subgroup or meta-regression analyses) to improve scientific understanding; (3) to calculate a...
summarized effect size along with a confidence interval; and (4) to assess
the robustness of the cumulative effect size through sensitivity analyses
and formal evaluations of the potential sources of study bias, including
publication bias, that stem from the primary studies and might have an
impact on the calculated summary effect [8].

We have therefore investigated the use of doxofylline in the treat-
ment of patients with COPD patients using a pairwise meta-analysis of
the currently available data in order to provide consistent and homo-
geneous findings.

2. Materials and methods

2.1. Search strategy

This pairwise meta-analysis has been registered in PROSPERO (re-
istration number: CRD42017077901; available at https://www.crd.
york.ac.uk/prospero/display_record.php?RecordID=77901), and per-
formed in agreement with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) Statement (Figure S1) [11]. This
quantitative synthesis satisfied all the recommended items reported by
the PRISMA-P 2015 checklist [12].

We undertook a comprehensive literature search for published and
unpublished clinical trials (both randomized and non-randomized)
evaluating the influence of doxofylline in COPD patients. Observational
studies were not included in this meta-analysis. The terms “doxofylline”
and their synonyms (doxophylline, doxofilline, doxofilina) were sear-
ded for the drug, and the terms “chronic obstructive pulmonary dis-
ease” OR “COPD” were searched for the disease. The search was per-
formed in the Cochrane Central Register of Controlled Trials
(CENTRAL), MEDLINE, Embase, Scopus, Google Scholar, Web of
Science and ClinicalTrials.gov databases through September 2017, in
order to provide for relevant studies available up to September 20,
2017. Studies reporting the impact of doxofylline vs. control (placebo,
untreated subjects, baseline values) on lung function and safety in
COPD patients were included in this meta-analysis.

Two reviewers independently checked the relevant studies identi-
fied from literature searches and databases. The studies were selected in
agreement with the previously mentioned criteria, and any difference in
opinion about eligibility was resolved by consensus.

2.2. Quality score, risk of bias and evidence profile

The Jadad score, with a scale of 1–5 (score of 5 being the best
quality), was used to assess the quality of the studies concerning the
likelihood of biases related to randomization, double blinding, with-
drawals and dropouts [13]. A Jadad score ≥ 3 was defined to identify
high-quality studies. Two reviewers independently assessed the quality
of individual studies, and any difference in opinion about the quality
score was resolved by consensus.

The risk of publication bias was assessed by applying the funnel plot
and Egger’s test through the following regression equation: \(\text{SND} = a + b \times \text{precision} \), where \(\text{SND} \) represents the standard normal devi-
ation (treatment effect divided by its standard error \(\text{SE} \)), and precision
represents the reciprocal of the standard error. Evidence of asymmetry
from Egger’s test was considered to be significant at \(P < 0.1 \), and the
graphical representation of 90% confidence bands are presented [13].

Meta-regression analysis was performed to examine the source of
heterogeneity between-studies and identify potential confounder cov-
ariates specifically for the primary endpoints [14].

The quality of the evidence obtained for the primary endpoints was
assessed in agreement with the Grading of Recommendations
Assessment, Development, and Evaluation (GRADE) system [15].

2.3. Data extraction

Data from included studies were extracted and checked for study
characteristics and duration, doses of doxofylline, concomitant medi-
cations, disease characteristics, ethnicity, age, gender, lung function,
safety, and Jadad score.

2.4. End points

The primary endpoints of this meta-analysis were the impact of
doxofylline vs. control in terms of changes in forced expiratory volume
in 1 s (FEV1) and frequency of adverse events (AEs). The reported
length of follow-up could not be the same across clinical trials.
Considering that the probability of detecting an AE is proportional to
the duration of treatment, in this meta-analysis data on AEs have been
normalized as a function of events per person-time (namely person-
week), in which the numerator represents the count of total AEs and the
denominator represents the given time duration multiplied by the
number of patients [16,17].

The secondary endpoints were the therapeutic efficacy (the rate of
patients that achieved the 3rd or 4th rank in a four-point non-validated
scale, or that achieved the 2nd or 3rd rank in a three-point non-validated
scale, where the higher values represented greater therapeutic efficacy
[18–22]), the daily use or rescue medication (short-acting \beta_2-agonists),
and the assessment of dyspnea via Medical Research Council (MRC)
scale [23], or a non-validated dyspnea score that assessed dyspnea with
a 4-point scale [24,25]. More details concerning the scales used to as-
se the therapeutic efficacy and dyspnea are reported in the supple-
mental data file (Table S1).

2.5. Data analysis

Results are expressed as Standardized Mean Difference (SMD), Mean
Difference (MD), Proportion (Pr), Logarithmic transformed Proportion
(Log Proportion, PLN), and 95% confidence interval (95%CI). The
overall changes in FEV1 are reported as SMD (SMD = [difference in
mean outcome between groups]/[standard deviation of outcome
among participants]) [11,12], since this outcome was not always described in
a standard manner across the studies (sometimes expressed as % pre-
dicted instead of volume [L or ml]). SMD has been also re-expressed in
agreement with the rules of thumb proposed by Cohen and The
Cochrane Collaboration [17,26]. Specifically < 0.5 represents a small
effect, 0.5 to 0.8 a moderate effect, 0.8 to 1.3 a large effect, and > 1.3 a
very large effect. The subset analyses of the changes in FEV1 specifically
expressed as % or volume (L or ml) are reported as MD. The frequency
of AEs and the therapeutic efficacy are reported as Pr since most studies
(85%) compared doxofylline vs. active comparators and not vs. pla-
cebo. Data on symptoms (dyspnea scores) are reported as MD and the
use of rescue medication as PLN.

Since data were selected from a series of studies performed by re-
searchers operating independently, and a common effect size cannot be
assumed, we used the random-effects model in order to balance the
study weights and to adequately estimate the 95%CI of the mean dis-
tribution of drugs effect on the investigated variables [27].

Subset analyses were performed with regard to the quality of studies
(Jadad score ≥ 3), the units by which FEV1 was reported in the studies
(% predicted, volume [L or ml]), and specific AEs.

A pooled analysis was performed to calculate the frequency of AEs,
ranked in agreement with the “European Medicine Agency, section 4.8:
Undesirable effects”, as follows: very common ≥1/10, common ≥1/100
to < 1/10, uncommon ≥1/1000 to < 1/100, frequency not known if
not calculable from the available data (http://www.ema.europa.eu/
docs/en_GB/document_library/Presentation/2013/01/WC500137021.
pdf).

OpenMetaAnalyst [28] software was used for performing the meta-
analysis and meta-regression, GraphPad Prism (CA, US) software to
graph the data, and GRADEpro to assess the quality of evidence [15].
The statistical significance was assessed for \(P < 0.05 \), and moderate to
high levels of heterogeneity were considered for \(I^2 > 50\% \).
3. Results

3.1. Studies characteristics

Results obtained from 820 COPD patients were selected from 20 studies [18–25,29–40] published between 1988 and 2016. The relevant studies and patients characteristics are described in Table S2. All studies were full-text papers but two that were congress abstracts [35,37]. Five studies had a Jadad score ≥3 [18,19,23,34,40], thirteen studies had a Jadad score ≥1 and < 3 [20–22,24,25,29–33,36,38,39], whereas for two studies it was not possible to calculate Jadad score [35,37]. The period of treatment ranged from one day to 52 weeks.

3.2. Quantitative synthesis

3.2.1. Primary endpoints

Doxofylline elicited a beneficial impact on the primary endpoints of this meta-analysis. The treatment with doxofylline significantly (P < 0.001) increased FEV1 compared to control (SMD 1.14, 95%CI 0.79–1.49; I² 88%). Specifically, doxofylline induced a large to very large improvement in FEV1, in agreement with the rules of thumb for the interpretation of effect sizes on the basis of SMDs (Fig. 1) [17,26].

The subset analysis performed by assessing exclusively randomized clinical trials (RCTs) indicated that doxofylline induced a significant (P < 0.001) increase in FEV1 of 8.20% (95%CI 4.00–12.41; I² 93%) and 324 ml (95%CI 161–487; I² 91%), compared to baseline (Fig. 2A and B). A further subset analysis carried out considering exclusively the high-quality studies confirmed the relevant impact of doxofylline on FEV1 (MD 239 ml, 95%CI 167–311; I² 0%; P < 0.001 vs. control) (Fig. 2C).

The overall analysis of the safety profile showed that the administration of doxofylline in COPD patients induced a significant (P < 0.001) but moderate increase of AEs frequency (Pr 0.03, 95%CI 0.02–0.04; I² 88%) (Fig. 3).

However, the subset and pooled analysis showed that among the specific AEs reported in the studies, only the frequencies of epigastria, nausea, dyspepsia and headache were significantly (P < 0.05) increased in patients receiving doxofylline (Fig. 4, Table 1). Overall, 2.24% patients withdrew from the studies due to AEs.

3.2.2. Secondary endpoints

Doxofylline elicited also a beneficial impact on secondary endpoints. A significant proportion (P < 0.001) of patients treated with doxofylline achieved a high level of therapeutic efficacy (Pr 0.82, 95%CI 0.77–0.87; I² 30%), and the daily use of rescue medication significantly (P < 0.001) decreased more than three folds during the treatment (PLN -1.15, 95%CI -1.76 to −0.54; I² 98%). The overall improvement of dyspnea score induced by doxofylline was greater than one point (MD -0.03, 95%CI -0.10 to −0.97 I² 0%; P < 0.001 compared with control).

3.3. Risk of bias and evidence profile

A substantial and significant (P < 0.001) level of heterogeneity resulted in this pairwise meta-analysis concerning the primary endpoints. The sensitivity analysis indicated that the main source of heterogeneity was related to the clinical trials of Cipri et al. [24], Di Vennanzio et al. [31], and Oreifice et al. [36] when the analysis was focused on the impact of doxofylline on FEV1, and with the studies of Cipri et al. [24] and Wu et al. [21] when it was focused on the frequency of AEs. In
fact, acceptable levels of heterogeneity were found for both the primary endpoints when these studies were excluded from the meta-analysis (FEV1: I² 42%, P = 0.06; AEs I² 49%, P = 0.11).

Most the meta-analyzed clinical trials enrolled stable COPD patients, but one study enrolled specifically exacerbated COPD patients [21]. Considering that the study of Wu et al. [21] reported data on the safety profile of doxofylline but not on lung function, we assessed whether the clinical condition of COPD patients might represent a bias on the frequency of AEs. The sensitivity analysis indicated that no significant differences (P > 0.05) were found for the effects estimates on the proportion of AEs when exacerbated COPD patients were excluded from the meta-analysis.
No significant heterogeneity was found either for FEV₁ when high quality studies were meta-analyzed ($I^2 = 0$, $P = 0.42$), or for the safety profile when the effect estimates of the specific AEs were considered ($I^2 = 16$, $P = 0.19$). Although a certain level of dispersion was detected by the visual analysis of funnel plot (Fig. 5A and C), the lack of bias concerning the effect estimates of either the primary endpoints was confirmed by Egger’s test (Fig. 5B and D).

The ethnicity, the level of bronchial reversibility, and the date of publication from the first clinical trial did not represent confounder variables that may have altered the FEV₁ effect estimates. A signal of confounding factor was detected for the Jadad score (sub-group analysis: intravenous $SMD = 1.70$, $95\% CI = 0.67 – 2.74$; oral $SMD = 1.01$, $95\% CI = 0.63 – 1.39$). The total dose of doxofylline administered to patients during the studies was a confounder variable for the FEV₁ effect estimates (sub-group analysis: < 30 g $SMD = 0.93$, $95\% CI = 0.62 – 1.24$; ≥ 30 g $SMD = 2.35$, $95\% CI = 1.51 – 3.19$).

The ethnicity, the level of bronchial reversibility, the date of publication from the first clinical trial and the route of administration did not represent confounder covariates with regard to the effect estimates of AEs. On the other hand, both the Jadad score (sub-group analysis: low quality studies $Pr = 0.35$, $95\% CI = 0.01 – 0.06$; high quality studies $Pr = 0.07$, $95\% CI = 0.03 – 0.12$) and the total dose of doxofylline (sub-group analysis: < 30 g $Pr = 0.07$, $95\% CI = 0.05 – 0.10$; ≥ 30 g $Pr = 0.004$, $95\% CI = 0.001 – 0.007$) were confounder variables for the frequency of AEs.

More details on meta-regression analysis and the statistical significance of confounder variables with regard to FEV₁ and AEs are reported in the supplementary data file (Figure S2).

The GRADE analysis indicated high quality of evidence (+ ++ +) for the impact of doxofylline on FEV₁ expressed as volume (ml), and moderate quality of evidence (+ ++) for the safety profile of doxofylline administered in COPD patients (Table 2). The GRADE analysis has been carried out in high quality RCTs (Jadad score ≥3), excluded for FEV₁ expressed as % of predicted because only one high quality study [40] reported this variable.

4. Discussion

The results of this pairwise meta-analysis confirm that doxofylline is effective and safe when administered to COPD patients. Compared to the control, doxofylline significantly improves lung function and dyspnea, and reduces the daily use of rescue medication more than the proposed minimal clinically important difference (MCID) values for COPD outcomes [42]. Similarly to all xanthines, it induces some AEs, but they are mild in severity. In fact, although there was a numerically larger rate of AEs in patients treated with doxofylline than in control groups, the percentage of patients that withdrew from the clinical trials due to AEs was low, and the most frequently reported ($\geq 1\%$) AEs in patients receiving doxofylline were epigastralgia, nausea, dyspepsia, headache and gastrointestinal discomfort.

It is of interest that while the overall analysis of the safety profile of doxofylline in COPD showed a high level of heterogeneity, the subset analysis of the specific AEs associated with the treatment provided no significant heterogeneity of the effect estimates. In any case, the quality of evidence on the safety profile was acceptable concerning both the total number of AEs and the patients that experienced at least one AE. The findings regarding the safety profile of doxofylline contrast with the evidence that the use of theophylline at conventional doses causes a high frequency of adverse effects [43]. It is likely that the decreased affinities towards adenosine A_1 and A_2 receptors of doxofylline may account for its better safety profile [3].

It must be emphasized that doxofylline elicited a large to very large improvement in FEV₁, inducing a mean improvement in FEV₁ of 317 ml compared to baseline values. Keeping focused exclusively on the high-quality studies, also in this case the average improvement in FEV₁ in induced doxofylline was large (239 ml). These values are considerably higher than those reported for theophylline in some meta-analyses [44,45]. Intriguingly, although the study of Mutti et al. [34] provided a huge level of dispersion with regard to the change in FEV₁ reported in ml, probably because of the low number of enrolled patients, it did not influence either the heterogeneity or the quality of evidence when the analysis was performed on high quality RCTs.

The change in percentage of FEV₁ (8.20% increase) is weak when...
Fig. 4. Subset analysis of the impact of doxofylline vs. control on the proportion of specific AEs reported in the studies included in this meta-analysis. AEs: adverse events.
compared with the change reported in ml. Such a discrepancy can be explained by considering that all the high quality RCTs expressed the changes in FEV1 as volume and that the GRADE analysis provided a high quality of evidence for this outcome. Conversely, the studies that reported the impact of doxofylline on the percentage of change in FEV1 were low quality studies that provided just low quality of evidence.

This meta-analysis has certainly some limitations that need to be highlighted. It has been impossible to evaluate the effect of doxofylline taking into account the severity of the disease and clinical condition of COPD patients, the presence of comorbidities, and use of concomitant medications. Furthermore, most clinical trials did not use a placebo as comparator. There was also a wide range of drug exposure between the studies analyzed, from hours to days or even months. In fact, the meta-regression analysis, a tool that permits to quantify the impact of moderator variables on study effect size [46], has shown that the total dose of doxofylline administered to patients during the studies has influenced the change in FEV1. In any case, our analysis does not allow us to conclude that a longer-term treatment is better than a shorter-term treatment regimen or that higher doses are necessary for increased severity of the COPD. Nonetheless, the evidence generated by the meta-regression analysis that a longer treatment time leads to less AEs seems to be very interesting and maybe suggest that tolerance to AEs may be possible following chronic treatment with doxofylline.

The limitations of this study mainly stem from the lack of specific information in the papers that are being considered and, consequently, cannot be overcome by further analysis. Thus, the overall results of this quantitative synthesis should be interpreted with caution.

However we must point out that, when high quality RCTs were meta-analyzed, the quality of evidence was high for the impact of doxofylline on the change in FEV1 expressed as volume (ml), and acceptable with regard to the influence of doxofylline on the frequency of AEs. The quality of the effect estimates resulting from the analysis of high quality RCTs was also confirmed by the visual analysis of funnel plot, a graphical method to check for the existence of publication bias, and supported by Egger’s test, which assesses whether the funnel plot is symmetrical by measuring the intercept from regression of standard

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled analysis of AEs extracted from the studies on doxofylline in COPD patients and ranked by frequency in agreement with EMA guidelines [41].</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AEs (n)</th>
<th>Frequency (%)</th>
<th>Rank</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epigastralgia</td>
<td>21</td>
<td>4.28</td>
<td>++</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>12</td>
<td>2.44</td>
<td>++</td>
</tr>
<tr>
<td>Headache</td>
<td>12</td>
<td>2.44</td>
<td>++</td>
</tr>
<tr>
<td>Nausea</td>
<td>9</td>
<td>1.83</td>
<td>++</td>
</tr>
<tr>
<td>Gastrointestinal discomfort</td>
<td>5</td>
<td>1.02</td>
<td>++</td>
</tr>
<tr>
<td>Anorexia</td>
<td>3</td>
<td>0.61</td>
<td>+</td>
</tr>
<tr>
<td>Insomnia</td>
<td>3</td>
<td>0.61</td>
<td>+</td>
</tr>
<tr>
<td>Palpitation</td>
<td>2</td>
<td>0.41</td>
<td>+</td>
</tr>
<tr>
<td>Constipation</td>
<td>2</td>
<td>0.41</td>
<td>+</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>2</td>
<td>0.41</td>
<td>+</td>
</tr>
<tr>
<td>Pain chest</td>
<td>2</td>
<td>0.41</td>
<td>+</td>
</tr>
<tr>
<td>Anxiety/irritability</td>
<td>1</td>
<td>0.20</td>
<td>+</td>
</tr>
<tr>
<td>Dizziness</td>
<td>1</td>
<td>0.20</td>
<td>+</td>
</tr>
<tr>
<td>Other CNS disturbances</td>
<td>1</td>
<td>0.20</td>
<td>+</td>
</tr>
<tr>
<td>Sweating</td>
<td>1</td>
<td>0.20</td>
<td>+</td>
</tr>
<tr>
<td>Tremors</td>
<td>1</td>
<td>0.20</td>
<td>+</td>
</tr>
<tr>
<td>Vomiting</td>
<td>1</td>
<td>0.20</td>
<td>+</td>
</tr>
</tbody>
</table>

++: common (≥1/1,00 to < 1/100); +: uncommon (≥1/1,000 to < 1/100); *P < 0.05 and ***P < 0.05, in agreement with the proportion of specific AEs reported in the studies included in this meta-analysis; AEs: adverse events; COPD: chronic obstructive pulmonary disease; EMA: European Medicine Agency; NS: not significant.

Fig. 5. Funnel plot (left panels) and graphical representation of Egger’s test (right panels) for the overall impact of doxofylline vs. control on the changes in FEV1 (A and B) and the frequency of AEs (C and D). AEs: adverse events; FEV1: forced expiratory volume in 1 s; SE: standard error; SMD: standardized mean difference; SND: standard normal deviate.
normal deviates against precision [47].

5. Conclusions

Notwithstanding the above-mentioned limitations, this pairwise meta-analysis suggests that in patients with COPD doxofylline acts as a bronchodilator drug having a wider therapeutic window than theophylline. These characteristics, along with its well-described anti-inflammator [48] and steroid sparing effects [49] suggest that when a xanthine is indicated [50], doxofylline should be considered as an alternative to theophylline in the treatment of patients with COPD.

Funding sources

ABC Farmaceutici that manufactures and sells medicinal products containing doxofylline funded LC for working on this manuscript.

Declaration of interest

MC and MGM are consultants at the ABC Farmaceutici and CP at Eurodrug that manufacture and sell medicinal products containing doxofylline. LC received compensation for working on this manuscript. PR has no competing interests.

Acknowledgements

None.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.pupt.2018.04.010.

References

M. Cazzola et al. Pulmonary Pharmacology & Therapeutics 51 (2018) 1–9

