Title: Cannabinoid-based Therapies and Brain Development: Potential Harmful Effect of Early Modulation of the Endocannabinoid System

Short Title: Cannabinoid-based Therapies and Brain Development

Authors: Patricia Schonhofen1,2,3, Ivi Juliana Bristot1,2,3, José Alexandre Crippa3,4, Jaime Eduardo Cecílio Hallak3,4, Antônio Waldo Zuardi3,4, Richard B. Parsons5, Fábio Klamt1,2,3

Affiliations: 1Laboratory of Cellular Biochemistry, ICBS/UFRGS, Porto Alegre (RS) Brazil 90035-003; 2Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS/UFRGS, Porto Alegre (RS) Brazil 90035-003; 3National Institutes of Science and Technology–Translational Medicine (INCT-TM) Brazil 4Neuroscience and Behavior Department, Faculty of Medicine of Ribeirão Preto, Ribeirão Preto (SP) Brazil 5Institute of Pharmaceutical Science, King’s College London (KCL), London, SE1 9NH, UK

Corresponding author: Prof. Fábio Klamt, PhD, Department of Biochemistry (ICBS), Federal University of Rio Grande do Sul (UFRGS), 2600 Ramiro Barcelos St, Porto Alegre (RS) Brazil 90035-003. Phone: +55 51 3308-5556; Fax: +55 51 3308-5535; e-mail: fabio.klamt@ufrgs.br

Acknowledgments: AWZ, JECH, FK and JAC are recipients of fellowship awards from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil). This study was supported by the Brazilian funds CNPq/MS/SCTIE/DECTT Pesquisas Sobre Doenças Neurodegenerativas (466989/2014-8), CNPq/MS/SCTIE/DECT N° 26/2014 – Pesquisas sobre Distúrbios Neuropsiquiátricos (466805/2014-4) and INCT-TM/CNPq/FAPESP (465458/2014-9). PS wishes to acknowledge Marco Antonio de Bastiani, MSc for helpful comments made during the preparation of the manuscript.
Abstract

The endocannabinoid retrograde signaling pathway is widely expressed in the central nervous system where it plays major roles in regulating synaptic plasticity (excitatory and inhibitory) through long-term potentiation and long-term depression. The endocannabinoid system (ECS) components - cannabinoid receptors, endocannabinoids and synthesis/degradation enzymes - are expressed and are functional from early developmental stages and throughout adolescence cortical development, regulating progenitor cell fate, neural differentiation, migration and survival. This may potentially confer increased vulnerability to adverse outcomes from early cannabinoid exposure. Cannabidiol (CBD) is one of the most studied exogenous cannabinoid, and CBD-enriched Cannabis extracts have been widely (and successfully) used as adjuvants to treat children with refractory epilepsy, and there is even an FDA-approved product with it. However, there is not sufficient evidence regarding potential detrimental consequences upon long term alterations in the central nervous system’s development by cannabinoids. As well as the majority of cannabinoids, CBD is able to exert its effects directly and indirectly through the ECS, which can perturb the regulatory processes mediated by this system. Besides, CBD has a large number of non-endocannabinoid targets which can explain CBD’s effects. Here, we review the current knowledge about CBD-based therapies - pure and CBD-enriched Cannabis extracts - in studies with pediatric patients, its side effects, and its mechanisms of action regarding the central nervous system and neurodevelopment aspects. Since Cannabis extracts contain tetrahydrocannabinol (Δ⁹-THC), we consider that pure CBD is possibly safer for young patients. Nevertheless, CBD, as well as other natural and/or synthetic cannabinoids, should be studied in more detail as a therapeutic alternative to CBD enriched-Cannabis extracts during brain developmental stages.

Key points

- Cannabidiol (CBD) targets the endocannabinoid system directly via CB1 receptors, or indirectly by regulating endocannabinoids levels, in both developing and mature brains.
- Δ⁹-THC is believed to be responsible for the majority of the potential harmful effects of CBD-enriched Cannabis extracts, although further direct evaluation of the effects of CBD upon brain development are necessary.
- For young patients pure CBD, both synthetic or plant derived, produced in accordance with good manufacturing practices (GMP-grade), is recommended as a therapeutic option instead of
CBD-enriched Cannabis extracts, and a recently a CBD-based (Epidiolex®) product was approved by FDA for the treatment of Dravet and Lennox-Gastaut syndromes.

- There is a lack of trials of chronic administration of CBD-based therapies with long term follow-up periods, which would allow a more realistic comparison of their effects with the current treatment options.

1. Introduction

The plant Cannabis sativa has been used for medicinal purposes for thousands of years by different cultures [1]. Cannabis extract contains more than 80 components, of which Δ⁹-tetrahydrocannabinol (Δ⁹-THC), the main psychoactive ingredient) and cannabidiol (CBD) are the most abundant [2,3]. These compounds were first identified several decades ago [4], but it is only more recently that the discovery of cannabinoid receptors and their endogenous homologues, the endocannabinoids [5] such as N-arachidonylethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG) [6], has occurred. Together with their related enzymes, endocannabinoids and their receptors form the endocannabinoid system (ECS) (Fig 1) [7]. Cannabinoids – both endogenous and plant-derived – target the G protein-coupled cannabinoid receptors type-1 (CB1), which is widely expressed in the nervous system, and type-2 (CB2), which is mainly expressed in immune cells [8,9]. Presently, it is proposed that the ECS has roles in the pathological mechanisms of several psychiatric disorders, including schizophrenia [10]. Besides, cannabinoids such as CBD also interact with a variety of non-endocannabinoid mechanisms, including numerous classical ion channels, receptors, transporters, and enzymes, as reviewed recently [11].

The effects of isolated cannabinoids and Cannabis extracts in different diseases have been studied for many years [12]. In the United States, recent medical and recreational marijuana legalization increased Cannabis accessibility and use [13]. Additionally, despite widely known deleterious effects during central nervous system development, medical marijuana usage by minors, with the consent from a legal guardian and certification from a physician, is approved [14]. Marijuana-derived products have their main effects against childhood severe epilepsies including Dravet and Lennox-Gastaut syndromes. These early onset disorders are characterized by frequent, refractory seizures and neurodevelopmental delays, which lead to impaired quality of life of these individuals. This scenario compels families to seek alternative treatment methods, such as CBD-based therapies, which include pure synthetic or plant-derived CBD and CBD-enriched Cannabis extracts. In children, plant-derived pharmaceutical-grade isolated CBD has been tested
Most adults highlight mechanisms of development, knowledge of which has been presented

- cannabinoids have been shown to regulate cortical development throughout life in humans, and exogenous cannabinoids can alter cortical development of both the somatosensory and the prefrontal cortex [24]. Nevertheless, the current widespread use of CBD-based therapies in children and young adults, without sufficient studies of the potential consequences upon neuronal and other systems' development, is of concern to the scientific and medical communities. One area of particular concern is the uncontrolled amount of Δ⁹-THC present in such extracts. Moreover, in 2017 an ad hoc committee of the National Academies of Sciences, Engineering, and Medicine presented a report regarding the health effects of *Cannabis* and CBD use, which revealed no or insufficient evidence to either support or refute the use of such compounds as an effective treatment for epilepsy [25]. Hence, this article reviews the current knowledge about the use of CBD-based therapies in pediatric patients, its alleged side effects, and its mechanisms of action regarding the central nervous system and neurodevelopmental aspects. We highlight that CBD administration before adulthood must be carefully evaluated, and the use of pure CBD and/or synthetic cannabinoids as a preferential alternative to *Cannabis* extracts for children and young adults needs to be studied further.

2. The Endocannabinoid System

Most cannibinoids exert their therapeutic properties upon the central nervous system primarily via the ECS, although there are other known targets [26]. Here we discuss their effects upon the ECS.
Endocannabinoid signaling plays crucial roles in various aspects of both the underdeveloped and the mature brain [27]. Therefore, disturbances in this system may disrupt neural development. The classical ECS signaling pathway is shown in Figure 1 (for review see [10]). In the mature brain, the ECS modulates synapses (excitatory and inhibitory) through the release of endocannabinoids AEA and 2-AG. These act as retrograde messengers, their release by the postsynaptic neuron activating CB₁ receptors in the pre-synaptic neuron, leading to decreased release of neurotransmitters into the synaptic cleft [10,28,29]. This process is initiated by increased Ca²⁺ influx caused by neurotransmission in the postsynaptic neuron which activates endocannabinoid synthesis from its precursors in the plasma membrane. AEA is generated from phospholipase D-mediated hydrolysis of the membrane lipid N-arachidonoylphosphatidylethanolamine (NAPE), while 2-AG originates from the diacylglycerol lipase-mediated hydrolysis of diacylglycerol (DAG), derived mainly from membrane-localized phosphatidylinositol biphosphate (PIP₂). AEA and 2-AG diffuse towards the pre-synaptic terminals and, like exogenous cannabinoids such as Δ⁹-THC, bind to and activate the pre-synaptic G-protein-coupled CB₁ receptors. This binding triggers the activation and release of Gi/Go proteins from the CB₁, inhibiting adenylyl cyclase (AC) and thus decreasing cyclic AMP (cAMP) formation and subsequent protein kinase A (PKA) activity. These events lead to opening of inwardly-rectifying K⁺ channels, causing a hyperpolarization of the pre-synaptic terminal, and closing of Ca²⁺ channels, arresting the release of stored neurotransmitters. Finally, AEA and 2-AG re-enter the post- or pre-synaptic terminals, where they are catabolized respectively by fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), to yield either arachidonic acid (AA) and ethanolamine (ET) in the case of AEA, or AA and glycerol for 2-AG. The transport of endocannabinoids through the plasma membrane is still not completely understood. Although some studies have proposed the existence of an endocannabinoid transporter, the trafficking of AEA, which has been most extensively studied, is proposed to occur through facilitated membrane transport followed by intracellular shuttling and sequestration [30]. Additionally, CB₁ receptor activation leads to stimulation of mitogen-activated protein kinase (MAPK) activity, a mechanism by which cannabinoids affect synaptic plasticity, cell migration, and possibly neuronal growth [23]. In mature neurons, the MAPK cascade, which leads to the activation of extracellular signal-regulated kinases (ERK), is stimulated by excitatory glutamatergic signaling. Subsequently, ERK activity regulates two processes that underlie changes in synaptic transmission — the activity of postsynaptic AMPA receptors, and structural plasticity [31]. ECS retrograde signaling
mediates synaptic plasticity through three classical mechanisms: depolarization-induced suppression of
inhibition or excitation, metabotropic-induced suppression of inhibition or excitation, and
endocannabinoid-mediated short-term depression or long-term depression (STD/LTD) [10]. Also, CB1
agonists can prevent long-term potentiation (LTP) of synaptic transmission, but the influence of
endogenously formed cannabinoids on hippocampal LTP remains ambiguous [32]. Both LTP and LTD
have roles in learning and neural development [24].

Thus, the central component of the ECS in neurons is the CB1 receptor (Fig. 1). In the central nervous
system, CB1 is particularly enriched in the cortex, hippocampus, amygdala, basal ganglia outflow tracts,
and cerebellum. This distribution corresponds to the most prominent behavioral effects of Cannabis
and helps to predict neurological and psychological effects of ECS manipulation [33]. CB1 receptors are
also observed in intracellular compartments such as the mitochondrial surface, where they are able to
activate G protein-dependent signaling and modify intracellular levels of ATP, Ca2+, and reactive oxygen
species, all of which impact upon synaptic transmission [34].

In the developing nervous system and the remaining neurogenic areas in the adult brain (the hippocampal
subgranular zone and subventricular zone), the ECS exerts a regulatory role on neural progenitor cell
survival, proliferation, differentiation and migration via CB1 [35,36], thus possibly affecting the
formation of adult specialized tissues [37]. Recently, the ECS has also been shown to regulate
proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a
key role in determining the formation of several cell types in peripheral tissues [38].

The importance of the ECS during embryonic development has been investigated through many
experimental models and approaches, mainly focusing upon the deleterious effect of early Δ^9-THC
administration. For example, Δ^9-THC administration to pregnant mice interfered with sub-cerebral
projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting
alterations in the fine motor performance and seizure susceptibility of the adult offspring. These
deleterious consequences were solely attributed to Δ^9-THC’s ability to disrupt the neurodevelopmental
role of CB1 signaling [39].

During adolescence, the ECS has a role in the development of the cortex, amygdala, hippocampus and
hypothalamus, and exogenous cannabinoids have long-term effects on cognition, anxiety and stress-
related behaviors, leading to mood disorders and substance abuse [24]. At this age, cannabinoids may
produce abnormal LTD in prefrontal cortex by disrupting LTD mediated by metabotropic glutamate
receptors and CB₁ [40]. The ECS maintain the homeostasis of prefrontal cortex interactions with the
amygdala and hippocampus, which are responsible for behaviors such as emotional memory and anxiety-
related behaviors. Endocannabinoids are required for the normal stress response, a process which matures
during adolescence [24]. Besides, as the prefrontal cortex is the last brain region to finish development
after adolescence, the abundance of CB₁ receptors may explain the negative effects of Cannabis use in
this age range [27]. Finally, endocannabinoids are necessary for the normal regulation of neuronal
excitation and inhibition, hence disturbances in this delicate equilibrium likely result in changes in the
balance of excitation/inhibition in individual neurons and networks, processes which are necessary for
normal cortical development [24].
For therapeutic purposes, regarding the mature central nervous system, the ECS has shown to modulate
anxiety, depression, neurogenesis, reward, cognition, learning, and memory [23]. Moreover, its retrograde
signaling acts to regulate seizure activity and neuronal hyper-excitability – cannabinoids have shown CB₁
activity in experimental models of seizure and epilepsy [41,42]. However, the use of CB₁ agonists such as
Δ⁹-THC, or even Cannabis extract, as a therapeutic strategy is unfeasible due to their psychoactive
effects, abuse potential and development of tolerance [42]. On the other hand, antagonism of CB₁ can also
exacerbate seizure activity in the epileptic phenotype [43].
Thus, the modulation of the ECS as a therapeutic approach is challenging because its blockage or its
exacerbation could lead to undesired outcomes, especially during neuronal development. More studies are
required to clarify its physiological functions and to predict the effect of CB₁ agonists and antagonists,
both in adult and pediatric patients, to support its targeting for therapeutic purposes.

3. Therapeutic uses and mechanisms of action of CBD
Cannabis causes many psychotropic effects, mainly mediated by Δ⁹-THC agonism of CB₁ [44], which
makes it unlikely to be used in natura. On the other hand, experimental studies have demonstrated several
therapeutic properties of isolated cannabinoids in a number of in vitro and in vivo models [45]. Here, we
discuss the therapeutic uses of the most prominent of these cannabinoids, CBD, and its mechanisms of
action, highlighting its activity towards the CB₁ receptor.
Although only a limited number of studies have focused upon CBD, recently it has been shown to be a
potent anti-inflammatory and antioxidant agent and to attenuate the memory-imparing effects produced
by Δ⁹-THC, amongst other effects [23]. This opens a wide range of possible therapeutic uses in
neurodegenerative disorders including Parkinson's disease, Alzheimer's disease and cerebral ischemia [46]. Moreover, CBD is anti-emetic [47], has antitumoral properties against many types of cancer [48] and is also suggested to have antipsychotic, anxiolytic and antidepressant effects [49]. Finally, as already mentioned above, numerous studies have shown CBD to have anticonvulsive properties [50].

CBD has been reported to have a large number of possible molecular targets other than the ECS in a wide range of medical conditions, raising the possibility of significant off target effects [26]. For instance, CBD is described as a full 5-HT1A agonist, a weak partial 5-HT2A agonist and a non-competitive 5-HT3A antagonist [51]. The ability of CBD to activate the A1A adenosine receptor has also been reported [52]. CBD may play a role in the regulation of T-type calcium channels and the activity of nuclear peroxisome proliferator-activated receptor-γ (PPARγ), both of which have been implicated in seizure activity [53]. Other molecular targets have also been studied, among them the PPARγ nuclear receptors [54], glycine receptors [55], GABAA receptors [56], and transient receptor potential (TRP) channels [57]. Studies focused on the possible epigenetic regulation of skin differentiation genes by CBD revealed that it can act as a transcriptional repressor, controlling cell proliferation and differentiation through DNA methylation [58]. Hence, the molecular mechanistic basis for the effects of CBD appear to be complex, and thus remain to be fully elucidated.

Although current evidence suggests that CBD does not directly interact with the ECS except in vitro at supraphysiological concentrations [11], it can also indirectly act as agonist or antagonist of the CB1 receptor. In the nanomolar range (below the reported affinity (K_i) for CBD to these receptors), CBD can antagonize the pharmacological effects of CB1 agonists such as Δ^8-THC and AEA, despite having low direct affinity in the micromolar range for CB1 in vitro [59,60]. McPartland et al reviewed in vitro and ex vivo mechanistic studies of CBD and found one study that reported slight agonism, and one study that reported slightly inverse agonism comprising binding to the inactive form of the receptor, blocking agonist effects, both of which occurred at high concentrations of CBD (≥10 μM). Surprisingly, in some mechanistic studies, the effects of CBD could be reversed by CB1 receptor inverse agonists, or were absent in CB1 receptor knockout mice [59]. This suggests that CBD may exert indirect agonism, comprising the enhancing of the effect of a receptor’s agonist without having any direct agonist effect itself, at CB1 receptors – either augmenting CB1 constitutional activity [61], or augmenting endocannabinoid tone through inhibition of AEA hydrolysis, inhibition of the putative AEA transporter and increase of 2-AG levels [59].
Recent evidence supports the hypothesis that CBD also binds to an allosteric site on CB₁ receptors that is functionally distinct from the orthosteric site for its agonists. CBD reduced the potency and efficacy of CB₁ agonists at concentrations lower than the predicted affinity of CBD for the orthosteric site of CB₁ receptors [62]. The presence of this allosteric site is still to be directly demonstrated due to difficulties in the resolution of the crystallographic structure of this receptor [63]. Despite such methodological issues, \textit{in vitro} pharmacological experiments have demonstrated that, at very low concentrations, CBD is a negative allosteric modulator of CB₁ [62]. Therefore, depending on the conditions, CBD seems to be able to interact both directly and indirectly with the CB₁ receptor, \textit{via} the regulation of endocannabinoids levels. Thus, since the ECS has a broad spectrum of physiological functions during neural development, it is reasonable to assume that CBD is potentially able interfere with processes regulated by CB₁ when administered in infants. In fact, depending on the dosage and the clinical condition, potential CBD activity over CB₁ (agonism or antagonism) results in different outcomes – either therapeutic or harmful [27], therefore its use must be very carefully considered in such ages. Besides, as CBD has effects upon other targets at lower concentrations, the mechanisms underlying its therapeutic properties are not yet clearly understood [42].

4. Studies with CBD-enriched Cannabis extracts and pure CDB in pediatric patients

Currently, CBD is clinically used in association with Δ⁹-THC in a Cannabis-based preparation (Sativex®) that contains equimolar content of both, for the management of neuropathic symptoms associated with multiple sclerosis [64]. Relief of spasticity and pain have been reported for multiple sclerosis patients that smoke Cannabis, but, for these patients, structural MRI scans have suggested reduced brain volume is associated with cognitive impairment [65]. Likewise, in recreational users, Cannabis has been shown to result in volumetric, gray matter and white matter structural changes in the brain, in particular in the hippocampus and the amygdala [66], further evidence that Cannabis (smoked and possibly in extracts) can be harmful in adult brain.

In 2016, GW pharmaceuticals reported the first results of pure CBD (Epidiolex®) in phase III clinical trials for use in treatment-resistant seizure disorders, including Lennox–Gastaut and Dravet syndromes [17,22]. More recently, the same authors have released a further results of a randomized, double-blind, placebo-controlled trial using pure CBD [67,68]. Moreover, CBD-enriched Cannabis extract is still widely used as a therapeutic option. In this section, we review the available data on clinical trials, case
reports and parental surveys available from January 2000 to May 2018. We focused on literature containing data about isolated CBD administration and relevant oral Cannabis extracts with high CBD content in pediatric and young patients, as well as relevant studies on adult volunteer. The use of common Cannabis extracts is not recommended in children and adolescent patients due to the potential for deleterious effects. Fetal development is affected by prenatal maternal Cannabis use, while during infancy there is a negative impact upon cognitive and behavioral outcomes [69]. Early exposure to cannabinoids, mainly Δ⁹-THC, can impair all stages of memory, from encoding to consolidation and retrieval [70]. Additionally, Cannabis usage during adolescence increases the risk of developing psychotic disorders such as schizophrenia later in life [71,72]. Nevertheless, these effects are mainly associated with Δ⁹-THC, and CBD is able to counteract such effects [73]. This indicates that pure CBD would be a better therapeutic option instead of CBD-enriched or common Cannabis extracts. Careful consideration and attention should be taken when using CBD-enriched Cannabis extracts, in particular within pediatric contexts. In a recent case report, for example, two children presented typical symptoms of Δ⁹-THC intoxication (inappropriate laughter, ataxia, reduced attention, and eye redness) after using a CBD-enriched Cannabis extract. The extract was replaced by the same dose of purified CBD, resulting in decreased intoxication symptoms and seizure remission [74]. Table 1 summarizes the main findings in children and young adult patients treated with pure CBD and CBD-enriched Cannabis extract. As most studies that established safety and dose tolerance were performed in adults, they were also reviewed (supplementary table 1). The majority of published articles focused on neurological and neuropsychiatric conditions. In adult volunteers, CBD presented few adverse events and appeared to be safe, although its effectiveness was not always confirmed. In most of these studies, CBD was administered in a single dose. A recent article on the safety and tolerability of pure CBD in 34 children between 4 – 10 years old with Dravet Syndrome showed that CBD did not alter plasma antileptic drug levels, when randomized into different dosages or placebo for 3 weeks of treatment followed by a 4 week follow-up period [16]. The main adverse effects were pyrexia, somnolence, decreased appetite, sedation, vomiting, ataxia, and abnormal behavior. As observed in the studies above mentioned, and reviewed by Wong and Wilens (2017), the methodological quality of those clinical studies varied significantly (e.g. studies lacking control groups; limited by small sample size). Studies are also heterogeneous in the dosage and duration of treatment, and many lack any long-term follow-up
reviews to identify potential adverse effects [13]. This variability in protocols employed makes it difficult to evaluate the real benefits and risks of CBD-based therapies.

Until a few years ago, the suggested beneficial outcomes of CBD-based therapies for pediatric patients were based mainly upon case reports and surveys of parents with epileptic children (supplementary table 2). Such anecdotal studies were the first to report improvement in general condition of children with refractory epilepsies by Cannabis extracts, and so they attracted the interest of the scientific community for cannabinoids-based treatments. Many surveys of parents of children with refractory seizures who self-administered CBD-enriched Cannabis extracts have been published in the last decades. One such survey, involving a small cohort of patients, showed that 42% of children had a greater than 80% reduction in seizure frequency [75]. Another survey, using a larger cohort of 75 pediatric patients, reported that 38% of children achieved greater than 50% reduction in seizures [20]. An online survey of 117 parents of children with epilepsy reported that 85% of children had a reduction in seizure frequency, whilst 14% reported complete freedom from seizure after CBD-enriched Cannabis treatment [19]. These surveys, even though not controlled, reported general improvements in cognitive and motor function in patients undergoing CBD-based therapies, along with some mild side effects.

On the other hand, not all studies have reported favorable results (e.g. CBD-enriched Cannabis extract resulted in no improvement in general condition or seizure relief of an 18-year old male with severe refractory epilepsy) [76]. Moreover, case reports and parent surveys rarely describe side effects or even drug administration issues. For this reason, clinical trials are indispensable for investigating both the therapeutic and toxicological aspects of CBD-based therapies, as well in standardizing drug administration protocols to allow direct study comparisons.

However, as anecdotal studies have stimulated a growing interest in the anticonvulsive properties of CBD, pure CBD or CBD-enriched Cannabis extracts are now being tested in controlled clinical trials, with relevant positive outcomes thus far reported (table 1). Such studies are still somewhat limited in number, however a brief survey on clinicaltrials.gov website report at least 20 clinical trials that are currently recruiting young patients or already in progress [77]. An open-label clinical trial of 214 patients (aged 1–30 years) with severe, intractable, childhood-onset, treatment-resistant epilepsy investigated the efficacy and safety of pure CBD. Patients in the efficacy analysis group reported a median reduction in monthly motor seizures of 36.5% compared to the placebo group. Adverse events were reported in 79% of the safety analysis group, and serious adverse events were reported in 30% of patients, including one
death — a sudden, unexpected death due to the patient’s epilepsy which was determined as unrelated to CBD. Twelve percent of patients had severe adverse events possibly related to CBD use, the most common of which was status epilepticus (6%). Three percent of patients discontinued treatment because of an adverse event [17].

A randomized placebo-controlled clinical trial of pure CBD reported a significant reduction in total seizures of all types. Although there was no significant reduction in non-convulsive seizures, they did demonstrate a greater reduction in convulsive seizure frequency, with 62% of patients reporting an improvement in overall condition, with 5% of patients becoming seizure-free. Adverse events included diarrhea, vomiting, fatigue, pyrexia, somnolence, and abnormal liver function tests [22]. This report, however, did not evaluated possible drug-drug interactions between CBD and Clobazam, of which 65% of patients enrolled on the study were prescribed. CBD can increase plasma Clobazam concentrations [78], hence the beneficial effects of CBD may have arisen indirectly due to the increased pharmacological effects of Clobazam and not as a direct pharmacological effect of CBD itself.

In 2018, a randomized, double-blind, placebo-controlled trial encompassing 24 clinical sites in the USA, the Netherlands, and Poland, was published. In this study, pure CBD (20 mg/kg/day) or placebo was administered to patients with treatment-resistant Lennox-Gastaut syndrome (aged 2–55 years) for 14 weeks. Of the 171 randomly assigned patients that received CBD (n = 86) or placebo (n = 85), 14 patients in the CBD group and one in the placebo group discontinued study treatment. The monthly drop in seizure frequency was reduced by 43.9% in the CBD group and 21.8% in the placebo group. Adverse events, which were mostly mild or moderate, occurred in 86% of patients in the CBD group and in 69% of patients in the placebo group [67].

Another recent double-blind, placebo-controlled trial, in which 225 patients with the Lennox-Gastaut syndrome (age range of 2 to 55 years) were randomly assigned to receive CBD at 10 mg/kg/day, 20 mg/kg/day, or placebo administered in two equally divided doses daily for 14 weeks, showed significant decreases in seizure frequency [68]. Seizure frequency decreased by 41.9% in the 20 mg cannabidiol group, 37.2% in the 10-mg cannabidiol group, and 17.2% in the placebo group. Six patients in the 20 mg cannabidiol group and one patient in the 10 mg cannabidiol group were withdrawn from the trial because of adverse events. Fourteen patients who received cannabidiol (9%) had elevated plasma liver aminotransferase levels. The most common adverse events among the patients in the cannabidiol groups were somnolence, decreased appetite, and diarrhea; these events occurred more frequently in the higher-
dose group. Yet, even in these two recent clinical trials, although they are scientifically relevant and reliable, a longer treatment and follow-up period was missing.

In general, in pediatric patient clinical trials, the most common side effects reported were either mild (somnolence, fatigue, altered appetite, weight gain/loss, diarrhea and other gastrointestinal disturbances, irritability) or serious (drowsiness/dizziness, ataxia, tremor, mental sedation), with severe adverse effects such as increased seizure frequency and worsening seizure phenotype also being observed. Alimentary effects can be explained by the presence of the ECS in the gastrointestinal tract, where it has effects on motility, inflammation and immunity, intestinal and gastric acid secretion, nociception and emesis pathways, and appetite control [79]. In the brain, ECS modulates several brain functions, such as memory, mood, food intake, pain perception and the sleep-wake cycle [80], which may explain, at least partially, the CNS-mediated adverse effects observed in clinical trials. Besides, as discussed above, other cannabinoids present in Cannabis extracts as well as CBD are able to interact and possibly disturb the important roles played by the ECS during neurodevelopmental stages.

It is likely that non-endocannabinoid targets of CBD may explain some of the positive and adverse effects observed [11]. For example, in a mouse model of Dravet Syndrome, the beneficial effects of CBD on inhibitory neurotransmission were mimicked and blocked by an antagonist of the orphan G protein-coupled receptor 55 (GPR55), suggesting that the therapeutic effects of CBD are mediated through this lipid-activated G protein-coupled receptor and thus identify it as a third cannabinoid receptor [81].

A careful case-to-case evaluation on the risk/benefit balance of CBD usage must be taken, as in the most serious cases repetitive infantile seizures can cause severe developmental, cognitive and motor impairment. These are obviously more detrimental then the adverse effects and possible neurodevelopmental implications of CBD, hence CBD may be an attractive therapeutic option in these cases.

Finally, CBD therapy does not always work for all patients. Also, some of the studies used CBD-enriched Cannabis extracts, which contains Δ9-THC. Even the ones with pure CBD, in controlled clinical trials, have short treatment periods and short follow-up periods, which will not reveal the possible long-term effects of CBD as well as possible developmental adverse effects. Hence, more clinical trials, with larger population sizes and longer chronic pure CBD administration, are warranted in order to clarify under which conditions it is worthwhile and safe to use. In addition, it is still unknown how CBD acts on hormones, hepatic enzymes, drug transporters, and its interactions with other drugs [12].
5. CBD during development: effects in cell culture and animal models for the developing brain

Despite the increasing use of CBD-based therapies in children and adolescents whose brains are still developing, most in vitro and in vivo studies use mature cells or adult animal models and are thus not faithful mimics of the juvenile CNS. Experiments with immature animals or cells have greater potential for identifying CBD’s effects and the molecular mechanisms by which such effects are mediated with greater relevance to juveniles. However, few studies have evaluated the developmental phases which are equivalent to human CNS development. Here, we present some of the recent studies using pure CBD in relevant cellular and animal models of the developing brain.

In a genetic mouse model of Dravet Syndrome, caused by loss-of-function mutations in the voltage-gated sodium channel NaV1.1, CBD treatment from postnatal day 21 to 27 decreased the duration and severity of thermally-induced seizures and the frequency of spontaneous seizures. Lower doses of CBD also improved autistic-like social interaction deficits [81]. This mouse model represents a very specific cause of children refractory epilepsy, a single mutation in a sodium channel subunit, and its positive outcomes must be considered carefully when extrapolated to other pathologies.

Single dose administration of CBD to newborn piglets shortly after hypoxia-ischemia had a protective effect upon neurons and astrocytes, preserved brain activity, prevented seizures and improved neurobehavioral performance [82,83]. In newborn rat brains, CBD administration also prevented necrotic and apoptotic cell death in an in vivo model of hypoxia-ischemia damage [84], and rescued neuron function after sciatic nerve transection [85]. However, both studies used a single dose of CBD at a very specific moment, namely immediately after an intensive brain injury, to evaluate its acute effects. Thus, these results may not be representative of long-term treatments with CBD.

Although recent literature has primarily searched for protective and therapeutic potentials of CBD, a recent research paper has reported negative effects. Zebrafish, exposed from blastula through to larval stage to micromolar concentrations of Δ⁹-THC (1-16 µM) or CBD (0.25-4 µM), presented similarity in dysmorphologies to both compounds (i.e., edemas, curved axis, eye/snout/jaw/trunk/fin deformities, swim bladder distention, and behavioral abnormalities), whilst the LC₅₀ for CBD was nearly seven times lower than Δ⁹-THC. The authors also reported teratogenic effects of low concentrations of CBD, [86]. In contrast, another research found no malformation in development of zebrafish embryos exposed to CBD 20–300 µg/L, although the maximal dosage caused delay in embryo hatching. Besides, they were
temporarily more active than control. The authors discussed that the effects observed are intimately related to CB1 receptor [87]. Again, the chosen doses may be responsible for the difference in results observed in these two studies. Additionally, 10 μM of Δ⁹-THC, but not 10 μM of CBD, arrested the development of preimplantation mouse embryos [88].

Notwithstanding that very few studies offer insight into CBD toxicity, some deleterious effects have been reported for CBD in vitro and in vivo. These include alterations in cell viability, reduced fertilization capacity, and inhibition of hepatic drug metabolism and drug transporters [89]. Our research group showed, in a study using an in vitro model of human neurons (human neuroblastoma SH-SY5Y cells differentiated with retinoid acid), that a sublethal dose of CBD with antioxidant activity did not exhibit neuroprotection against the neurotoxic effect of glycolaldehyde, methylglyoxal, 6-hydroxydopamine, and hydrogen peroxide in terminally-differentiated neurons. When SH-SY5Y cells undergoing neuronal differentiation were exposed to the same dose of CBD, besides the lack of neuroprotection and antioxidant activity, CBD potentiated the neurotoxicity induced by all redox-active drugs tested [90]. These results suggest a possible hidden negative effect of CBD during neuronal development, reinforcing the observation that effective dosages for CBD and the resulting pathologies observed can vary widely according to the experimental model used.

Thus, pure CBD present both positive and deleterious effects in animal and cellular models of early stages of development. We recommend that the therapeutic use of CBD and other cannabinoids during brain developmental stages must be always supported by experimental studies in appropriate cellular and animal models, with a special attention to the therapeutic window of CBD. It is particularly important to consider that the effect of CBD in humans follows an inverted U-shaped dose-effect curve pattern of effectiveness observed in many animal studies [91,92].

6. Therapeutic perspectives

Although a number of physiological effects of CBD in the brain have been identified, the mechanism(s) underlying its therapeutic properties in neurological diseases and during neurodevelopment are not yet clearly understood. Depending on the experimental model, the dosage used and the protocol, CBD can act upon CB1 as an agonist, or as an antagonist of endogenous ligands, or as an allosteric modulator, as well as acting upon non-endocannabinoid targets. Nevertheless, Δ⁹-THC, which is able to interact with the ECS, is present in CBD-enriched Cannabis extracts used in some studies. Since the ECS performs
primordial functions during embryonic development and neurodevelopment, in addition to neurogenesis in adults, it makes sense to hypothesize that any molecule that disturbs ECS activity, such as Δ²-THC (and potentially CBD), might disrupt the processes regulated by this cellular signaling system.

Regarding CBD therapeutic use for the treatment of children, there are several positive results in clinical trials and case reports in children with refractory epilepsy. However, for CBD-enriched Cannabis extracts the controversial effects of Δ²-THC points to a possible risk of adverse effects for its use in young patients. Cannabis has been associated with development of psychotic symptoms later in life, and a recent publication was able to establish a causal role of Cannabis use during adolescence and the emergence of such symptoms in the subsequent year [72]. Such effects are attributed to Δ²-THC activity on CB₁. As CBD has low affinity for CB₁, although it interferes in other steps of ECS signaling, this cannabinoid may be preferable and safer. Thus, formulations containing Δ⁹-THC should be avoided. Moreover, adverse effects of CBD and its extracts – even though they are mainly not severe – as well as absence of therapeutic effects were also reported. Seizure reduction has a significant effect on the patient’s quality of life, but the need to take into account other changes that CBD could cause in social behavior, cognitive function, or motor skills, is also important. Another concern is that the use of CBD-based therapies for pediatric epilepsy and anxiety (see table 1 and supplementary table 2), together with the common belief that natural products are always harmless, could represent a precedent for its use to treat other neurological diseases. It is not completely clear how CBD affects children’s brain development and how it could represent any probability of developing diseases later in adulthood. Thus, despite evidences for potential benefits in pediatric patients, pediatricians and families must balance the decision to use CBD with the associated risks [13]. An evaluation must occur on a case-to-case basis, with each instance considering the damage to the patient that may arise from uncontrolled epileptic seizures, the adverse effects of the established antiepileptic drugs and the uncertainties in the effects of CBD during brain development.

Recently, natural and synthetic derivatives of CBD have attracted the attention of both industry and academia. Indeed, some of these molecules are being studied for a variety of purposes, most of them aiming to improve the potency, efficacy, or pharmacokinetic properties of CBD [93]. For instance, a natural CBD derivative, cannabidiolic acid (CBDA), does not have effect on inhibition of anandamide uptake while keeping the low CB₁ affinity [93]. Thus, CBDA probably does not interfere in ECS signaling, what lowers the risk for adverse effects during brain development. The conversion of oral CBD
into Δ2-THC in an acidic environment (e.g. the stomach) is another concern, although it has not been observed in vivo thus far [94]. A novel CBD derivative, HU-444, is a potential novel drug which cannot be converted by acid cyclization into a Δ3-THC–like compound. In vitro, HU-444 has an anti-inflammatory activity, leading to the suppression of TNF-α production and amelioration of liver damage, whilst not causing Δ3-THC-like effects in mice [95]. Another synthetic cannabinoid, HU-320, produced strong anti-inflammatory and immunosuppressive effects in an in vivo model of collagen-induced arthritis [95].

For the generation of another class of CBD derivatives, the introduction of the DMH alkyl chain in the (-)-DMH-CBD series did not alter the lack of CB1 and CB2 receptor affinity [96]. (-)-DMH-CBD analogs have displayed anxiolytic, analgesic, anti-inflammatory, and antiproliferative effects in diverse assays [93]. (-)-DMH-CBD has been shown to have anti-inflammatory and antiproliferative properties in human acute myeloid leukemia [97]. Interestingly, (-)-7-OH-DMH-CBD exhibited potent inhibition of electrically-evoked contractions of the mouse vas deferens that was not mediated through CB1, CB2, TRPV1, opioid, or α2-adrenergic receptors [98,99].

Measurements of the binding affinities for the CB1 and CB2 cannabinoid receptors yielded unexpected outcomes of some CBD enantiomers. Contrary to naturally occurring (-)-CBD analogs, some synthetic derivatives, such as (+)-CBD, H2-CBD, H4-CBD, and HU-465 bind to CB1 and several of them have shown interesting pharmacological properties for various pathologies [93]. However, as CB1 activity is not desirable for an antiepileptic drug due to all the ECS roles at developmental stages, such derivatives might not be an alternative in these cases. Thus, likewise natural occurring cannabinoids, different CBD derivatives vary in their pharmacological and therapeutic properties, evidencing the need for a better understanding of their mechanism of action.

7. Conclusion

As Cannabis extracts contain Δ2-THC, which has psychoactive effects and is a CB1 agonist and may potentially disturb the ECS processes during brain development, pure GMP-grade CBD, synthetic or plant derived, is probably a safer option for use in pediatric and juvenile patients. Recently, a CBD oral solution, purified from a Cannabis extract, and developed and tested by GW Research has been approved by the Food and Drug Administration agency of United States (FDA), as an adjuvant in the treatment of seizures associated with Lennox-Gastaut syndrome and Dravet syndrome in patients 2 years of age and
older. According to the released document, the approval was based on CBD’s effectiveness in preclinical and clinical trials and due to its mechanisms of action (low CB1 affinity, reduction of neuronal hyperexcitability and inflammation) [100]. However, since CBD can potentially affect the ECS also, further studies are recommended in order to clarify its mechanisms of action and developmental implications. Besides, longer chronic treatment and follow-up periods are recommended in clinical trials and animal studies in order to evaluate CBD’s long-term effects, as well as the most effective dosage and the age which the therapeutic use of pure CBD is not only effective but also safe.

At the moment, we consider that CBD is recommended as the last option for the treatment of non-responsive epileptic children. For other neurological or psychiatric diseases, such as childhood anxiety, there is insufficient evidence to support the effectiveness of CBD. Besides, we suggest that more studies should use adequate experimental models to focus on pure CBD, in order to establish its safe and effective dosage and therapeutic targets, as well as synthetic CBD derivatives, aiming to identify a CBD analog with therapeutic properties but with fewer risks to the developing brain.

Compliance with Ethical Standards

Funding

This study was supported by the Brazilian funds CNPq/MS/SCTIE/DECIT Pesquisas Sobre Doenças Neurodegenerativas (466989/2014-8), CNPq/MS/SCTIE/DECIT N° 26/2014 – Pesquisas sobre Distúrbios Neuropsiquiátricos (466805/2014-4) and INCT-TM/CNPq/FAPESP (465458/2014-9). AWZ, JECH, FK and JAC are recipients of fellowship awards from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil).

Conflict of interest statement

AWZ, JECH and JAC are co-inventors of the patent “Fluorinated CBD compounds, compositions and uses thereof. Pub. No.: WO/2014/108899. International Application No.: PCT/IL2014/050023” Def. US no. Reg. 62193296; 29/07/2015; INPI on 19/08/2015 (BR1120150164927). The University of São Paulo has licensed the patent to Phytecs Pharm (USP Resolution No. 15.1.130002.1.1). The University of São Paulo has an agreement with Prati-Donaduzzi.
(Toledo, Brazil) to “develop a pharmaceutical product containing synthetic cannabidiol and prove its
safety and therapeutic efficacy in the treatment of epilepsy, schizophrenia, Parkinson’s disease, and
anxiety disorders.” JECH and JAC have received travel support from and are medical advisors of BSPG-
Pharm. AWZ is medical advisor of BSPG-Pharm.

References
cannabidiol reverses oxidative stress parameters, cognitive impairment and mortality in rats submitted to
from: http://dx.doi.org/10.1016/j.brainres.2010.06.023
2. Karniol IG, Shirakawa I, Kasinski N, Pfeferman A, Carlini EA. Cannabidiol interferes with the effects
3. Grlic L. A comparative study on some chemical and biological characteristics of various samples of
4. Gaoni Y, Mechoulam R. Isolation and structure of Δ⁹- tetrahydrocannabinol and other neutral
5. Howlett AC, Blume LC, Dalton GD. CB(1) cannabinoid receptors and their associated proteins. Curr
6. Luchicchi A, Pistis M. Anandamide and 2-arachidonoylglycerol: Pharmacological Properties,
Union of Basic and Clinical Pharmacology . LXXIX . Cannabinoid Receptors and Their Ligands :
8. Pertwee RG. Targeting the endocannabinoid system with cannabinoid receptor agonists:
63.
9. Di Marzo V, De Petrocellis L. Why do cannabinoid receptors have more than one endogenous ligand?
11. 20. Press CA, Knupp KG, Chapman KE. Parental reporting of response to oral cannabis extracts for
treatment of refractory epilepsy. Epilepsy Behav [Internet]. 2015;45:49–52. Available from:

69. Huizink AC. Prenatal cannabis exposure and infant outcomes: Overview of studies. Prog
1 Neuropsychopharmacol Biol Psychiatry [Internet]. 2013 [cited 2014 Jan 22]; Available from:
2 http://www.ncbi.nlm.nih.gov/pubmed/24075896
3 70. Ranganathan M, D’Souza DC. The acute effects of cannabinoids on memory in humans: a review.
4 Psychopharmacology (Berl) [Internet]. 2006 [cited 2014 Feb 12];188:425–44. Available from:
5 http://www.ncbi.nlm.nih.gov/pubmed/17019571
6 71. Bossong MG, Niesink RJM. Adolescent brain maturation, the endogenous cannabinoid system and
7 the neurobiology of cannabis-induced schizophrenia. Prog Neurobiol [Internet]. 2010 [cited 2014 Jan
10 Symptoms. JAMA Psychiatry [Internet]. 2018 [cited 2018 Jul 10]; Available from:
12 73. Niesink RJM, van Laar MW. Does Cannabidiol Protect Against Adverse Psychological Effects of
13 THC? Front Psychiatry [Internet]. 2013 [cited 2018 Jun 20];4:130. Available from:
15 74. Crippa JAS, Crippa ACS, Hallak JEC, Martín-Santos R, Zuardi AW. Δ9-THC Intoxication by
16 Cannabidiol-Enriched Cannabis Extract in Two Children with Refractory Epilepsy: Full Remission after
20 treatment-resistant epilepsy. Epilepsy Behav [Internet]. 2013 [cited 2014 Jan 25];29:574–7. Available
22 76. Rosemergy I, Adler J, Psirides A. Cannabidiol oil in the treatment of super refractory status
26 Search Results 06/15/2018. 2018;7–8.
27 78. Geoffry AL, Pollack SF, Bruno PL, Thiele EA. Drug-drug interaction between clobazam and
1 Know Thus Far. Cannabis cannabinoid Res [Internet]. Mary Ann Liebert, Inc.; 2017 [cited 2018 Jan
3 80. Prospero-García O, Amancio-Belmont O, Becerril Meléndez AL, Ruiz-Contreras AE, Méndez-Diaz
4 M. Endocannabinoids and sleep. Neurosci Biobehav Rev [Internet]. Pergamon; 2016 [cited 2018 Jan
6 81. Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social
7 deficits in a mouse model of Dravet syndrome. Proc Natl Acad Sci [Internet]. 2017 [cited 2018 Mar
10 effects of the nonpsychoactive cannabinoid cannabidiol in hypoxic-ischemic newborn piglets. Pediatr Res
13 reduces brain damage and improves functional recovery after acute hypoxia-ischemia in newborn pigs.
16 Cannabidiol administration after hypoxia e ischemia to newborn rats reduces long-term brain injury and
18 85. Perez M, Benitez SU, Cartarozzi LP, Del Bel E, Guimarães FS, Oliveira ALR. Neuroprotection and
19 reduction of glial reaction by cannabidiol treatment after sciatic nerve transection in neonatal rats. Eur J
21 86. Carty DR, Thornton C, Gledhill JH, Willett KL. Developmental Effects of Cannabidiol and Δ9-
23 87. Valim Brigante TA, Abe FR, Zuardi AW, Hallak JEC, Crippa JAS, de Oliveira DP. Cannabidiol did
24 not induce teratogenicity or neurotoxicity in exposed zebrafish embryos. Chem Biol Interact [Internet].
Available from:

http://linkinghub.elsevier.com/retrieve/pii/S0028390805000444

100. CBD-OS FOR THE TREATMENT OF LENNOX-GASTAUT SYNDROME AND DRAVET SYNDROME FDA ADVISORY COMMITTEE MEETING BRIEFING DOCUMENT. [cited 2018 Jul 10]; Available from:

Figure Legends:

Fig. 1 Retrograde endocannabinoid signaling. Endocannabinoids are produced on demand in the post-synaptic neuron, released in the synaptic cleft and activate CB1 receptor in the pre-synaptic neuron.

Reactive oxygen species (ROS); endocannabinoid system (ECS); anandamide (AEA); 2-arachydonoilglycerol (2-AG); N-arachidonoylphosphatidylethanolamine (NAPE); N-arachidonoylphosphatidylethanolamine phospholipase-D (NAPE-PLD); diacylglycerol (DAG); diacylglycerol lipase (DAGL); phosphatidylinositol biphosphate (PIP2); CB1 (CB1 receptor); adenylyl cyclase (AC), cyclic AMP (cAMP); protein kinase A (PKA); fatty acid amide hydrolase (FAAH); monoacylglycerol lipase (MAGL); arachidonic acid (AA); ethanolamine (ET); mitogen-activated protein kinase (MAPK).
Table 1. Clinical trials using pure CBD published until May 2018 with children and young patients

Supplementary Table 1. Adult volunteer studies on adverse effects of pure CBD and relevant CBD-enriched extract (CBD-based therapies)

Supplementary Table 2. Pure CBD and relevant CBD-enriched extract (CBD-based therapies) case reports, parent surveys and retrospective chart reviews published until May 2018 with children and young adults