Enhanced effect of inhibition of thrombin on endothelium in murine endotoxaemia: Specific inhibition of thrombocytopenia

Daxin Chen, John H. McVey, Anthony Dorling *

MRC Centre for Transplantation, King’s College London, Innate Immunity Section, Division of Transplantation Immunology and Mucosal Biology, Guy’s Hospital, Great Maze Pond, United Kingdom SE1 9RT

ABSTRACT

Introduction: In systemic endotoxaemia, bacterial lipopolysaccharide causes the rapid expression of tissue factor (TF) and disseminated intravascular coagulation and in animal models, anticoagulants limit pathology and promote survival. Recent studies have emphasised the importance of TF expressed by mononuclear cells for initiating thrombin generation during endotoxaemia and suggested that endothelial cell TF is of little relevance. However, the precise importance of endothelium for intravascular thrombin generation has not been established. In this study, we compared the effect of equivalent levels of hirudin tethered to either endothelium or platelets and monocytes.

Materials and Methods: CD31-Hir-Tg mice express a vesicle-targeted, membrane-tethered hirudin fusion protein on endothelium, platelets and monocytes. Bone marrow chimeras between these mice and C57BL/6 were generated. The level of intravascular hirudin expressed during endotoxaemia was quantified by inhibition studies using an anti-hirudin antibody and reference to the circulating thrombin anti-thrombin complexes generated in control mice given soluble hirudin.

Results and Conclusions: Antibody inhibition studies indicated that individual chimeras expressed similar levels of hirudin fusion protein on endothelium alone as on platelets and leukocytes combined and accordingly, the levels of thrombin anti-thrombin complexes and fibrinogen in each chimera were similar, indicating equivalent inhibition of thrombin generation. However, mice with hirudin on endothelium alone developed significantly less thrombocytopenia. These results suggest a hitherto unrecognized role of endothelium in thrombin-dependent platelet sequestration during endotoxaemia. The data have implications for the development of therapeutic strategies based on targeted anticoagulation to limit disseminated intravascular coagulation.

© 2013 Elsevier Ltd. All rights reserved.

Introduction

In systemic endotoxaemia induced by lipopolysaccharide (LPS), widespread intravascular activation of coagulation by tissue factor (TF) is a critical early pathophysiological event. For that reason, inhibiting either the initiation or propagation phases of clotting [1–8] has a significant impact on morbidity and mortality in experimental models.

The mechanisms that trigger intravascular coagulation in endotoxaemia have been studied in depth. TF is important for the initiation phase of coagulation [9], but the source of TF has been controversial. One hypothesis places the pathological activation of the vascular endothelium, by the direct effects of LPS, at the heart of this process [10]. In vitro, endothelial cell (EC) activation by LPS or inflammatory cytokines such as TNFα, results in the expression of TF [11]. However, EC expression of TF has never been convincingly demonstrated in vivo, as discussed by Aird [12].

A second hypothesis with widespread support emphasises the importance of LPS-activated leukocytes and platelets. Leukocyte-derived TF includes the classical membrane-tethered moiety on activated cells (reviewed in [13]) which has been shown to promote thrombosis in vivo in one model of intravascular thrombosis [14]. TF is also found in the alpha granules of platelets [15] and can also be found in blood in the form of leukocyte- or platelet-derived microparticles [15,16]. These can initiate clotting after P-selectin-mediated transfer of the TF to activated platelet [17] or leukocyte membranes [18,19] and levels in the blood correlate strongly with the amount of thrombin generated in endotoxaemic mice [20]. A third form of TF, alternatively spliced and lacking a transmembrane sequence has also been described. This soluble protein, produced by CD14+ monocytes, has procoagulant activity in the presence of activated platelets [21].

Recent studies using mice expressing either low levels of TF, human TF or strains in which TF has been selectively deleted from specific cell types, have emphasised that TF expressed by non- haematopoietic elements appears as important as that expressed by bone-marrow-derived elements, in particular by monocytes [22]. However, selective

Abbreviations: BL/6, C57BL/6; EC, Endothelial cell; ePCR, Endothelial protein C receptor; FX, Factor IX; FX, Factor X; HEQ, Hirudin Equivalent; LPS, Lipopolysaccharide; PSG1-1, P-selectin glycoprotein ligand-1; TF, Tissue factor; TAT, Thrombin anti-thrombin; WT, Wild-type.

* Corresponding author. Tel.: +44 20 7188 5880; fax: +44 20 7188 5660.
E-mail address: anthony.dorling@kcl.ac.uk (A. Dorling).

Keywords: Endothelium; Thrombin; Endotoxin; Thrombocytopenia

knockout of TF on endothelium or smooth muscle cells appears to have no impact on thrombin generation during LPS endotoxaemia [23]. Therefore, the non-haematopoietic source of TF remains uncertain, although these studies suggest that it is not expressed by cells in the vessel wall.

Only a fraction of the circulating factor IX (FIX) and factor X (FX) are converted to their active forms, FIXa and FXa by TF during initiation of coagulation [24]. In the absence of the activated cofactor Va, FXa generates barely detectable levels of thrombin. Although insufficient to initiate significant fibrin polymerization alone, trace amounts of thrombin formed are able to back-activate intrinsic pathway cofactors V and VIII, ultimately generating much larger amounts of thrombin which are sufficient to generate a clot. This ‘propagation’ phase of coagulation occurs on plasma membranes and is dependent on the exposure of procoagulant phospholipids [25]. A substantial body of data supports the idea that the activated platelet membrane is an important site of thrombin generation (see for instance, [26]). However, platelets appear not to be required for fibrin generation in a vessel injury model in mice [27].

Activated EC also contribute to the generation of thrombin, but much less is known about the involvement of EC membranes in this process in vivo. However, activated EC lose many of their anticoagulant functions (reviewed in [28]), consequent upon the downregulation of thrombomodulin expression [29,30], and shedding of endothelial cell protein C receptor (ePCR) [31] along with surface glycosaminoglycans thrombomodulin expression [29,30], and shedding of endothelial cell protein C receptor (ePCR) [31] along with surface glycosaminoglycans.

The series of experiments reported here addresses the relative importance of activated EC, platelets and monocytes for thrombin inhibition during LPS endotoxaemia. We have used transgenic mice expressing the leech anticoagulant hirudin as a stable, covalently linked membrane fusion protein to inhibit thrombin on these surfaces. In previous work, we showed that EC expression was sufficient to inhibit the development of consumptive coagulopathy after LPS [34]. In this study, we show that expression of the hirudin fusion protein on platelets and leukocytes appears as efficient at inhibiting thrombin as when similar levels are expressed on EC. However, platelet expression was accompanied by profound thrombocytopenia that was not seen when the hirudin fusion protein was expressed on EC. These data suggest that preventing procoagulant changes on activated EC has a potential relevance.

Materials and methods

CD31-Hir-Tg mice

Generation of these mice, their characterisation and phenotype after LPS injection have been described [34]. All mice in this study were heterozygous and were backcrossed for at least 5 generations onto a C57BL/6 (BL/6) background.

Immunohistochemistry

Organs were embedded in OCT (BDH, Lutterworth, UK) by freezing with dry ice, sectioned and fixed in methanol at −20 °C. Frozen sections were immersed in 1% BSA-PBS and 10% goat serum (Sigma, Poole Dorset UK) for 30 min, then incubated overnight at 4 °C with one of the following antibodies: sheep anti-hirudin, (Enzyme Research Lab., Swansea, UK), rabbit anti-mouse TF [35], FITC-conjugated rabbit anti-human fibrinogen, (DAKO, Glostrup, Denmark). Second layer staining was with goat anti-rabbit IgG-FITC, donkey anti-sheep IgG-FITC or sheep anti-mouse IgG-FITC (all from Sigma).

Cell lines

Immortalised porcine EC transfectants expressing hirudin fusion protein have been described previously [36]. EC were maintained in DMEM (Invitrogen, Paisley, UK) supplemented with 10% FCS (Globepharm, Surrey, UK), penicillin, streptomycin, L-glutamine and mycophenolic acid.

Leukocyte isolation

Platelet-rich plasma was obtained from blood by centrifugation at 80 g for 10 min, followed by dilution 1 in 20 with 1% ammonium oxalate (Sigma) and 2.5 mM of Gly-Pro-Arg-Pro peptide (Sigma). Samples were placed in a counting chamber in a moist petri dish, allowed to settle and the platelets in 1 mm² counted (N). The number of platelets per litre of blood = 2 N × 10⁹. Platelet phenotype was confirmed with an anti-CD41 mAb (Pharmingen).

Flow cytometry analysis

1 × 10⁶ cells or platelets were incubated with primary antibodies for 30 min on ice, followed by secondary antibodies for 30 min. Antibodies used were as described above. Stained cells were analysed on a cytometer (Becton Dickinson, Franklin Lakes, USA).

In vitro clotting assay

Porcine EC transfectants expressing hirudin fusion protein were included in a recalcified mouse plasma clotting assay, similar to that previously described [37]. The hirudin fusion protein variants expressed by these clones lacked a cytoplasmic motif from P-selectin, so were expressed constitutively at the cell membrane, avoiding the need for activation and relocation, as would have been the case had primary mouse EC been used [36]. Plasma was collected from BL/6 mice. EC were seeded at a density of 10⁵ cells/ml in a 6-well plate and grown to near confluence before addition of PMA for 12 hours. After washing three times with serum-free DMEM, cells were detached with EDTA before a further wash. 5 × 10⁹ EC were added to 200 μl of plasma, recalcified and the time to clot measured.

Endotoxic shock

All mice weighed 25 g +/- 1 g. Experiments were performed under terminal anaesthesia and conformed to UK national and institutional guidelines. Mice were anaesthetized with 60 ng/g of sagatal (Rhone Merieux Limited, Harlow, UK), and given a single injection of LPS (Escherichia coli serotype 0127:B8 Sigma) 2 mg/kg or saline (control) intraperitoneally (IP). L-NAME (Alexis Corp., Nottingham, UK) (50 mg/kg) was administered IP 30 min before LPS and again at time 0, 2 and 4 hours post-LPS. This model was used to maximise the thrombotic manifestations of endotoxin, as previously described [34,38] during the short time-interval available whilst the mice were under terminal anaesthesia. In some experiments, soluble hirudin (Enzyme Research Labs) or anti-hirudin mAb were administered at
variable doses with LPS. Mice were sacrificed 4.5 hours post-LPS or saline and blood samples were withdrawn by puncture of the heart into 0.1 volume of 3.8% sodium citrate (Sigma).

Bleeding time assay

Anaesthetised mice were maintained in a restrainer (Becton Dickinson) and a distal 2-mm segment of tail was severed. The tail was immersed in 0.9% saline at 37 °C. Bleeding time was defined as the time required for the bleeding to stop [39].

Fibrinogen assay

Fibrinogen levels were measured using the Clauss method with bovine thrombin (Sigma). Assays were terminated at 20 mins.

Bone marrow (BM) reconstitution

BM was flushed from the excised ends of long bones from euthanized mice and re-suspended at 5 × 10^7 cells/ml in fresh RPMI. Recipient mice were irradiated with 1200 Rad, before injection of 1 × 10^7 BM cells into a tail vein. Mice were isolated for four weeks before further experimentation.

Determination of thrombin-antithrombin III (TAT) complexes

Blood was collected by tail-tip resection and centrifuged at 13000 g for 10 mins at 4 °C to obtain platelet-poor plasma. TAT levels were determined using a commercial ELISA-based kit (Enzygnost TAT, Dade Behring AG, Germany) and microtiter plate reader (Titertek Multiskan®, Labsystems, Finland) according to the manufacturer’s instructions. All estimations were in triplicate.

Method to quantitate expression of hirudin fusion protein

The concentration of anti-hirudin mAb required to completely inhibit the anticoagulant phenotype of 1 × 10^5 porcine EC transfectants expressing hirudin-CD4 fusion protein in 1 ml of recalci

To estimate the amount of functional hirudin in the BMHir-wtB6 and BMwtB6-Hir mice, chimeras were injected with increasing concentrations of an anti-hirudin monoclonal antibody known to inhibit thrombin binding. The TAT levels and their HEQs are shown in Table 1. HEQ values from these experiments were plotted against the dose of antibody, as shown in Fig. 1B. At the point on these curves where 50% of HEQ activity was inhibited (=[HEQ]_{50}), the amount of antibody administered is directly proportional to the concentration of surface membrane-expressed hirudin fusion protein. As shown, this concentration was almost identical in the two types of chimera, indicating no significant difference in the amount of functionally active surface exposed hirudin fusion protein expressed in BMwtB6-Hir and BMHir-wtB6 mice.

Inhibition of thrombin and parameters of DIC in BM chimeric mice

Although the TAT and fibrinogen levels in the BMwtB6-Hir and BMHir-wtB6 chimeric mice were not significantly different at baseline (Table 1), bleeding times and particularly platelet counts were significantly better in the BMwtB6-Hir compared to BMHir-wtB6 mice (Table 2). HEQs derived from these three parameters (fibrinogen, bleeding times and platelet count) and plotted in a similar way to that shown in Fig. 1B confirmed no significant difference between the amount of anti-hirudin required to achieve [HEQ]_{50} in each of the chimeras (5.43 ± 0.74 ng/g in BMwtB6-Hir vs. 4.43 ± 0.54 ng/g in BMHir-wtB6). P = NS), confirming similar levels of hirudin fusion protein expression at cell surfaces in the two types of chimera.

To verify these data, we went back to samples collected from a previous series of BM chimeras [34] and measured TAT levels. This analysis was consistent with the data shown here (data not shown).

No evidence for enhanced potency of hirudin fusion proteins expressed on EC

To address the theoretically possible (but biologically implausible) explanation that a given amount of hirudin fusion protein gained increased potency when expressed on EC membranes, in vitro experiments using porcine EC transfectants were conducted.

The null hypothesis tested by these experiments was that EC-expressed hirudin fusion protein would be more potent than an equivalent amount of soluble hirudin added alongside control (untransfected) EC in in vitro clotting assays using recalci

Although the TAT and fibrinogen levels in the BMwtB6-Hir and BMHir-wtB6 chimeric mice were not significantly different at baseline (Table 1), bleeding times and particularly platelet counts were significantly better in the BMwtB6-Hir compared to BMHir-wtB6 mice (Table 2). HEQs derived from these three parameters (fibrinogen, bleeding times and platelet count) and plotted in a similar way to that shown in Fig. 1B confirmed no significant difference between the amount of anti-hirudin required to achieve [HEQ]_{50} in each of the chimeras (5.43 ± 0.74 ng/g in BMwtB6-Hir vs. 4.43 ± 0.54 ng/g in BMHir-wtB6). P = NS), confirming similar levels of hirudin fusion protein expression at cell surfaces in the two types of chimera.

To verify these data, we went back to samples collected from a previous series of BM chimeras [34] and measured TAT levels. This analysis was consistent with the data shown here (data not shown).

Pattern of TF expression in endotoxaemic mice

Organs harvested 4.5 hours after LPS/L-NAME injection were compared to control animals that received saline. In both wtBL/6 (Fig. 2A) and CD31-Hir-Tg (not shown) saline-treated mice, TF was found only in the adventitia of blood vessels. However, after LPS/L-NAME, TF was detected intraluminally in both strains, located on the luminal aspect of the vessel wall. By this analysis, the distribution of TF expression appeared the same in wtBL/6 and CD31-Hir-Tg mice. No quantitative analysis was undertaken. Monocytes and platelets from
wtBL/6 and CD31-Hir-Tg saline-injected animals were negative for TF whereas those from both types of LPS/L-NAME-treated mice stained positive for TF (Fig. 2B). Monocytes and platelets from LPS/L-NAME but not saline-treated CD31-Hir-Tg mice expressed the hirudin fusion protein, detectable by flow cytometry (data not shown).

Discussion

Animal studies have indicated TF-induced thrombin generation as a critical event in the early pathophysiology of endotoxaemia and sepsis and shown a significant reduction in morbidity and mortality in animals administered anticoagulants. However in humans disappointing results from phase III trials of anticoagulants have added to uncertainty about the importance of coagulation and of the clinical role of coagulation inhibitors [40–42].

One of the many difficulties with research in this field up until recently was a lack of understanding of the microanatomy and kinetics of how coagulation is initiated and propagated in vivo. One school of thought has the endothelium at the heart of the process but another emphasises the importance of LPS-activated monocytes and activated

Fig. 1. A: Relationship between plasma TAT concentration ([TAT]) and administered dose of soluble hirudin in wtBL/6 mice. Each point is data derived from three mice. Error bars = SEM. R² estimated using Sigmaplot. B: Plasma TAT concentrations from BMwtB6-Hir and BMHir-wtB6 mice expressed as “hirudin equivalents” or HEQ, using values calculated from the data in Fig. 1A (see Table 1) and plotted against the dose of anti-hirudin antibody. Each data point derived from the TAT concentrations of 3 mice. The concentration of antibody at the point where 50% of the HEQ has been inhibited ([HEQ]50%), is shown on abscissa as a boxed figure. At this point, the dose of antibody is directly proportional to the amount of hirudin inhibited. R² estimated using Sigmaplot. C: In vitro clotting assay using recalci

platelet membranes. Much has been learned recently from the intravital imaging of real-time clot formation in models of vascular injury, particularly about the pathways of platelet activation, though a key question remaining is where thrombin generation occurs [43]? A related question concerns the biological significance of anticoagulant modulation and shedding from EC membranes during EC activation. There are two potential alternatives. First, anticoagulant shedding by EC might act as a mechanism to protect against intravascular thrombosis, by raising the plasma levels of circulating anticoagulants (as has been observed for TFP in sepsis [44] and EPCR in endotoxaemia [31]). On the other hand, anticoagulant down regulation and shedding from the EC surface might occur to promote intravascular clotting to promote unregulated thrombin generation on the endothelium.

In this paper, we have used a strain of mice expressing a hirudin fusion protein on activated EC, platelets and leukocytes under the control of the CD31 promoter. As we have described elsewhere [34], cell membrane surface expression was regulated by inclusion of a P-selectin cytoplasmic sequence, which directed resting fusion protein expression to secretory granules of CD31-positive cells. Previously, we showed that these mice were resistant to the coagulopathy that developed after injection of LPS/L-NAME and it was apparent from bone marrow reconstitution studies that expression of the fusion protein on EC alone was sufficient to provide near-maximal protection against LPS. One criticism of this early work was that we did not exclude the possibility that a quantitative difference in the amount of functional hirudin expressed by the different chimeras was the reason for these results.

In this study, we have addressed this criticism. Our new data suggest no quantitative difference between the amounts of hirudin fusion protein expressed by the two chimeras. Importantly, having shown this, we can state that there was equivalent inhibition of thrombin when the hirudin fusion protein was expressed on either endothelium alone or on platelets/leukocytes. However, the data also indicates that the hirudin fusion protein had an enhanced potency in vivo on EC membranes, particularly at inhibiting the profound endotoxaemia-induced thrombocytopenia. Our accompanying in vitro data suggests that soluble hirudin was equipotent to the fusion protein when present at high concentrations in the proximity of the EC membrane.

Immunohistology data suggested that TF-expressing LPS-activated monocytes and platelets, which could be detected in the circulation, were sequestered at the site of clot formation in endotoxaemia, placing them in close proximity to the endothelium. There were no gross differences in the patterns of intravascular TF between the different mice used here. Therefore, our interpretation is that the enhanced effect of the hirudin fusion protein on EC is because there is an important interaction between endothelium and platelets during the propagation phase of coagulation during endotoxaemia. This is consistent with what has been shown during real-time imaging of thrombus formation after vascular injury [45] and with data showing that endothelial secretion of protein disulphide isomerase is more important than platelet secretion for fibrin formation in vivo during vascular injury, even though activated platelets are recruited to the vessel wall [46].

The interaction between P-selectin and its ligand PSGL-1 is known to be an important determinant of the thrombocytopenia that develops in this model, which has been shown to be due to platelet sequestration within pulmonary alveolar capillaries, involving platelet-expressed P-selectin [47]. P-selectin is expressed on the surface of activated platelets and endothelial cells during endotoxaemia and thrombin is known to enhance expression by both [48,49]. Our data, by indicating that direct inhibition of thrombin on platelets is less efficient than inhibition on endothelial cells at preventing thrombin-dependent platelet sequestration, highlights the complexity of the platelet interaction with endothelium in endotoxaemia. We have not addressed the kinetics of TF expression and fusion protein-relocation to the membrane in each of the three compartments studied, but think it unlikely that our results are due to temporal differences, even if they do exist.

In interpreting this data, it is interesting to speculate why organisms have evolved such a response to endotoxin, as widespread intravascular coagulation and thrombosis is inherently disadvantageous if it results in multiple organ dysfunction and ultimately death. One possibility is that it may bestow a survival advantage in animals that are in the early stages of developing sepsis and exposed to low concentrations of endotoxin. Alternatively, it may represent a ‘design flaw’ in the inflammatory response to pathogens, tolerated because the physiological clotting response is efficient at preventing haemorrhage after vascular injury. Evidence that heterozygous carriers of factor V Leiden mutation have a distinct advantage in sepsis and endotoxaemia appears to support the former of these two possibilities [50].

If generating thrombin during early sepsis endows a survival advantage, the gain must be sufficiently significant to justify risking widespread intravascular thrombosis, infarction and organ failure during the later stages of infection. The conventional explanation for why intravascular thrombosis develops during sepsis is that fibrin clots may...
serve to limit the spread of certain types of infection by isolating infected tissue [51,52]. We have previously proposed another potential advantage, based on activated clotting factor-mediated signalling through protease-activated receptors on endothelial cells being required to initiate local chemokine gradients for leukocyte recruitment [53]. We speculate that any potential advantage will be lost in the CD31-Hir-Tg mice, so understanding how these mice respond to infectious challenge will be one focus of our future work.

Conflict of interest statement

The authors declare no conflicts of interest.

Acknowledgements

This work was funded by the Medical Research Council UK (Award G0801965).

References

We acknowledge additional financial support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. We also acknowledge support from the MRC Centre for Transplantation. Thanks to Afzal Chaudhry, Cliburn Chan and Andrew George for help with statistics and interpretation of antibody inhibition studies.

Collins PW, Macey MG, Cahill MR, von Newland AC. Willebrand factor release and p-selectin expression is stimulated by thrombin and trypsin but not IL-1 in cultured human umbilical endothelial cells. Thromb Haemost 1993;70:496–50.

