Plant cell walls as barriers to lipid bioaccessibility in model lipid-rich plant food (almond)

Grundy, Myriam Marie-Louise

Awarding institution:
King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.

END USER LICENCE AGREEMENT

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to:
- Share: to copy, distribute and transmit the work

Under the following conditions:
- Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work).
- Non Commercial: You may not use this work for commercial purposes.
- No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above.

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Plant cell walls as barriers to lipid bioaccessibility in model lipid-rich plant food (almond)

Myriam Marie-Louise Grundy B.Sc. (Hons), M.Sc.

A thesis submitted to King’s College London for the degree of Doctor of Philosophy in Nutritional Science and Biochemistry

Division of Diabetes and Nutritional Sciences
School of Medicine
King’s College London
September 2014
In loving memory of my dad
PREFACE

This thesis was submitted to King’s College London for the degree of Doctor of Philosophy. The work presented herein was undertaken in the Division of Diabetes and Nutritional Sciences (previously the Nutritional Sciences Research Division), King’s College London, from October 2010 to September 2014.
ABSTRACT

It is generally assumed that most of the nutrients contained in a food are released (bioaccessible) during digestion and potentially available for absorption. However, the structure of plant food such as almonds, in particular the cell walls (‘dietary fibre’), may encapsulate intracellular nutrients, thereby limiting their bioaccessibility. The main aim of the studies described in this thesis was to investigate the role played by almond cell walls in the regulation of lipid bioaccessibility and digestion kinetics using a combination of in vivo, in vitro and in silico methods.

The particle size distributions of masticated whole raw and roasted almonds collected from 15 volunteers were used to predict lipid bioaccessibility from a mathematical model. Predicted values were compared with experimental measurements of lipid release in the same almond samples. Samples of masticated almonds were then loaded into a dynamic gastric model followed by a static duodenal model to determine lipid loss in these compartments. The rate and extent of lipolysis were measured by pH-stat titration and gas liquid chromatography of released fatty acids on almond materials with different degrees of bioaccessibility under simulated duodenal digestion conditions. The effect of processing on lipid losses and almond microstructure was also determined in ileostomy subjects who consumed two almond meals varying in lipid bioaccessibility. Finally, the potential penetration of lipase(s) through the cell wall matrix was investigated using notably confocal microscopy.

The findings of this project indicated that following mastication and gastrointestinal digestion of whole almonds, only a small proportion of lipid was released from ruptured cells. Depending on the almond structure and degree of processing, the amount of lipid released from the food matrix and fatty acids produced from lipolysis varied substantially. This work has provided further evidence that cell walls act as a physical barrier that limits nutrient digestion.
ACKNOWLEDGEMENTS

I would firstly like to thank my supervisors, Prof Peter Ellis, Dr Peter Butterworth and Dr Sarah Berry, as well as Dr Jeremy Sanderson for their invaluable guidance and support throughout my PhD. Secondly the Diet and Health Research Industry Club (DRINC) of the Biotechnology and Biological Sciences Research Council (BBSRC), who financed my PhD (BBSRC studentship award no. BB/H531994/1), and Karen Lapsley from the Almond Board of California for providing the almonds.

I would like to thank all the members of the Biopolymers group, past and present: Dr Frederic Warren for his support during the early stages of my project, Hamung Patel, Daphne Vasilopoulou and Dr Terri Grassby; also all the undergraduate project students we have had in the lab, in particular Bérengère Bayart for her contribution on the lipase and cell wall permeability work. Special thanks go to Cathrina Edwards who assisted me in many ways throughout those 4 years.

Some of the work reported in this thesis was undertaken in collaboration with different institutes and universities, in particular the Institute of Food Research (IFR) in Norwich. My special thanks go to Dr Giusy Mandalari, Prof Keith Waldron and Richard Faulk for their assistance on the design and running of the DGM/SDM work, and Dr Mary Parker who provided advice on microscopy techniques.

I am also deeply grateful to Prof Peter Wilde and Dr Alan Mackie for sharing with me their knowledge on interface, emulsion and lipid digestion, and coping with my endless questions.

I would also like to thank Prof Frédéric Carrière for giving me the opportunity of visiting, in two occasions, the Laboratory of Enzymology at Interfaces and Physiology of Lipolysis (EIPL) in the Centre National de la Recherche Scientifique (CNRS) in Marseille. I am highly grateful for his advice and supervision on the enzymology of lipolysis and lipases aspects of my work, and for the excellent discussions and ideas for this part of the project. Many thanks to Dr Sawsan Amara, Dr Hélène Gaussier and Eduardo Mateos for helping me with the lipase experiments. Thanks also to the EIPL team for making me feel so welcome in their lab.
Many thanks to Dr David Gray and his team at the University of Nottingham who contributed to the work presented in this thesis and kindly offered their expertise on oil bodies.

Thank you to the dedicated staff at the Clinical Research Facility at St Thomas’ Hospital especially Dana Navaie. Many thanks to Dr Shuvra Ray, Paula Darroch and the volunteers for their enthusiastic contribution and effort in the Biogut study, Dr Tracy Nelson and GSTS pathology for blood analyses.

I am very grateful to the technical team at King’s College London, David Lincoln, Anne-Catherine Perz, Mary-Jo Searle, Robert Gray, Rosie Calokatsia and David Gondi for their fantastic work at sorting out all the details that were essential for the smooth progression of my PhD.

There are many others notably Prof Willats and his group from the University of Copenhagen who very kindly did the analysis of the almond cell wall using antibodies; Dr Trevor Blackall for letting me use the Malvern Mastersizer 2000® at the Geology department at King’s College London; Dr Gema Vizcay-Barrena and Leanne Glover from the Centre for Ultrastructural Imaging as well as Dr Jan Soetaert from the Nikon Imaging Centre at King’s College London for their help with some of the microscopy; and Dr Peter Milligan for his aid with statistical analysis.

Finally, I would like to thank my mum, David, Caroline and the Grundies/Cotons, who supported me from day one and developed a surprising interest in almonds despite not always understanding what I was doing with them.
MEETINGS ATTENDED, PRESENTATIONS AND AWARDS

Oral presentations

(i) 21st and 22nd of June 2012, Science and Technology of Food Emulsions, London, UK. “Role of cell walls during \textit{in vitro} duodenal digestion of almond lipids”

(ii) 1st to 5th of July 2012, Food Oral Processing, Beaune, France. “The role of mastication in determining macronutrient bioaccessibility using almonds as a model food”. Obtained a Conference Fund Grant from King’s College London Graduate School (£300).

(iii) 10th and 11th of September 2012, Nutrition Society Postgraduate Conference, Newcastle, UK. “Role of cell walls during \textit{in vitro} duodenal digestion of almond lipids”

(iv) 8th of May 2013, Biosciences KTN Early Careers Researchers Event, London, UK. “Role of cell walls during \textit{in vitro} duodenal digestion of almond lipids”

(v) 24th to 26th of June 2013, Dream conference - From Model Foods to Food Models, Nantes, France. “Plant cell walls as barriers to lipid bioaccessibility in a model lipid-rich plant food”. Selected among the 25 best PhD student papers and awarded with free participation at the conference and reimbursement of travel cost.

(vi) 15th to 18th of July 2013, Nutrition Society Conference within the BBSRC (DRINC) satellite session, Newcastle, UK. “The role of plant cell walls in regulating lipid bioaccessibility”

(vii) 11th to 14th of March 2014, 3rd International Conference on Food Digestion, Wageningen, the Netherlands. “Investigating the permeability of almond cell walls to digestive enzymes”. Obtained a Travel Grant from the Nutrition Society (£350).
Poster presentations

(i) 11th of March 2011, Kings College London Diabetes and Nutritional Sciences Research Division annual symposium. “The role of plant cell walls in regulating lipid bioaccessibility”

(ii) 13th and 14th of April 2011, 6th DRINC Dissemination Event, Bristol, UK. “The role of plant cell walls in regulating lipid bioaccessibility”

(iii) 17th of June 2011, Kings College London Medicine School Showcase. “The role of plant cell walls in regulating lipid bioaccessibility”

(iv) 12th and 13th of October 2011, 7th DRINC Dissemination Event, Manchester, UK. “Lipid bioaccessibility of almonds: the influence of mastication and simulated digestion”

(v) 15th and 16th of May 2012, 8th DRINC Dissemination Event, Leeds, UK. “Role of cell walls during \textit{in vitro} duodenal digestion of almond lipids”

(vi) 5th and 6th of February 2013, 9th DRINC Dissemination Event, Bristol, UK. “\textit{In vitro} duodenal digestion of raw and roasted almond lipids”. \textbf{Winner of first prize for PhD poster presentations}.

(vii) 5th to 8th of March 2013, 2nd International Conference on Food Digestion, Madrid, Spain. Poster and 4 minutes presentation (PhD contest) “Role of food structure during \textit{in vitro} duodenal digestion of raw and roasted almond lipids”. Obtained a General Travel Grant from the Biochemical Society (£348).

Other awards

(i) 22nd to 26th of April 2013, Selected to attend the PhD Training School on “Food Digestion and Human Health” in Gdansk, Poland organised by InfoGest COST Action.
(ii) October 2013, One month **Short-Term Scientific Mission (STSM)** awarded by InfoGest COST Action (2500 Euros). Worked with Prof Frédéric Carrière for a month in the Laboratory of Enzymology at Interfaces and Physiology of Lipolysis (EIPL) in the Centre National de la Recherche Scientifique (CNRS) in Marseille.

(iii) 6th of June 2014, Shortlisted for the **Young Lipid Scientist Award** organised by the lipid group AGM of the Society of Chemical Industry (SCI) at the University of Reading. I gave a 15 min presentation summarising the work performed during my PhD: “Plant cell walls as barriers to lipid bioaccessibility in a model lipid-rich plant food”.
PUBLICATIONS

TABLE OF CONTENTS

Preface .. iii
Abstract ... iv
Acknowledgements ... v-vi
Oral presentations ... vii
Poster Presentations ... viii
Other awards ... viii-ix
Publications .. x
Table of Contents ... 1
List of Figures ... 11
List of Tables ... 17
List of Equations ... 22
List of abbreviations .. 23

Chapter 1: Introduction and literature review ... 27
1.1 Background and project overview ... 28
1.2 Lipids and health ... 29
 1.2.1 Classification and general structures of dietary lipids ... 29
 1.2.2 The physiological and clinical significance of lipids ... 30
1.3 Lipid digestion ... 31
 1.3.1 The mouth ... 33
 1.3.2 The stomach .. 34
 1.3.3 The small intestine ... 35
 1.3.4 The colon ... 37
 1.3.5 Physiological response to fat consumption ... 38
1.4 Lipases and lipolysis .. 40
 1.4.1 Lipases structure and functional analysis ... 40
 1.4.1.1 Gastric and pancreatic lipases active structure ... 40
 1.4.1.2 Effect of bile salts and calcium on lipases activity ... 43
 1.4.1.3 Roles of the gastric lipase .. 47
 1.4.2 The lipolytic hydrolysis .. 47
 1.4.3 Parameters affecting the hydrolysis reaction process ... 51
 1.4.3.1 Substrate characteristics .. 51
 1.4.3.2 Lipid-water interface and surface tension ... 54
 1.4.3.3 pH variations .. 54
 1.4.3.4 Other parameters ... 55
1.5 Plant cell walls as a source of dietary fibre ... 55
 1.5.1 Plant food matrix and cell wall ... 57
 1.5.2 Cell wall .. 59
 1.5.2.1 Cell wall composition ... 60
 1.5.2.1.1 Cellulose ... 60
 1.5.2.1.2 Hemicellulose .. 61
 1.5.2.1.3 Pectin ... 62
 1.5.2.2 Cell wall structure .. 63
 1.5.2.3 Cell wall porosity ... 64
1.5.2.4 Cell wall digestion ... 65

1.6 Nutrient bioaccessibility in plant food 66

1.7 Almond as a model ... 68
 1.7.1 Health and almond consumption 68
 1.7.2 Almond anatomy and composition 69
 1.7.2.1 Macroscopic structure ... 69
 1.7.2.2 Microscopic structure ... 70
 1.7.2.3 Nutritional composition ... 71
 1.7.2.4 Roasting of almonds .. 72
 1.7.3 Existing evidence on almond and lipid bioaccessibility 72

1.8 Project aims and objectives ... 77

Chapter 2: Materials and methods .. 78

2.1 Introduction .. 79

2.2 Materials ... 81
 2.2.1 Almond materials and emulsion preparations 81
 2.2.1.1 Almond and almond particles 81
 2.2.1.2 Separated almond cells ... 82
 2.2.1.3 Emulsions .. 83
 2.2.1.4 Oil bodies ... 84
 2.2.2 Chemicals .. 85

2.3 Methods ... 86
 2.3.1 Chemical characterisation .. 86
 2.3.1.1 Moisture content ... 86
 2.3.1.2 Lipid content ... 86
 2.3.1.2.1 Crude lipids .. 86
 2.3.1.2.2 Fatty acids composition by gas liquid chromatography ... 87
 2.3.1.2.3 Fatty acids composition by thin layer chromatography (TLC) ... 90
 2.3.1.3 Protein analysis ... 90
 2.3.1.3.1 Protein content ... 90
 2.3.1.3.2 SDS-PAGE .. 91
 2.3.2 Particle size analysis ... 92
 2.3.2.1 Mechanical sieving ... 94
 2.3.2.2 Malvern’s laser diffraction ... 95
 2.3.2.3 Beckman Coulter ... 97

2.3.3 Microscopy ... 98
 2.3.3.1 Light microscopy .. 98
 2.3.3.2 Electron microscopy .. 99
 2.3.3.3 Confocal microscopy ... 100

2.3.4 Cell wall analysis ... 100
 2.3.4.1 Gas chromatography method 100
 2.3.4.1.1 Preparation of cell wall material 101
 2.3.4.1.2 Sugar analysis ... 101
 2.3.4.1.3 Uronic acids analysis ... 102
 2.3.4.2 Method using antibodies ... 102

2.4 Gastric and duodenal in vitro models 103
 2.4.1 Lipase characteristics ... 103
 2.4.2 Lipase activity measurement using the pH-stat 105
 2.4.2.1 Principle ... 106
 2.4.2.2 Intestinal conditions .. 108
 2.4.3 Dynamic gastric model and static duodenal model 110
 2.4.3.1 Description of the apparatus 110
Chapter 3: Effect of mastication on lipid release from almond seeds

3.1 Introduction ... 117
3.2 Aims ... 119
3.3 Materials and methods .. 119
 3.3.1 Subjects and location ... 119
 3.3.2 Test foods .. 120
 3.3.3 Experimental protocol ... 121
 3.3.4 Particle sizing ... 121
 3.3.4.1 Mechanical sieving .. 122
 3.3.4.2 Laser diffraction ... 123
 3.3.5 Determination of lipid bioaccessibility 124
 3.3.5.1 Predictions from the theoretical model 124
 3.3.5.2 Bioaccessibility analysis by solvent extraction method 125
 3.3.6 Composition of cell-wall polysaccharides 126
 3.3.7 Microstructural analysis .. 126
 3.3.8 Statistical analysis ... 126
3.4 Results ... 127
 3.4.1 Mastication parameters .. 127
 3.4.2 Particle sizing of the masticated samples 128
 3.4.2.1 Mechanical sieving ... 129
 3.4.2.2 Laser diffraction ... 132
 3.4.3 Correlation between particle size and number of chews ... 133
 3.4.4 Lipid bioaccessibility determined by the theoretical model and solvent extraction .. 134
 3.4.5 Composition of cell-wall polysaccharides 136
 3.4.6 Microstructure of the masticated almonds 136
3.5 Discussion ... 140

Chapter 4: In vitro gastrointestinal digestion of whole almond seeds

4.1 Introduction ... 149
 4.1.1 Physiological activity in the stomach 149
 4.1.2 Physiological activity in the small intestine 153
 4.1.3 Transformation occurring to digesta and emulsion in the GIT .. 154
 4.1.4 Methods for studying digestion 156
4.2 Aims ... 158
4.3 Materials and methods .. 159
 4.3.1 Gastric digestion ... 159
 4.3.2 Duodenal digestion ... 160
 4.3.3 Analyses .. 160
4.3.4 Microscopy ... 160
4.3.5 Statistical analysis ... 161
4.4 Results ... 162
 4.4.1 Particle sizing ... 162
 4.4.2 Lipid losses ... 163
 4.4.3 Cell wall analysis .. 164
 4.4.3.1 Gas liquid chromatography method .. 164
 4.4.3.2 Method using antibodies .. 165
 4.4.4 Microstructural analysis ... 167
 4.4.4.1 Microscopy of large particles ... 167
 4.4.4.2 Microscopy of separated cells ... 168
4.5 Discussion .. 170

Chapter 5: Effect of the structure of almond materials on lipid digestibility ... 175
 5.1 Introduction ... 175
 5.2 Aims ... 177
 5.3 Materials and methods ... 178
 5.3.1 Method ... 178
 5.3.2 Statistical analysis .. 179
 5.4 Results ... 180
 5.4.1 Particle size of emulsions .. 180
 5.4.2 Release of FFA measured with the pH-stat ... 180
 5.4.3 Release of FFA measured with GLC .. 184
 5.4.4 Microstructural analysis of separated cells before and after digestion 184
 5.5 Discussion .. 187

Chapter 6: In vivo and in vitro digestion of almond meals of different bioaccessibility ... 196
 6.1 Introduction ... 196
 6.2 Aim and objectives ... 200
 6.3 Materials and methods ... 200
 6.3.1 Test meals ... 201
 6.3.2 In vitro digestion of almond muffins ... 202
 6.3.2.1 Mastication of the almond muffins ... 202
 6.3.2.2 In vitro gastric digestion .. 202
 6.3.2.3 In vitro duodenal digestion ... 203
 6.3.2.4 Samples analysis ... 203
 6.3.2.5 Statistical analysis .. 203
 6.3.3 In vivo study .. 204
 6.3.3.1 Subjects and location ... 204
 6.3.3.2 Study design ... 205
 6.3.3.3 Test meals ... 207
 6.3.3.4 Collection and handling of blood samples ... 207
 6.3.3.5 Samples analysis ... 208
 6.3.3.5.1 Blood samples analysis ... 208
 6.3.3.5.2 Effluent samples ... 209
 6.4 Results ... 210
Chapter 7: Permeability of almond cell walls to digestive enzymes ... 229

7.1 Introduction .. 230
 7.1.1 Lipases .. 230
 7.1.2 Almond cells ... 233
 7.1.3 Oil bodies ... 234

7.2 Aims .. 236

7.3 Materials and methods ... 237
 7.3.1 Samples preparation and characterisation .. 237
 7.3.1.1 Compositional analysis of OBs ... 238
 7.3.1.2 Particle size distribution and ζ-potential measurements ... 238
 7.3.2 Lipolysis of almond lipids .. 239
 7.3.2.1 Analysis by chromatography of in vitro gastrointestinal digestions 240
 7.3.2.2 Assays of lipase activity with the pH-stat technique .. 240
 7.3.3 Penetration of pancreatic lipase inside the cellular compartment .. 241
 7.3.3.1 Preliminary work using FITC labelled dextran .. 241
 7.3.3.2 Pancreatic lipase diffusion ... 241

7.4 Results .. 243
 7.4.1 Characterisation of the OBs .. 243
 7.4.1.1 Particle size distribution and ζ-potential measurements ... 243
 7.4.1.2 Lipid composition ... 244
 7.4.1.3 Protein composition .. 246
 7.4.2 Lipolysis of almond lipids .. 247
 7.4.2.1 Identification of endogenous lipase activity ... 247
 7.4.2.2 Analysis by chromatography of in vitro gastrointestinal digestions 248
 7.4.2.3 Assays of lipase activity with the pH-stat technique .. 251
 7.4.3 Penetration of pancreatic lipase inside the cellular compartment .. 252
 7.4.3.1 Preliminary work using FITC labelled dextran .. 252
 7.4.3.2 Pancreatic lipase diffusion ... 253

7.5 Discussion .. 256

Chapter 8: General discussion and conclusion ... 262

8.1 Mastication and digestion of whole almond seeds ... 264

8.2 Lipid digestibility of different almond materials ... 267
8.3 Modelling of the digestion process with almond as plant food ...270
8.4 Health benefits and relevance to the industry272
8.5 Final comments and further prospective274
8.6 Conclusions ...275
References ...276
Appendices ...318
 Appendix A: Gas chromatography parameters used for sugar analysis319
 Appendix B: Lipid release according to size as predicted by the mathematical model....
..321
 Appendix C: Schematic representation of mono- and multicompartmental models..322
 Appendix D: Test meals preparation and composition...323
 Appendix E: Participant information sheet ...324
 Appendix F: Volunteers screening and visit procedures...331
 Appendix G: Typical intakes of a visit day ..332
 Appendix H: Protocols for glucose, TAG and NEFA analysis using ilab333
 Appendix I: Blood results, raw data..336
LIST OF FIGURES

Figure 1.1 Stereochemical structure of triacylglycerol molecule ..29
Figure 1.2 Principal events occurring during lipid digestion and absorption on supramolecular (A) and molecular (B) scales ..32
Figure 1.3 Representation of pancreatic and gastric lipases ..41
Figure 1.4 Representation of pancreatic lipase, closed and open conformation ...41
Figure 1.5 Structure of the pancreatic lipase-colipase complex (left) and reaction scheme on lipid-water interface of a lipid droplet (right) ..43
Figure 1.6 Molecular structure of bile salts and their organisation ...44
Figure 1.7 Structure of bile salts and their arrangement on the surface of a micelle44
Figure 1.8 Schematic representation of duodenal lipolysis ..46
Figure 1.9 Michaelis-Menten kinetic model adapted to interfacial enzymatic lipolysis of short- and medium-chain lipid (A), and general scheme of interfacial catalysis (B)49
Figure 1.10 Schematic representation of a plant cell ...58
Figure 1.11 Cell behaviour after physical disruption in relation to the food texture ..59
Figure 1.12 Structure of cell wall (onion) ...60
Figure 1.13 Illustration of the potential interactions between components of the primary cell wall for type I and type II cell walls ..64
Figure 1.14 Almond (Amygdalus communis L.) anatomy ...70
Figure 1.15 Transmission electron micrographs (TEM) of cross section of parenchymal cells of almond cotyledon ..70
Figure 1.16 Sections of digested almond tissues recovered from ileostomy volunteers visualised by transmission electron microscopy after 2 h (A) and 12 h (B) of digestion73
Figure 1.17 Sections of almond tissues recovered from human faeces visualised by light (A and B) and transmission electron (E and F) microscopy ..75
Figure 2.1 Photographs of particles with the different size ranges used (1000 to 2000, 500 to 1000, 250 to 500, and < 250 µm) ..82
Figure 2.2 Light micrograph of almond oil emulsion ...84
Figure 2.3 Light micrographs of crude raw (A) and roasted (B) almond oil bodies (10% v/v in water), urea-washed (C) and NaHCO₃-washed (D) raw almond OBs (10% v/v in water)85
Figure 2.4 Commonly used descriptors for particle size ..93
Figure 2.5 Equivalent diameter for irregular shapes ..93
Figure 2.6 Example of sieves used - woven wire, 200 mm diameter (A), the same sieves on the vibratory sieve shaker (B) ... 94
Figure 2.7 Malvern laser diffraction particle sizer 2000® equipped with a Hydro 2000G 96
Figure 2.8 Schematic representation of Malvern laser diffraction particle sizer 2000® 96
Figure 2.9 Schematic representation of TAG hydrolysis .. 104
Figure 2.10 Protein composition of lipase type II .. 105
Figure 2.11 Metrohm 848 Tritrino plus (pH-stat) .. 106
Figure 2.12 Schematic representation of the dynamic gastric model 111
Figure 3.1 Overview of the methodology employed for particle sizing 122
Figure 3.2 CONSORT diagram of subject flow throughout the Mastication study 128
Figure 3.3 Particle size distributions by mechanical sieving of raw and roasted almond boluses ... 130
Figure 3.4 Particle size distributions by laser diffraction of raw and roasted almond boluses ... 132
Figure 3.5 Monosaccharide composition (mol%) of raw and roasted almond boluses 136
Figure 3.6 LM images of masticated raw almond seed ... 137
Figure 3.7 SEM of particles from masticated raw almond seed 138
Figure 3.8 TEM images (A and B) of masticated raw almond seed (A and B) showing intact cells and their content. TEM image (C) of ruptured cells at the surface of the masticated raw almond particle. ... 138
Figure 3.9 LM images of masticated raw almond seed stained with Nile red 139
Figure 3.10 LM (A) and SEM (B) images of the surface of masticated almond particles 139
Figure 4.1 Anatomy of the stomach with its different compartments 150
Figure 4.2 Predicted flow patterns produced by propagating ACW 151
Figure 4.3 Propulsion, grinding and retropulsion of solid food in the stomach 152
Figure 4.4 Schematic representation of the peristalsis and segmentation contractions occurring in the small intestine .. 154
Figure 4.5 Image of the dynamic gastric model .. 158
Figure 4.6 Particle size distribution of raw (A and C) and roasted (B and D) almonds recovered after mastication, gastric and duodenal digestions 163
Figure 4.7 Cumulative percentage of lipid release at the different stages of digestion from this study (A) and from previous work (B) ... 164
Figure 4.8 Monosaccharide composition (mol%) of raw and roasted almond at the different stages of digestion ... 165
Figure 4.9 Heat map of the distribution of CW polysaccharides in raw, roasted and blanched almond as well as almond skin...166

Figure 4.10 Heat map of the distribution of CW polysaccharides in digested raw almond167

Figure 4.11 Micrographs of raw (A) and roasted (B) almond particles collected after mastication (A1 and B1), gastric (A2 and B2) and duodenal (A3 and B3) digestions.............168

Figure 4.12 Feasibility study for imaging lipid in cells of sharp-cut almond tissue blocks softened in CDTA..169

Figure 4.13 Bright field images of chewed raw (NA), roasted (RA) and digested almond cells separated by CDTA ...170

Figure 5.1 Enzymic and physiological steps involved in TAG digestion..........................177

Figure 5.2 Particle size distributions of raw and roasted almond oils, tributyrin, and triolein emulsions...180

Figure 5.3 Percentage of FFA released versus lipolysis time over 60 min of raw (A) or roasted (B) almond materials prepared with different degrees of lipid bioaccessibility: almond particles, chewed almonds and separated almond cells..182

Figure 5.4 FFA released (µmol) over a 60 time period during duodenal digestion using the pH-stat method (green) and GLC analysis (red) for raw (A-C) and roasted (D-F) almond; almond emulsions (A and D), chewed almonds (B and E) and separated almonds cells (C and F) ...185

Figure 5.5 Representative images of separated, raw (A-D) and roasted (E-H) almond cells before (A, C, E and G) and after (B, D, F and H) digestion as examined by optical (A, B, E and F) or confocal (C, D, G and H) microscopy ...186

Figure 5.6 Change in lipid concentration with time ..193

Figure 6.1 Schematic representation of the proctocolectomy (a), the Brooke (or standard) ileostomy following the operation (b), and view side with the pouch (c)198

Figure 6.2 Outline of study protocol...206

Figure 6.3 LM sections of raw almond particles from AF recovered at different stages of digestion: baseline (A), chewed (B), post-gastric (C), and post-duodenal (D)211

Figure 6.4 LM (1) and TEM (2) sections of raw almond particles from AP recovered at different stages of digestion: baseline (A), chewed (B), post-gastric (C), and post-duodenal (D) ..212

Figure 6.5 CONSORT diagram of subject flow throughout the Biogut study213

Figure 6.6 Characteristics of ileal effluents and mean transit time (A) from 0 to 10 h of digestion, and dry weight of matter recovered over 24 h (B) for AF and AP215
Figure 6.7 Concentration of lipid in the effluent samples recovered at each postprandial time point from the terminal ileum of the ileostomy volunteer (n=1) for AF (green) and AP (blue).

Figure 6.8 LM sections of raw almond particles from AF recovered in ileal effluents at different time points: 2 h (A), 4 h (B), 6 h (C), 8 h (D), 10 h (E) and overnight (F).

Figure 6.9 LM (1) and TEM (2) sections of raw almond particles from AF recovered in ileal effluents at 2 h (A), 4 h (B), 6 h (C), 8 h (D), 10 h (E), 12 h (F) and 21 h (G) of digestion.

Figure 6.10 Changes from fasting in plasma TAG (A) and NEFA (B) concentrations in an ileostomy volunteer (n=1) after the test meals containing 48 g of lipids from AF (green) or AP (blue).

Figure 6.11 Plasma glucose (A), insulin (B) and C-peptide (C) concentrations in an ileostomy volunteer (n=1) after consumption of AF (green) or AP (blue).

Figure 6.12 Plasma GIP (A), GLP-1 (B), CCK (C) and PYY (D) concentrations in an ileostomy volunteer (n=1) after the test muffin meals containing 48 g of lipids from AF (green) or AP (blue).

Figure 7.1 TEM images of almond seed showing oil bodies.

Figure 7.2 LM images of separated almond cells.

Figure 7.3 Model of an oil body (A) and the structure of oleosin (B) from corn.

Figure 7.4 Illustration of the electrical double layer of a negatively charged particle. The ζ-potential is the electrical potential at the slipping plane.

Figure 7.5 Protein composition of unlabelled (unbound fractions) and labelled (bound fractions) lipase type II.

Figure 7.6 Particle size distribution of raw and roasted almond OBs (A) and raw almond OBs washed with urea or sodium bicarbonate (B).

Figure 7.7 TLC analysis of phospholipids from raw and roasted almond OBs.

Figure 7.8 Protein composition of oil bodies. Lane 1 Mw marker, lane 2 crude raw almond, lane 3 crude roasted almond, lane 4 urea-washed raw almond, and lane 5 NaHCO3-washed raw almond.

Figure 7.9 TLC analysis of neutral lipids present in blanched and native raw almond milk.

Figure 7.10 TLC analysis of digested raw almond oil bodies and cells with various enzymes.

Figure 7.11 TLC analysis of phospholipids of raw almond OB, crude and digested with either PPE or GPLRP2.
Figure 7.12 Percentage of residual FFA of almond OBs (crude, urea and NaHCO₃) determined by GLC analysis after 1 h duodenal digestion by PPE and GPLRP2, alone or in combination..251

Figure 7.13 Micrographs of FITC-dextran permeation into separated raw and roasted almond cells ..253

Figure 7.14 CLSM images of crude raw almond OBs stained with Nile red (A) and in presence of labelled pancreatic lipase (green) after 30 min incubation (B, C and D)254

Figure 7.15 CLSM images of raw almond cells stained with Nile red (B) and in presence of labelled pancreatic lipase at baseline (B), 30 min (C), 1 h (D) 1 h 30 (E), 2 h (F), 3 h (G) and 20 h (H) of incubation ..255

Figure 7.16 CLSM images of raw almond cells after 1 h incubation showing the diffusion of lipase through the CW ..256
LIST OF TABLES

Table 1.1 Types of dietary fibre, with selected examples..57
Table 2.1 Nutritional composition of raw and roasted almonds ..81
Table 2.2 Main fatty acids present in almond oil and their MW ..109
Table 3.1 Masticatory parameters for raw and roasted almonds...127
Table 3.2 Percentage weight of almond particles retained on the sieves by size ranges..........131
Table 3.3 D values (n=15) and correlation coefficient (r) between number of chews and particle size for raw and roasted almonds...133
Table 3.4 Percentage of lipid release estimated either measured by the Soxhlet or estimated by the mathematical model using particle size data or measured134
Table 3.5 Percentage of lipid release predicted by the mathematical model (n=15) for raw (A) and roasted (B) almonds ..135
Table 4.1 Volume of acid and enzyme solutions added during the gastric digestion of raw and roasted masticated almonds...159
Table 5.1 Percentage of FFA released (% of total fatty acids) after 60 min and initial reaction rate (µmol/min) for lipolysis of emulsions and unemulsified oils with pancreatin....183
Table 5.2 Initial reaction rate (µmol/min) for lipolysis of milled (size from < 250 to 2000 µm) and chewed raw and roasted almonds ..183
Table 6.1 Cumulative percentage of lipid released and deduced total undigested lipids from the almond particles (AF and AP) at the different stages of in vitro digestion210
Table 6.2 Baseline dietary intake of the volunteers included in the study214
Table 7.1 Experimental conditions for lipase assays with the different enzymes241
Table 7.2 Total lipid and protein content of crude and washed OBs245
Table 7.3 Quantitative data of the TLC plate obtained by densitometry following 1 h incubation of the raw almond samples, OBs and cells ..249
Table 7.4 Percentage of FFA released (% of total fatty acids) and initial reaction rate (µmol/min) for lipolysis of almond OBs and cells with pancreatin252
Table 7.5 Specific activity of lipases on different materials ...252
LIST OF EQUATIONS

Equation 2.1 Calculation of FFA content...90

Equation 2.2 Calculation of percentage weight retained on sieve ...95

Equation 2.3 Calculation of surface-weighted $(d_{3,2})$ mean diameter ...97

Equation 2.4 Calculation of volume $(d_{4,3})$ mean diameter ..97

Equation 2.5 Calculation of FFA release during lipolysis with pH-stat ..109

Equation 3.1 Mathematical model for the prediction of lipid release after mastication124

Equation 3.2 Calculation of the particle edge length from the sphere diameter ..125

Equation 6.1 Calculation of mean transit time ..209

Equation 7.1 Smoluchowski equation used to calculate the ζ-potential ..238
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>ACW</td>
<td>Antrum contraction waves</td>
</tr>
<tr>
<td>AF</td>
<td>Muffin containing almond flour</td>
</tr>
<tr>
<td>AGP</td>
<td>Arabinogalactan protein</td>
</tr>
<tr>
<td>ALA</td>
<td>α-linolenic acid</td>
</tr>
<tr>
<td>AP</td>
<td>Muffin containing almond macroparticles</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulphate</td>
</tr>
<tr>
<td>BBSRC</td>
<td>Biotechnology and Biological Sciences Research Council</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninic acid</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BS</td>
<td>Bile salts</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CCK</td>
<td>Cholecystokinin</td>
</tr>
<tr>
<td>CDTA</td>
<td>Cyclohexanediamine tetraacetic acid</td>
</tr>
<tr>
<td>CEH</td>
<td>Carboxyl ester hydrolase</td>
</tr>
<tr>
<td>CLSM</td>
<td>Confocal laser scanning microscopy</td>
</tr>
<tr>
<td>CMC</td>
<td>Critical micelle concentration</td>
</tr>
<tr>
<td>CNRS</td>
<td>Centre National de la Recherche Scientifique</td>
</tr>
<tr>
<td>CRF</td>
<td>Clinical Research Facility</td>
</tr>
<tr>
<td>CS</td>
<td>Combined samples</td>
</tr>
<tr>
<td>CUI</td>
<td>Centre for Ultrastructural Imaging</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>CW</td>
<td>Cell wall</td>
</tr>
<tr>
<td>d_{3,2}</td>
<td>Surface-weighted average diameter</td>
</tr>
<tr>
<td>d_{4,3}</td>
<td>Volume average diameter</td>
</tr>
<tr>
<td>DA</td>
<td>Degree of acetylation</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DE</td>
<td>Degree of methyl-esterification</td>
</tr>
<tr>
<td>DGM</td>
<td>Dynamic gastric model</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>DF</td>
<td>Dietary fibre</td>
</tr>
<tr>
<td>DRINC</td>
<td>Diet and Health Research Industry Club</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>EFA</td>
<td>Essential fatty acids</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaenoic acid</td>
</tr>
<tr>
<td>EIPL</td>
<td>Laboratory of Enzymology at Interfaces and Physiology of Lipolysis</td>
</tr>
<tr>
<td>FAME</td>
<td>Fatty acid methyl esters</td>
</tr>
<tr>
<td>FFA</td>
<td>Free fatty acid</td>
</tr>
<tr>
<td>FID</td>
<td>Flame ionization detector</td>
</tr>
<tr>
<td>FTIC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FSA</td>
<td>Food Standards Agency</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinal tract</td>
</tr>
<tr>
<td>GIP</td>
<td>Glucose dependent insulinotropic peptide</td>
</tr>
<tr>
<td>GLC</td>
<td>Gas liquid chromatography</td>
</tr>
<tr>
<td>GLP-1</td>
<td>Glucagon-like peptide 1</td>
</tr>
<tr>
<td>GPLRP2</td>
<td>Guinea pig pancreatic lipase-related protein 2</td>
</tr>
<tr>
<td>HG</td>
<td>Homogalacturonan</td>
</tr>
<tr>
<td>HGL</td>
<td>Human gastric lipase</td>
</tr>
<tr>
<td>HPL</td>
<td>Human pancreatic lipase</td>
</tr>
<tr>
<td>HPLRP</td>
<td>Human pancreatic lipase related-protein</td>
</tr>
<tr>
<td>iAUC</td>
<td>Incremental area under the curve</td>
</tr>
<tr>
<td>IFR</td>
<td>Institute of Food Research</td>
</tr>
<tr>
<td>IS</td>
<td>Internal standard</td>
</tr>
<tr>
<td>LA</td>
<td>Linoleic acid</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>LM</td>
<td>Light microscopy</td>
</tr>
<tr>
<td>MAG</td>
<td>Monoacylglycerol</td>
</tr>
<tr>
<td>MTT</td>
<td>Mean transit time</td>
</tr>
<tr>
<td>MUFA</td>
<td>Monounsaturated fatty acids</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>N</td>
<td>Number of chews</td>
</tr>
<tr>
<td>NA</td>
<td>Raw almond</td>
</tr>
<tr>
<td>NaTC</td>
<td>Sodium taurocholate</td>
</tr>
<tr>
<td>NaTDC</td>
<td>Sodium taurodeoxycholate</td>
</tr>
<tr>
<td>NaGDC</td>
<td>Sodium glycodeoxycholate</td>
</tr>
<tr>
<td>NDNS</td>
<td>National Diet and Nutrition Survey</td>
</tr>
<tr>
<td>NEFA</td>
<td>Non-esterified fatty acids</td>
</tr>
</tbody>
</table>
OB Oil body
PA Phosphatidic acid
PC Phosphatidylcholine
PE Phosphatidylethanolamine
PI Phosphatidylinositol
PL Pancreatic lipase
PLRP2 Pancreatic lipase-related protein 2
PPL Porcine pancreatic lipase
PPE Porcine pancreatic extract
PS Portion (28 g) samples
PSD Particle size distribution
PUFA Polyunsaturated fatty acids
PYY Peptide YY
RA Roasted almond
Rg Radius of gyration
RGE Rabbit gastric extract
RS Resistant Starch
SA Specific activity
SCFA Short chain fatty acids
SDM Static duodenal model
SDS Sodium dodecyl sulphate
SEM Scanning electron microscopy
SFA Saturated fatty acids
sPLA2 Pancreatic phospholipase A2
T Duration of mastication sequence
TAG Triacylglycerol
TEM Transmission electron microscopy
TLC Thin layer chromatography
Tris Tris(hydroxymethyl)aminomethane
VLDL Very-low-density lipoprotein
β-Lg Beta-lactoglobulin
CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW
Chapter 1: Introduction and literature review

1.1 Background and project overview

Diets containing foods high in fat are considered to have detrimental health effects, but studies have shown that the consumption of almond seeds, a lipid-rich food (Yada et al., 2011), is associated with a beneficial effect on postprandial glycaemia, oxidative damage and risk factors for cardiovascular disease (CVD), particularly in individuals with type 2 diabetes mellitus (Cohen and Johnston, 2011; Jenkins et al., 2002a; Li et al., 2011a; Spiller et al., 2003). One possible explanation for this paradox is the limited bioaccessibility (release) and rate and extent of digestion of almond lipids.

The effect of dietary fibre (DF) on postprandial nutrient and hormone responses have been studied previously, but none of these investigations have explored the mechanisms by which DF affects postprandial metabolism, especially in relation to postprandial lipaemia (Cara et al., 1992; Gemen et al., 2011; Redard et al., 1990). The major sources of DF are plant cell walls (CWs). The role of the CW matrix, more specifically its composition and structure, on nutrient release has rarely been studied (Ellis et al., 2004; Mandalari et al., 2008a).

The overall objective of the current project were to (a) determine the extent to which lipids contained in almond seeds are released (bioaccessible) during mastication and on the subsequent stages of the digestion process and (b) understand the role played by CW in influencing the bioaccessibility and digestion of almond lipid. To address this question, a multidisciplinary approach was used, involving a novel combination of in vivo, in vitro and in silico methods to study lipid bioaccessibility and digestion kinetics in almond seeds. This project was part of a larger programme of research, funded by the BBSRC (BB/H004866/1) to investigate the role of plant CWs in regulating lipid, but also starch bioaccessibility from plant foods.
1.2 Lipids and health

1.2.1 Classification and general structures of dietary lipids

Lipids are a large and heterogeneous group of compounds that includes notably triacylglycerols (TAGs), phospholipids, steroids (i.e. cholesterol), waxes and fat soluble vitamins. A common property is their insolubility in water. The main dietary form of fatty acids (92-96%) are esters of a single glycerol and three fatty acids: TAG (Figure 1.1) (Carey and Hernell, 1992).

![Figure 1.1 Stereochemical structure of triacylglycerol molecule (Carey and Hernell, 1992)](image)

Fatty acids can be classified according to the number of double bonds they contain: saturated (none, SFA), monounsaturated (one, MUFA) or polyunsaturated (two or more, PUFA) fatty acids. Essential fatty acids (EFA) belong to the PUFA category; they are fatty acids that cannot be synthesised by the human body; EFA should therefore be provided from the diet. They include two families: the omega-3 such as α-linolenic acid (ALA) and its derivatives eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the omega-6 such as linoleic acid (LA) a precursor of arachidonic acid (AA).

Dietary fats are obtained from both animal and plant sources. Animal fats are generally solid at room temperature and contain predominantly SFA and MUFA, i.e. meat, milk, dairy products, egg yolks and their derivatives; whereas fats in plants contain a wider variety of fatty acids and thus tend to be liquid at room temperature, i.e. oils from seeds, nuts and their oils. Exceptions to this generalisation are fish fats that are rich in PUFA especially oily fish such as salmon or fresh tuna, and coconut and palm oils that are high in saturated fats (Chow, 2000).
1.2.2 The physiological and clinical significance of lipids

According to the current recommendations from the UK Food Standards Agency (FSA), the dietary lipids should not exceed 35% of the total energy intake for total fat, of which approximately 11% from saturated fat, 13% from monounsaturated fat, 6.5% is from polyunsaturated fat and 2% is obtained from trans-fat (Food Standards Agency, 2013). The latest National Diet and Nutrition Survey (NDNS) report published in 2003 revealed that in British adults, aged 19 to 64, total fat intake accounts on average for 35.8 % of the total energy intake of men and 34.9% of women (Henderson et al., 2003). Furthermore, in approximately 13.4% of men and 13.2% of women, the total energy intake is derived from saturated fat. Lipid intakes, especially saturated fats, are therefore above the UK dietary reference values. An overconsumption of fats can lead to hyperlipidaemia, elevated levels of lipids and cholesterol in the blood (Grundy and Denke, 1990), which is an important risk factor for atherosclerosis and therefore CVD (Kris-Etherton et al., 1988; Stone, 1990; Temple, 1994). Elevated plasma fatty acids has also been associated with insulin resistance (Boden, 1997; Shulman, 2000) and obesity (Bray et al., 2004).

Despite these adverse effects, lipids have incontestable nutritional values. Firstly, lipid stored in adipose tissue is a source of energy during times of food restriction. The yield from the complete oxidation of fatty acids is about 9 kcal/g (or 38 kJ/g) which is superior to proteins and carbohydrates, both with energy yields of approximately 4 kcal/g (17 kJ/g). Secondly, regular consumption of fish, seeds and nuts provides EFA. EPA, DHA and AA can thereby be directly supplied from those foods or synthesised from their precursors, ALA and LA. However, the fractional conversion of ALA to DHA and EPA are limited, in that they are approximately 4 to 9% and 0.3 to 21% respectively, depending on gender (Arterburn et al., 2006; Burdge and Wootton, 2002; Harnack et al., 2009). Thus, it is recommended that they are obtained from the diet in order to meet the body’s requirements. The omega-3 fatty acids (i.e. EPA, DHA and ALA) are involved in the synthesis of eicosanoids that are important metabolites in inflammatory processes (Calder, 2010; Simopoulos, 2002) and neuronal functions (Bourre, 2006; Lavialle and Laye, 2010; Wainwright, 2002).
Furthermore, fatty acids are structural components of cell membranes and subcellular organelles, mainly as phospholipids arranged into a bilayer. The nervous system, including the brain, has the largest membrane surface areas compared with other organs; 40 to 60 percent of the brain’s dry weight consists of lipids, 35% of which are PUFA (Lauritzen et al., 2001; Yehuda et al., 1999). The quality of fatty acids consumed, in particular the degree of unsaturation (i.e. PUFA), has therefore an impact on brain structure and function (Haag, 2003). PUFA are able to modulate the 3-dimensional structure of membranes and thereby their fluidity. Indeed, unsaturated fatty acids provide more flexibility to the membrane than saturated ones do, due to bends in the fatty acid chain created by the double bonds. Optimal fluidity is essential to permit neurotransmitters to bind to membrane receptors and the propagation of the electrical information within the cell. Dietary lipids are also required for the transport and absorption of fat soluble vitamins (A, D, E and K) and they are the precursors of steroid hormones (oestrogens, testosterone, adrenal hormones) (Gurr et al., 2002). Finally, from an organoleptic point of view, lipids provide palatability to the food by contributing to its texture (mouthfeel) and also have the capacity to carry aromatic compounds (Lucca and Tepper, 1994).

1.3 Lipid digestion

The lipids present in plant foods are found mainly as TAGs enclosed in oil bodies (OBs), but they are also constitutive components of cell membranes, i.e. phospholipids in plasma, vacuole, mitochondria and plastid membranes (Buchanan et al., 2002). Lipid digestion is a complex process which leads to the release of TAGs from the food matrix and their transformation into smaller absorbable lipids (Figure 1.2). Unlike cholesterol, TAG cannot be directly absorbed by the enterocytes and must first be hydrolysed. The four main steps of that process are: 1) lipid release from the food matrix and its dispersion into emulsion droplets; 2) enzymic hydrolysis of TAGs in the stomach and small intestine;
3) Removal of lipolytic products from the interface and formation of micelles; and 4) absorption of the hydrolysed products at the enterocytes brush-border.

Figure 1.2 Principal events occurring during lipid digestion and absorption on supramolecular (A) and molecular (B) scales (Michalski et al., 2013).

Abbreviations: BSSL, bile-salt stimulated lipase; CEH, cholesterol ester hydrolase; PL, phospholipids; TG, triglycerides.
1.3.1 The mouth

Mastication is the first stage of the digestion process and consists of breaking down the food ingested into smaller particles as well as lubricating it with saliva in order to facilitate its progression through the oesophagus. However, this process is not as simple as it may first appear as demonstrated by the Hiiemae model (Hiiemae, 2004). Indeed, the mastication process consists of crushing, partitioning, lubrication including moisture uptake by the food, lingual transport of the food to different teeth, formation of a bolus and finally swallowing (Heath, 2002). A complex sensory feedback mechanism occurs during mastication to continuously adapt the jaw movements and saliva secretion together with the bolus properties (Woda et al., 2006a).

During mastication, the food matrix is greatly transformed where its surface area is increased and a bolus formed. Various amounts of nutrients are released from the food according to its physicochemical properties. The mixing of saliva with food containing lipids has an effect on the structure and properties of the food and individual nutrients including lipid. Saliva is a biological fluid made up of water; mucins, proteins, such as amylase, lysozyme, and peroxidase; it also contains electrolytes, including Ca$^{2+}$, Na$^+$, K$^+$ and Mg$^{2+}$, and urea (Humphrey and Williamson, 2001; Levine, 1993). These molecules fulfil different functional roles which include control of pH, cleaning action, mineralization regulation of tooth enamel and antibacterial activity. Emulsions present in the oral cavity can flocculate, coalesce and undergo phase inversion (e.g. oil in water emulsion becomes a water in oil emulsion) due to saliva, mixing forces produced by mastication and mouth temperature (Malone et al., 2003; Vingerhoeds et al., 2005). Indeed, saliva, and the mucins it contains, can induce flocculation of the oil droplets due to a depletion or bridging mechanism, which in turn has an effect on their subsequent digestibility in the digestive tract (McClements et al., 2009; Silletti et al., 2007).

Lingual lipase probably initiates the lipid digestion in human infants and rodents; however its role, and even its actual presence, is less clear for human adults (Bernback et al., 1990; DeNigris et al., 1988; Hamosh and Scow, 1973; Hamosh, 1984; Kulkarni and Mattes, 2014; Stewart et al., 2010).
The journey of the food in the mouth finishes with the deglutition and its descent into the oesophagus.

1.3.2 The stomach

Once swallowed, the bolus rapidly passes down the oesophagus and enters into the stomach where it is submitted to mechanical and biochemical digestion by mixing with digestive juices. The gastric juice contains various substances and enzymes, especially gastric acid, pepsin, mucus (containing the glycoproteins mucins) and water. HCl, the main gastric acid, contributes to the digestion of protein notably by activating pepsin. The gastric pH varies between 1 and 3 during a fasting state and between 5.5 and 7 after food ingestion, although those values greatly fluctuate between individuals and depend on the food eaten in terms of quantity and type (Kong and Singh, 2008; N’Goma et al., 2012). The lining of the stomach is covered with columnar epithelial cells tightly joined together as well as mucus that protects the mucosa from acid secretion and pepsin digestion (Smith and Morton, 2001).

At this stage the lipids released from the food are integrated into large droplets (a mixture of TAG, phospholipids, cholesterol, free fatty acids and surface proteins). Armand and colleagues showed that only a small proportion of the lipids present in the stomach are not emulsified (Armand et al., 1994). The size of the lipid droplets (70 to 100 µm diameter) were reduced to generate fine droplets (1 to 10 µm diameter) thus increasing the total surface area. Therefore, lipid droplets that had a size larger than 10 to 20 µm were broken down whereas when their size was smaller, they tended to coalesce. However, protein-coated droplets remained small as the proteins protect them from coalescence. Lipolysis, occurring during the first hour of digestion, is initiated by gastric lipase and results in the partial hydrolysis of TAG into diacylglycerol (DAG) and free fatty acids (FFAs). The
lipolytic products are then integrated into the droplets, which, at the end of the gastric digestion have a median diameter of about 20 to 40 μm (Armand et al., 1994).

Human gastric lipase (HGL) is synthesised in the fundic gastric mucosae, and secreted from the chief cells located in the gastric glands (Moreau et al., 1989). Cholinergic mechanisms have been shown to increase HGL output however neither cholecystokinin (CCK) or secretin has an impact on its secretion (Borovicka et al., 1997). Measuring HGL output accurately, however, has been reported to be challenging because of the great fluctuations observed, because HGL stability tends to decrease with pH levels below 1.5 (Lengsfeld et al., 2004). HGL accounts for 5 to 40% of the lipid hydrolysis in the stomach to which is added 7.5% occurring in the duodenum (Armand, 2007).

1.3.3 The small intestine

Emulsified lipids are subsequently released into the duodenum where pancreatic juices and bile are secreted, the principal digestive agents being bile salts (BS, an emulsifier), pancreatic lipase (enzyme) and colipase (overcomes the inhibitory effect of BS on the activity of pancreatic lipase) (Carey and Hernell, 1992). Most of the TAG hydrolysis is considered to occur at this stage leading to the formation of DAG, monoacylglycerol (MAG), and FFAs. During optimal hydrolysis, TAG is transformed into one MAG molecule and two FFAs. It was revealed that following the ingestion of coarsely emulsified test meals, the greatest fraction of lipids (> 90%) in the duodenum was present as emulsified droplets of 1 to 100 μm (Armand et al., 1996). After 1 h digestion, the median oil droplet diameter dropped from about 55 to 20 μm; the large droplets having disappeared and the small droplets having a diameter of 1 to 50 μm.

The hydrolysis provides a continuous source of digested lipids for absorption at the brush-border membrane of the enterocytes by either simple passive diffusion or active transport (Carey and Hernell, 1992). Short- and medium chain fatty acids (chain length < 12 carbon atoms) are fairly
soluble in water and pass into the enterocytes by passive diffusion. Long chain fatty acids (> 12 carbon atoms), in particular those that are partially ionized, are required to be solubilised by BS and transported as mixed micelles (Hernell et al., 1990). The mixed micelles can then be absorbed through the intestinal microvilli into the mucosal enterocytes. Once inside the cells, the digested products are re-esterified in the endoplasmic reticulum to form TAG. The newly synthesised TAG as well as the digested cholesterol and phospholipids molecules are then coated with proteins to form chylomicrons in order to enter the lymphatic vessels (Carey et al., 1983; Iqbal and Hussain, 2009). However, FFAs can be transported either via the portal vein or the lymphatic vessel depending on their chain-length and degree of unsaturation (Mu and Hoy, 2004). Thus, short and medium chain FFAs, which are more water-soluble than the long chain FFAs, are absorbed directly into the portal blood.

Pancreatic enzymes, including human pancreatic lipase (HPL), are synthesised and secreted by the acinar cells. These enzymes are stored in zymogen granules within the apical pole of the acinar cells. The secretion of the digestive enzymes from the zymogen granules is stimulated by a wide range of secretagogues in particular CCK (Borovicka et al., 1997; Lengsfeld et al., 2004), which is released by the duodenal and jejunal I cells in response to the presence of lipids in the duodenum (Wu et al., 2013). The hormone stimulates gall bladder contractions and thereby causes the release of BS via the common bile duct into the duodenum. It is also responsible for the stimulation of pancreatic juice secretion. A complex feedback mechanism takes place where on the one hand CCK modulates the secretion of the lipases and on the other hand lipolytic products stimulate the secretion of CCK (Hildebrand et al., 1998). Furthermore, CCK has been shown to be more strongly stimulated by unsaturated fatty acids, as found in almonds, than by saturated fatty acids (Beardshall et al., 1989). Adrenaline and secretin work in synergy with CCK in the regulation of pancreatic enzyme secretion from acinar cells.
Pancreatic lipase outputs vary depending on the feeding state: between 100 to 400 U/mL during fasting and 500 to 1500 U/mL postprandially (Keller and Layer, 2005). These values can also fluctuate depending on the lipid content of the ingested meal. The presence of other lipases has also been detected in the duodenum: pancreatic lipase related-protein 1 and 2 (HPLRP1 and HPLRP2) (Giller et al., 1992), cholesterol ester lipase, and bile-salt dependent lipase (Armand, 2007) (for more details see Chapter 7).

1.3.4 The colon

The material that is not absorbed within the small intestine reaches the colon, the main site of water and electrolytes uptake. Short chain fatty acids (SCFA; acetic, propionic and butyric acids) are produced in the colon from the fermentation by bacteria of dietary carbohydrates that have escaped the digestion and absorption in the upper gastrointestinal tract (GIT) (Cummings, 1981). Most of these SCFA get reabsorbed. On the other hand, ingested SCFA are released from TAG and absorbed by passive diffusion in the upper GIT, then transported in the portal vein to the liver (Carey et al., 1983). BS and cholesterol that enter the colon can either be reabsorbed at this site or degraded and excreted in faeces (Owen, 1986; Thompson, 1986).

Since the digestion of lipids is a highly efficient process, it is assumed that the majority of dietary lipids are hydrolysed and absorbed within the small intestine (Carey et al., 1983). The presence of excess, undigested lipid in faeces, steatorrhea, is generally observed in individuals suffering from pancreatic or gastrointestinal diseases (i.e. bile acids insufficiency) (Davenport, 1982), or in patients who has been administrated lipase inhibitors such as the ones prescribed for weight management (i.e. tetrahydrolipstatin, generic drug name orlistat) (Hvizdos and Markham, 1999). However, depending on the structure of the ingested plant foods (i.e. encapsulated by DF as intact CWs or surrounded by an indigestible coating) a significant proportion of lipids, and lipophilic nutrients such
as carotenoid, may pass from the ileum to the colon in healthy subjects (Ellis et al., 2004; Hoad et al., 2011; Mandalari et al., 2008a; Mandalari et al., 2013; Tydeman et al., 2010). Thus, when lipid-containing foods that are incompletely digested are consumed it is important to also consider the processes occurring in the colon (i.e. fermentation and nutrient degradation by colonic bacteria).

1.3.5 Physiological response to fat consumption

The dietary components of a food and the sensory cues resulting from its ingestion influence the individual feeding behaviour in particular in the short term (French, 1999). Evidence has demonstrated that humans are able to detect the presence of fat in the mouth not only due to the food texture or viscosity but also as a result of olfactory and taste mechanisms possibly via taste bud cells (CD36) (Degrace-Passilly and Besnard, 2012; Mattes, 2005). This oral detection of lipids leads to the release of stored TAG from the adipose tissue thus increasing blood lipid concentration as well as promoting their absorption (Mattes, 2002). The amount of nutrient released at that stage has an impact on the digestion as a whole: gut signalling, mechanical processes and absorption (Frecka et al., 2008). Mastication stimulates cephalic phase responses and may promote the release of numerous gut hormones, notably ghrelin, glucagon-like peptide 1 (GLP-1) and CCK which subsequently has an effect on energy intake.

The motility of the GIT is controlled by a complex feedback system involving neural networks as well as gut peptides released from the enteroendocrine cells (K and I cells located in the upper small intestine, L cells in the ileum and the colon) (Wu et al., 2013). The entry of TAG in the small intestine stimulates the release of CCK and other gastrointestinal peptides such as peptide YY (PYY) and GLP-1. These hormones induce slowing down of gastric emptying and gastrointestinal mobility as well as pancreatic and biliary secretions, which inhibits hunger and thereby food ingestion (Chaudhri et al., 2006). The generated satiety signals rely on the physicochemical properties of lipids, especially chain
length and degree of unsaturation (Feltrin et al., 2004; Samra, 2010). In the ileum, the presence of lipid activates the ileal brake, a series of negative feedback mechanisms that aim to reduce food intake by inhibiting gastric emptying and intestinal motility (Maljaars et al., 2008; Van Citters and Lin, 1999; Van Citters and Lin, 2006). Glucose dependent insulinotropic peptide (GIP), similarly to CCK, is secreted from K cells in response to duodenal distension. Its main action is to increase insulin secretion but it also stimulates lipoprotein lipase activity (McIntosh et al., 2009). Moreover, a high fat diet has an effect on the microbial flora of the large bowel, with notable increases in the Bacteroides species (Borriello, 1986).

The rate and extent of starch digestion (amylolysis) is an important determinant of the glycaemic response, and a number of in vitro systems (e.g. the hydrolysis index, Englyst system, and, more recently LOS analysis) have been used to predict glycaemia without necessity for always performing human studies (Butterworth et al., 2012; Englyst et al., 1992; Goni et al., 1997). However, equivalent systems are not available for lipids despite a recent attempt (Ooi et al., 2011). The only approach to evaluate the metabolic response of the consumption of food containing lipids is to obtain postprandial blood lipid profiles. Knowing the complexity of the lipid metabolism as described above, it is clear that TAG and cholesterol concentrations in peripheral blood will not directly reflect the absorption of nutrients.

Postprandial lipaemia is defined as an elevated level of circulating TAG within an hour of meal ingestion (Lairon et al., 2007b). The TAGs are transported in the bloodstream within lipoprotein particles, such as chylomicrons and very-low-density lipoprotein (VLDL), provided by the liver and the small intestine. This marked elevation lasts between 5 to 8 h for a meal consisting of 30 to 60 g of lipids. To obtain a measurable postprandial lipaemia the lipid intake has to exceed 15 g; 40 to 50 g are in fact necessary to observe a significant increase in healthy adults (Dubois et al., 1998). Given that individuals in Western countries have high lipid intake, with an average daily intake between 80 and 164 g depending on the country (FAOSTAT, 2009), and eat every 3 to 5 h, much of the waking
hours are spent in the postprandial state. In the post-absorptive state (about 4 h after meal ingestion), non-esterified fatty acids (NEFA) constitute a substantial source of energy and their blood levels reflect the mobilisation of fat from body stores (Frayn, 2010). NEFA are released from the hydrolysis, by lipoprotein lipase, of TAGs stored in adipose tissues in response to negative energy balance that cannot be restored by carbohydrate metabolism.

The regulation of the circulating TAG levels is highly individual and reflects metabolic efficiency. The postprandial response is influenced by the meal composition (e.g. size, and quantity and type of macronutrients including the type of fatty acids), overall dietary habits, lifestyle (e.g. physical activity and alcohol consumption), health status (e.g. cardiovascular risks, dyslipidaemia, obesity, diabetes and metabolic syndrome), age and gender (e.g. elevated postprandial lipaemia in older subject and post-menopausal women), and genotype (Lairon et al., 2007b; Sanders, 2003).

1.4 Lipases and lipolysis

1.4.1 Lipases structure and functional analysis

1.4.1.1 Gastric and pancreatic lipases active structure

HGL and HPL have an apparent molecular weight of about 45 and 50 kDa with 379 and 449 amino acid residues, respectively (Figure 1.3) (Canaan et al., 1999; Lowe, 1997). HPL is a glycoprotein composed of two main structural domains; a large N-terminal domain that comprises the active site (hydrophobic), and a smaller C-terminal domain. The active site is covered with by an α-helical area forming a loop (lid) inaccessible for the substrate (Canaan et al., 1999; Winkler et al., 1990). HGL also lacks an active site freely accessible to TAG. A lid formed of complex folding moieties prevents the direct binding of a lipidic substrate molecule to the enzyme (Miled et al., 2000). Van der Waals’
forces occurring between two domains, \(\beta_5 \) (i.e. residues 75 to 84) and \(\beta_9 \) (i.e. residues 203 to 223) loops, maintain the closed conformation of the enzyme (Brownlee et al., 2010). Because of the difference in overall polarity between enzyme and substrate, the enzyme reaction occurs at the lipid-water interface. The lipase has then an open conformation where its lid allows the binding of its hydrophobic patch to the interface (Figure 1.4) (van Tilbeurgh et al., 1999).

Figure 1.3 Representation of pancreatic (Fromer and Merolla, 2012) and gastric (Canaan et al., 1999) lipases.

Figure 1.4 Representation of pancreatic lipase, closed and open conformation (Lowe, 2002).
Pancreatic lipase requires the presence of colipase or its precursor, procolipase, for the lipolysis to occur (Chapus et al., 1975). Colipase is a small non-enzymatic protein (≈10-12 kDa), that is fairly flat, and composed of 112 amino acid residues. The activated form is shorter than the procolipase from which five amino acids have been removed by trypsin (Lowe, 1997). This pentapeptide is called enterostatin and it is believed to play a role in satiety regulation and fat intake (Bauer et al., 2005). Previous models indicate that colipase binds exclusively to the C-terminal β-sheet domain, extending over more than 50 Å and thus generating a hydrophobic plateau (Figure 1.5) (Miled et al., 2000; van Tilbeurgh et al., 1992). This association engenders a shift of the lid and β5-loop, so that the hydrophobic β9-loop open and the oxyanion hole¹ is created (Cygler and Schrag, 1997). The catalytic N-terminal domain is brought in close contact with the lipid-water interface, the active site thus becoming exposed to lipolytic substrates. The hydrophobic plateau ensures a strong interaction between the lipase-colipase complex and the lipid-water interface. However, the conformation change is not induced in the absence of an interface.

Colipase therefore reduces the competition for the interface with other substances (e.g. BS and proteins), in favour of HPL, by expanding the hydrophobic area of the latter (Wilde and Chu, 2011). Brockman’s work goes further by showing evidence of the colipase ability to reorganize the interface and thus to concentrate lipolysis reactants in its vicinity (Brockman, 2002).

¹During the transition-state (enzyme-substrate intermediate, see Figure 1.5), certain amino acids, located in the active site, have a single bond on their carbonyl group creating a negative charge on the oxygen atom (an oxyanion (Egloff et al., 1995; Miled et al., 2000). The latter forms hydrogen bonds to amide chains on other amino acids thus stabilizing the intermediate linked together by hydrogen bonds. The binding site is called the oxyanion hole. The catalytic triad is formed of serine, histidine and aspartate or glutamate residues.
1.4.1.2 Effect of bile salts and calcium on lipases activity

Bile is a complex mixture of organic and inorganic components, made up of water, BS (~25-35% of the solid content), phospholipids (mainly lecithin), cholesterol (about 4% of the solid content), pigments such as bilirubin (~2% of the solid content), and inorganic salts (Johnson, 1991). BS, synthesised in the liver from cholesterol, are delivered into the duodenum after having been stored in the gall bladder. BS are natural surfactants, amphiphilic molecules with an unusual structure composed of a lipophilic and a hydrophilic face (Figure 1.6). The most abundant are cholate, deoxycholate and chenodeoxycholate conjugated with either glycine (75%) or taurine (25%) (Maldonado-Valderrama et al., 2011). They position themselves at the interface by projecting their
hydrophilic face into the water and the hydrophobic one into the TAGs (Figure 1.7) (Carey and Hernell, 1992).

<table>
<thead>
<tr>
<th>Bile salt</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>Proportion found in human bile (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycocholate</td>
<td>α-OH</td>
<td>α-OH</td>
<td>α-OH</td>
<td>29.8</td>
</tr>
<tr>
<td>Glycochenodeoxycholate</td>
<td>α-OH</td>
<td>α-OH</td>
<td>H</td>
<td>24.5</td>
</tr>
<tr>
<td>Glycodeoxycholate</td>
<td>H</td>
<td>α-OH</td>
<td>α-OH</td>
<td>11.9</td>
</tr>
<tr>
<td>Taurocholate</td>
<td>α-OH</td>
<td>α-OH</td>
<td>α-OH</td>
<td>12.6</td>
</tr>
<tr>
<td>Taurochenodeoxycholate</td>
<td>α-OH</td>
<td>α-OH</td>
<td>H</td>
<td>13.6</td>
</tr>
<tr>
<td>Taurodeoxycholate</td>
<td>α-OH</td>
<td>H</td>
<td>α-OH</td>
<td>7.6</td>
</tr>
<tr>
<td>Glycocojugated BS</td>
<td>R</td>
<td>NHCH₃CH₂CO₂Na</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tauro-conjugated BS</td>
<td>R</td>
<td>NHCH₃CH₂SO₃Na</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.6 Molecular structure of bile salts and their organisation, adapted from (Gargouri et al., 1986a; Madenci and Egelhaaf, 2010; Wickham et al., 1998).

Figure 1.7 Structure of bile salts and their arrangement on the surface of a micelle (Mathews et al., 2000).
The accumulation of BS at the interface gives a negative charge to the oil droplets which directs the adsorption of colipase, and also reduces the surface tension of the droplets making the anchoring possible (Lowe, 2002). Additionally, BS have a ‘cleaning’ role as they remove from the interface other amphiphile molecules such as proteins and lipolytic products, this action being due to their high surface tension-active property (Maldonado-Valderrama et al., 2011). BS are also involved in solubilizing the products of the lipolysis and, with the simultaneous action of phospholipids, integrating them into micelles. Recent work (Parker et al., 2014) revealed that different BS have contrasting roles; the structure on the BS, mainly the unconjugated part (cholates versus deoxycholates and chenodeoxycholates), influences their behaviour on the interface and their interaction with colipase. The results supported the idea that cooperative absorption occurs between BS (sodium taurocholate, NaTC) and colipase. They also showed that sodium glycodeloxycholate (NaGDC), because of its reduced interfacial residence time, may facilitate the displacement of lipolytic products.

For the catalytic reaction to be feasible, the BS should reach the critical micelle concentration (CMC) that corresponds to the concentration, generally expressed in millimolar (mM), above which micelles form spontaneously and BS self-assemble (Maldonado-Valderrama et al., 2011). Surfactants and other molecules present at the interface are thus displaced and the HPL-colipase complex can then bind to the emulsion. CMC values, determined experimentally, vary from one BS to another, ranging from around 1 to greater than 250 mM (Bauer et al., 2005; Roda et al., 1983), but they are usually around 2 to 4 mM which is rather high (Maldonado-Valderrama et al., 2011). In the small intestine, however, BS concentrations exceed the CMC; so that in the duodenum the BS concentration is ~6-15 mM, in the jejunum it is ~10 mM and in the ileum < 4 mM (McClements and Li, 2010). CMC is contingent on factors associated with the reaction environment, which includes the presence of endogenous MAGs and phospholipids, temperature, pH and ionic strength of the solution, as well as on the structural characteristics of the salt such as length of side chain, moieties present (e.g. hydroxyl and carbonyl) and hydrophobicity (Borgström, 1977; Roda et al., 1983; Simonovic and
Chapter 1: Introduction and literature review

Momirovic, 1997). The presence of BS may also inhibit the lipase activity if its concentration is too low – so that the removal of products and other surface-active molecules is impaired; or if the concentration of these molecules is too high – the anchoring of the lipase-colipase complex onto the interface is prevented (Gargouri et al., 1983).

Finally, HPL is not fully active if the complex does not contain calcium ions (Benzonana, 1968). Calcium seems to bind to the lipase itself probably to counteract the electrostatic repulsion existing at the interface between the lipase and BS. The cation is also involved in the removal of long chain FFAs from the surface of lipid droplets and hereby preventing product inhibition.

To summarise, the pancreatic lipase action can occur in a simplified way, involving three essential events when it is in contact with a lipolytic substrate: a change of conformation, an adsorption (with the intervention of colipase for HPL) and a catalytic process (Figure 1.8).

![Figure 1.8 Schematic representation of duodenal lipolysis. Left: lipid-water interface is coated by surface active material surviving stomach such as polar lipids, fatty acids, emulsifiers etc. Centre: bile salts and phospholipids secreted into the duodenum adsorb onto lipid interface. Right: pancreatic lipase and colipase adsorb, aided by the interaction with BS and hydrolyse TAG, which are 'solubilised' by BS into mixed micelles (Wilde and Chu, 2011).](image)
1.4.1.3 Roles of the gastric lipase

The mode of action of HGL is much less documented than that of HPL, although it has been demonstrated that it can digest milk fat on its own (Carey and Hernell, 1992). In contrast to HPL, HGL has the capacity to bind to the lipid droplet interface even though BS are present. In fact BS seem to prevent the inhibition of the enzyme (Borel et al., 1994).

HGL contributes quantitatively to the lipid hydrolysis but more importantly qualitatively (Fave et al., 2007). Indeed, HGL modifies the lipid-water interface by generating surface-active products and also stabilises the granulometry of the lipid droplets, which range in size of between 2 and 20 µm, since emulsification does not occur in the lower part of the GIT. The lipolytic products, MAG and FFA, are some of the surface-active molecules that act to promote emulsification.

Finally, the long-chain fatty acids released in the stomach stimulate the secretion of CCK thus slowing down the gastric emptying, and also reduce the lag-time preceding the activation of the HPL-colipase complex (Armand, 2007).

1.4.2 The lipolytic hydrolysis

The major distinction of lipases compared with other enzymes is that they act on insoluble substrate, and they have the ability to adsorb at the lipid-water interface. The conformation change occurring during the adsorption may explain why the HPL and HGL are synthesised and secreted in their potentially active forms rather than as proenzymes as most other digestive enzymes seem to be (Miled et al., 2000).

Lipases hydrolyse ester bonds on the glycerol backbone of TAG. In vivo HGL selectively acts at the sn-3 position of TAG, generating sn-1,2-DAG residues (Carriere et al., 1993). However, in vitro HGL has been shown to be able to hydrolyse fatty acids on both sn-3 and sn-1 positions (Carriere et al., 1991).
Even though the enzyme can hydrolyse long-chain fatty acids, it acts preferentially on short- and medium-chain fatty acids that can be easily absorbed by the stomach mucosae. Pancreatic lipase hydrolyses ester bonds in position 1 or 3 of the TAG leading to the production of \(sn-1,2 \)-diacylglycerol (DAG), \(sn-2 \)-monoacylglycerol (MAG) and FFAs (Carriere et al., 1993). The complete degradation of the TAGs into one glycerol and three FFAs can occur when the fatty acid in the \(sn-2 \) position of the DAG molecule reconfigures into \(sn-1,3 \)-DAG but only a small proportion of the molecules undergo this acyl migration (Small, 1991). Efficient intestinal absorption is achieved for MAG and FFA (Gurr et al., 2002); the complete absorption of fat occurs when at least 66% of the TAGs contained in the meal have been hydrolysed, with HGL activity accounting for 1 hydrolysed acyl chain out of 4.

The lipolysis reaction follows a Michaelis-Menten model only when lipases and substrates are present in the same phase (interface) and the products generated are soluble (short- or medium-chain lipids) and consequently do not accumulate (Panaiotov and Verger, 2000). Since lipase partitions between a two-phase system (i.e. aqueous phase and lipid-water interface) the usual Michaelis-Menten model no longer applies. The simplest model describing the interfacial mechanisms of lipase hydrolysis has been proposed by Verger and his team (Verger et al., 1973) (Figure 1.9 A):
Figure 1.9 Michaelis-Menten kinetic model adapted to interfacial enzymic lipolysis of short- and medium-chain lipids (A) (Verger and de Haas, 1973), and general scheme of interfacial catalysis (B) (Panaiotov et al., 1997); where E is the lipase, E* is the active lipase at the interface, S is the TAGs, E*S is the lipase-substrate complex, P* is soluble products, P** is insoluble products and the ks are rate constants for the different reaction steps.

1: Binding of the lipase to the interface; 2: Conformational change of the lipase; 3: Formation of lipolytic products (DAG, MAG and FFA); 4: Diffusion of the soluble products into the aqueous environment; 5: Competitive inhibition of the interface; 6: Accumulation, reorganisation and segregation of the DAG, MAG and FFA generated; and 7: Solubilisation of lipolytic products in the presence of an acceptor, here CD (cyclodextrin), which is a non-surface-active molecule that forms a complex with the lipolytic products (CD-P* and CD-P). In vivo, BS solubilise the lipolytic products, combine with them to form micelles thereby promoting their uptake by the enterocytes.

Benzonana and Desnuelle demonstrated that K_m and V_{max} were meaningless with insoluble substrate notably because K_m is influenced by the size of the emulsion droplets (Benzonana and Desnuelle,
1965). To obtain some meaningful kinetic parameters, it would be necessary to accurately determine the surface area of these droplets which is a difficult task. Contrary to a soluble substrate, increase in lipid concentration does not lead to an increase in the quantity of available molecules as the interface exposes a relatively constant number of substrate molecules per area unit (Sarda and Desnuelle, 1958). Moreover, the kinetics of the lipolysis fluctuates with the specific colloidal structure of the system. As a result, the model presented in Figure 1.9 A has been further developed to be applied to various interfacial structures (Figure 1.9 B).

The amount of substrate available for hydrolysis has been estimated at 2 to 5 mole percent of the interface surface (Bauer et al., 2005). During the digestion of a test meal, the HPL output was approximately 250 mg with a liquid meal and 203 mg with a solid meal, while HGL output was about 22 mg regardless of the meal. The HPL production was maximal at the beginning of the digestion and then decreased progressively, whereas HGL appeared to be constant overtime although this is contingent on the rate of gastric emptying (Carriere et al., 1993). The amount of lipase secreted however increases with the lipid content of the meal (Lengsfeld et al., 2004). The turnover number for HPL is high and corresponds to the production of 500 000 molecules of FFAs per minute.

The activity of the lipases depends on the structure of the food and lipid studied. The specific activity (SA) values obtained from in vitro studies performed on almond oil emulsions were 2865 ± 269 U/mg for HPL and 202 ± 21 U/mg for HGL (Beisson et al., 2001a). The maximum SA of HPL using tributyrin as substrate has been reported to be 12000 U/mg at pH 8 (Miled et al., 2000).

The requirement for lipase to catalyse lipid hydrolysis at a lipid-water interface along with the involvement of various mediators can result in the appearance of a lag time in the catalytic activity especially for long-chain lipid substrates. This unusual lag phase was observed with hydrolysis of OBs (Gallier and Singh, 2012) but not at low surface pressure or for emulsion systems (Borgström et al., 1979; Wieloch et al., 1982). The rate-limiting step could therefore be the interfacial binding which regulates the concentration of lipase at the lipid-water interface: the smaller the interface, the fewer
colipase-lipase complexes bind to the surface and the slower the reaction rate. Subsequent to the lag-time, a rapid hydrolysis of TAG is observed.

1.4.3 Parameters affecting the hydrolysis reaction process

The hydrolysis of TAG is a highly complicated reaction that relies on the composition of the environment especially the lipid-water interface. As for any enzyme, the rate at which lipases work depends on the initial quantity of substrate (surface area of the interface), the accumulation of hydrolysed products, the temperature, the pH (i.e. the optimum pH for HGL activity is between 4 and 6, and for HPL 6.5 and 9), and the presence/absence of other elements in the catalytic environment. In other words, hydrolysis can be affected by environmental conditions and compounds that can alter the structure and/or the integrity of the interface (e.g. colipase, digestion products and surface-active molecules such as proteins, BS and phospholipids) (Carriere et al., 1991; Embleton and Pouton, 1997).

1.4.3.1 Substrate characteristics

The ‘quality’ of the interface affects the enzymic lipolysis, in particular the structure and mode of organisation of the colloidal system (e.g. micelles, emulsions and liposomes) that have direct implication on the area/volume ratio of the oil droplet (Carey et al., 1983; Panaiotov and Verger, 2000; Verger and de Haas, 1976). An increase in surface area and decrease in droplet size, will lead to an increase in TAG availability. Emulsification, the dispersion of oil in water by creating a suspension of oil droplets, is an essential step in lipid digestion that produces a drastic rise in the ratio of surface area to droplet volume. Since emulsions are intrinsically unstable, to prevent the occurrence of instability processes, such as breaking, creaming or flocculation, they require molecules that reduce their surface tension – i.e. surfactant or emulsifier (Sherman, 1968).
Phospholipids (i.e. lecithin) and BS are surface-active compounds that form a layer that surrounds oil droplets to reduce the interfacial tension and thus promote effective hydrolysis (Brockman, 1984). Other surface-active molecules include surfactants such as whey proteins, in particular beta-lactoglobulin (β-Lg); casein and polysorbate 20 (tween 20). All those compounds are amphiphile molecules. The structure and the properties of the emulsion, and its interface, strongly depend on the type of emulsifier used (Hur et al., 2009).

The core of oil droplets are composed of TAGs, the sn-2 fatty acids being orientated in the opposite direction to the sn-1 and sn-3 fatty acids (Carey et al., 1983). Esterified cholesterol and fat-soluble vitamins are also often contained in these droplets. The TAGs located at the interface and therefore readily available to the lipase are digested first. Then, once the lipolytic products have been removed, other TAGs replace the initial substrates and become reoriented, ready to be broken down (Carey and Hernell, 1992). Reorganisation and segregation occur throughout the lipolysis reaction thereby affecting the quality of the lipid-water interface. As the TAGs get digested, the size of the oil droplets progressively decreases and their surface area increases, thereby accelerating the rate of lipolysis (Boron and Boulpaep, 2009).

The ultrastructure of the emulsion and the size of its droplets also regulate lipase activity (Marangoni, 1994; Singh et al., 2009). According to the type of fatty acids present on the glycerol molecule backbone, in particular positions sn-1 and sn-3, the droplet size, and consequently the lipolysis rate, will be different (Jandacek et al., 1987). Furthermore, lipolytic products are removed at different rates from the interface depending on the water solubility of the fatty acids constituting the TAG. For instance long-chain fatty acids can accumulate at the interface and inhibit the lipase. A maximum lipolysis rate was obtained for emulsions of medium-chain TAG compared with long-chain and mixed medium-and long-chain TAG (Armand et al., 1992). It has also been demonstrated that both gastric (Borel et al., 1994) and pancreatic (Armand et al., 1999) lipase activities were greater on fine lipid droplets than coarse ones; the size of the droplets decreasing as the digestion progresses.
but to a greater extent in the stomach. Subsequently, TAGs were mostly present in larger droplets, their concentration decreasing with the droplet size, while DAGs were found in medium size droplets, and MAGs and FFAs in the pellet (Armand et al., 1996). As expected, the amount of TAG is inversely proportional to the digestion progress whereas the opposite is observed for DAG, MAG and FFA, the reduction in size of the lipid droplets being caused by the degradation of TAG and DAG. Nevertheless, the size and the aggregation state of the lipid droplets fluctuate greatly throughout the digestion due to the various mechanical forces generated - mastication, churning in the stomach and peristaltic movements in the intestine. If the surface tension of the interface is not strong enough the droplets coalesce leading to a greater mean particle size. On the other hand, the digestion of TAG and the movement of the digestion products to the aqueous phase results in smaller lipid droplets (McClements and Li, 2010).

The initial form of the lipid phase within a food may impact on its subsequent digestion and absorption (Hur et al., 2009). For instance, an investigation done on almond OBs showed a slower lipolysis compared with almond oil emulsions (Beisson et al., 2001a). In this study, the SA of HPL with colipase was $2865 \pm 269 \, \mu mol/min/mg$ with the emulsion and $1079 \pm 98 \, \mu mol/min/mg$ with OBs, and for HGL the activity values were 202 ± 21 and $71 \pm 3 \, \mu mol/min/mg$ for the emulsion and OBs, respectively. The authors concluded that the layer of phospholipids and embedded oleosins was a rate-limiting parameter in OBs, nevertheless the hydrolysis could not occur without preliminary degradation of that layer, for instance by phospholipases.

Furthermore, lipids that are embedded within a protein-coated droplet or a DF (CW) matrix may prevent the access of the enzyme to the substrate. In certain conditions, the activity of BS may not be sufficient and other enzymes may be required such as proteases, glycosidases and amylases to remove other substrates that are co-located with the lipid (McClements and Li, 2010). The rate of lipase activity would be dependent on the catalytic rates of these molecules.
1.4.3.2 Lipid-water interface and surface tension

For the lipid hydrolysis to occur, the lipase needs to come in proximity to the interface and adsorbs to the surface. The interfacial surface tension of oil droplets is minimized by partitioning. The presence of amphiphiles, such as BS, lowers the surface tension as well as stabilises the droplets by expelling the water from the interface (Brockman, 2002). Consequently, pure TAGs in water have a surface tension of 15 to 20 mN/m whereas BS decreases these values to 8-13 mN/m (Carey and Hernell, 1992; Gargouri et al., 1986b). This interfacial tension explains the induced irreversible denaturation (unfolding) of lipase observed during its adsorption onto the interface which becomes possible thanks to BS (Borel et al., 1994). Throughout the digestion interfacial active components such as lipolytic products, intermediates and BS, have an effect on the surface tension which in turn influences the lipase activation (Reis et al., 2009). Therefore, during digestion, the interfacial properties of the lipid droplets may be altered, the molecules present at the interface can be digested (e.g. proteins by proteases and phospholipids by phospholipases) or removed by other surface-active components (McClements and Li, 2010).

1.4.3.3 pH variations

Both HGL and HPL activities rely highly on pH. HGL is stable for a broad range of pH – from 3 to 6, whereas HPL loses its activity below 5 and has an optimal pH of 6.5-9 (Carriere et al., 1993). HGL thus remains active in parts of the duodenum, particularly when HPL is present (Gargouri et al., 1986a). Furthermore, in the stomach, the pH varies greatly between fasted and fed states as well as among the types of food ingested. As a result gastric pH can reach values as high as 6-7 (Lengsfeld et al., 2004). When half of the stomach is full, its pH is close to 5 while after digestion, containing mainly only gastric juice, the pH is low (1-2). In contrast, the pH within the duodenum does not fluctuate to a great extent, and it is generally between 5 and 7 (N’Goma et al., 2012).
1.4.3.4 Other parameters

Overall, HPL has a higher SA than HGL (6 fold greater), which for both enzymes decreases with increase in the chain length of the TAG, DAG also being a more appropriate substrate than TAG (Canaan et al., 1999). The lipolytic hydrolysis starts in the stomach with the action of HGL, and the products thus formed (DAG and FFAs) facilitate the subsequent hydrolysis by HPL, which results in a faster rate of reaction (Armand et al., 1999). A low quantity of substrate at the interface will also inhibit the lipolysis (Brockman, 2002).

The products of the hydrolysis are not directly partitioned into mixed bile salt micelles and may accumulate in the interface, at least at the beginning of the reaction due to a reaction rate exceeding the capacity of incorporating the products into micelles (Carey and Hernell, 1992). However, the greater polarity of FFA and MAG compared with TAG facilitates their transport to the aqueous phase. Once they are incorporated into micelles the lipase inhibition by its products is prevented as well as the competition for the interface (Maldonado-Valderrama et al., 2011). The partitioning is enhanced by the gradual increase in pH within the intestine as well as by the dispersion effect of BS. Since neither HPL nor HGL has the capacity to hydrolyse 2-sn-MAGs the rate of lipolysis is reduced if these products are not removed from the interface area (Bauer et al., 2005).

1.5 Plant cell walls as a source of dietary fibre

The definition of DF has been the subject of great debate and controversy. DF is a generic term for a chemically diverse group of carbohydrates that are resistant to endogenous enzymes present in the human digestive tract, and includes the remnants of plant cells, individual polysaccharides, lignin and associated substances resistant to hydrolysis (Cummings and Overduin, 2007). Table 1.1 summarises some of the DF components often found listed in the literature.
Non-starch polysaccharides are the main components of plant CW which can be divided into the following categories: cellulose, hemicelluloses and pectic compounds. Hemicelluloses and pectins can be further classified according to their monomeric composition and glycosidic linkages (see Section 1.5.2). Starch that is resistant to digestion has also been included in the DF definition by some researchers. Resistant starch (RS) is the fraction of starch that is not digested and absorbed in the small intestine (Champ et al., 2003). RS can be either starch that is encapsulated within the food matrix and inaccessible for digestion (RS1); raw or undercooked starch resistant to amylolysis (RS2); starch that re-associates and recrystallizes following thermal processing, i.e., retrograded starch (RS3); or starch that has been chemically modified to resist digestion (RS4). Short chain carbohydrates are oligosaccharides containing between 3 and 10 monosaccharide residues (Cummings and Overduin, 2007). Certain short chain carbohydrates, in addition to RS and other forms of CW carbohydrates, stimulate the growth of colonic bacteria and are called 'prebiotics'. Finally, plant gums and mucilages produced by the epidermis of the seeds of certain species, including psyllium or ispaghula, can also be categorised as DF (Harris and Smith, 2006). The chemical composition and structure (e.g. the conformation of polysaccharide chains) of DF influences their fermentability and solubility; as an example RS, pectins, guar gum are fermentable whereas cellulose tends to be resistant to microbial fermentation (Champ et al., 2003).

The major components of DF are plant CWs, which are supramolecular structures, composed of complex heterogeneous networks of cellulose, hemicelluloses and pectic substances. The amounts and relative proportions of these polysaccharides vary depending on the type and maturity of the plant tissue. In terms of the sensory and nutritional properties, CWs give texture to the food and also have important effects on human health since there is now a large body of evidence to indicate that DF has the potential to reduce the risk of various non-infectious diseases or conditions (e.g. irritable bowel syndrome, type 2 diabetes, obesity, CVD and certain cancers especially colon cancer) (Anderson et al., 2009; Brownlee, 2011; Kendall et al., 2010; Mann and Cummings, 2009).
Chapter 1: Introduction and literature review

Table 1.1 Types of dietary fibre, with selected examples, adapted from (Grassby et al., 2013).

<table>
<thead>
<tr>
<th>Non-starch polysaccharides</th>
<th>Resistant Starch</th>
<th>Short-chain carbohydrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell walls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td>RS1 – Physically</td>
<td>Galacto-</td>
</tr>
<tr>
<td>Hemicelluloses</td>
<td>Inaccessible</td>
<td>oligosaccharides</td>
</tr>
<tr>
<td>Xylan</td>
<td>(encapsulated)</td>
<td>Fructo-</td>
</tr>
<tr>
<td>Xyloglucan</td>
<td>Starch</td>
<td>oligosaccharides</td>
</tr>
<tr>
<td>Arabinoxylan</td>
<td>RS2 – Native starch</td>
<td>Inulin</td>
</tr>
<tr>
<td>Mannan</td>
<td>RS3 – Retrograded</td>
<td>Raffinose</td>
</tr>
<tr>
<td>Glucomannan</td>
<td>Starch</td>
<td>Polydextrose</td>
</tr>
<tr>
<td>Galactomannan</td>
<td>RS4 – Modified</td>
<td>Stachyose</td>
</tr>
<tr>
<td>β-glucan</td>
<td>Starches</td>
<td>Maltodextrins</td>
</tr>
<tr>
<td>Callose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pectins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogalacturonan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnogalacturonan I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnogalacturonan II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabinan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galactan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabinogalactan I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabinogalactan II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guar* (galactomannan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psyllium seed husk mucilage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(arabinoxylan)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Located mainly in CWs

1.5.1 Plant food matrix and cell wall

Plant cells differ in many ways to animal cells, one of the main differences being the presence of CWs in the former. Indeed, plant cells contain this rigid wall that surrounds the plasma membrane and provides, *inter alia*, mechanical support for the cell (Figure 1.10).
The constitutive cells of a plant tissue react differently when submitted to physical disruption (mastication or mechanical trituration), they can either separate or rupture depending on the cross-links holding the CWs together (Brett and Waldron, 1996). This behaviour is responsible for the different textural properties of plant foods. A food with cells that rupture will have a crunchy texture, as it is the case for raw almonds, which are relatively hard and brittle, whereas cells that separate result in a softer texture of the plant food (Figure 1.11). In crunchy foods, the cells fracture because the cell-cell bonding is stronger than the forces holding the CW together, resulting in the release of the cell contents. Alternatively, in soft foods, such as very ripe fruit and many cooked vegetables, cells separate along the plane of the middle lamella and their content is not available as the CWs remain intact (Waldron et al., 1997). Empirical evidence has demonstrated that ripening or processing, such as fermentation and/or cooking, decrease cell adhesion and increase cell separation, but due to different processes. For instance, the depolymerisation of pectic polysaccharides is thought to be one of the causes of reduced cell-cell adhesion (Waldron et al., 1997). Thermally stable diferulic acid that crosslinks between polysaccharides, has a central role in the thermal stability of cell adhesion and a good example of this is the crisp texture of hydrothermally-treated Chinese water-chestnut (Parker et al., 2003).
Chapter 1: Introduction and literature review

1.5.2 Cell wall

During cell division a new CW is synthesised, the latter consists of three layers. The first, outer layer is the middle lamella that is shared between adjacent cells. This layer is composed of pectic compounds and proteins, and it is relatively thin apart from the cells corner regions. The second layer is the primary CW. This is a dynamic structure, the spatial arrangement of the polymer network and molecular composition is modified during growth and by attack from pathogens. It has various functions including maintenance of cell shape and ultimately plant physiology, through control of cell expansion and cell signalling notably via plasmodesmata (Brett and Waldron, 1996; Kendall et al., 2010). The secondary CW, which is closest to the plasma membrane, is synthesised when the cell has ceased to enlarge (Zhong and Ye, 2009) and is composed of cellulose, hemicelluloses, and lignin. Contrary to the primary CW, the secondary CW is predominantly present in specific cells, sclerenchyma cells, which are found in tracheary elements (in vascular plant) as well as fibres of wood. The secondary CW is a rigid layer that provides mechanical support and defence against pathogens to the plant; the sclerenchyma cells also permit the transport of water. Pear and

Figure 1.11 Cell behaviour after physical disruption in relation to the food texture, adapted from (Brett and Waldron, 1996).
asparagus are two examples of edible plant materials that contain secondary CWs (Harris and Smith, 2006). Certain plants such as cotton seed, possess non-lignified secondary CWs.

1.5.2.1 Cell wall composition

The composition and structure of the CW matrix is specific to the plant as well as to the tissue, since it is associated to the particular role of the cell within the tissue and its stage of development (McDougall et al., 1996). At the cellular level, heterogeneity is also observed (Burton et al., 2010). In spite of this, three main polysaccharide constituents of primary CW are normally present, i.e. cellulose, hemicelluloses and pectins (Figure 1.12).

![Figure 1.12 Structure of cell wall (onion) (McCann et al., 1992).](image)

1.5.2.1.1 Cellulose

Cellulose is a polymer of β-1,4-linked glucan chains (homopolymer of β-D-glucose), comprising 3 to 35% of the primary CWs depending on the CW type (Brett and Waldron, 1996; Selvendran, 1984).
Chapter 1: Introduction and literature review

Cellulose consists of several thousands of glucose residues and is organised into microfibrils that are crystalline in structure. The glucan chains are bound together by non-covalent bonds, i.e. hydrogen bonding as well as van der Waals forces (Fry, 1986; Somerville et al., 2004). Microfibrils located in the same layer of CW tend to have the same alignment, but each layer has a different alignment to its neighbours. The microfibrils network formed by the unbranched glucan chains makes cellulose an extremely strong structure. Because of this unique spatial organisation, cellulose is more resistant to mechanical, chemical and microbial degradation than any other polysaccharide found in CW (Brett and Waldron, 1996).

1.5.2.1.2 Hemicelluloses

Hemicelluloses consist of β-1,4-linked backbone (hexoses or pentoses) with a range of side-chains (Scheller and Ulvskov, 2010). Hemicelluloses have a semi-rigid, amorphous structure and are alkali-soluble, and in some cases soluble in water at room temperature (e.g. galactomannan of the guar seed). Examples of these polymers include:

- Xyloglucans: backbone of glucan (β-1,4 glucose) and short side chains containing predominantly xylose
- Xylans: backbone of β-1,4-linked xylose residues with substitutions on C2 of some xylose residues by α-linked 4-O-methylglucuronic acid, on C2 or C3 by α-linked arabinose and on C2 or C3 by acetyl ester
- Mannans: linear polymer of mannose
- Galactomannans: backbone of β-1,4-linked mannose residues with galactose side-chains
- Glucomannans: backbone consisting of mannose and glucose residues arranged in a non-repetitive pattern
- β-1,3, β-1,4 glucans (β-glucan): mixed-link glucans.
Strong hydrogen bonds can exist between certain sections of the hemicellulose chains (xyloglucan and arabinoxylan) and the cellulose microfibrils (Scheller and Ulvskov, 2010).

1.5.2.1.3 Pectins

Pectins are the major component of land plant CW accounting for up to 35% of primary CW with the highest concentration being found in the middle lamella. Pectins are well-known for its gelling properties hence they utilisation for making jam and as thickening agent. The most prevalent pectic polysaccharides, homogalacturonans (HG), have a galacturonic acid (1,4-linked α-D-galacturonic acid) backbone with different degree of esterification, either methyl-esterification (DE) or acetylation (DA) (Willats et al., 2006). Both DE and DA determine the properties of pectin (e.g. gelling capacity). When DE is > 50% the pectins are identified as high methyl but when DE is < 50% they are classified as low methyl (Thakur et al., 1997). High methyl pectins form gels with sugars and acids (i.e. acid gels), whereas bivalent cations such as calcium induce gelation of low methyl pectins (i.e. calcium gels). On the other hand, acetylation prevents pectin gelation but increases the pectin stability and emulsification ability. DE of pectin directly influences the firmness and adhesion of CWs, as for instance in ripening fruit where DE decreases (de-esterification by pectin methyl esterases) leading to pectin degradation and cell separation (Willats et al., 2001).

Pectins also contain rhamnose, arabinose and galactose residues. Common pectic polysaccharides are included in the following list (Brett and Waldron, 1996; Caffall and Mohnen, 2009):

- **Homogalacturonan**: made of α-1,4-linked galacturonic acid
- **Rhamnogalacturonan I**: backbone of α-1,4-linked galacturonic acid and α-1,2-linked rhamnose, and side-chains principally of arabinose and galactose attached to the C4 of rhamnose
- **Rhamnogalacturonan II**: has a complex structure made of galacturonic acid, rhamnose, arabinose, galactose and apiose (in parsley and aquatic plant such as duckweed)
Chapter 1: Introduction and literature review

- **Arabinan**: made of a backbone of α-1,5-linked arabinose and single arabinose side-chains α--linked to C2 or C3

- **Galactan**: made of a β-1,4-linked galactose backbone with, in some cases, 1,6-linked galactose residues

- **Arabinogalactan I**: made of a β-1,4-linked galactose backbone with α-1,5-linked arabinose side-chains attached at C3 of galactose.

CWs also contain non-polysaccharide components, including glycoproteins such as extensin and arabinogalactan proteins (AGPs), phenolic compounds, all of which can have marked effects on the properties of the CW even though they are present in relatively small quantities. For instance, phenolic compounds, in particular ferulic acid, promote the thermal stability of cell adhesion thereby limiting dissolution of CW polysaccharides when cooked (Waldron et al., 2003). Also, AGPs are complex molecules (highly glycosylated proteins rich in hydroxyproline) found in the plasma membrane and in the CW and seem to be involved in the development and growth of plants as well as in cell adhesion and signalling (Showalter, 2001).

1.5.2.2 Cell wall structure

Primary CW can be classified as type I or II (Figure 1.13) based on their polysaccharide compositions (Carpita and Gibeaut, 1993). Dicotyledons (i.e. most fruit and vegetables), non-commelinid monocotyledons (e.g. asparagus and onion), and conifers have a type I CW. In addition to cellulose, the most abundant polysaccharides in type I cell walls are xyloglucans, main interlocking polysaccharides, and pectic polysaccharides (Selvendran, 1984). Type II CW are found in cereals and grasses, and contain a high proportion of cellulose as well as arabinoxylan (hemicellulose), but only negligible amounts of pectic polysaccharides and proteins. Great differences exist between the
composition of cereal endosperm and cereal bran, in particular in the amount of cellulose and hemicellulose (Brett and Waldron, 1996).

Figure 1.13 Illustration of the potential interactions between components of the primary cell wall for type I and type II cell walls (Buchanan et al., 2002).

1.5.2.3 Cell wall porosity

The CW of plant foods behaves as a filter that regulates the exchange of molecules between the intra and extracellular compartments. However, it is not an impermeable barrier and communication between the cell and the outside environment is assured notably through pores such as plasmodesmata creating an opening at the cell surface. Only molecules with a diameter smaller than the pores, the size of which is specific to the plant food studied (limiting Stokes’ diameters of about 4 to 5 nm; 4.6 nm corresponds to a 41 kDa fluorescein-derivatized dextran), would have the ability
to permeate the plasma membrane (Baron-Epel et al., 1988; Carpita et al., 1979; Ehwald et al., 1992). The diffusion of a molecule through the CW not only depends on the size of the pore but also on its conformation and flexibility.

In vitro experiments using alginate gel beads revealed that the pore size modulates the diffusion of pancreatic lipase inside the beads and consequently the rate of lipid digestion (Cheirsilp et al., 2009; Li et al., 2011b). When the beads were placed under gastric conditions they shrank, thus reducing the size of the pores, which in turn retarded the penetration of enzymes inside the beads and slowed down the digestion process, whereas under conditions identical to the ones found in the small intestine, the beads swelled and therefore increased their porosity. However, Li and co-workers demonstrated that the pore diameter of calcium alginate beads decreased when the pH rose (Li et al., 2011b).

The organisation of the pectin molecules within the CW, in particular the network they form by covalent and cross-linkages, is an essential factor affecting its porosity (Baron-Epel et al., 1988; Rondeau-Mouro et al., 2008). Indeed, the removal of pectins in onion CW seems to enlarge the pore, which was originally approximately 10 nm, to 30-40 nm with a maximum of 60 nm (McCann et al., 1990). The spacing between cellulose microfibrils maintained by hemicellulosic cross-links also plays a significant role.

1.5.2.4 Cell wall digestion

Because of the complexity of CW in terms of its constituents and more importantly, the inter- and intra-polymer chain linkages, it is difficult to digest it in the upper GIT of humans. For instance, mammals, including humans, lack the enzymes (e.g. cellulases) necessary to hydrolyse certain polysaccharides such as cellulose into its constituent monosaccharides (Beguin and Aubert, 1994). Human digestive enzymes (i.e. α-amylase and disaccharidases) can only hydrolyse α-1,4 glucan
bonds, even though the tight packing of cellulose microfibrils would obstruct the access of enzymes to the linkages (Brett and Waldron, 1996).

The undegraded CW material from the small intestine arrives in the colon where water-soluble polysaccharide components of the CW are more susceptible to being fermented by the microflora into SCFA, whereas most of the cellulose and hemicelluloses as well as cross-linked pectin remain intact (McDougall et al., 1996). The SCFA are then absorbed and reach the bloodstream. Some CW can also be found undisturbed in the faeces (Ellis et al., 2004). The differences in the extent of fermentation observed between different CW are likely to be due to their composition and the inter-polymer cross-links between soluble polymers since tissues with similar matrices but different linkage show different degrees of degradation (Fry, 1986).

1.6 Nutrient bioaccessibility in plant food

Bioaccessibility refers to the amount of nutrients or any other substance (i.e. phytochemicals) released from the food matrix and potentially available for absorption in the intestine (Parada and Aguilera, 2007). This term differs from bioavailability, which incorporates absorption, metabolism, tissue distribution and biological action of the nutrient (Fernandez-Garcia et al., 2009). The definition of bioaccessibility could also include nutrients that are still enclosed within the cell but are available to digestive enzymes, as it is the case in plant foods with permeable CW such as durum wheat (Edwards, 2014).

Bioaccessibility is an important parameter since decreased macronutrient digestion and absorption may present some advantages for individuals who aim at reducing their calories consumption, but becomes problematic for those suffering from undernourishment in particular premature babies and
the elderly, and patients with diseases that require additional energy intake (e.g. certain cancers and HIV).

It is well established that not all the nutrients contained within a food are available for absorption; however consumers, scientists and health care providers often rely on the nutrient composition to assess the ‘healthiness’ of a food, as the information and understanding of nutrient availability in most foods is limited. This can lead to misconceptions about the health properties of a food. For instance, on the basis of nutrient composition information, almonds contain what may generally be considered to be an excessive amount of calories and lipid, however only a proportion of that lipid may actually be absorbed (Novotny et al., 2012). Furthermore, almonds contain phytochemicals and other nutrients (Yada et al., 2011), that have potential health benefits in relation to heart disease, diabetes and obesity, and may therefore be healthier than what is conveyed on the nutrition label.

Accumulating evidence shows that the structure and properties of plant foods (e.g. legumes, cereals and nuts), particularly of CWs, play an important role in regulating the release/availability of nutrients (i.e. lipid and starch) from plants foods during mastication and digestion (Berry et al., 2008; Butterworth et al., 2012; Ellis et al., 2004; Lemmens et al., 2010; Mandalari et al., 2008a; Tydeman et al., 2010; Waldron et al., 2003). In order to be digested, the nutrients have to be released from the food matrix and thereby available for digestion at the appropriate site of the GIT (upper segments of the small intestine for lipid). However, a significant proportion of CW may remain intact despite mastication and other phases of the digestion process, thus affecting the rate and extent of nutrient digestion and the postprandial blood response (e.g. postprandial glycaemia and insulinaemia).

As an example, in an early study, the consumption of bread containing coarse particles in which starch was encapsulated by CWs was found to attenuate the rise of blood glucose and insulin, compared with the blood glucose response observed after consumption of an identical bread in which the CW were disturbed by the milling process (Holm and Bjorck, 1992). Such studies highlight the importance of physical encapsulation of starch by CWs, but rarely provided any profound insight
of the behaviour of CWs. More recently, faecal analysis showed that after ingestion of almonds a significant proportion of lipid remains enclosed inside the parenchyma cells of almond cotyledon (Ellis et al., 2004). Moreover, the amount of fat recovered in the faeces of individuals who consumed whole peanut was greater that when they ate either peanut butter, peanut flour or peanut oil (Traoret et al., 2007).

1.7 Almond as a model

1.7.1 Health and almond consumption

Almond seeds have been selected as a ‘food model’ for studying lipid release because of their high lipid content (Yada et al., 2011) and widespread consumption in the UK and worldwide (Almond Board of California, 2013). Almonds are consumed predominantly in the raw, sliced or roasted forms, although marzipan as well as almond butter and milk are also commonly found. They are principally eaten as a snack but they also contribute to the composition of various sweet (cakes, biscuits, etc.) and savoury (e.g. salads, curries and tajines) dishes. According to the Food and Agriculture Organization (FAO), the annual world production of almond has been estimated to be about 2,300,000 metric tons of shelled product in 2009 (Food and Agriculture Organization of the United Nations, 2009). The main producing countries are USA (California), Spain, Syria and Italy.

Also, a reason for choosing almond as food model is that there is an interest in the effects of its consumption on postprandial metabolism and long term health, notably cardiovascular risk reduction (Berry et al., 2008; Ellis et al., 2004; Mandalari et al., 2008a). Human studies have shown that almonds decreased fasting plasma low-density lipoprotein (LDL) and oxidised-LDL cholesterol, postprandial glycaemia and insulinaemia, and oxidative damage (Cohen and Johnston, 2011; Jenkins et al., 2006; Spiller et al., 2003). The consumption of nuts and almond seeds was associated with a
beneficial effect on risk factors for a number of conditions such as obesity, CVD and type 2 diabetes (Joice et al., 2008; Sabate and Ang, 2009). Some of these benefits, in particular counteraction of oxidative damage, could be attributed to the polyphenol and antioxidants present in the almond skin (Bolling et al., 2010). On the other hand, the type of lipids constitutive of almonds and more importantly their potentially limited bioaccessibility are likely to promote lower postprandial lipidemia (Berry et al., 2008; Mandalari et al., 2008a), and thereby reduce the symptoms of CVD (Hu and Stampfer, 1999; Jenkins et al., 2002a). The physical properties of almonds in limiting nutrient release, the possible effects of masticated almonds on gastric emptying and the presence of phenolic from the skins may also contribute to the explanation of why almonds improve glycaemic control and type 2 diabetes (Li et al., 2011a; Lovejoy et al., 2002).

1.7.2 Almond anatomy and composition

1.7.2.1 Macroscopic structure

The sweet almond (Amygdalus communis L.) belongs to the Rosaceae family. Almond is a drupe of which the only edible part is the kernel (seed) (Vaughan, 1970). The latter is composed of an embryo (two cotyledons), surrounded by a skin also called testa or seed coat. The pericarp, which encloses the seed, contains a green fleshy hull and a hard pitted shell (Figure 1.14). The Nonpareil variety used in this project has a soft shell, light in colour and with a high suture opening. The almond (i.e. kernel) has a medium size, flat shape and smooth surface.

\(^2\)Fruit that possesses simultaneously fleshy (mesocarp or hull) and stony (endocarp or shell) layers surrounding the seed (Armstrong, 2009).
1.7.2.2 Microscopic structure

The cotyledons (i.e. the white lipid-bearing tissue) are made of rounded cells, principally parenchymal, with a relatively thin CW (about 0.1 µm) (Figure 1.15). Pigmented sclerenchyma (outer layer) and parenchyma cells as well as xylem tissue compose the testa (Mandalari et al., 2010a). The testa cells possess a secondary CW which is confirmed by the presence of a significant amount of lignin (Femenia et al., 2001). A layer of aleurone cells, containing globoid crystals as well as protein and lipid bodies, forms the endosperm that separates the testa (spermoderm and perisperm) from the cotyledon (Winton and Winton, 1932).

Figure 1.15 Transmission electron micrographs of cross section of parenchymal cells of almond cotyledon. L: oil body, P: protein body, CW: cell wall, ML: middle lamella. Scale bar: 20 µm (Ellis et al., 2004).
1.7.2.3 Nutritional composition

Brown pigments are found in the testa while the cotyledons contain intracellular oil bodies (OBs, transparent droplets of approximately 1 to 5 μm of diameter) as well as darker, larger inclusions enclosing proteins (Figure 1.15). The major storage protein found in almond, sometimes called amandin or almond major protein, belongs to the legumin class of seed proteins, itself part of the globulin family (Kshirsagar et al., 2011; Osborne and Campbell, 1896). Globulin proteins are classified according to their sedimentation coefficient, with the legumin type being 11S. Amandin accounts for about 70% of the total soluble proteins. Along with 2S albumin, conglutin and profilin, the protein is responsible for the food allergy reactions observed in certain individuals (Alasalvar and Shahidi, 2009). It has a hexameric structure and each of the six subunits is composed of two polypeptides (α-chain of about 45 kDa and β-chain of about 20 kDa) linked by a disulphide bridge, giving the molecule a molecular weight (MW) of approximately 450 kDa (Sathe et al., 2002).

Lipids, predominantly triacylglycerol, are assembled into OBs. These organelles are delimited by a monolayer of phospholipids in which oleosins, integral proteins, are embedded (Beisson et al., 2001b; Tzen et al., 1993) (see Chapter 7 for more details). Depending on the harvest and variety, the kernel is made of approximately 50% of lipids of which 70-80% is oleic acid, 15% linoleic acid and 5% palmitic acid (Yada et al., 2011). Compared to other tree nuts, almond has a low amount of total and saturated fatty acids, but nonetheless a significant proportion of PUFA and MUFA acids, with oleic acid being the predominant fatty acid (United States Department of Agriculture, 2010).

Almond seed carbohydrate (e.g. sugars and starch) and DF (mainly non-polysaccharides) contents are about 5.5% and 11.8%, respectively (Ellis et al., 2004). Almond is also rich in micronutrients, mainly manganese, magnesium, copper, phosphorus and vitamin E. The mineral reserves of the seed are present in the form of crystals such as calcium oxalate (Dourado et al., 2004). The almond seed coat or skin also contains a significant amount of lipid, protein and DF as well as phenolic
compounds, such as \(p\)-hydroxybenzoic acid, catechin and quercetin, which potentially contribute to the skin’s antioxidant properties (Mandalari et al., 2010b; Milbury et al., 2006).

1.7.2.4 Roasting of almonds

The roasted almonds used in this project were roasted by the Almond Board of California using a two-steps standard procedure of hot air roasting with typical temperatures ranging from \(~130\) to \(154^\circ\)C. The first step employed an intermediate temperature to stabilize the nut microstructure, and the second step was performed at a higher temperature in order to generate the distinctive roasted flavour and brown colour of the cotyledon. Thus, during roasting, moisture evaporates, and the Maillard reaction takes place which is a complex reaction between reducing sugars and amino acids and is responsible for the brown colour.

This process was shown to lead to very little weight variation in whole almond; most of the loss being attributed to water evaporation (Perren and Escher, 2013). However, the OBs and the endoplasmic network were destroyed, and the volume of extracellular pores enlarged. Roasting can therefore greatly affect the structure of almond cells, CW as well as OBs as demonstrated elsewhere (Pascual-Albero et al., 1998). In Pascual-Albero study, OBs appeared to coalesce to form larger oil droplets than the ones observed in raw almond cells.

1.7.3 Existing evidence on almond and lipid bioaccessibility

Our group previously showed that only the first outer layers of cells of almond particles fracture by mechanical trituration or chewing, so that most of the parenchyma cells of almonds remain intact and therefore contain encapsulated lipid (Ellis et al., 2004). However, in a subsequent study in ileostomy volunteers, the lipids present in the intact cells located underneath the fractured layers,
appeared to ‘leach’ from the intact cells, but only after a prolonged incubation in the upper GIT (Mandalari et al., 2008a). Indeed, almonds collected in ileostomy volunteers after 12 h digestion showed cells with a thicker (swollen) CW (~1.2 µm) than after 2 h digestion (~0.6 µm) and undigested cells (0.1-0.2 µm) (Figure 1.16). This swelling of the CW may explain why intact cells lose lipid after longer retention time, suggesting that lipase, colipase and BS could diffuse into the intracellular compartment and proceed with the lipids digestion. It has been suggested that the CW swelling is mainly attributed to the degradation and solubilisation of pectic compounds present in the CW and middle lamella (Baron-Epel et al., 1988; Femenia et al., 2001; Waldron et al., 2003). Nonetheless, it remains unclear to what extent lipolysis occurs inside those cells and whether the lipids are able to leave the cells as TAG molecules or hydrolysed products. Regardless of the pathway used, the rate of digestion of the lipids present in those unfractured cells is likely to be reduced given that they are less accessible to emulsification and digestion by the lipases.

![Figure 1.16 Sections of digested almond tissues recovered from ileostomy volunteers visualised by transmission electron microscopy after 2 h (A) and 12 h (B) of digestion. Scale bars: 2 µm (Mandalari et al., 2008a).](image)

The released lipids seem to coalesce and form droplets (size ~10-40 µm) at the surface of the ruptured cells, thus becoming available for lipolysis by the lipases. The study by our group also showed that the cells of the almond cotyledon behave in a fairly predictable way as they fracture
rather than separate after chewing (Ellis et al., 2004), most likely due to their strong cell-cell adhesion (Waldron et al., 2003).

Collection of faeces after ingestion of almond revealed the presence of significant amounts of almond tissues (cotyledon and testa) (Ellis et al., 2004) (Figure 1.17). Some of the cells were found intact, whereas others contained bacteria that seemed to be utilising (i.e. fermenting) both intracellular nutrients (including lipid) and CW polysaccharides (notably pectic substances). Indeed, the erosion of CWs, the presence of virtually empty cells (i.e. no intracellular nutrients) and bacterial replication provide some evidence for the potential role of almonds as a source of nutrients for the gut microflora. Also, Mandalari and colleagues have confirmed the prebiotic role of almonds and that the lipid components of almonds are susceptible to fermentation (Mandalari et al., 2008b). Moreover, since the lipids provide most of the energy contained in the almond, undigested lipids excreted in the faeces could facilitate body weight management. This hypothesis has been confirmed by the measurement of metabolisable energy content of almond (Novotny et al., 2012). The findings indicated that the energy values of raw almond calculated using the conventional Atwater factor overestimate the actual energy absorbed by about 32%.

A digestion model simulating the gastric environment provided contradictory information on the behaviour of almond particles in the digestive tract (Kong and Singh, 2009a). Almond cells appeared to separate following the acidic hydrolysis of the middle lamella, which lessened the cell-cell adhesion. The authors also detected the presence of breach and breakage in CW causing the release of nutrients into the extracellular environment and/or the penetration of enzyme and digestive material into the cells. However, there are serious doubts about the quality of the micrograph images and the microscopy methods used to produce them (Dr Mary Parker, Personal Communication). Also it is unsure that the model used reproduced accurately/appropriately the physical and chemical processes occurring in the stomach. Clearly this is an area that requires further investigation.
Chapter 1: Introduction and literature review

Figure 1.17 Sections of almond tissues recovered from human faeces visualised by light (A and B) and transmission electron (E and F) microscopy. CW: cell wall; BT: bacteria. Scale bars: 20 µm (Ellis et al., 2004).

In vitro (Mandalari et al., 2008a) and in vivo (Berry et al., 2008) studies revealed variations in lipolysis rates and postprandial blood TAG concentrations between meals containing different forms of almond (whole natural, blanched, milled flour, free oil, etc.), which were mainly attributed to differences in lipid release (bioaccessibility). In the oil form, lipids were highly available and therefore fully digested (leading to a high concentration of TAG in the blood), whereas encapsulated nutrients (whole almonds) did not lead to a postprandial response as rapid and strong as the almond oil (Berry et al., 2008). These results strengthen the assumption that by increasing the number of fractured cells through either processing or mastication, the bioaccessibility of nutrients, especially lipids, is improved.
However, little is known about the exact structural organisation of the almond CW since this structure has not been investigated specifically and, as highlighted by McDougall and colleagues (McDougall et al., 1996), each cell type has a distinct wall composition. For instance, the plasmodesmata have been identified in different tissues of angiosperms (flowering plants) especially parenchyma cells (Esau, 1977), but it is not clear that they are present in seeds. Furthermore, the precise molecular composition and spatial arrangement of the polysaccharides constitutive of the CW has not been completely delineated. Nevertheless, almond CWs may have a structure and composition similar to onion (dicotyledon) (McCann et al., 1992), the main difference being in the water content. Dourado et al., 2004 established that the CW of the seed, testa excluded, was mainly pectin (Dourado et al., 2004). Other studies have found that the CWs of almond seed cotyledon are rich in arabinose, uronic acid, glucose, xylose and galactose, which implies that the CW is composed of arabinose-rich polysaccharides (Ellis et al., 2004; Femenia et al., 2001). The CW of almond testa also contained arabinose, galacturonic acid, glucose, xylose and galactose, but their proportion are different and mannose, rhamnose and fucose are also part of their constitution (Mandalari et al., 2010a). Quantitative and qualitative analysis of the carbohydrates that comprise the CWs of digested (in vitro), finely ground almonds revealed that they were not degraded during digestion; however, the intracellular contents, mainly lipid and protein, were degraded by the microorganisms originating from the human large intestine (Mandalari et al., 2008b). By comparing the growth of faecal bacteria cultures between almond seeds with normal lipid content and defatted ones, they also confirm the assumption made by Ellis and colleagues that bacteria utilise almond lipids as a source of energy for growth and maintenance.
1.8 Project aims and objectives

It was hypothesised that CW of the parenchyma cells of almond cotyledon fracture when masticated and therefore liberate the intracellular content, whereas intact CW structures would delay or prevent the release of intracellular lipids and their digestion and absorption in the intestine.

The main objectives of this project were to:

(a) Assess the effect of mastication on CW integrity and lipid content from fractured and intact cells by factoring in particle size data into a theoretical model previously developed to predict lipid release (Chapter 3);

(b) Assess the effect of digestion on lipid release and CW permeability using two digestibility models, i.e. static and dynamic processes using the Dynamic Gastric Model (DGM) developed by our collaborators at the Institute of Food Research (IFR) in Norwich (Chapter 4);

(c) Determine the rate and extent of the kinetics of lipid digestion on raw and roasted almond materials with various degrees of bioaccessibility using a simple duodenal digestion model (Chapter 5);

(d) Quantify lipid losses during the gastrointestinal digestion (i.e. DGM and an ileostomy volunteer) of two almond meals of different bioaccessibility and examine the microstructure of the recovered almond tissue (Chapter 6);

(e) Investigate the potential penetration of lipases through the CW matrix of almond seeds (Chapter 7).
CHAPTER 2

MATERIALS AND METHODS
2.1 Introduction

The approach employed for this project was multidisciplinary and combined the use of various in vitro and in vivo methods in order to improve our understanding of the mechanisms by which nutrients are released during digestion and in particular the role played by plant CWs. In order to successfully estimate the degradation/digestion of almonds within the different compartments of the GIT, while employing consistent and well-controlled conditions, a combination of in vitro models were used which included dynamic and static gastrointestinal models.

The mastication study, a randomised cross-over design, was used to compare the effects of mastication on the particle size and microstructure of raw and roasted almonds (Chapter 3). Some of the masticated almond samples were loaded onto the dynamic gastric (DGM) and static duodenal (SDM) models (Chapter 4). The DGM and SDM, which were developed at the IFR (Norwich), were designed to simulate the biochemical as well as biomechanical processes occurring during digestion in the human stomach and small intestine (Wickham et al., 2009). The digested almond samples were also analysed for particle size and for changes in microstructure to compare the effects of in vitro digestion to those in humans. Lipid losses were determined using both the traditional AOAC method (Soxhlet) and the theoretical model developed by our group (Grassby et al., 2014).

Information on the particle size distribution (PSD), based on the number of particles of each size, for masticated and digested almonds were required in order to calculate the amount of lipid released in a more realistic situation. The measurement of monosaccharides of hydrolysed CW polysaccharides was performed at the IFR using a standard method of sugars analysis, and also by Prof William Willats and his team at the University of Copenhagen, who used a number of polysaccharide specific antibodies to determine the polysaccharide composition.

Alongside these analyses, the kinetics of lipid digestion was studied on various materials - emulsions, almond cells and almond particles of various sizes, using the pH-stat and gas liquid chromatography
(GLC) (Chapter 5). These methods permitted the monitoring of the rate and extent of lipolysis of almond samples that varied in structural complexity (e.g. pure oil versus separated cells) and particle size, and therefore the amount of encapsulated lipid in almond tissue. Microscopy was also used to characterise the structural changes in almond samples following digestion.

A second human study was carried out in ileostomy volunteers, the Biogut study (Chapter 6), with the aim of quantifying nutrient loss (lipid or starch) at the terminal ileum from meals (almond or wheat) predicted to have high and low bioaccessibility values, and then comparing these values to subsequent blood glucose or lipid responses. Effluents and blood were collected at different time points. In this study, the amount of lipid (Study 1) or starch (Study 2) lost from the ruptured cells (i.e. potentially bioaccessible) were quantified using Soxhlet extraction for lipid and standard chemical methods of analysis for starch (a modified version of total starch assay procedure from Megazyme). Effluent samples were examined by light and transmission electron microscopy. The structural examination focused on CW integrity and providing evidence of lipid/starch loss from ruptured and intact cells. Postprandial blood concentration of glucose, TAG, NEFA, insulin, and C-peptide were measured after eating the test meal as well as the gut hormones PYY, CCK, GLP-1 and GIP.

Finally, the potential diffusion of various digestive lipases through almond CJWs was investigated (Chapter 7). By comparing the extent of lipolytic hydrolysis between encapsulated (almond cells) and accessible lipid bodies (OBs), it was possible to obtain a better insight of the role of the CW in nutrient digestion. This work was performed in collaboration with Dr David Gray from the University of Nottingham (UoN), Prof Frédéric Carrière from the Laboratory of Enzymology at Interfaces and Physiology of Lipolysis (EIPL) in the Centre National de la Recherche Scientifique (CNRS) in Marseille as part of the InfoGest Short-Term Scientific Missions (STSM), and also Dr Alan Mackie from the IFR.
2.2 Materials

2.2.1 Almond materials and emulsion preparations

2.2.1.1 Almond and almond particles

Raw and roasted almond kernels were kindly provided by the Almond Board of California (*Amygdalus communis* L.; variety, Nonpareil). The average nutrient content of the raw and roasted almonds used in this project was provided by the Almond Board of California (Table 2.1). The DF value is a reflection of the CW content, mostly non-starch polysaccharides, of the almond seeds.

Table 2.1 Nutritional composition of raw and roasted almonds, performed by Covance Laboratories Inc. (Madison, United States) on behalf of the Almond Board of California.

<table>
<thead>
<tr>
<th>Proximates</th>
<th>Raw</th>
<th>Roasted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (Kcal/100g)</td>
<td>617</td>
<td>625</td>
</tr>
<tr>
<td>Protein (%)¹</td>
<td>20.1</td>
<td>20.7</td>
</tr>
<tr>
<td>Lipid (%)²</td>
<td>51.7</td>
<td>52.4</td>
</tr>
<tr>
<td>Carbohydrate (%)</td>
<td>22.4</td>
<td>23.4</td>
</tr>
<tr>
<td>Sugar (%)</td>
<td>4.6</td>
<td>4.8</td>
</tr>
<tr>
<td>Dietary fibre (%)</td>
<td>11.0</td>
<td>10.6</td>
</tr>
<tr>
<td>Moisture (%)</td>
<td>5.1</td>
<td>2.7</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>2.7</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Fatty acids

<table>
<thead>
<tr>
<th>Saturated (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16:0 Palmitic</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>18:0 Stearic</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Monounsaturated (%)</td>
<td>34.6</td>
<td>32.9</td>
</tr>
<tr>
<td>18:1 Oleic</td>
<td>33.5</td>
<td></td>
</tr>
<tr>
<td>Polyunsaturated (%)</td>
<td>11.1</td>
<td>10.9</td>
</tr>
<tr>
<td>18:2 Linoleic</td>
<td>11.1</td>
<td></td>
</tr>
</tbody>
</table>

¹Dumas method (N x 1.58), ²Soxhlet method

Almond particles of different sizes (Figure 2.2) were obtained by grinding almonds in a coffee blender (Lloytron PLC, Lancashire, UK) before sieving and collecting the particles from the sieves of 1000, 500
and 250 µm aperture as well as a sieve base (size < 250 µm). For the ileostomy study, two size ranges of particles were used to make the muffins: 1700 to 2000 µm and < 450 µm. The large particles were obtained by grinding the raw almonds and using two sieves (1700 and 2000 µm apertures). Flour provided by the Almond Board of California was sieved using a 450 µm sieve. The original flour was generated from the same variety of almond (Amygdalus communis L; variety, Nonpareil) with a commercial grinder (Maseto Technologies, Alicante, Spain). This process permitted the production of particles of sufficiently small sizes and also prevented their aggregation.

![Figure 2.1 Photographs of particles with the different size ranges used (1000 to 2000, 500 to 1000, 250 to 500, and < 250 µm). Scale bars = 1 cm.](image)

2.2.1.2 Separated almond cells

Almond particles (about 2-3 mm³) were left for 4 weeks with rotation in a solution of 50 mM cyclohexanediamine tetraacetic acid (CDTA) and a preservative (5 mM sodium metabisulphite, Na₂S₂O₅) at pH 7 (Jarvis, 1982; Mandalari et al., 2014). The particles were briefly rinsed and then
mashed using a mortar and pestle to a paste consistency. The sample was loaded on a stack of 3 sieves - apertures 90, 63 and 53 µm and a 20 µm nylon mesh, with a base to collect the liquid. After elimination of most of the water, the material present on the nylon mesh was then transferred into a dialysis membrane (Float-A-Lyzer G2 10 mL, 3.5-5Kd). The membrane was placed in phosphate buffer (10 mM, pH 7) for about 4 h; the operation was repeated 4 times as recommended by the manufacturer. The dialysis permitted the removal of CDTA from the separated cells, since CDTA is known to inhibit lipase activity (Weaber et al., 1971). Even though the majority of almond cells obtained in this way were intact, the preparation always contained a small proportion of damaged cells, with their intracellular content missing (Figures 5.5 and 7.2).

2.2.1.3 Emulsions

Powdered β-Lg was donated by Davisco Foods International (Lot # JE 002-8-415, Le Sueur, MN, USA). Almond oil from Amygdalus communis L., glyceryl tributyrate (99%) and glyceryl trioleate (65%) were obtained from Sigma (Poole, Dorset, UK) and roasted almond oil from Huilerie Croix Verte (Nevillé, France). β-Lg solution was prepared by dissolving 1% w/w of powdered β-Lg into 10 mM Phosphate buffer and stirring for at least 2 h. Emulsions were made from either synthetic lipids commonly used to assess lipase activity, tributyrin and triolein, or from raw and roasted almond oils. Tributyrin is composed of butyric acid and triolein of oleic acid. Raw and roasted almond oils contained approximately 64.1 and 63.1% of oleic acid, 26.1 and 25.9% of linoleic acid and 6.8 and 7.2% of palmitic acid, respectively (fatty acid analysis was performed by GLC as described in Section 2.3.1.2.2). Almond emulsions (Figure 2.2) were obtained by pre-emulsifying 1.6% w/w of oil in β-Lg solution using a homogeniser (Ultra-Turrax T25, IKA® Werke, from Fisher Scientific Ltd) for 1 min at 11 000 rpm. The pre-emulsion was then sonicated using an ultrasonic processor (Vibracell, Sonics & Materials Inc, Newtown, USA) equipped with a 6 mm high grade titanium alloy probe at 70% amplitude for 2 min.
2.2.1.4 Oil bodies

OBs (Figure 2.3) were isolated from raw almond seeds using a method previously described (White et al., 2009). Briefly, almond seeds were homogenised (Moulinex, Masterchef 650 duotronic, Windsor, UK) in water (ratio 1:4) with 2-3 drops of azide (0.2%, w/v) at full power for 2 min. The slurry was filtered through three layers of cheesecloth to remove almond particles and cell fragments. The filtrate was then centrifuged (Beckman J2-21 centrifuge; fixed rotor JA-10) at 9936 g, 4°C for 20 min. The upper layer (creamy white pad) of each sample was removed with a fork and transferred into a bijou bottle, this pad is referred to as the crude OBs. Washed OBs were obtained by re-suspending the pad of crude OBs in either a 9 M urea or 0.1 M sodium bicarbonate (NaHCO₃) solution at a ratio of 1:4 (OB: washing solution). The dispersion was vortexed and then centrifuged (Beckman J2-21 centrifuge; fixed rotor JS-7.5) at 9936 g, 4°C for 20 min. The creamy upper layer was removed and placed into new tubes. The operation was repeated three more times with water.
Chapter 2: Materials and methods

Figure 2.3 Light micrographs of crude raw (A) and roasted (B) almond oil bodies (10% v/v in water), urea-washed (C) and NaHCO₃-washed (D) raw almond OBs (10% v/v in water). Scale bars = 10 µm.

2.2.2 Chemicals

NaH₂PO₄ (99%), Na₂HPO₄ (99%), CDTA (98.5%), Na₂S₂O₅ (98-100.5%), Tris(hydroxymethyl)aminomethane (Tris, ≥ 99.9% TLC), NaCl (99.5%), CaCl₂ (93%), sodium taurodeoxycholate (NaTDC, ≥ 95% TLC), NaGDC (≥ 97% TLC), sodium dodecyl sulphate (SDS, ≥ 98.5% GC) and lipase from porcine pancreas type II (No. L3126, lipase activity 53 units/mg powder, where 1 unit corresponds to 1 µmol of butyric acid released from tributyrin per minute at 37°C, pH 8.0) were purchased from Sigma. NaTC (≥ 97% TLC) was obtained from Alpha Aesar. Rabbit gastric extract (RGE), porcine pancreatic extract (PPE), porcine pancreatic lipase (PPL), guinea pig pancreatic lipase-related protein 2 (GPLRP2), were gifts from Prof Frédéric Carrière (Director of the Laboratory of Interfacial Enzymology and Physiology of Lipolysis, Marseille, France). The internal standard for GLC analysis, C15:0 (pentadecanoic acid), was purchased from Nu-Chek-Prep, Inc (Elysian, USA).
2.3 Methods

2.3.1 Chemical characterisation

2.3.1.1 Moisture content

Samples were weighed into an appropriate container (aluminium dish for large samples or microtubes for OBs) and dried either by using a vacuum oven (Gallenkamp Vacuum Oven, Fistreem International Ltd, Loughborough, UK) or a bench-top freeze dryer (Model LP3, Jouan S.A., Saint-Herblain, France). They were then weighed for a second time to calculate the moisture content by difference. Approximately 200 mg of OBs were placed into microtubes in the vacuum oven at 40°C for 48 h. Freeze dried samples required to be frozen at -40°C beforehand, and then left in the freeze drier for about 3 days.

2.3.1.2 Lipid content

2.3.1.2.1 Crude lipids

The analysis of total lipid content done on masticated and in vitro digested samples (masticated raw and roasted almonds as well as almond muffins) was performed in Italy by Dr David Barreca and his team from the Dipartimento di Scienze Chimiche, University of Messina with an automated Soxhlet (Soxtect 2050) extraction using n-hexane as solvent (Mondello et al., 2000). Following centrifugation of the samples (3800 g for 15 min), the liquid phase of the collected sample was removed; the remaining particles were then dried, weighed and analysed. Each sample was analysed in duplicate. Lipid loss was estimated by calculating the difference between the total lipid content of the original almond samples and the lipid content of the almonds post-mastication/post-digestion, but appropriately adjusted to account for the loss of almonds in the mouth. The results of lipid content were expressed as a percentage of dry weight.
The lipid content of effluent samples collected during the ileostomy study was measured in our laboratory at KCL using the Soxhlet method with hexane as a solvent. Two to three grams of ground, freeze-dried effluent were placed in pre-weighed porous cellulose thimbles. After 24 h (non-consecutive) extraction, the thimbles where left in the fume cupboard for the hexane to evaporate. They were then dried overnight in a forced-air oven at 55°C. The mass of lipid extracted was determined by weight difference of the thimbles before and after the extraction, the results expressed as percentage of dry weight.

The lipids from the OBs were extracted by adding 500 µL of isooctane into 0.20 g of dried OBs. The tubes were homogenised into a FastPrep®-24 Instrument (MP Biomedicals, Cambridge, UK) for 30 seconds and microcentrifuged (MSE Micro Centaur, Sanyo, London, UK) at 13 000 g for 5 min. A known volume of the supernatant was pipetted and transferred into labelled Eppendorf tubes. The extraction was repeated 3 times. One millilitre of the pooled supernatant was poured into a bijou bottle and dried in a vacuum oven for a few hours. The isooctane remaining in the tubes was evaporated in vacuo and the pellet stored in the freezer at -20°C for protein analysis.

2.3.1.2.2 Fatty acids composition by gas liquid chromatography

Lipids present in the samples were first extracted using the Folch method then separated by fractionation. The recovered lipids underwent GLC separation in order to identify their constitutive FFA. The conversion of FFAs into apolar derivatives, fatty acid methyl esters (FAME), permitted their migration along the column using gas as mobile phase. The FFAs were eluted at different times depending on their polarity (chain length and degree of saturation) and boiling point, the fatty acids with the lowest boiling point and/or the most polar had the shortest retention time. The FFAs were then identified by comparing their retention times with those obtained from standards.
Folch extraction

In a 50 mL glass tube, 25 mL of chloroform/methanol (2:1, v/v) solution were added to 5 mL of sample (Folch et al., 1957), plus 1 mL of 1 M HCl to terminate lipolysis and 80 µL of internal standard (IS) solution. IS was used to quantify the absolute amounts for all lipid species. The mixture was then frozen at -20°C until further analysis. The IS were weighed to four decimal place accuracy, and the exact weight recorded. For a reaction involving 300 mg of lipids and knowing that about 25% of IS are required, it was necessary to add 6.2 mg of pentadecanoic acid to 1 mL of chloroform. For each sample, 400 µL of the chloroform layer were collected and transferred into a glass tube. The samples were then evaporated to dryness in a heated centrifugal evaporator (Genevac SF50, Genevac Ltd., Ipswich, UK) connected to a pump (Büchi Vac®, Büchi Labortechnik AG, Flawil, Switzerland) for about 45 min to 1 h. The dried extracts were dissolved in 50 µL chloroform and FFA from neutral lipids (TAG, DAG and MAG) separated by solid phase extraction based on a method previously described (Ruiz et al., 2004).

Solid phase extraction

The separation of the lipids into their different classes was performed using a 20-port vacuum manifold coupled to a vacuum pump and LRC cartridges (Agilent HF Bond Elut LRC-NH2, Agilent Technologies UK Ltd., Wokingham, UK). All neutral lipids were eluted with 2 x 2 mL of chloroform/isopropanol (2:1, v/v) solution, and the FFA with a chloroform/methanol/acetic acid (100:2:2, v/v) solution. Each fraction was evaporated to dryness in the heated centrifugal evaporator.

Gas liquid chromatography

FAME were obtained by dissolving each sample into 1.8 mL of acidic methanol and toluene (80:20). The tubes were placed in the incubator at 60°C for 2 h (or 40°C overnight). NaHCO₃ was dissolved in
deionised water to obtain a 6% solution, 5 mL of the solution were then added in each tube. After 10 min centrifugation at 4°C, for each tube the toluene layer containing the FAME was pipetted into gas chromatography vials. FAME were quantified using GLC (7890A, Agilent Technologies UK Ltd, Wokingham, UK) equipped with a column injector port 25 m x 0.22 mm (i.d.), 25 μm film thickness (BPX70, SGE Europe Ltd, Cat no. 054602, Milton Keynes, UK), an auto-injector, EPC split inlet and a flame ionization detector (FID). The capillary column was operated with the following parameters:

- Injection volume: 1 μL
- Injection mode: Split (ratio 50:1)
- Inlet temperature: 240°C
- Detector temperature: 250°C
- Carrier gas: Hydrogen
- Hydrogen detector gas flow: 30 mL/min
- Air detector gas flow: 400 mL/min
- Combined flow: 35 mL/min
- Make up flow: On
- Make up gas: Nitrogen
- Oven program: Initial temperature 160°C for 4 min, increased to 200°C in 1 min, hold that temperature for 6 min, increased to 240°C in 1 min with a final hold time of 5 min. The total run time was 29 min.

The fatty acids were identified by comparing their relative retention time with those of standards (Sigma Aldrich, Cat no. 1891-1AMP, Dorset, UK). The quantity of FFA was determined using the C15 IS and were expressed in micromoles (μmol):
Chapter 2: Materials and methods

\[n_i = \left(\frac{A_i}{A_{IS}} \right) \times w_{IS} \div M_i \quad \text{(Eq. 2.1)} \]

where \(n_i \) is the number of moles of the fatty acid, \(A_i \) the area under the curve for the fatty acid, \(A_{IS} \) the area under the curve of the IS, \(w_{IS} \) the weight of the IS and \(M_i \) the MW of the fatty acid. The total amount of FFA was obtained by summation of the \(n \) values.

2.3.1.2.3 Fatty acids composition by thin layer chromatography (TLC)

Lipids were extracted by Folch extraction as described above. Standards and samples (15 μL) were spotted on thin layer silica gel 60 plates (10×20 cm from Merck) using a Linomat IV apparatus (Camag, Muttenz, Switzerland) equipped with a 100 μL dosage syringe (Camag, Muttenz, Switzerland). The plate was then placed into a tank containing a mixture of heptane/diethyl ether/formic acid (40:36:1, v/v/v) for the separation of neutral lipids, or methyl acetate/1-propanol/chloroform/methanol/0.25% potassium chloride (25:25:25:10:7, v/v/v/v/v) for the separation of phospholipids, and left to migrate for about 10 min. Once dried, the plate was sprayed with a saturated aqueous solution of cupric acetate with 85% phosphoric acid (1:1, v/v). The liquid was left to evaporate for 10 min and the plate placed in the oven at 180°C for 10 min.

2.3.1.3 Protein analysis

2.3.1.3.1 Protein content

Determination of the protein content was performed using a bicinchoninic acid (BCA) assay (Sigma’s kit Product # BCA1-1KT). Similar to the Lowry method, the BCA assay is based on the reaction of Cu\(^{2+}\) with protein in an alkaline environment, so that cysteine, cystine, tryptophan, tyrosine, and the peptide bond reduce Cu\(^{2+}\) to Cu\(^{1+}\) (Wiechelman et al., 1988). The amount of Cu\(^{2+}\) that reacted with proteins can then be monitored with the use of bicinchoninic acid (Smith et al., 1985). When bound
to Cu\(^{1+}\), the reagent has an intense purple colour; the amount of reduction, or intensity of the colour, is proportional to the protein present. The method presents the advantages of being easy to use, having great sensitivity and less interference by other substances compared with other procedures such as the popular Lowry or Bradford methods.

The assay was prepared according to Sigma’s protocol (No. BCA1). Sixteen millilitre of Reagent A (BCA, sodium carbonate, sodium tartrate, and sodium bicarbonate in 0.1 M NaOH) was combined with 0.32 mL of reagent B (4% w/v, copper (II) sulphate pentahydrate) to obtain the BCA working reagent. One part of protein solution (standard or sample) was added to 20 parts of working reagent, and then left to incubate for 30 min in a water bath set to 37°C. A standard curve was obtained with known concentrations (ranging from 200 to 1 000 µg/mL) of Bovine Serum Albumin (BSA). The absorbance was then read for each sample relative to a reagent blank at 562 nm on a spectrophotometer (CE 2041, Cecil instruments, Cambridge, UK). The protein content present in the samples was calculated from the standard curve. Each sample analysis was performed in triplicate.

Before being analysed with this BCA method, the protein layer from the defatted OB samples (Section 2.3.1.2.1) was sonicated for ~1 min and 1 mL of 2% (w/v) SDS added to it. The samples were heated at 60°C for 30 min, vortexed for 1 min and centrifuged at 13 000 g for 3 min. The supernatant was collected and diluted 100 fold with 2% SDS.

2.3.1.3.2 SDS-PAGE

Proteins were separated by SDS-PAGE using 12% (w/v) polyacrylamide resolving gel made by mixing together 4.9 mL of deionised water, 6.0 mL 30% (w/v) Bis-acrylamide, 3.8 mL separating gel buffer (1.5 M Tris-buffer, pH 8.8), 0.15 mL 10% (w/v) SDS, 0.15 mL ammonium persulphate (APS, 10% (w/v)) and 8 µl TEMED. The gel was pipetted between 2 glass plates hold together by a casting frame, water
added to the top, and left to polymerize for 20 min. Once formed, the water was removed from the plates, a stacking gel containing 4.1 mL of deionised water, 1.0 mL of 30% (w/v) Bis-acrylamide, 0.75 mL stacking gel buffer (0.5 M Tris-HCl buffer, pH 6.8), 0.60 mL 10% SDS, 0.60 mL APS and 5 µl TEMED, was poured on the top of the separating gel, a comb inserted to make the wells and left to set for another 20 min. Meantime, the samples were prepared by adding 3 mg of dried OBs into 200 µL of IPG buffer (2 M thiourea, 7 M urea, 2% (w/v) CHAPS and 0.0125% (v/v) bromophenol blue), the mixture was then diluted 1/10 into Laemmli buffer (450 µL of laemmli solution, 50 µL of β-mercaptoethanol and 350 µL of water) and heated for 10 min at 95°C. The samples and marker (Precision Plus Protein™ unstained standards, #161-0363, from Biorad) were loaded onto the gel. The plates were placed into the inner chamber assembly of the SDS-PAGE electrophoresis (Bio-Rad mini-protean tetra cell SDS), which was then transferred into the mini-tank filled with running buffer (25 mM Tris, 250 mM Glycine, 0.1% (w/v) SDS, pH 8.3). After electrophoresis (120 V for 1 h 20 min), the gel was stained (1 h) with Coomassie brilliant blue R-250 and destained (overnight) with destaining solution (Bio-Rad Coomassie Brilliant Blue R-250 destaining solution). The gel was imaged using a BIO-RAD GS-800 densitometer and images were processed using PDQuest Quantity-one (Bio-Rad, Hercules, USA).

2.3.2 Particle size analysis

The dimension of the particle is an important parameter that influences the physical properties (dissolution, stabilities of dispersion, etc.) of a material such as that used in the current study where size and shape are likely to affect the bioaccessibility of the nutrients (lipids) contained in the food (almonds). The sphere is the only particle shape that can be described with a unique number, hence its choice for most particle size analysis (Figure 2.4). Since many materials have particles of irregular shape (non-spherical), a common way of defining particle size is to use an equivalent sphere diameter the definition of which varies depending on the technique used (Washington, 1992). It can
be expressed, for instance, in term of sieve aperture, volume or surface area, which refers to the measure of the diameter of the sphere that either passes through the same sieve aperture, has the same volume or the same surface area as the particle (Figure 2.5). The **distribution** of particle sizes describes the dimensions of a large number of particles within an analysed sample.

In the current project, particles sizing has been used to describe the size of particles consisting of masticated (mechanical sieving and Malvern Mastersizer 2000®) and digested (Malvern Mastersizer 2000®) almond samples, emulsions (Beckman Coulter LS13320®), as well as separated almond cells (Beckman Coulter Multisizer 3 Coulter Counter®).

![Figure 2.4 Commonly used descriptors for particle size (Brittain, 2001).](image1)

![Figure 2.5 Equivalent diameter for irregular shapes (Malvern, 2011a).](image2)
2.3.2.1 Mechanical sieving

Sieve analysis is a technique that allows the particle size distribution of a sample to be obtained by separating these particles using sieves. Each sieve is made of a mesh with a specific size that corresponds to the number of wires per inch (Figure 2.6 A). The sieves were placed on top of each other in order of decreasing size with the coarsest sieve to the uppermost, and a base for collecting the finest particles. The sample to be analysed was fed onto the sieve with the largest opening, the undersize particles pass through to the sieves below until all particles become separated into their various size fractions. Sieve shakers facilitated the sieving process by applying vibrations (Figure 2.6 B). In this project, the sieve stack was left to shake for a fixed period of 15 min, small rubber balls were added in each sieve to accelerate the separation. The maximum number of sieves that could be stacked in the shaker was 10 including the base, the mesh sizes ranging from 5 to over 240 (from 3350 to 32 µm aperture). The masticated almond samples were washed with deionised water before and after the sample were shaken to facilitate separation of the particles.

![Figure 2.6 Example of sieves used - woven wire, 200 mm diameter (A), the same sieves on the vibratory sieve shaker (B) (Endecott test sieve shaker, Endecotts Ltd, London SW19, UK).]
The fraction of particles present on a sieve of specific aperture was calculated by subtracting the weight of the dried sieve (without any particle) to its weight after the analysis (with the particles). The proportion of sample retained on each sieve, expressed as a percentage of the sample total weight, was calculated as following:

\[
\text{Percentage weight retained} = \frac{W_S}{W_T} \times 100
\]

(Eq. 2.2)

where \(W_s\) is the weight of sample present on a sieve of a specific aperture and \(W_t\) the total weight of the sample.

2.3.2.2 Malvern’s laser diffraction analyser

Malvern laser diffraction particle sizer 2000® (Malvern Instruments Ltd, Worcestershire, UK) consists of an optical unit containing the measurement cell into which the sample continuously circulate (Figure 2.7). The laser diffraction sizer was connected to a sampling dispersion system for wet samples, Hydro 2000G, which contains a suspension unit of 800 mL capacity provided with an adjustable ultrasonicator, stirrer and pump.

Laser diffraction measurements are based on the principle that particles, depending on their size, scatter light at different angles and intensity. The device measures the diffraction pattern of the particles present in a sample with a size range of 0.02 to 2000 µm. Two laser light sources produce a red and a blue beam of light which then illuminate the measurement cell where the particles are suspended in a suitable solvent (Figure 2.8). Each particle, when submitted to the light beam, scatters the light at its external surface. Also, some of the light passes through the particle and interfere with the light that goes around the particle, thus creating a range of interferences characteristic of the scattering pattern of that particle. Particles with different sizes scatter the light at different angles: small particles scatter light at a low intensity and a wide angle whereas large ones at a small angle.
Chapter 2: Materials and methods

The instrument is composed of a multi-element detector including forward scatter detectors that measure light scattered at less than 90° and backscatter detectors for light scattered at angles greater than 90°. Beforehand, the scattered light is focused by a Fourier lens that assures that two particles of the same size scatter light to the same detector regardless of their location in the beam and the speed at which they are travelling.

Figure 2.7 Malvern laser diffraction particle sizer 2000® equipped with a Hydro 2000G.

Figure 2.8 Schematic representation of Malvern laser diffraction particle sizer 2000® (Malvern, 2011b).
The particle size distribution is a combination of the scattering patterns of all the particles present in the analysed sample. A computer then performs the digital integration over a suitable period of time to convert the diffraction pattern into a size distribution expressed by volume. The technique assumes that the particles are perfect spheres. The results are therefore presented as equivalent sphere diameters.

For the calculation of the PSD from light intensity distribution, there is an option of using two theories, namely Fraunhofer and Mie (Malvern, 2011a). The Fraunhofer theory makes the assumption that the particles are totally opaque and therefore the optical properties of the sample are not required. However, the theory is an approximation and does not give an accurate estimate of the number of fine particles. On the other hand, with the Mie theory, the amount of fine material in the sample is determined correctly, but it requires the refractive index of both the studied material and the solvent to be known. Because of the wide range of particle sizes the Mie theory was applied in our study; water has a refractive index of 1.330 and almond oil of 1.471. The latter was measured using a refractometer (Rhino Brix90 Handheld Refractometer, Reichert, Inc., New York, USA).

2.3.2.3 Beckman Coulter

The size of the emulsions oil droplets and the OBs were measured using a Beckman Coulter LS13320® (Beckman Coulter Ltd., High Wycombe, UK). PSD of emulsified lipids and OBs is presented, and similarly to almond particles, as a PSD curve but also as surface-weighted ($d_{3,2}$) and volume ($d_{4,3}$) mean diameters:

$$d_{3,2} = \frac{\sum n_i d_i^3}{\sum n_i d_i^2}$$ \hspace{1cm} (Eq. 2.3)

$$d_{4,3} = \frac{\sum n_i d_i^4}{\sum n_i d_i^3}$$ \hspace{1cm} (Eq. 2.4)

where n_i is the number of droplets and d_i their diameters.
Particle size analysis and quantification (number) of separated cells was performed using a Beckman Multisizer™ 3 Coulter Counter® (Beckman Coulter Ltd, High Wycombe, UK) fitted with a 140 μm orifice tube (size range between 2.8 and 84 μm). A small amount (= 0.1 mL) of diluted cells was dispersed in 100 mL of 0.9% saline (Fresenius Kabi, Steriflex®). A 2 mL volume was used for each analysis. The instrument was calibrated with Coulter counter standard L10 polystyrene latex (mode diameter 9.92 μm).

2.3.3 Microscopy

2.3.3.1 Light microscopy

Some samples could be visualised ‘as is’, whereas some others (i.e. particles with size > 500 μm) required specific preparation (e.g. fixing). The protocol was adapted from previous work (Ellis et al., 2004), with the assistance of Dr Mary Parker (the IFR, Norwich). Almond samples were placed into glass vials containing 2.5% (v/v) glutaraldehyde fixative in 0.1 M sodium cacodylate buffer (pH 7.2) and placed in the refrigerator at 4°C. After at least 2 days in the fixative, the almonds particles were washed 3 times in 0.1 M sodium cacodylate buffer for 30 min each.

The samples were then post-fixed in 2% (v/v) osmium tetroxide in 0.1 M sodium cacodylate buffer (pH 7.2) for 4 h before performing 3 washes of 30 min each in sodium cacodylate buffer washes and dehydration in a graded ethanol series (10, 20, 30, 40, 50, 60, 70, 80, 90, 100%) with 1 h between ethanol changes. The final ethanol change was repeated twice more with 100% ethanol.

The almond particles were placed in a solution containing propylene oxide and 100% ethanol (1:1) for at least 20 min. They were washed 3 times in 100% propylene oxide for 10 min. The propylene oxide was then replaced with a 1:2 mix of Spurr Low viscosity resin (London Resin Company Ltd, Reading, UK) to 100% propylene oxide and put on a rotator for a few hours. This was followed by a 1:1 and a 2:1 mix of Spurr resin to 100% oxide propylene and finally 100% resin, with at least 1 h on
Chapter 2: Materials and methods

the rotator between each change. After 1 h in 100%, the resin was changed twice more with fresh 100% resin with periods of at least 8 hours on the rotator between changes. Four particles from each sample were put into BEEM® flat embedding capsules (Agar Scientific, No. G3654) with fresh resin and polymerised overnight at 70°C.

Samples were then brought to the Centre for Ultrastructural Imaging (CUI), King’s College London, where they were stained and sectioned. Semi-thin (0.5 μm) sections were cut using a diamond knife (Diatome Diamond knife ultra, Leica Microsystems Ltd, Milton Keynes, UK). The sections were transferred onto a drop of water on a glass slide and dried in a hot plate. They were then stained with 1% (w/v) toluidine blue in 1% (w/v) sodium borate for only a few seconds and then rinsed with water before being dried again on the hot plate. The slides were viewed under the optical Zeiss Axioskop 2 mot plus microscope (Carl Zeiss Ltd, United Kingdom). Images were captured with a Zeiss AxioCam HRc and AxioVision v3.1 microscope software (Carl Zeiss, UK).

Nile red (1 mg/mL in dimethyl sulphoxide) was also used on fresh particles (size ≤ 500 μm) of almond samples, either masticated (Chapter 3) or following digestion (Chapter 6), to identify lipids. The samples were examined immediately on the light microscope with Zeiss Filter Set 14 (excitation around 510-560 nm and emission around 590 nm).

2.3.3.2 Electron microscopy

Samples intended for examination by scanning electron microscope (SEM) were fixed and post-fixed as described above and then critical point dried in a Polaron E3000 CP Drier (Quorum Technologies, Newhaven, United Kingdom). At the CUI, the samples were mounted on stubs, coated with gold in a Polaron E5100 sputter coating unit to make the specimen conductive, and viewed in a Hitachi S-3500N scanning electron microscope (FEI Company, Cambridge, United Kingdom).
Samples for transmission electron microscopy (TEM) were prepared using the same protocol as that for light microscopy (LM). Thin sections of 70 nm were cut with the diamond knife mounted on a ultramicrotome, stained in toluidine blue and visualised by TEM (Tecnai™ T12, FEI Europe, Eindhoven, Netherland) fitted with an AMT camera system.

2.3.3 Confocal microscopy

The microstructure of almond cells and OBs before and after digestion was studied using an inverted confocal laser scanning microscope (CLSM at King’s College London; Leica TCS SP2, DMIRE2 inverted, Milton Keynes, UK) or SP1 or SP5 CLSM (at the IFR; Leica Microsystems, Mannheim, Germany). Images were captured using both 40x (N.A. 1.25) and 63x (N.A. 1.32) oil immersion objective lenses. Nile red (1 mg/mL in dimethyl sulphoxide) and calcofluor white were used to detect lipids and CW, respectively. The samples were excited using an argon laser at 488 nm for Nile red and Alexa Fluor 488, and 405 nm for calcofluor white. The fluorescence emitted by the samples was detected at 630 to 680 nm (Nile red), 505 to 550 nm (Alexa Fluor 488) and 406 to 460 nm (calcofluor white).

2.3.4 Cell wall analysis

2.3.4.1 Gas liquid chromatography method

The CW analyses of natural (raw) and roasted almonds before and after mastication and digestion using a common method, as previously described (Parker and Waldron, 1995), were performed at the IFR. Once the CW materials were prepared, sugar and uronic acid contents in the almond samples were measured.
2.3.4.1.1 Preparation of cell wall material

CW material was prepared from both masticated and digested samples. The first step of the preparation consisted of extracting the lipid using the Soxhlet method. The raw and roasted almonds were ground using a coffee blender (Lloytron PLC, Lancashire, UK). The duodenal and gastric samples were centrifuged, and the supernatant pipetted to remove most of the liquid. Five grams of samples were placed into Soxhlet thimbles and then in the apparatus. The Soxhlet extraction was ran for 4 h to de-fat the material using 250 mL of hexane as an extraction solvent. Once the hexane evaporated, the defatted ground almonds were weighed (about 2.5 g).

To each sample, 100 mL of 1.5% (w/v) of SDS solution containing 5 mM of metabisulphate were added in order to remove the proteins present. The mixtures were homogenised with an Ultra-Turrax homogeniser (T25 basic, IKA® Werke, from Essex Scientific Laboratory, Benfleet, UK) for 5 min, 30 s at a time, at power 1 (11000 rpm). If required, a few drops of octanol were added to reduce foaming. The samples were filtered through a 50 µm nylon mesh supported by a Buchner funnel and flask, and then they were washed with 100 mL of 0.5% (w/v) SDS solution containing 3 mM of Na$_2$S$_2$O$_5$ and sufficient water to reduce foaming. The residue was ball-milled at 4°C in 80 or 95 mL of 0.5% (w/v) SDS, depending on the sample, at about 60 rpm for 4 h. Each ball was then washed with water and filtered through a 50 µm nylon mesh. After several washes with water the CW material was allowed to dry overnight in acetone in the fume cupboard.

2.3.4.1.2 Sugar analysis

The sugar composition of the samples was determined by GLC (Perkin-Elmer Autosystem XL, Waltham, USA) equipped with FID using a method adapted from Blakeney et al. (Blakeney et al., 1983). Briefly, the polysaccharides were first hydrolysed with 72% (w/w) sulphuric acid at 100°C for
2.5 h, followed by reduction with 3 M ammonia containing 150 mg/mL of sodium borohydride, and then acetylation to alditol acetates using 1-methylimidazole and acetic anhydride.

2.3.4.1.3 Uronic acids analysis

Uronic acid is found in both pectins (i.e. galacturonic acid) and hemicelluloses (e.g. glucuronic acid as found in xylans). Its measurement provides additional information about the composition of the CW. Some of the hydrolysates generated for GLC analysis were kept for the measurement of uronic acids by a colorimetric method (Blumenkrantz and Asboe-Hansen, 1973). The hydrolysates were added to sodium tetraborate reagent (25 mM in concentrated sulphuric acid) and heated at 100°C for 10 min. Then 0.15% (w/v) of 3-phenyl phenol in 0.5% NaOH were added to the samples and then after leaving the samples in the dark for about 30 min, the absorbance was read at 520 nm using a spectrophotometer. A set of glucuronic acid standards, from 5, 15, 25 and 35 μg/mL, were simultaneously assayed; the concentrations of uronic acids present in the samples were calculated from this standard curve.

2.3.4.2 Method using antibodies

Prof Willats and his team performed CW analysis using oligosaccharides microarrays (Pedersen et al., 2012). This highly specific technique provided semi-quantitative data on CW composition of raw, roasted, and blanched almonds, and of almond skin, as well as digested almonds (raw only). The monoclonal antibodies used in the microarrays are powerful tools that facilitate the characterisation of CW in addition to giving more detailed information about CW composition and structure than that produced by GLC analysis. This method permitted the identification of individual oligosaccharides namely:
Chapter 2: Materials and methods

- Pectic polysaccharides: HG with various degrees of methyl esterification, xylogalacturonan, arabinan and (1→4)-\(\beta\)-D-galactan;
- Hemicellulose compounds: xyloglucan, xylan, arabinoxylan, mannan, gluco- and galactomannan; and
- Some proteins: extensin and AGP.

The details of the methodology used can be found elsewhere (Pedersen et al., 2012). Briefly, CW material was prepared using an alcohol insoluble residue (AIR) method. The almond homogenate was added to an excess of 70% ethanol, the sample centrifuged (1352 g for 10 min), and the supernatant discarded. The procedure was repeated 5 times, then 100% acetone was used instead of ethanol once more before air drying the pellet. Ten mg of the preparation were extracted with CDTA followed by 4 M NaOH for 2 h each. Similarly to cell separation, CDTA permitted removal of the ionic bonding stabilised by calcium and thus extraction of the pectin without degradation of the galacturonan chains (Jarvis, 1982). NaOH extracted the remaining polysaccharides apart from cellulose. Each sample (4 replicates and 3 dilutions, resulting in 12 spots for each sample) was then spotted onto nitrocellulose membrane (Whatman, Maidstone, UK). Each spot was analysed and assigned a value based on antibody signal intensity. The output from the analysis was presented as heat maps, each being an average of the 12 values with the highest signal indexed to 100. Weak signals with values below 5 were disregarded.

2.4 Gastric and duodenal in vitro models

2.4.1 Lipase characteristics

Lipases (triacylglycerol acylhydrolases EC 3.1.1.3) are a group of enzymes that catalyses the hydrolysis of TAGs. As shown in Figure 2.9, TAGs are stepwise converted into DAG and MAG
accompanied at each step by the release of one FFA. The two main lipases involved in lipid digestion in human are HGL and HPL, each having a positional specificity. Consequently, HGL hydrolyses the ester bond of the fatty acid located in sn-3 position of the TAG leading to the production of DAG and one FFA, whereas HPL hydrolyses in sn-1 or 3 positions thus generating DAG, MAG and FFAs.

Figure 2.9 Schematic representation of TAG hydrolysis.

Since lipase is water soluble and the substrate is not, lipolysis is a heterogeneous reaction that takes place at the lipid-water interface. Its activity depends on the amount of substrate present at the interface (often expressed as specific surface area in cm2/mL of emulsion) and the quality of the latter. Unlike esterase, lipase cannot act on a monomeric solution of ester (Verger, 1997). Some common interfacial structures are oil in water (o/w) emulsions, micelles, liposomes and monolayer films (Jurado et al., 2006).

In the current project, several types of lipases were used, namely: lipase type II which is similar in constitution to porcine pancreatin and contains lipases but also proteases and amylase (Figure 2.10), RGE, PPE, PPL and GPLRP2. GPLRP2 is a recombinant enzyme produced in the yeast Pichia pastoris that has a MW of 47.6 kDa (as determined by mass spectrometry by Eduardo Mateos, PhD student from Prof Carriere’s group). The protein content and composition of the lipases solutions were measured using the BCA and SDS-page methods described above.
Chapter 2: Materials and methods

2.4.2 Lipase activity measurement using the pH-stat

Numerous methods have been developed for measuring lipase activity and lipid digestion often based on the quantification of fatty acids released (Beisson et al., 2000; Hasan et al., 2009). The most common techniques that have been used are titration using the pH-stat (Armand et al., 1992; Li et al., 2011c; Mun et al., 2006), and spectrophotometric analysis using ρ-nitrophenyl laurate as a substrate (Pinsirodom and Parkin, 2001). GLC combined with the pH-stat has been shown to monitor accurately the course of the lipolysis while also providing data on the proportion of lipolytic products generated (Helbig et al., 2012; Zhu et al., 2013). The criteria to consider when choosing a method are sensitivity, continuous or discontinuous measurements, and ease of procedure. The assays mentioned above are continuous and can therefore be used to study the kinetics of lipase activity.
However, colorimetric and fluorometric assays give higher sensitivity. In the present project, both GLC and pH-stat were used to estimate the amount of FFAs released by lipolysis of masticated and ground almonds, separated almond cells and almond oil emulsions (Chapter 6). More sophisticated digestion models such as the DGM are described in more details in Chapter 4.

2.4.2.1 Principle

A convenient and well-known method to measure the activity of lipase is the pH-stat titration (848 Titrino plus Metrohm Ltd., Herisau, Switzerland) (Beisson et al., 2000) (Figure 2.11). The device consists of a mechanically-stirred reaction vessel connected to an electrode that monitors the pH and an autoburette for the addition of NaOH. The temperature of the reaction system is maintained constant (37°C) via a water bath.

![Figure 2.11 Metrohm 848 Titrino plus (pH-stat).](image)

The production of FFAs following TAG hydrolysis results in a decrease in the pH of the solution. Fatty acids are weak acids whose pKₐ increases with their chain length and degree of unsaturation, for
instance short chain fatty acids have a pK_a of approximately 4.7 and 4.9, oleic acid between 7.7 to 8.9 and linoleic acid has a pK_a 7.9 (Pinsirodom and Parkin, 2001). However, these values correspond to apparent pK_a and are likely to fluctuate according to the reaction environment, e.g. buffer, presence of BS and other fatty acids; and besides, under physiological conditions (pH ≈ 7) ~99% of fatty acids are ionised (Mead et al., 1986). The release of FFAs can be monitored at a constant pH value by automated addition of NaOH once the pH value is shifted down from the pH endpoint. The amount of NaOH (μmoles) added as a function of time to keep the pH constant are equivalent to the amount of FFAs released due to the lipase activity. If a large excess of substrate is used and if the enzyme is stable under the selected experimental conditions, the FFA release shows a linear relationship overtime. This activity can be expressed in international units: \[1 \text{ U} = 1 \mu\text{mole of FFAs released per min}. \]

The titration in itself is not restricted to FFAs, therefore for the procedure to measure FFA generated from TAG lipolysis, it has to be performed with settings specific to the reaction measured (pH, temperature and initial conditions) (Kanicky and Shah, 2002; Pinsirodom and Parkin, 2001). As lipid hydrolysis depends on the reaction conditions such as temperature and pH, they were rigorously monitored before and during the experiments in order to standardise the digestion assays.

The pH endpoint corresponds to the pH value at which the enzyme displays its maximum activity. The pH endpoints of the assays performed in the gastric compartment was set at 5 and at 7 for the duodenal phase. Back titrations are often required in order to avoid underestimation of the FFAs formed because some of the FFAs, in particular oleic acid would not be totally protonated at pH 7. In this project, back titration was not performed for the duodenal phase as lipids were conjointly analysed by GLC. The rates of lipolysis were continuously measured by titration of released FFAs with 0.15 M NaOH at 37°C and an endpoint of pH 7.0. The pH fluctuation of the assay mixture alone (substrate included) was determined by running the titration without any enzyme; the volume obtained was then deduced from the volume data produced from the subsequent sample. This step
of the titration ensures the accurate quantification of newly formed FFAs from the test samples. Each digestion reaction was repeated in triplicate.

Preliminary measurements of the lipases activity were done using a standard assay method with tributyrin as a substrate (Lowe, 1999). The assay mixture consisted of 0.5 mL of tributyrin and 14.5 mL of assay buffer:

- For gastric lipase (RGE): NaCl 150 mM, NaTDC 2 mM, BSA 0.1 g/L, pH 5.5.
- For pancreatic lipase (lipase type II, PPE and PPL) and GLRP2: Tris 2 mM, NaCl 150 mM, CaCl₂ 2 mM, NaTDC 4 mM, pH 8. Colipase was added in lipolysis with PPL at a 2 to 1 excess molar ratio.

After leaving the substrate to emulsify in the reaction vessel at 37°C, colipase was added. The reaction was run for 20 min using 0.1 M NaOH as titrant.

The phospholipase activity of GLRP2 was tested using 5 mL of substrate solution (one egg yolk in 100 mL of 4 mM CaCl₂) and 10 mL of 20 mM deoxycholate, pH 8.0 (Thirstrup et al., 1994).

2.4.2.2 Intestinal conditions

Each assay was performed over 1 h in a mechanically-stirred reaction vessel of a pH-stat. The in vitro duodenal digestion model used was adapted from previous studies (Li and McClements, 2010; Li et al., 2011c): (i) 19.0 mL of sample containing 300 mg of lipids, either emulsion, separated almond cells or almond particles in β-Lg solution; (ii) 15.0 mL of bile salt solution (31.25 mM of NaTC and NaGDC in 10 mM phosphate buffer, pH 7.0, 37.0°C); and (iii) 1 mL of NaCl (5.625 M in deionised water) and 1 mL of CaCl₂ (0.375 M in deionised water). The lipolysis of unemulsified oils (raw and roasted almond oil as seen in Results section of Chapter 5, Table 5.1) was performed by adding the oils directly into the reaction vessel without preliminary preparation. The system was adjusted to pH 7 and then 1.5 mL of freshly prepared lipase solution was added (40 mg/mL in 10 mM phosphate buffer). The final volume of the reaction system in the vessel was 37.5 mL and its composition was therefore 0.8% lipid, 12.5 mM BS, 2.4 mg/mL lipase, 150 mM NaCl and 10 mM CaCl₂. Phosphate buffer (prepared by
mixing together 10 mM solutions of NaH$_2$PO$_4$ and Na$_2$HPO$_4$, pH 7) was used as its buffering capacity covers the optimal pH of pancreatic lipase (6.3 to 8.1).

The volume of NaOH (in mL) added as a function of time to keep the pH constant is equivalent to the amount of FFA released. Also, since the hydrolysis of TAG leads to one molecule of MAG and 2 FFAs, the percentage of FFA released can be calculated as follows:

\[
\% \text{ FAA} = 100 \times \left(\frac{V_{NaOH} \times m_{NaOH} \times M_{lipid}}{w_{lipid} \times 2} \right)
\] (Eq. 2.5)

where \(V_{NaOH}\) corresponds to the volume of NaOH required to neutralise the FFAs produced, \(m_{NaOH}\) is the concentration of the NaOH solution used (in M), \(w_{lipid}\) is the total mass of TAG initially present in the reaction vessel (in g), and \(M_{lipid}\) is the molecular mass of oil (in g/mol) (Li and McClements, 2010).

The MW of almond oil was estimated to be 878 g/mol; this value was calculated from the TAG composition of the oil and the occurrence of the FFAs (oleic, linoleic and palmitic acids) within these TAGs (from the analysis performed by the Almond board of California) as shown in Table 2.2.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>MW (g/mol)</th>
<th>Proportion in almond oil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleic acid (18:1n-9)</td>
<td>282.5</td>
<td>66.8</td>
</tr>
<tr>
<td>Linoleic acid (18:2n-6)</td>
<td>280.5</td>
<td>23.4</td>
</tr>
<tr>
<td>Palmitic acid (16:0)</td>
<td>256.4</td>
<td>6.8</td>
</tr>
<tr>
<td>Palmitoleic acid (16:1)</td>
<td>254.4</td>
<td>1.2</td>
</tr>
<tr>
<td>Stearic acid (18:0)</td>
<td>284.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

The lipid content of the almonds studied here was about 51.7% for raw and 52.4% for roasted almonds (see Table 2.1). The initial rates of lipolysis were calculated from the slopes of the product concentration (in µmol/mL) versus time (in min).
2.4.3 Dynamic gastric model and static duodenal model

The following protocol was developed in collaboration with the IFR to study the *in vitro* digestion, under gastric (DGM) and duodenal (SDM) conditions, of masticated almond samples obtained from the Mastication study (*Chapter 3*) (Mandalari *et al.*, 2008a; Pitino *et al.*, 2010). For each type of almond, raw and roasted, two different sets of samples were loaded into the DGM: a combined sample of fifteen (one from each participant, 15 x 4 to 5 g) and four 28 g individual samples (*Chapter 4*). Furthermore, masticated muffins, containing either 1700 to 2000 µm almond particles or almond flour (~187 µm), underwent *in vitro* digestion with the DGM and SDM (*Chapter 6*).

2.4.3.1 Description of the apparatus

The DGM was developed in collaboration with the IFR and validated using both echo planar magnetic resonance imaging on healthy volunteers and ileostomy studies (Wickham *et al.*, 2009). A number of food and pharmaceutical products have been tested with this model, in particular muffins containing pistachio nuts (Mandalari *et al.*, 2013). This *in vitro* model stimulates the human stomach by mimicking the biochemical and mechanical processes, including forces and fluid flow, leading to the formation of a chyme (Wickham *et al.*, 2012). It is composed of the main body - simulating the fundus, in which gastric juices of similar composition to that of the *in vivo* secretion, are dynamically added (Figure 2.12). The lower part of this stomach model consists of a piston and a barrel simulating the antrum, and it is connected to the main body by a valve that generates reflux of material between those two compartments. By analogy to the human stomach, the bolus is subjected to gentle shear forces (pulsatile contractions) in the main body as well as powerful breaking forces in the antrum allowing churning, inhomogeneous mixing with gastric juice, variable emptying regimes and preferential sieving of the foods.
A feedback mechanism controls the addition of acid via a pH meter whereas the rate of enzyme deliveries is set up by the operator depending on the food/material loaded into the DGM (i.e. size, calorie content, solid or liquid, and viscosity). The expulsion of the chyme from the machine occurred at defined timed intervals and differed in composition in a way that simulated the *in vivo* process.

![Diagram of the dynamic gastric model](image)

Figure 2.12 Schematic representation of the dynamic gastric model, adapted from (Vardakou et al., 2011).

2.4.3.2 Protocol

2.4.3.2.1 Gastric digestion

Solution preparation

A solution of single shelled lecithin liposomes (grade 1, Lipid Products, Surrey, UK) was prepared using a method as previously described (Mandalari *et al.*, 2008a). A 0.299 mL aliquot of lecithin stock
solution (63.5 mM in chloroform/methanol) was dried under nitrogen flow. The samples were placed in a vacuum oven, purged three times with nitrogen at room temperature, and dried under vacuum overnight. The solvent was removed from a 0.94 mL aliquot of phospholipid stock solution (63.5 mM in chloroform), under rotary evaporation with vacuum at 5°C. Any residual solvent was removed at room temperature under vacuum overnight after purging three times with nitrogen. The resulting film of phospholipids was then suspended in 12.2 mL of warmed simulated gastric buffer (0.15 M NaCl, pH 2.5, at 37°C), and sonicated to produce single-shelled liposomes. The sonication system consisted of a sonication probe (Status US 200; Avestin) operated at 5°C in a coolant-jacketed vessel, with a pulsed cycle of 30% full power on for 0.9 s and off for 0.1 s. Liposomes were then filtered through a Nalgene 0.22 mL nylon syringe filter (Nalgene, United Kingdom) to remove any titanium deposited by the sonicator. The liposomes were then put back in the shaking incubator (170 rpm) for 20 min to equilibrate at 37°C.

The fasted state was replicated by priming the DGM with 20 mL of acid solution, which was composed of a mixture of NaCl (58 mM), CaCl$_2$ (0.5 mM), NaH$_2$PO$_4$ (0.864 mM), KCl (30 mM) and HCl (10 mM).

The simulated gastric enzyme solution was prepared by dissolving porcine gastric mucosa pepsin (activity 4220 U/mg of protein calculated using haemoglobin as substrate, Sigma, Poole, UK) and a gastric lipase analogue from Rhizopus oryzae (F-AP15, activity ~150 U/mg of powder, Amano Enzyme Inc. Nagoya, Japan) in a simulated gastric solution containing 58 mM NaCl, 0.5 mM CaCl$_2$, 0.864 mM NaH$_2$PO$_4$ and 30 mM KCl at the final concentrations of 9000 U/mL and 60 U/mL for pepsin and lipase, respectively. The simulated gastric acid solution had the same composition as the simulated gastric solution apart from the acid (200 mM HCl).

The lecithin liposomes solution was suspended in 50 mL of the simulated gastric enzyme solution. The mixture was placed in the incubator (Innova 4200, New Brunswick Scientific, Edison USA) with an
internal shaker table (set at 37°C, 170 rpm) for approximately 20 min to bring to the incubator temperature and then filtered (0.22 μm).

Digestion procedure

The acid and enzyme pumps were calibrated as well as the pH detector, and the new pumps parameters entered into the computer software. The recipe was entered into the DGM software according to calculations done previously corresponding to the meal (Wickham et al., 2012). The samples were then poured into the aperture of the DGM and the starting pH was recorded. Throughout the digestion, the gastric enzyme and acid solutions were added at a physiological rate via a loop (i.e. ‘Addition of gastric secretions’ in Figure 2.12), thus ensuring a homogeneous secretion of both enzyme and acid similar to the in vivo process. A defined number of digesta samples (aliquots) were collected throughout the gastric digestion according to the experimental protocol (6 samples for the eight individual 28 g masticated almonds, 11 samples for the 15 pooled masticated almonds, and 7 for the masticated muffins). Each aliquot was weighed and neutralised (pH 6.8) by adding NaOH (0.1 M).

2.4.3.2.2 Duodenal digestion

Solution preparation

A salt solution was made of NaCl (146.0 mM), CaCl₂ (2.6 mM), and KCl (4.8 mM). The solution of lecithin liposome was prepared as previously described. Then 33.5 mg NaTC and 25.0 mg NaGDC were weighed into a previously cleaned vial (final composition of the simulated bile solution: 4 mM cholesterol, 12.5 mM NaTC and 12.5 mM NaGDC). The BS were suspended in 5 mL of the salt solution, and the vial was gently mixed by hand until the BS were dissolved. This hepatic solution was placed in the incubator with an internal shaker table (set at 37°C, 170 rpm) until it became clear.
To 19 mL of pancreatic mix solution (125.0 mM NaCl, 0.6 mM CaCl$_2$, 0.3 mM MgCl$_2$, 4.1 µM ZnSO$_4$·7H$_2$O), 0.118 mL of porcine pancreatic lipase (type VI-S, 590 U/mL) stock solution, 4 mg of porcine colipase (3.2 µg/mL), 0.0159 mg of porcine trypsin (type IX-S, 11 U/mL), 5.7 mg of bovine α-chymotrypsin (type II, 24 U/mL) and 0.600 g of porcine α-amylase (type VI-B, 300 U/mL) were added (pancreatic enzyme solution). The pH of the resulting solution was adjusted to 6.8.

Digestion procedure

The gastric samples were collected from the DGM at different time points determined by the software and then pooled followed by addition of the hepatic and pancreatic enzymatic solutions, the quantities of which depended on the size and type of meal. The mixture was then placed in the incubator (37°C, 200 rpm) for 2 h. Each pooled gastric and pooled duodenal samples were centrifuged at 3700 rpm for 15 min (7°C) to separate the soluble fraction from the residue. All samples were immediately snap-frozen in liquid nitrogen and retained for analyses.

2.5 In vivo studies

2.5.1 Mastication study

Further details about this study can be found in Chapter 3. Briefly, a randomised cross-over design was used to compare mastication effects on raw and roasted almonds. The volunteers (n=15) were asked to masticate four almonds until they felt the urge to swallow, at which stage they expectorated the contents of their mouth and rinsed it into a container. Some of the collected samples were then loaded on the gastric (DGM) and duodenal (SDM) models.
PSD were measured using two methods, for comparative purposes, mechanical sieving and laser diffraction. The microstructure of masticated almond tissue was examined using a range of microscopy techniques. Lipid bioaccessibility was determined using both the Soxhlet method and the mathematical model, which is based on the particle size of masticated almond particles and almond cell dimensions (Grassby et al., 2014). The model calculates the amount of lipid released from the ruptured cells of almond cubes of defined size. Information on the PSD, number of particles of each size, for masticated almond was required in order to calculate the amount of lipid released in a more realistic situation. The measurement of monosaccharides of hydrolysed CW polysaccharides was performed at the IFR laboratory using a standard sugars analysis as described in Section 2.3.4.1.

2.5.2 Ileostomy study

Further details about this study can be found in Chapter 6. Briefly, two single-blinded, randomised, cross-over design studies (Study 1 for lipid and Study 2 for starch) were conducted in 9 male and female ileostomy individuals, aged 20-75 years, involving 2 to 4 test meals. Volunteers were given test foods specifically designed to vary in nutrient bioaccessibility, which predominantly consisted of either lipid (almond muffin) or starch (wheat porridge).

Following consumption of the test meal, ileal effluents and blood were collected at regular intervals. Effluents were divided for subsequent analyses of lipid ‘losses’ and the physical state (microscopy) of the tissue entering the large bowel at each time point. Blood samples were analysed for changes in lipid, glucose, insulin, C-peptide, and gut hormones concentrations.
CHAPTER 3

EFFECT OF MASTICATION ON LIPID RELEASE FROM ALMOND SEEDS
3.1 Introduction

Mastication is the initial step of digestion and includes comminution, the breaking of solid food such as almond to form smaller particles, and lubrication with saliva. One mastication sequence is initiated by the insertion of food in the mouth (ingestion) and ends with the passage of the bolus into the oesophagus (deglutition). The appearance and characteristics of the bolus formed depends on the teeth, bite force, which is structure and properties of the jaw muscles, the cheek, and the tongue; and also saliva production (van der Bilt et al., 2006).

Oral processing has a significant effect on bioaccessibility since the mechanical damage occurring to the tissue makes the release of nutrients more likely. The size and microstructural characteristics of the resulting particles also have a significant impact on digestion kinetics and other physiological processes in the GIT. Indeed, it is well known that when mechanical stress is applied to edible plant tissue during chewing the nutrient-rich cells can behave differently by either rupturing or separating (Brett and Waldron, 1996). This behaviour has implications on nutrient bioaccessibility, which relies on the proportion of ruptured cells, which in turn is determined by the degree of mastication. The structure of the food matrix itself, emulsion or encapsulated lipids inside intact cells, affects the accessibility of lipids to digestive enzymes and other components involved in digestion.

Almonds are an energy dense food typically containing 50% of lipids, so such food would be expected to generate a high postprandial lipaemic response when ingested. Almond cells rupture rather than separate when milled or masticated, so their contents of mainly lipid and protein become potentially available for digestion (Ellis et al., 2004). Previous studies have shown however that a high proportion of almond lipid remains encapsulated by CWs in the parenchyma cells and is therefore unavailable for digestion, producing a low lipaemic response (Berry et al., 2008; Ellis et al., 2004).
Chapter 3: Effect of mastication on lipid release from almond seeds

The size of the particles resulting from oral processing as well as the changes occurring as these particles pass through the GIT have therefore an impact on the rate and extent of lipid digestion (McClements and Li, 2010). The degree of mastication has been linked to the rate of starch digestion in rice (Ranawana et al., 2010) and an early study highlighted the importance of mastication in influencing post-prandial glycaemia (Shimoyama et al., 2007), but little is known about lipid bioaccessibility in almond following chewing.

There is indeed a need to quantify the release of lipids because it is still unclear how and to what extent mastication affects lipid bioaccessibility. The relationship between the particle size of masticated plant food, which closely reflects the proportion of ruptured cells in the plant tissue, and nutrient bioaccessibility have received little attention, with the notable exception of food such as carrots (Knockaert et al., 2012; Lemmens et al., 2010; Stinco et al., 2012). Therefore, it is still unclear to what extent mastication affects lipid bioaccessibility in almond. By quantifying the changes in the particle size distribution, lipid release and CW composition before and after mastication of almonds, we will be able to have a better understanding of the mechanisms involved in lipid bioaccessibility. The theoretical model developed by our group (Grassby et al., 2014) has been used in the current study to predict the proportion of lipid released from almonds, based on the size of the almond particles present in the bolus. Another objective of the present study was to determine PSDs for masticated raw and roasted almonds, from which predictions of lipid loss from masticated almond tissue could be made, and validated against experimental values. Studies of this kind are urgently required as the mechanisms of nutrient bioaccessibility during mastication are poorly understood, in particular, the relationship between the disassembly of ingested foods and nutrient release in the mouth and GIT. The current work also sought to compare two particle sizing techniques, mechanical sieving and laser diffraction, for quantifying particle size distribution of masticated almonds.
3.2 Aims

The objectives of the current work were to:

(a) Quantify the PSD of masticated raw and roasted almond particles;

(b) Determine changes in lipid content and CW polysaccharide composition due to mastication in healthy human volunteers;

(c) Examine the microstructural changes in almond tissue following oral processing; and

(d) Factor particle size data obtained from masticated almonds into a theoretical model previously developed to predict lipid release.

It was hypothesised that the CW of almond cells would fracture when masticated and liberate their contents, whereas intact cells would delay or prevent the release of lipids.

3.3 Materials and methods

3.3.1 Subjects and location

All mastication sessions took place in the metabolic unit facilities at King’s College London. Fifteen healthy adults (11 females, 4 males) recruited among staff and students of King’s College London, University of London (Figure 3.1), were included in the study (mean age of 25.4 ± 5.8 years, and body mass index (BMI) of 21.6 ± 3.7 kg/m²). Previous studies investigating PSD under similar conditions have reported statistically significant differences in 10-13 subjects (Cassady et al., 2009; Frecka et al., 2008; Peyron et al., 2004). Therefore, on this basis, the number of volunteers recruited was 17 to allow for a 15 to 20% drop out. Exclusion criteria were:

- Allergy to almonds or related allergens (other tree nuts, celery, pears, apples, cherries, peaches or parsley);
Chapter 3: Effect of mastication on lipid release from almond seeds

- Incomplete dentition, other than unerupted wisdom teeth any dental treatment in the last three months, except check-ups;

- Current infectious disease

None of the volunteers included in the study showed any evidence of malocclusion and masticatory malfunction.

After having received a full explanation of the study aims and procedure, each participant signed a consent form. The protocol was accepted by the Research Ethic Committee of the North London’s National Research Ethics Service (reference no. 10/H0717/096) and the Research and Development office at Guy’s and St Thomas Hospital (reference no. RJ111/N032). This trial was registered at isrctn.org as ISRCTN58438021. Each participant was assigned an identification number at screening. Confidential information was kept in a secure locker and on a password protected encrypted hard drive, and was only accessible to designated researchers working on the trial (in accordance with the Data Protection Act 1988).

3.3.2 Test foods

Raw and roasted almond (Amygdalus communis L.; variety, Nonpareil) kernels with the skin were provided by the Almond Board of California. The nutrient content (percentage by weight of edible portion) of the raw and roasted almonds were as follows: moisture 5.1 and 2.7%, ash (total minerals) 2.7 and 3.4%, protein 20.1 and 20.7% (total N x 5.18), lipid 51.7 and 52.4% (Soxhlet, hexane), available carbohydrates (mainly sugars), 4.6 and 4.8%; and DF 11.0 and 10.6% respectively (AOAC method). The compositional analysis was performed by Covance Laboratories Inc. (Madison, United States) on behalf of the Almond Board of California. The DF value is a reflection of the CW content (mostly non-starch polysaccharides) of the almond seeds.
3.3.3 Experimental protocol

Each subject attended a total of four mastication sessions, two per type of almond, NA and RA, with at least 1 week between each session. The almond types were masticated in random order over the four sessions. Each subject was asked to masticate each almond sample (4-5 g) on ten different occasions during each chewing session (i.e. 10 replicates, each mastication occasion separated by a rest period of 2 min and rinsing of the mouth with water). For the first two samples, the participants chewed and swallowed as normal, the number of chews (counted cycles = N) as well as the mastication duration (duration of sequences = T) were recorded and averaged. The mastication frequencies were then calculated by dividing N by T. These values were used as guides for the subsequent expectorations (eight replicates). During these tests, the participants chewed the sample until they reached the number of chews previously recorded (N), at which stage they expectorated the content of their mouth into individual pre-weighed plastic containers. They then rinsed their mouth with about 25 g of water and emptied it in the container previously used to maximise recovery of the chewed almond samples. The samples were analysed soon after collection except those used for lipid analysis, for which the almond boluses were stored at -20°C before being processed.

3.3.4 Particle sizing

In the present study, mechanical sieving and laser diffraction were compared and subsequently combined to cover the whole PSD (Figure 3.1). These methods were selected to cover the broad range of the PSDs of almond boluses and also to facilitate comparison with published data from other research groups that have employed similar techniques (Cassady et al., 2009; Frecka et al., 2008; Jalabert-Malbos et al., 2007). Each type of almond, collected on different days, was measured twice, immediately after collection, for each participant by both sizing methods.
3.3.4.1 Mechanical sieving

Two masticated samples, approximately 10 g, collected from each participant were loaded on a stack of sieves with 10 aperture sizes: 3350, 2000, 1700, 1000, 850, 500, 250, 125, 63 and 32 µm (Endecott test sieve shaker, Endecotts Ltd, London SW19, UK). A nylon mesh of 20 µm was also placed between the base and the 32 µm sieve to allow comparison with the laser diffraction. The expectorated samples were washed with deionized water, shaken for 15 min, and washed again; thus ensuring that the particles were properly sieved. They were then dried in a forced-air oven at 56°C for 6 h as previously described (Cassady et al., 2009; Frecka et al., 2008). The bases were left to dry at 100°C overnight (about 15 h), which permitted the total evaporation of the water. The sieves were weighed before loading the sample and then again after having been dried in the oven. The dried fractions retained on each sieve and the base were expressed as a percentage of the weight of almonds before mastication.
3.3.4.2 Laser diffraction

The sample preparation was similar to the process already described for mechanical sieving. Thus, two of the masticated samples (replicates) were combined and loaded onto a sieve of 1700 µm aperture. The sieve was placed on top of a sieve base covered with a nylon mesh (aperture of 20 µm) and washed with deionized water. Once the water passed through the mesh, the remaining particles were collected into a 250 mL glass bottle by washing them off the mesh with deionised water. Removing particles of sizes > 1700 µm and < 20 µm prevented, for the former, obstruction of the instrument (upper size limit between 1500 and 2000 µm depending on the particles shape) and, for the latter, interference with the measurements, since particles of these sizes correspond only to cell/CW fragments and intracellular contents (e.g. oil droplets). These materials were examined by LM and there was no evidence of intact cells (data not shown).

The samples were then loaded into the Malvern 2000® laser diffraction particle sizer (Malvern Instruments Ltd, Worcestershire, UK) connected to a dispersant unit (Hydro 2000G) filled with water. The protocol used for the particle size measurements was adapted from previous work (Jalabert-Malbos et al., 2007). Before loading, each sample was divided into several relatively equal quantities and consecutive ten-second measurements were taken for each one of these sub-samples. The set of measurements thus obtained was averaged to give the PSD for the whole sample. The almond oil and water have a refractive index of 1.471 and 1.330, respectively (see Chapter 2, Section 2.3.2.2). The absorption of almond particles was 0.1. The speeds of the stirrer and the pump were 700 and 1175 rpm, respectively. These settings were selected because under these conditions, the samples were well dispersed into water, showed no aggregation and consistently low intra and inter-sample variation (i.e. the variation in relative standard deviation of the average particle size was < 1%). The diffraction data were analysed using the Mie diffraction method respectively (see Chapter 2, Section 2.3.2.2), which is used to accurately measure the light scattering behaviour of spherical particles over a large size range (0.02 to 2000 µm). The particle sizes were
obtained as volume percentage of the total volume of all particles in the distribution. The d(0.1),
d(0.2), d(0.5), d(0.8) and d(0.9) values were sometimes used as they allowed a simple
classification of the PSD. They correspond to the centiles, in other words the size in µm of a
particle below which 10, 20, 50, 80 and 90% of the sample lies.

3.3.5 Determination of lipid bioaccessibility

3.3.5.1 Predictions from the theoretical model

A mathematical model was developed to predict lipid bioaccessibility based on homogeneous,
geometrically-defined particles (i.e. cubes) (Grassby et al., 2014). For the current study, this model
was adapted to allow predictions of bioaccessibility using heterogeneous particle sizes of masticated
raw and roasted almond boluses. The original model predicts the fraction of lipid released from
particles of almond cotyledon tissue with a specific particle edge length (particle size, p), and
average cell diameter (d); d being approximately 35 µm for almond parenchyma cells (Equation 3.1)
(Grassby et al., 2014).

\[
L_R(%) = \frac{1}{2} \left[\frac{64}{\pi^2} \left(\frac{d}{p} \right) - 8 \left(\frac{d}{p} \right)^2 + \frac{4}{3} \pi \left(\frac{d}{p} \right)^3 \right] \times 100
\]
(Eq. 3.1)

where \(L_R\) is the percentage of lipid release, \(d\) is the average diameter of cells and \(p\) is a specific
particle size.

The initial model was constructed on the basis that the almond particles were cubes for two reasons,
first that it simplified the development of the model, and second that cubes were used in our
previous in vitro and in vivo digestibility studies (Mandalari et al., 2008a). To predict lipid release
values from the mastication size data using Equation 3.1, it was necessary to transform this data into
particle edge lengths. However, the laser diffraction method generated particle size values
expressed as volume equivalent sphere diameter, which is the diameter of a sphere with the same
volume as the particle. The sphere diameters (D) were therefore converted into particle edge lengths (p) using the equation below:

$$p = \sqrt[3]{\frac{8}{3\pi} \left(\frac{D}{2}\right)^3}$$

(Eq. 3.2)

It was also assumed that only the cells through which the fracture plane passes were ruptured (i.e. the surface of ruptured cells created by fracturing the almond), and therefore released their contents, as observed previously (Ellis et al., 2004). The sieve particle sizes were also converted into particle edge lengths using Equation 3.2. The mathematical model was used to calculate lipid bioaccessibility for each p value, and then multiplied by the weight percentage of that particle size fraction in the complete bolus to give lipid bioaccessibility for the bolus, as reported in Appendix B.

The weight percentages of four fractions, with particle size ranges of 20 to 1700 µm, 1700 to 2000 µm, 2000 to 3350 µm and > 3350 µm, were calculated relative to the total weight retained by the sieves. The percentage weight values of the different sub-fractions within the 20 to 1700 µm size range were estimated using the laser diffraction data. The values for each fraction were then combined to give the predicted lipid release, expressed as a percentage, for each bolus (L_T) produced by the volunteers. The details of the calculation used and an example are presented in Appendix B.

3.3.5.2 Bioaccessibility analysis by solvent extraction method

The lipid content of the original raw and roasted almonds and the corresponding masticated almonds was determined to obtain the amount of lipid that had been released during the chewing process. We asked four volunteers to masticate a typical portion size of almond (28 g) and expectorate it in a similar manner to that described above. The lipids were then extracted as described in Section 2.3.1.2.1. Results of lipid content were expressed as a percentage of dry weight. These data were then compared to the theoretical values, of the same four volunteers, obtained with the mathematical model.
3.3.6 Composition of cell-wall polysaccharides

CW analyses for masticated samples were performed at the IFR as described in Chapter 2.

3.3.7 Microstructural analysis

Masticated samples were prepared for light, scanning and transmission electron microscopy as indicated in Chapter 2. Nile red was also used on fresh almond samples.

3.3.8 Statistical analysis

The data were analysed using SPSS version 20.0. For all tests, the significance level was set at $P < 0.05$ (2 tailed). All data were normally distributed (analysed using Shapiro-Wilk test and Normal Q-Q plots); they are expressed as mean ± SEM. Repeated measures ANOVA was used to assess the differences between replicates (i.e. visit 1 and 2) and almond form and also differences in lipid release between the two methods (i.e. Soxhlet and mathematical model). Differences in masticatory parameters, particle size and lipid release between the almond forms were tested by Student’s paired t-test. Finally, a Pearson correlation test was also performed to explore the link between the number of chews and the particle sizes. To simplify the latter analysis the d values (0.1, 0.2, 0.5, 0.8 and 0.9) were used.
Chapter 3: Effect of mastication on lipid release from almond seeds

3.4 Results

3.4.1 Mastication parameters

A total of 15 subjects attended the four mastication sessions (Figure 3.2). In previous studies the investigation of mastication function and efficiency, the measure of mastication sequences, cycles and frequency provide information on the individual chewing behaviour (Hiiemae et al., 1996; Jalabert-Malbos et al., 2007; Woda et al., 2006b). Depending on the individual as well as the food and its physical properties, those basic parameters are expected to vary (Kohyama et al., 2008; Lassauzay et al., 2000; Proschel and Hofmann, 1988; Woda et al., 2006a). The masticatory parameters for raw and roasted almonds are presented in Table 3.1. The results showed no statistically significant difference in the number of mastication cycles (34.4 ± 3.90 vs. 33.1 ± 3.64, NA and RA respectively) and mastication frequency (1.4 ± 0.05 s\(^{-1}\), for both type of almonds) between the two forms of almond. Only the duration of the mastication sequences was statistically different (\(P < 0.05\)) between the almond forms, although this difference was relatively small, as seen by the mean values 25.4 ± 2.72 s vs. 23.3 ± 2.40 s, for NA and RA, respectively.

Table 3.1 Masticatory parameters for raw and roasted almonds (n=15, means ± SEM).

<table>
<thead>
<tr>
<th></th>
<th>Number of cycles</th>
<th>Sequence duration (s)</th>
<th>Mastication frequency (s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw almonds</td>
<td>34.4 ± 3.90</td>
<td>25.4 ± 2.72(^{\dagger})</td>
<td>1.4 ± 0.05</td>
</tr>
<tr>
<td>Roasted almonds</td>
<td>33.1 ± 3.64</td>
<td>23.3 ± 2.40(^{\dagger})</td>
<td>1.4 ± 0.05</td>
</tr>
</tbody>
</table>

\(^{\dagger}\) Significant difference between almond forms (\(P < 0.05\)) as calculated by Student’s paired t-test.
3.4.2 Particle sizing of the masticated samples

Each form of almond, collected on different days, was measured for each participant by both sizing methods, each of which has some methodological limitations. We observed that, compared with mechanical sieving, laser diffraction was more efficient, reproducible (as shown by the small error bars in Figure 3.4) and a less time-consuming method. One advantage of mechanical sieving is that it provided a size distribution over a wider range of sizes compared with the laser method, albeit with
poorer size resolution. Problems of sieve damage (especially at low aperture size) and particle aggregation were also experienced with mechanical sieving, whereas laser diffraction was not affected by such deficiencies.

3.4.2.1 Mechanical sieving

Raw and roasted almond had a total percent recovery of 45.6 ± 1.66% and 53.3 ± 1.84 %, respectively. When the content of the sieve bases (i.e. containing the water used to rinse the sieves, fragments of cells and CWs and isolated intracellular components such as oil droplets), collected and dried, was included, the percentage recovery values were 85.4 ± 1.47 % for raw and 89.5 ± 1.50 % for roasted almond samples which were relatively high compared to other studies. The reported recovery values previously reported for almonds by other groups are approximately 44% of almonds (Frecka et al., 2008) and 62% of almonds (Cassady et al., 2009). As suggested by the authors, the good recoveries obtained for the current study was attributable to the fact that the cells fragments and released nutrients produced from the mastication were collected. After evaporation of water in the saliva, the solid content of saliva would be very low, would have made a negligible contribution to the recorded mass of almond nutrients.

The weight of masticated almond retained on the sieves, presented as a percentage of the original weight of the pre-masticated almond, was plotted against the aperture size of each sieve. The average PSD for raw and roasted almond is shown in Figure 3.3. Sieve PSDs are usually measured using a systematic mathematical progression in sieve aperture size; therefore the fractions from the 1700 and 2000 µm sieves were combined, as were those from the 850 and 1000 µm sieves, so that aperture size roughly doubled at each step. Repeated measures ANOVA, with size as a factor, revealed significant differences in PSDs between the raw and roasted almonds ($P < 0.05$). Student’s paired t-test showed significant differences ($P < 0.001$) in particle size at all the size fractions.
between the raw and roasted almonds, except at size fractions 850 and 1000 µm where the two curves overlapped. Therefore, the proportion of large particles (1700 to > 3350 µm) was found to be greater for raw than roasted almond, whereas the opposite was observed for small particles (20 to < 1700 µm), so the masticated roasted samples contained a higher proportion of smaller particles. This result is in agreement with data from a recent chewing study that used a similar sieving method (Cassady et al., 2009; Frecka et al., 2008); in our study ~60 and 24% of the particles from raw almonds, obtained with mechanical sieving, were found to have particle sizes < 500 µm and > 1700 µm, respectively (Table 3.2). Similar results were obtained for roasted almonds, with 64% of particles < 500 µm and 20% > 1700 µm.

Figure 3.3 Particle size distributions by mechanical sieving of raw and roasted almond boluses (n=15, means ± SEM). Significant differences found between raw and roasted were calculated by Student’s paired t-test (P < 0.001).
Table 3.2 Percentage weight of almond particles retained on the sieves by size ranges (n=15, means and cumulative percentages) from the present study as well as others (Cassady et al., 2009; Frecka et al., 2008).

<table>
<thead>
<tr>
<th>Size Range (µm)</th>
<th>Present study</th>
<th>Frecka et al.</th>
<th>Cassady et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw</td>
<td>Roasted</td>
<td>Raw</td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>Cumulative %</td>
<td>MEAN</td>
</tr>
<tr>
<td>< 20</td>
<td>46.6</td>
<td>46.6</td>
<td>40.4</td>
</tr>
<tr>
<td>20 to 32</td>
<td>0.7</td>
<td>47.3</td>
<td>1.8</td>
</tr>
<tr>
<td>32 to 63</td>
<td>0.7</td>
<td>48.0</td>
<td>2.6</td>
</tr>
<tr>
<td>63 to 125</td>
<td>1.0</td>
<td>49.1</td>
<td>2.2</td>
</tr>
<tr>
<td>125 to 250</td>
<td>1.5</td>
<td>50.5</td>
<td>2.6</td>
</tr>
<tr>
<td>250 to 500</td>
<td>3.8</td>
<td>54.3</td>
<td>6.2</td>
</tr>
<tr>
<td>500 to 850</td>
<td>5.5</td>
<td>59.8</td>
<td>8.1</td>
</tr>
<tr>
<td>850 to 1000</td>
<td>5.2</td>
<td>65.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1000 to 1700</td>
<td>11.3</td>
<td>76.2</td>
<td>10.6</td>
</tr>
<tr>
<td>1700 to 2000</td>
<td>8.9</td>
<td>85.1</td>
<td>7.5</td>
</tr>
<tr>
<td>2000 to 3500</td>
<td>6.4</td>
<td>91.4</td>
<td>5.2</td>
</tr>
<tr>
<td>> 3350</td>
<td>8.6</td>
<td>100.0</td>
<td>6.7</td>
</tr>
</tbody>
</table>
3.4.2.2 Laser diffraction

Figure 3.4 shows the average PSD of raw and roasted almond obtained by laser diffraction. All the PSDs were multimodal and broad and are similar to the distributions obtained by mechanical sieving, except that the laser method does not include sizes at the high end of the distribution due to an upper size limit between 1500 and 2000 µm. Inter-subject variation was relatively small (i.e. pooled CVs were 12% for NA and 9% RA). Student’s paired t-test indicated significant differences ($P < 0.001$) in particle size at all the size fractions of the distributions between the two almond forms, apart from the size fractions 141, 159, 178 and 200 µm where the two curves overlapped.

The data indicate that 47 and 56% of the NA and RA particles, respectively, have a size < 500 µm. However, the laser measurements did not include particles > 1700 µm due to size limits, as explained in the Materials and methods section. In view of the reliability of the particle size data obtained from the mastication study, using the two different sizing methods, we were justified in incorporating this data into the theoretical model for predicting lipid bioaccessibility.

Figure 3.4 Particle size distributions by laser diffraction of raw and roasted almond boluses ($n=15$, means ± SEM). Significant differences found between raw and roasted were calculated by Student’s paired t-test ($P < 0.001$).
Comparison between studies is challenging as each researcher group use different number of chews and also different sieve aperture size for determining PSD (Al-Ali et al., 1999; Cassady et al., 2009; Frecka et al., 2008; Mowlana et al., 1994; Peyron et al., 2004; Yurkstas and Manly, 1950). Therefore, any future mastication protocols employed to predict nutrient bioaccessibility will need to be standardised.

3.4.3 Correlation between particle size and number of chews

For this part, the d(0.1), d(0.2), d(0.5), d(0.8) values were used to facilitate the comparison between the particle size and the number of chews. As previously explained, these parameters indicate the percentage of the sample that lies below a specific size. As an example, the d(0.8) of raw almonds corresponds to 1076 ± 15.2 µm which means that 80% of the particles constitutive of the samples had a size inferior to approximately 1076 µm (Table 3.3). The number of chews was correlated with the smaller particles sizes (d(0.1) and d(0.2), d(0.5) for raw almond only). This suggests, as previously demonstrated (Buschang et al., 1997; Frecka et al., 2008), that the spreading of the PSD is highly dependent on masticatory parameters. Few mastication cycles produce a lower proportion of the smallest particles.

Table 3.3 Centile (d) values (n=15) of particle sizes (µm) and correlation coefficient (r) between number of chews and particle size for raw and roasted almonds (means ± SEM).

<table>
<thead>
<tr>
<th>Centile (d)</th>
<th>Raw almonds</th>
<th>Roasted almonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>d(0.1)</td>
<td>97 ± 4.3(^1)</td>
<td>39 ± 2.4(^1)</td>
</tr>
<tr>
<td>d(0.2)</td>
<td>185 ± 8.2(^1)</td>
<td>95 ± 5.3(^1)</td>
</tr>
<tr>
<td>d(0.5)</td>
<td>553 ± 16.3(^1)</td>
<td>417 ± 13.9(^1)</td>
</tr>
<tr>
<td>d(0.8)</td>
<td>1076 ± 15.2(^1)</td>
<td>958 ± 13.8(^1)</td>
</tr>
<tr>
<td>d(0.9)</td>
<td>1347 ± 12.8(^1)</td>
<td>1253 ± 12.0(^1)</td>
</tr>
</tbody>
</table>

\(^1\)Significant difference between almond forms (P < 0.05) as calculated by Student’s paired t-test.
3.4.4 Lipid bioaccessibility determined by the theoretical model and solvent extraction

The predicted and measured percentages of lipid released from masticated almonds by 4 volunteers (28 g almond portion) are presented in Table 3.4. The average values obtained by both methods are in close agreement with about 8% of lipid released for raw and 11% for roasted almonds. Similar predictions (8.4 ± 0.3% for raw almond and 11.1 ± 0.3% for roasted almond) were obtained for the overall group of volunteers (n=15) when they masticated only 4 almonds Tables 3.5; statistically significant differences were found between these two almond forms (P < 0.001). The predicted lipid bioaccessibility ranges were 6.4-9.9% for raw, and 8.6-12.5% for roasted almond, reflecting the slightly increased proportion of small particles in the particle size distribution of the RA type.

The model indicated a threshold value of \(p \), approximately 55 µm for almond, which is the point at which no more intact cells are present in the cube (particle), based on an average cell size of 35 µm (according to measurements by Beckman Multisizer™ 3 Coulter Counter® and microscopy observations, almond cell sizes range from 20 to 50 µm). Therefore, to obtain 100% release, all the particles would have to be 55 µm or smaller. This is obviously not the case in masticated almonds, and even almond flour (average particle size 250 µm) has a predicted lipid release of ~40% (see Appendix B).

Table 3.4 Percentage of lipid release estimated either measured by the Soxhlet or estimated by the mathematical model using particle size data or measured (n=4, means ± SEM).

<table>
<thead>
<tr>
<th>Volunteer</th>
<th>Soxhlet</th>
<th>Mathematical model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw</td>
<td>Roasted</td>
</tr>
<tr>
<td>1</td>
<td>5.9</td>
<td>11.1</td>
</tr>
<tr>
<td>2</td>
<td>8.6</td>
<td>12.9</td>
</tr>
<tr>
<td>3</td>
<td>7.8</td>
<td>12.5</td>
</tr>
<tr>
<td>4</td>
<td>9.1</td>
<td>8.1</td>
</tr>
<tr>
<td>MEAN</td>
<td>7.9 ± 0.7</td>
<td>11.1 ± 1.1</td>
</tr>
</tbody>
</table>

\(^1\)Significant difference between the two almond forms (\(P < 0.05 \)) as calculated by Student’s paired t-test were found, but no differences were found between the experimental and theoretical methods (repeated measures ANOVA).
Table 3.5 Percentage of lipid release predicted by the mathematical model (n=15) for raw (A) and roasted (B) almonds.

A-Raw almonds

<table>
<thead>
<tr>
<th>Volunteer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d(0.1)</td>
<td>113</td>
<td>104</td>
<td>139</td>
<td>103</td>
<td>104</td>
<td>77</td>
<td>92</td>
<td>86</td>
<td>100</td>
<td>105</td>
<td>82</td>
<td>88</td>
<td>95</td>
<td>96</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>d(0.2)</td>
<td>222</td>
<td>197</td>
<td>268</td>
<td>200</td>
<td>199</td>
<td>154</td>
<td>176</td>
<td>160</td>
<td>184</td>
<td>196</td>
<td>168</td>
<td>167</td>
<td>178</td>
<td>176</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>d(0.5)</td>
<td>670</td>
<td>587</td>
<td>672</td>
<td>576</td>
<td>591</td>
<td>507</td>
<td>510</td>
<td>521</td>
<td>543</td>
<td>562</td>
<td>567</td>
<td>524</td>
<td>523</td>
<td>521</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>d(0.8)</td>
<td>1182</td>
<td>1108</td>
<td>1152</td>
<td>1097</td>
<td>1122</td>
<td>1043</td>
<td>1017</td>
<td>1063</td>
<td>1064</td>
<td>1074</td>
<td>1114</td>
<td>1047</td>
<td>1056</td>
<td>1062</td>
<td>933</td>
</tr>
<tr>
<td></td>
<td>d(0.9)</td>
<td>1434</td>
<td>1374</td>
<td>1404</td>
<td>1366</td>
<td>1387</td>
<td>1323</td>
<td>1297</td>
<td>1339</td>
<td>1339</td>
<td>1345</td>
<td>1383</td>
<td>1334</td>
<td>1341</td>
<td>1221</td>
<td>1347</td>
</tr>
<tr>
<td>Predicted lipid loss</td>
<td>6.4</td>
<td>6.9</td>
<td>7.1</td>
<td>7.2</td>
<td>7.5</td>
<td>7.5</td>
<td>8.3</td>
<td>8.3</td>
<td>9.4</td>
<td>9.4</td>
<td>9.5</td>
<td>9.8</td>
<td>9.9</td>
<td>9.9</td>
<td>8.4</td>
<td></td>
</tr>
</tbody>
</table>

B-Roasted almonds

<table>
<thead>
<tr>
<th>Volunteer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d(0.1)</td>
<td>46</td>
<td>59</td>
<td>43</td>
<td>42</td>
<td>36</td>
<td>46</td>
<td>39</td>
<td>43</td>
<td>43</td>
<td>46</td>
<td>36</td>
<td>26</td>
<td>24</td>
<td>29</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>d(0.2)</td>
<td>118</td>
<td>142</td>
<td>103</td>
<td>98</td>
<td>88</td>
<td>102</td>
<td>93</td>
<td>98</td>
<td>109</td>
<td>102</td>
<td>96</td>
<td>67</td>
<td>64</td>
<td>65</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>d(0.5)</td>
<td>504</td>
<td>516</td>
<td>439</td>
<td>431</td>
<td>419</td>
<td>412</td>
<td>398</td>
<td>417</td>
<td>456</td>
<td>407</td>
<td>448</td>
<td>324</td>
<td>349</td>
<td>348</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>d(0.8)</td>
<td>1053</td>
<td>1024</td>
<td>990</td>
<td>982</td>
<td>992</td>
<td>939</td>
<td>914</td>
<td>961</td>
<td>985</td>
<td>952</td>
<td>983</td>
<td>845</td>
<td>882</td>
<td>942</td>
<td>929</td>
</tr>
<tr>
<td></td>
<td>d(0.9)</td>
<td>1332</td>
<td>1304</td>
<td>1281</td>
<td>1278</td>
<td>1287</td>
<td>1233</td>
<td>1207</td>
<td>1255</td>
<td>1274</td>
<td>1253</td>
<td>1270</td>
<td>1149</td>
<td>1188</td>
<td>1253</td>
<td>1232</td>
</tr>
<tr>
<td>Predicted lipid loss</td>
<td>9.3</td>
<td>10.1</td>
<td>8.6</td>
<td>10.9</td>
<td>11.7</td>
<td>11.8</td>
<td>12.2</td>
<td>12.52</td>
<td>11.6</td>
<td>9.7</td>
<td>11.2</td>
<td>11.5</td>
<td>12.0</td>
<td>11.7</td>
<td>11.4</td>
<td>11.1</td>
</tr>
</tbody>
</table>
3.4.5 Composition of cell-wall polysaccharides

The sugar composition of the CW of masticated almonds is presented in Figure 3.5. Almond seed CW are mainly composed of arabinose-rich polysaccharides, including pectic substances, encasing the cellulose microfibrils. Indeed, arabinose, glucose and galacturonic acids were the major sugars found in masticated raw and roasted almond CW, with GLC analysis showing sugar concentrations of 37.9 and 31.1%, 19.0 and 24.3%, and 23.2 and 24.5%, respectively. These values are in close agreement with the ones obtained for whole almonds (before mastication): arabinose, glucose and galacturonic acids concentrations were 35.7 and 38.3%, 20.3 and 20.0%, and 27.8 and 23.5% for raw and roasted almonds, respectively (Ellis et al., 2004). Therefore, no major modification in the composition of the CW appears to have occurred after mastication compared with the original non-masticated samples, as previously reported (Ellis et al., 2004; Femenia et al., 2001).

![Figure 3.5 Monosaccharide composition (mol%) of raw and roasted almond boluses. Values are mean ± SEM (triplicates).](image)

3.4.6 Microstructure of the masticated almonds

The microstructural characteristics of masticated almonds (Figure 3.6) show that the lipid-rich parenchyma cells appear to remain largely intact, not just in the centre of the particle, but also as
previously shown (Ellis et al., 2004) a few layers of cells beneath the surface. Thus, extensive cell breakage was observed mainly at the fractured surfaces of relatively large particles (e.g. sizes ~1200 µm and 500 µm in Figure 3.6 A and B). Moreover, there was little or no evidence of cell separation in these masticated particles. However, in particles of smaller size (approximately 250 µm), there was evidence of significant levels of cell distortion and rupture in all areas of the almond particle, not just at the fractured surface (Figure 3.6 C).

Figure 3.6 LM images of masticated raw almond seed: whole particle of decreasing size (A, B and C); parenchyma cells located in the centre of the particles (D and E); cells situated at the edge of the particles (F, G and H); note the presence of coalesced lipid droplets (images C, E and F). Scale bars: A = 100 µm; B = 50 µm, C-E = 20 µm, and F = 20 µm. Approximate size: A: 1200 µm, B: 500 µm, and C: 250 µm.

SEM images provide further evidence of the apparent greater damage caused by chewing in the smaller almond particles (Figure 3.7). One possible explanation of this is that small particles may have received a larger number of deformations (chews) during mastication, potentially leading to greater structural damage to the cellular tissue. The lipid-rich parenchyma cells were found to be tightly packed together, but much less so for some of the small particles, thus creating a compact tissue matrix that makes the diffusion of molecules (e.g. lipase) and fluid extremely difficult, as
Chapter 3: Effect of mastication on lipid release from almond seeds

illustrated by the centres of the particles remaining unstained with osmium tetroxide (Figure 3.6). The micrographs (Figures 3.6 and 3.8) clearly show that the majority of the nutrients remained encapsulated in their original form inside the cells. These intracellular inclusions are mainly lipid bodies as demonstrated by Nile red staining (Figure 3.9). The relatively uniform (‘spherical’) microstructure of the OBs can be distinctly seen in TEM images in Figure 3.8 A and B.

Figure 3.7 SEM of particles from masticated raw almond seed. Scale bars: A and B = 200 μm; and C = 100 μm. Approximate sizes of raw almond particles: B, 2000 μm; and C, 550 μm.

Figure 3.8 TEM images (A and B) of masticated raw almond seed (A and B) showing intact cells and their content. TEM image (C) of ruptured cells at the surface of the masticated raw almond particle; note the coalesced oil bodies. Scale bars: A = 6 μm; B and C = 5 μm.
Chapter 3: Effect of mastication on lipid release from almond seeds

Figure 3.9 LM images of masticated raw almond seed stained with Nile red; images A and B are ~140 μm and images C and D are ~375 μm particles. Scale bars: A-D = 20 μm.

As previously demonstrated (Ellis et al., 2004), the cells located at the surface of the particles were ruptured, and intracellular contents exposed to the external environment, although some of the nutrients, including lipids, were still present and thus not removed by saliva at the fractured surface (Figure 3.10). However, when masticated, tissue rupture appears to occur unevenly within the almond particle and fissures running from the fractured surface of almond particles into the underlying core tissue were observed (Figure 3.6 C and F); some of these fissures created new particles that were eroded from the particle surface (Figure 3.6 F). These fissures seemed to be more frequent in the small particles relative to large ones.

Figure 3.10 LM (A) and SEM (B) images of the surface of masticated almond particles. Scale bars = 10 μm and 30 μm for images A and B, respectively.
Chapter 3: Effect of mastication on lipid release from almond seeds

3.5 Discussion

The accumulation of evidence from epidemiological and human metabolic studies has shown that the consumption of nuts such as almonds reduces a number of risk factors associated with non-infective disease, such as type 2 diabetes, cardiovascular disease (CVD) and obesity (Bao et al., 2013; Jenkins et al., 2006; Joice et al., 2008; Sabate and Ang, 2009). The behaviour of almonds in the GIT may explain why almonds have these potential health benefits, notably a slow rate and limited extent of digestion of almond lipid and other macronutrients post-mastication (Berry et al., 2008; Ellis et al., 2004; Mandalari et al., 2008a). These effects are strongly linked to the structure and properties of almonds, particularly the structural integrity of their CW. Almond seeds are an energy-dense food, typically containing ~50% of lipid, so they would be expected to elicit a relatively high postprandial lipaemic response when ingested. However, previous work has revealed that a high proportion of lipid remains encapsulated in the cells of almond tissue and is therefore less available for digestion (Ellis et al., 2004), leading to reduced energy absorption (Cassady et al., 2009; Novotny et al., 2012) and a low postprandial lipaemic response (Berry et al., 2008). These findings are reinforced by a recent study showing that the Atwater factors, used for estimating the metabolisable energy content of foods, overestimates the energy content of almonds by as much as ~32%, relative to the empirically-derived value in humans (Novotny et al., 2012).

One crucial aspect previously overlooked in many nutrition studies is the complex behaviour of food materials in the GIT. It is now well recognized that changes in the structure and physicochemical properties of plant food matrices significantly affect the rate and extent of nutrient digestibility; e.g. CW encapsulation (Ellis et al., 2004; Noah et al., 1998). For instance, to be optimally digested, lipids must be released from the cells of almond tissue and emulsified (Michalski et al., 2013). However, in the present study we have shown that the proportion of lipid released from the almonds following mastication is severely limited. Thus, lipid bioaccessibility values predicted by the theoretical model...
or determined experimentally were very low, within the range of 8 to 11% for almonds, but with the roasted form being slightly higher at the top end of this range.

Particle size of boluses of two types of almonds, raw and roasted, were measured using mechanical sieving and laser diffraction. Little difference in the PSDs was found between raw and roasted almonds; however, a higher proportion of small particles were observed in the roasted almond boluses. For both almond forms an important proportion of the boluses’ particles, ~35 to 40%, had a size > 500 µm. Individuals therefore tend to swallow large particles, with low bioaccessibility, when eating almonds. We also found that depending on the size of the generated particles the degree of damages varied (Figure 3.7). For large almond particles (size > 500 µm), the cells on the surface were mostly ruptured by mastication, whereas the structural integrity of cells in the central part of the particles were preserved. On the other hand, smaller particles showed damages even in the cells located in the core of the particles. The relatively high proportion of large particles in the masticated samples explains why chewed almonds have such a low lipid bioaccessibility. This observation is consistent with the results of a digestibility study showing that lipid digestion in raw almonds, albeit in 2 mm cubes rather than masticated samples, is restricted to ~10% in the early stages of digestion (≤ 3 h) in the gastric and duodenal phases (Mandalari et al., 2008a). Restricted bioaccessibility and digestion of lipid post-mastication, caused by encapsulation of lipid by the CW in almond seeds, also plays a crucial role in determining postprandial lipaemia (Berry et al., 2008). Moreover, these findings may provide some explanation of why the consumption of whole almonds suppresses hunger and desire to eat, as recently reported by the Mattes group (Tan and Mattes, 2013). The same group had previously demonstrated the importance of chewing in relation to gut hormone signalling, and the effect on satiety (Cassady et al., 2009). Also, a bolus composed of particles that are large (size > 1000 to 2000 µm) and hard delays gastric emptying as they cannot pass through the pylorus (i.e. related to the so-called ‘sieving effect’) (Kong and Singh, 2008), inducing a feeling of fullness, which may contribute to lower subsequent energy intake (Mattes and Dreher, 2010).
However, no attempt has been made previously to characterise masticated almonds to allow quantification of lipid potentially available for digestion, including the early stages of digestion, which is a key determinant of postprandial lipaemia (Berry et al., 2008), and other metabolic responses (Jenkins et al., 2006).

As reported previously (Mishellany et al., 2006; Peyron et al., 2004), an almond bolus before swallowing consists of particles of various sizes, which is consistent with the multimodal PSDs obtained for both almond forms seen in the current study. The initiation of swallowing has been suggested to rely on a particle size threshold (Prinz and Lucas, 1995). The ready-to-swallow bolus must also be cohesive to prevent particles getting into the airways. Texture and lubrication are also essential criteria for swallowing to occur, and are generally consistent between individuals (Drago et al., 2011). The sensory signals received by the mouth receptors trigger deglutition, based notably on the insalivation and the rheology (i.e. viscosity) of the bolus (Flynn et al., 2011; Lucas and Luke, 1986; Peyron et al., 2004; Yurkstas, 1965). The absence of intra- and inter-individual variability in our data confirms the hypothesis that the almond bolus has to reach a specific consistency, which seems similar between individuals, before being swallowed (Prinz and Lucas, 1997). Despite the fact that mastication is highly individual, PSD per almond type is similar among subjects, which is in agreement with other studies (Hiiemae, 2004; Jalabert-Malbos et al., 2007; Jiffry, 1981; Mishellany et al., 2006; Peyron et al., 2004). As explained by Hiiemae (Hiiemae, 2004), the masticatory parameters, such as number of chews, their strength and frequency, is specific to the individual, but the end product (bolus) is similar. Masticatory behaviour differs depending on the food properties and the transformations occurring to it when chewed (Woda et al., 2006b). Hard foods such as tree nuts require more mastication cycles and chewing for longer than softer food (i.e. carrot or cauliflower), producing a bolus containing more particles of a smaller size. Moreover, a single chew could break foods into various numbers of particles according to the physicochemical properties of that particular food, notably water content as well as DF (cell wall) content and structure. For
instance, tree nuts such as almonds, appear to produce more small particles per chew than carrots (Jalabert-Malbos et al., 2007; Lucas and Luke, 1986; Mowlana et al., 1994; Varela et al., 2008a).

One explanation for the wide size range of particles comprising the almond bolus has been expressed by Flynn and colleagues (Flynn et al., 2011). They suggested that the mouth contains several compartments where food fracture differs. Thus, during mastication some particles are broken into several smaller fragments, while others are retained in ‘non-mastication’ compartments of the oral cavity inaccessible to the crushing or grinding action of the teeth. The adhesion of the compressed particles to the contact surfaces of the teeth while masticating probably amplifies this phenomenon and, as such, almond material adhering to teeth surfaces will be more easily fractured than freely moving particles (Woda et al., 2006b). This may also explain the greater damage that occurred to the smaller almond particles (Figure 3.7), which has a significant bearing on lipid bioaccessibility. Indeed, a greater number of fissures in the almond tissue below the fractured surface results in an increase in the accessibility of lipid substrate to digestive fluids containing lipase and BS.

The mastication parameters obtained for the two types of almonds were very similar despite the differences in their PSDs. The greater number of small particles in the roasted almond boluses is probably related to the reduced water content of the CW. In the CW, water can act as a plasticiser, so when it is removed, the CW as well as the whole almond tissue become more brittle (Blahovec, 2007). The roasting process also affects the integrity of almond CW microstructure and induces coalescence of the lipid bodies to produce large lipid droplets that are less susceptible to be digested (i.e. reduced surface area to volume ratio) (Agrawal et al., 1997; Pascual-Albero et al., 1998; Varela et al., 2006).
Chapter 3: Effect of mastication on lipid release from almond seeds

A wide range of techniques are available to measure the size of particles, for nuts and almond in particular, and mechanical sieving is the technique that is most commonly used. In previous studies, mechanical sieving, laser diffraction, image analysis and optical scanning methods have been used on natural (Hoebler et al., 2000; Jalabert-Malbos et al., 2007; Lemmens et al., 2010; Schneider and Senger, 2001; Wang et al., 2006) as well as artificial foods (Buschang et al., 1997; Olthoff et al., 1984; van der Bilt et al., 1993), usually in order to evaluate masticatory efficiency. As far as almonds are concerned, the method predominantly employed has been mechanical sieving (Al-Ali et al., 1999; Cassady et al., 2009; Frecka et al., 2008; Ow et al., 1998; Peyron et al., 2004). Masticated almond samples have been described as a mixture of medium size (200 to 4000 µm) and fine (< 200 µm) particles; 35 µm being the approximate size of a single almond cell and 4000 µm the largest particle found (Cassady et al., 2009; Frecka et al., 2008; Peyron et al., 2004). Medium size particles can be analysed with mechanical sieving however this technique has been described as inaccurate for fine particles because the separation is frequently incomplete, especially in lipid-rich material such as almond (Lauer, 1966). In the present study, mechanical sieving and laser diffraction were used. This choice was justified by the heterogeneity, as well as the broadness, of the particle size distribution of the almond bolus.

The main difficulty encountered with the particle sizing related to the complexity and behaviour of the material studied here. For example, masticated almond particles tend to aggregate due to the lipid release occurring during the mastication process. Nevertheless, the almond seed has been described as a suitable material to use for particle sizing studies as it is easily comminuted, it is not humid or stringy, it does not break up into smaller fragments during the sizing process as a result of the sieves vibrations, it does not disperse or solubilise in water and saliva, and it is possible to weigh it after chewing (Schneider and Senger, 2001). Another major advantage is that almond is often consumed raw and non-processed, the present measurements are therefore likely to be representative of almonds consumed in a typical diet.
Mechanical sieving is an economic and easy method to measure the particle size of dry/semi-dry and non-cohesive materials. The use of a sieve shaker permits researchers to obtain more accurate and reproducible data than hand sieving as the vibrations are consistent in intensity during and between measurements. Washing the sieves with deionised water before and after shaking them permitted the satisfactory separation of the almond particles. One advantage of the Malvern 2000© laser diffraction particle sizer is that it allows a broad size range of particle, from 0.02 to 2000 µm, to be determined. However, sieve analysis can also be performed on larger particles (covering the largest particles contained in almond boluses, ~4 mm), although finer particles can reduce sieving efficiency (Allen, 1997). The sieves of small apertures get easily damaged when used regularly especially with lipidic material such as almonds. The laser diffraction method gives continuous measurements of particle sizes as opposed to the sieving method, which is limited in the number of sieve sizes that could be used; thus only 8-10 sieves can be loaded on the shaker. Despite the slightly narrower size range of particles measured by laser diffraction (limited to sizes below 2000 µm), the technique gave a good estimation of the overall distribution. Another advantage of using the laser diffraction in the current study was that, once the instrument was set up for analysis, it allowed the operator to obtain accurate and reproducible results quickly without having to calibrate against a standard. It was clearly less time consuming than using mechanical sieving as it took approximately 2 h for preparing and measuring the samples for the laser diffraction as opposed to approximately 10 h for mechanical sieving. However, identifying the machine parameters characteristic of the analysed material required a good understanding of both the principle of the laser diffraction and the physicochemical properties of the material. Malvern 2000© laser diffraction particle sizer is therefore the recommended method to determine particle size distribution of almonds and other nuts. Nonetheless, in the current study a combination of laser diffraction and sieving was required to generate detailed information on masticated almonds so that reliable nutrient release values could be predicted from the mathematical model. Using this method to produce a complete PSD, we would anticipate that the model could be applied to other foods relatively simply. For example, we
would expect foods with similar physical and structural properties to almonds to be particularly amenable to this approach. To be applied, the model requires that the majority of cells rupture rather than separate during chewing, that they are roughly spherical, and that an average diameter is available.

Therefore, the present study demonstrated that after mastication only a small proportion of lipid was released from the ruptured cells located on the fractured surfaces of masticated almonds (Figures 3.6 to 3.10). The cells underneath these layers remained intact (i.e. integrity preserved as showed on the micrographs and CW composition analysis), and retained their content. The mathematical model estimates how much lipid is released from the fractured layer of ruptured cells. In almond tissue, particle size is therefore the key parameter that affects lipid release. The more the almonds are chewed the more the particle sizes contained in the bolus are reduced and the more ruptured cells are produced. The smaller the particles the greater the lipids released. Lipid release increases rapidly as particle size decreases, until the point at which all the cells are ruptured.

As discussed above, laser diffraction provided a reliable and efficient method for obtaining size information on almonds masticated by human volunteers. Compared with sieving, laser diffraction generated much more data from narrower size intervals. However, for applying size data to the theoretical model for predicting bioaccessibility, additional information on the largest masticated particles (≥ 1700 µm), using the sieving method, was required. Given the importance of mastication in influencing bioaccessibility, digestion kinetics, postprandial lipemia and energy metabolism (Berry et al., 2008; Cassady et al., 2009; Ellis et al., 2004; Mandalari et al., 2008a; Mattes, 2005; Novotny et al., 2012; Waldron et al., 2003), this novel approach of combining in vitro and in vivo methods with mathematical modelling has potential for the future. For instance, this approach could be applied to other nutrients (e.g. starch and vitamin E) (Butterworth et al., 2012; Mandalari et al., 2008a) found in plant foods in which CW rupture is the predominant mechanism of nutrient release (Berry et al.,
2008; Ellis et al., 2004; Mandalari et al., 2008a), including nuts and seeds with similar properties to almonds.

In conclusion, we have developed a new methodology for determining lipid bioaccessibility of masticated almonds, showing that the majority of lipid (about 88%) is retained within the tissue matrix (i.e. as intracellular lipid). As previously shown, this encapsulated lipid severely reduces the amount of substrate available for lipase action in the stomach and small intestine (Mandalari et al., 2008a) and also attenuates lipaemia in human subjects (Berry et al., 2008). An encapsulated lipid mechanism also provides a plausible explanation of why almonds elicit a low postprandial lipaemia and have a low metabolisable energy content despite its status as a high energy density food (Cassady et al., 2009).
CHAPTER 4

IN VITRO GASTROINTESTINAL DIGESTION OF WHOLE ALMOND SEEDS
4.1 Introduction

In vitro gastrointestinal models can potentially overcome many of the difficulties associated with human studies as the latter are often costly, time-consuming and depending on the design of study and food tested, some ethical issues may also arise. However, the GIT is a complex system that relies on a range of physical and biochemical processes (i.e. gastric emptying, secretion of enzymes and digestive fluids, and motility) contingent on the individual, his/her body requirements and the food consumed. An efficient model has to simulate the dynamic conditions of the different digestive compartments while keeping them consistent and well monitored in order to measure the variable of interest (e.g. nutrient release) (Venema et al., 2009).

This chapter describes in more details the physiological events occurring in the stomach and the intestine during digestion as well as some of the current in vitro models. The DGM and SDM were used to study the digestion of masticated raw and roasted almonds results of which are presented here.

4.1.1 Physiological activity in the stomach

The food coming from the mouth arrives in the stomach via the oesophagus where its disintegration into smaller particles continues. The stomach also acts as a short-term storage reservoir and thus controls the delivery of chyme3 to the duodenum. It consists of 4 regions which are the fundus, body, antrum, and pylorus (Figure 4.1). The fundus and body are ‘storage locations’ for undigested material and are responsible for the emptying of liquids (Johnson, 1991; Kong and Singh, 2008; Schulze, 2006). The antrum assures the mechanical digestion, which involves churning, mixing with gastric juice and sieving of solid foods by powerful contractions. Chemical and mechanical processes

3Semi-liquid food mixture resulting from the digestion occurring in the stomach (Guyton and Hall, 2010)
perform simultaneously to reduce the meal into digestible particles. In order to achieve a completed gastric digestion, the food ingested should therefore be transformed into particles that are diluted into the gastric juice, and with a surface area that allows the penetration of the elements essential to the digestion, such as enzymes (i.e. pepsin and gastric lipase) and salts.

During digestion, two types of contractions are generated in the stomach: slow volume-reducing (fundus) and peristaltic (antrum contraction waves, ACW) contractions (Pal et al., 2007). The weak contractions of the fundus ensure the transport of the bolus from the top to the bottom of the stomach thus driving gastric emptying (Figure 4.2), whereas the waves engendered by the antrum’s peristaltic contractions disintegrate the bolus and mix it with gastric juice. These mechanical and hydrodynamic forces result from the peristaltic waves initiated by the stomach wall. The way the contractions are produced vary between fed state, when continuous movements are propagated, and fasting state, when the contractions follow a 4 phases, cyclic pattern. The food contained in the fundus progresses to the antrum once the pyloric sphincter opens to deliver the chyme, and thus the antrum continually empties its content into the duodenum.

Figure 4.1 Anatomy of the stomach with its different compartments (Kong and Singh, 2008).
Chapter 4: In vitro gastrointestinal digestion of whole almond seeds

Figure 4.2 Predicted flow patterns produced by propagating ACW (Pal et al., 2007).

However, according to the computer model developed by Pal and colleagues, the gastric emptying appears to be much more complex than this traditional description. The chyme located in the region that the authors called ‘stomach road’ (or ‘Magenstrasse’\(^4\)) is initially emptied, followed, sometimes much later, by the remaining digesta that has been deposited into the antrum. Therefore, two flow paths might exist: a rapid one, for which the chyme (liquid phase) travels from the fundus to the duodenum within 10 min; and a slower trajectory for the solid phase of the chyme. A sieving mechanism takes place where liquids and small particles take the rapid path (during digestive motility), whereas larger and heavier debris are collected into the antrum (during the fasting motility), lipids forming a floating layer on the top of the bolus (Schulze, 2006). Retropulsion, which corresponds to the ‘return’ of the chyme into the stomach after having been propelled and grinded in the distal stomach area, also occurs (Figure 4.3). This mechanism is generated by the strong contraction at the terminal antral area (Bilecen et al., 2000).

\(^4\)Gastric canal along the lesser curvature from the cardia to the antrum (Pal et al., 2007)
A study done by Marciani and co-workers using echo-planar magnetic resonance imaging revealed that the gastric secretions penetrate slowly into the bolus, starting with the outer part then attaining the inner one (Marciani et al., 2001). The extent to which gastric secretions spread into the bolus appears to rely on the viscosity of the meal ingested. Contrary to the conventional opinion, the latter remains heterogeneous for a long period of time thus preventing the gastric secretions from reaching the centre of the bolus. Furthermore, the most diluted part of the bolus, the one that contains the greater amount of gastric secretions, is the first to leave the stomach to enter the duodenum which is in accordance with Schulze’s theory (Schulze, 2006).

The gastric emptying rate influences the food disintegration which also regulates the rate of nutrients absorption. The different functional attributes of the stomach rely on the chemical composition and physical nature as well as the amount of the food ingested. The proportion of liquid and solid in the meal affects the time required to digest it. Larger size particles, denser and/or harder food delay the gastric emptying rate. The same occurs in the presence of lipid in the meal either because of the phase separation in the chyme or as lipids enter the duodenum cholecystokinin is released and pyloric contractions altered (Heddle et al., 1989; Marciani et al., 2001). Viscosity and calorie content of the food are additional crucial regulators of gastric emptying (Marciani et al., 2000).
as the force of contraction of the stomach walls adjusts appropriately (Marciani et al., 2001). For instance, guar gum, a galactomannan-rich legume flour (a form of ‘soluble fibre’) was reported to induce a change in hydrodynamic factors (e.g. alter flow patterns by raising viscosity) and disrupt gastric sieving (Meyer et al., 1986; Meyer and Doty, 1988). Stomach emptying appears also to depend on the mastication, in other words if the food has been broke down into small particles to a great extent the digestion taking place in the stomach will be facilitated, as the surface area for digestion will be increased (Pera et al., 2002). Also, a number of other factors especially nervous reflexes and hormonal signals (e.g. gastrin, CCK and GIP), themselves related to the properties of the meal ingested, modulate the amount of chyme entering the duodenum (Crawley and Corwin, 1994; Heddle et al., 1989; Horowitz et al., 1994; Meyer et al., 1989; Tougas et al., 1992).

4.1.2 Physiological activity in the small intestine

The small intestine consists of 3 parts: the duodenum, jejunum and ileum. Its main function is the digestion and absorption of nutrients, most of it occurring in the upper portion of the small intestine (duodenum). To fulfil this role, intestinal enzymes, BS and various electrolytes (i.e. Na, Cl and K) are required. The absorption of nutrients is maximised by the large absorptive area of the intestine. Its inner wall, or mucosa, is folded, each fold being covered with villi, which in turn are lined with microvilli.

The chyme that reaches the small intestine undergoes a longitudinal mixing and breaking down by peristalsis and segmentation (Figure 4.4). Segmentation contractions are of various types (i.e. regular/irregular and isolated/spaced) and are responsible for the motility of the chyme in both directions, thereby churning and fragmenting the digestive material. As for peristaltic contractions, they propel the chyme along the length of the small intestine.
The extent of the chyme mixing and propagation along the intestinal tract is determined by its rheological properties (i.e. viscosity) which affect release and absorption of nutrients.

![Peristalsis and Segmentation Contractions](image)

Figure 4.4 Schematic representation of the peristalsis and segmentation contractions occurring in the small intestine, adapted from (Guyton and Hall, 2010).

4.1.3 Transformation occurring to digesta and emulsion in the GIT

The digesta is a suspension of particulates the composition of which changes as it progressively transits in the GIT (Lentle and Janssen, 2008). As a result of the secretion of gastrointestinal juices and the absorption of nutrients and water, the concentration, shape and size of the particulates is altered thereby affecting the physicochemical properties of the digesta. The lipids released from the food matrix are emulsified first in the stomach.

The intensity of the contractions within the GIT fluctuates greatly. The ACW are relatively weak and leads to a surface mixing, whereas the contractions generated by the pylorus are much stronger thus ensuring an effective size reduction of the lipid droplets (Armand et al., 1996; Lentle and Janssen, 2008; Schwizer et al., 2006). Moreover, the stability of the emulsions decreases when exposed to the acidic components of the gastric juice and the low pH of the stomach since these parameters induce changes in interfacial composition. Indeed, if the pH is close to the isoelectric point of the proteins
stabilising the emulsion, their tertiary and quaternary structure is altered and so is their adsorption onto the interface (Dalgleish, 1997). In addition to the reorganisation of their interface, the average emulsion size decreases to about 20 to 40 µm due to the stomach contractions and the retropulsion phenomenon (Armand et al., 1994). TAG emulsification susceptibility increases with the chain length and degree of unsaturation of the fatty acids in the TAG molecule (Kimura et al., 1994). Therefore the nature of the lipids ingested could presumably influence the characteristics of the emulsion generated (i.e. variability in droplet sizes) and correspondingly their digestibility (see Chapter 5). The emulsification and lipolysis occurring in the stomach are essential steps that facilitate the subsequent intestinal digestion of lipids.

Surface-active molecules are secreted in the intestine, i.e. BS and lecithin, which also has an effect on the emulsification process and consequently the lipolysis. These biosurfactants appear to ‘clean’ the surface of the oil droplets by removing existing molecules present on the interface (Wilde and Chu, 2011). The generated lipolytic products are then solubilised in the form of mixed micelles and vesicles. The products of lipid digestion need to be removed from the lipid-water interface to prevent lipase inhibition, in particular long chain fatty acids (Lairon, 2009).

The fate and characteristics of the undigested food particulates is rarely mentioned in the literature, since it is often assumed that they are fully disintegrated and dispersed in the aqueous phase of the digesta. Many different forms of DF have been extensively studied as isolated molecules (e.g. galactomannans) or as extracted particulates (e.g. wheat bran) on gut function and digestion, but studies of intact plant tissues, such as the structural matrix of CW, has received very little attention. Our research group has however previously highlighted the importance of such work by showing that tissue particles of hard plant foods (e.g. nuts) are only partially digested, some of which are recovered in the faeces (Ellis et al., 2004; Mandalari et al., 2008a).
4.1.4 Methods for studying digestion

Various methods have been employed to simulate the digestion process (from the mouth to the anus) and study food disintegration (Guerra et al., 2012; Venema et al., 2009). In vivo procedures include the design of feeding studies using intubation (Heddle et al., 1989; Marciani et al., 2000), scintigraphic and ultrasonographic methods, echo-planar MRI (De Schepper et al., 2004; Kwiatek et al., 2006; Marciani et al., 2000; Marciani et al., 2001), and other indirect methods such as blood and breath tests (Choe et al., 2001; Klein, 2001). However, in vivo methods have the disadvantage of being often fairly invasive, time-consuming, inaccurate and/or expensive, whereas in vitro systems may not realistically simulate the biological processes. Indeed, one of the major difficulties faced by using laboratory models is to reproduce the variable gastric residence time specific to a particular food/meal and the hormonal responses induced by the ingestion of that food. Sampling is often challenging in studies involving humans; the digesta may simply not be accessible without invasive procedure (i.e. intestinal digesta) and it may not be homogeneous. Moreover, the measurement of certain parameters may not be possible (i.e. pH). In order to overcome these issues, in vitro models have been developed and according to Prof Alric and her team these models need to be flexible, accurate and reproducible (Guerra et al., 2012).

The most basic in vitro digestion assays are called static models (or biochemical) where only the biochemical mechanisms occurring in the stomach and/or the intestine are mimicked and the products of digestion remain during the whole digestion process (Wickham et al., 2009), unless simple models employing dialysis bags are used. On the other hand, in dynamic models the pH, enzyme secretion and shear stress conditions vary over time to simulate physiological conditions.

Some in vitro models have been designed to simulate one compartment of the GIT (Appendix C). These include the mouth model known as the chewing simulator (Salles et al., 2007), and the stomach models, for example, human gastric simulator (HGS) from UC Davis (Kong and Singh, 2010)
Chapter 4: In vitro gastrointestinal digestion of whole almond seeds

and the DGM at the IFR, Norwich (Wickham et al., 2012). Other models are multicompartmental, which model all the main sites of the gut: the stomach, duodenum, jejunum and ileum. A well-known example of this is the dynamic computer-controlled upper GIT model (TIM-1 and TIM-2 digestion model from TNO Nutrition and food research in the Netherlands)(Krul et al., 2000). TIM is considered to be a realistic model used to simulate the digestive tract of adult and young humans and also other mammalian guts such as that of the dog. TIM was developed to mimic the physiological conditions (i.e. digestive juices secretion, pH changes, body temperature and transit) and it is also equipped with a dialysis system that simulates the absorption of the digestion products as well as water. A more ambitious gut model is the one developed by the University of Ghent, the Simulator of the Human Intestinal Model Ecosystem (SHIME), that comprises the stomach, duodenum, jejunum, ileum, caecum and ascending colon (De Boever et al., 2000). The SHIME not only simulates the entire GIT, but also possesses a stable, in vitro-adapted microbial community.

In the present project, the DGM coupled with a static duodenal model (SDM) was used to investigate the gastrointestinal digestion of masticated almonds (Figure 4.5). The DGM reproduces the peristaltic movements occurring in the stomach and controls different parameters such as emptying cycles, shear forces and the quantity of enzymes and acids delivered to the system, consistent with the meal content (see Chapter 2 for more details). Therefore the limitations of GIT models previously identified such as fluctuation of the chyme composition throughout the digestion process, transit and motility including sieving activity, and anticipation of the body response have been addressed in this model (Venema et al., 2009; Wickham et al., 2009; Wickham et al., 2012). However, the model is monocompartmental, hence the requirement of the SDM. The SDM is a very simple model that does not mimic the mechanical processes (segmentation contraction and peristalsis) that occur in the human duodenum. It consists of an Erlenmeyer flask containing the digested samples collected from the DGM and the simulated pancreatic juice that is left to incubate at 37°C usually for 1 h.
A more simplified static model of gastric and duodenal digestion involving the pH-stat has also been used in this project to study the mechanisms of digestion of oils and a range of almond materials that have been manipulated to produce different levels of lipid bioaccessibility (see Chapter 5).

![Figure 4.5 Image of the dynamic gastric model.](image)

4.2 Aims

The main objectives for these experiments were to determine:

(a) The microstructural changes occurring to masticated almond during the gastric and intestinal phases (particle size and CW composition); and

(b) The amount of lipid released from the almond particles.

Some of the experiments in the current study included enzyme-free gastric and intestinal fluids to determine lipid release alone. Also, the model used in all the experiments did not include simulation of the large intestine, since the study was designed to determine the bioaccessibility of lipids at the site of their digestion/absorption, and most of these processes occur in the small intestine, specifically the duodenum.
4.3 Materials and methods

4.3.1 Gastric digestion

For each type of almond, raw and roasted, two different sets of samples were loaded into the DGM: four individual samples of 28 g each (pooled samples, PS) and duplicates of combined samples obtained from the fifteen volunteers (combined samples, CS). The boluses obtained from each volunteer following the mastication of the four almonds were too small to be individually loaded onto the DGM, hence the requirement of combining them. Four volunteers (2 males, 2 females) taking part in the mastication study were requested to masticate and expectorate a sample of each type of almond (raw and roasted), which represents a usual almond portion size (28 g) when consumed as a snack, in order to investigate potential inter-subject variation. The volunteers masticated the almonds as they will normally do, which means that the number of almonds per mouthful differed between subjects. The masticated samples were then loaded into the DGM followed by an in vitro static intestinal model in order to simulate both gastric and intestinal digestion as described in details in the Materials and methods section (Chapter 2, Section 2.4.3). The amounts of enzymes and acid secretions added during gastric digestion were as described in Table 4.1.

Table 4.1 Volume (in mL) of acid and enzyme solutions added during the gastric digestion of raw and roasted masticated almonds, for PS (volunteers 1 to 4) and CS (combined sample 1 and 2).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Acid solution (mL)</th>
<th>Enzyme solution (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw</td>
<td>Roasted</td>
</tr>
<tr>
<td>Volunteer 1</td>
<td>15.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Volunteer 2</td>
<td>21.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Volunteer 3</td>
<td>18.8</td>
<td>21.0</td>
</tr>
<tr>
<td>Volunteer 4</td>
<td>15.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Mean</td>
<td>17.5</td>
<td>18.8</td>
</tr>
<tr>
<td>Combined sample 1</td>
<td>45.0</td>
<td>52.0</td>
</tr>
<tr>
<td>Combined sample 2</td>
<td>30.0</td>
<td>42.0</td>
</tr>
<tr>
<td>Mean</td>
<td>37.5</td>
<td>47.0</td>
</tr>
</tbody>
</table>
Six PS and eleven CS samples were recovered at different time points of the 1 h gastric digestion then aliquoted for duodenal digestion (7 g), CW (~2 g) and lipid loss (remaining) analyses, and microscopy.

4.3.2 Duodenal digestion

A pooled sample (42 g) obtained from an aliquot (7 g) of each gastric sample was transferred to a plastic tube for duodenal digestion. For the 28 g samples, 8.4 mL of simulated bile solution and 23.5 mL of pancreatic enzyme solution were added, and for the combined samples 16.8 and 47 mL of bile and enzyme solutions, respectively, were used. The duodenal digestion was performed at 37°C for 2 h.

4.3.3 Analyses

Particle sizing (laser diffraction), crude lipid analysis (Soxlet automatic Soxtec 2050), and CW analysis were performed on samples collected after mastication, and after simulated gastric and duodenal digestions. The details of the methods used are described in Chapter 2.

4.3.4 Microscopy

Samples collected after mastication and in vitro digestion were prepared for LM as detailed in Chapter 2.

For practical reasons the masticated samples were stored at -80°C before being sent to the IFR which led to lipid coalescence (Section 4.4.4.1). The mastication and digestion procedures were therefore repeated at the IFR using an alternative untested approach developed by Dr Mary Parker. This method consisted in first separating the cells in the raw, roasted and digested
almond tissue using CDTA (as described in Section 2.2.1.2), then examining these cells by bright field or fluorescence microscopy to view directly their individual lipid content. To assess the feasibility of this novel approach, a preliminary experiment was carried out using well-defined 2 mm3 blocks of raw, roasted almonds as well as raw almonds that underwent gastric and duodenal digestions. The samples were prepared using sharp razor blades to minimise tissue damage. For bright field microscopy, the softened blocks were then gently pressed with a spatula in a drop of CDTA on a microscope slide to separate the cells. For fluorescence microscopy, blocks were pressed in a drop of 0.01% (w/v) Nile blue. Separated cells were examined and imaged using an Olympus BX60 microscope (Olympus, Japan), with ProgRes® Capture Pro 2.1 software (Jenoptik, Germany). To localise lipids stained with Nile blue, the NB filter cube (U-MNB, exciter filter BP470-490; barrier filter BA515) of the microscopy was used.

The results of this feasibility study (Figure 4.12) showed that in CDTA-separated almond cells, lipid either as OBs, coalesced droplets, or partially-digested material, is readily identifiable by light microscopy, without the need for embedding or the use of hazardous chemicals such as osmium tetroxide. Therefore, microscopy analysis of some of the 1-2 mm particles of masticated raw and roasted, and digested raw almond tissues was undertaken using the same method.

4.3.5 Statistical analysis

The data were analysed using SPSS version 17.0. For all tests, the significance level was set at $P < 0.05$ (2 tailed). All data are expressed as mean ± SEM. Analysis of variance (ANOVA) was used to test for differences in CW composition and lipid release after gastric and gastric plus duodenal digestion. If a significant difference ($P < 0.05$) was found, post-hoc analysis using Tukey Honestly Significant Difference (HSD) was used to examine each pairwise difference. Two sample t-tests (2-tailed) were used to examine differences between raw and roasted almonds.
Chapter 4: In vitro gastrointestinal digestion of whole almond seeds

4.4 Results

4.4.1 Particle sizing

Figure 4.6 shows the average PSD of raw (A and C) and roasted (B and C) almonds following mastication and simulated digestions. PSD of the samples post mastication and post gastric digestion were multimodal and broad, especially for the roasted almonds. The individual expectorated almonds had to be combined to obtain a sample large enough to be loaded into the DGM. The particles composing PS and CS had similar sizes, which suggested that in the present experiment the bite size did not have an impact on the PSD. Some of the data are therefore presented as the average of PS and CS. Also for reason of clarity, the d(0.5) were used to compare the size of almond particles composing the boluses and digesta.

The results of the sizing analysis of the digested samples were found to be similar to those obtained for the masticated boluses. Thus, digested roasted almond samples were composed of particles of smaller size than raw almond; for gastric digestion, the d(0.5) were 468 and 332 µm for raw and roasted almonds, respectively; for gastric plus duodenal digestion, the d(0.5) were 640 and 576 µm for raw and roasted almonds, respectively. No significant difference was found in the overall distribution between masticated and DGM samples (d(0.5) were 506 and 346 µm for raw and roasted almonds, respectively). The digesta recovered at the end of the gastric digestion were composed of a large proportion of particles with a size superior to 500 µm (47% for raw almond and 36% for roasted almond). It was demonstrated in Chapter 3 that particles of this size and above have a low lipid bioaccessibility (≤ 21%, see Appendix B). Therefore, negligible changes in the particle size of almond particles occur during gastric digestion. Duodenal digestion appeared to have a more significant effect. The almond digesta from the duodenal phase was composed of a greater proportion of particles with a large size (61 and 56% with a size > 500 µm for raw and roasted, respectively); however this unexpected PSD may be due to the coalescence of small particles together to generate
large aggregates (data not shown). Indeed, the duodenal measurements on size were quite difficult to interpret because the samples formed a viscous and fibrous cluster of particles. Another possible explanation could be that small particles are more disrupted and digested into fine particles not measurable by the laser diffraction (< 0.2 µm).

Figure 4.6 Particle size distribution of raw (A and C) and roasted (B and D) almonds recovered after mastication, gastric and duodenal digestions. Values are means (± SEM for A and B only). Significant differences found between raw and roasted were calculated by Student’s paired t-test (P < 0.001).

4.4.2 Lipid losses

The lipid release expressed as a percentage of the original amount present in the sample for raw and roasted almonds, following mastication, simulated gastric and gastric plus duodenal digestion is shown in Figure 4.7 A. Between 7.9 and 11.1% of the original lipid has been released as a result of mastication (Chapter 3), with no significant differences between the two forms of almonds. A substantial increase in lipid release was observed during the duodenal phase (32.2 ± 1.15 and 32.7 ±
Chapter 4: In vitro gastrointestinal digestion of whole almond seeds

2.23% for raw and roasted almonds, respectively) over that detected in the gastric environment (16.4 ± 0.83 and 17.3 ± 1.00% for raw and roasted almonds, respectively). In a control set of experiments performed without addition of enzymes, no increase in lipid release was detected in the duodenal compartment (data not shown). These findings differ from the previous investigation performed by our group using almond cubes and finely ground almonds, where the gastric and duodenal digestions produced only a slight increase in lipid release (Figure 4.7 B) (Mandalari et al., 2008a).

Figure 4.7 Cumulative percentage of lipid release at the different stages of digestion from this study (A) and from previous work (Mandalari et al., 2008a) (B), (n=4, means ± SEM). Significant differences after the gastric and gastric–duodenal digestion phases were calculated by ANOVA (P < 0.05). ** Mean values were significantly different from those for the post-gastric condition (P < 0.05). ††† Mean values were significantly different from those for the chewed condition (P < 0.05).

4.4.3 Cell wall analysis

4.4.3.1 Gas liquid chromatography method

The sugar compositions of almond CW at the different stages of digestion are presented in Figure 4.8. As expected, the sugar residues found in digested almonds were identical to the native and masticated samples. ANOVA analysis showed no differences in the CW sugar composition between raw and roasted almonds after gastric and gastric plus duodenal digestion. However, a significant
increase in galacturonic acid as well as a small loss of arabinose after duodenal digestion of raw almonds were observed.

![Figure 4.8 Monosaccharide composition (mol%) of raw and roasted almond at the different stages of digestion. Values are means ± SEM (triplicates).](image)

4.4.3.2 Method using antibodies

The results obtained from the Willats’s analysis (see Chapter 2, Section 2.3.4.2) for whole raw and roasted almonds is presented (Figure 4.9). This method provided additional details regarding the structure and organisation of the sugar residues within the CW. The results are similar to those produced by GLC analysis, in that the antibody data indicated that almond CW are mostly made of pectin and xyloglucans, with little xylan (and presumably cellulose) present, which suggests a CW composition reflecting type I CW (Carpita and Gibeaut, 1993). According to this model, xyloglucans are the predominant polysaccharides interlocking the cellulose microfibrils, which is in agreement with the data in Figure 4.9. On the other hand, arabinoxylan, the most abundant polysaccharides present in a type II CW (i.e. in cereals such as wheat), was generally absent in the almond samples. AGPs were also found in the almond samples. The greater proportion of pectins (i.e. HG and
Chapter 4: In vitro gastrointestinal digestion of whole almond seeds

arabinan) observed in raw and roasted almonds compared with other compounds could be attributable to the almond skin since pectic polysaccharides occurred to a lesser extent in blanched almonds.

Due to the nature of the technique (i.e. difference in detection limits and spot morphologies between arrays) (Pedersen et al., 2012), it is not possible to compare the values between Figures 4.9 and 4.10. However, the oligosaccharides can be identified without quantification. Therefore, native and digested raw almond appeared to have the same composition: pectins (i.e. HG and arabinan), xyloglucan and AGP. Therefore, no significant changes occurred in the composition of the CWs after digestion, suggesting that the CWs remained largely intact, providing some further evidence of the importance of the link between CW structure and lipid bioaccessibility.

Figure 4.9 Heat map of the distribution of CW polysaccharides in raw, roasted and blanched almond as well as almond skin. HG: homogalacturonan, DE: degree of methyl-esterification, mAb: monoclonal antibodies, AGP: arabinogalactan protein.

Chapter 4: In vitro gastrointestinal digestion of whole almond seeds

4.4.4 Microstructural analysis

4.4.4.1 Microscopy of large particles

Micrographs of masticated and digested raw and roasted almond particles are presented in Figure 4.11. As previously observed (Chapter 3), only the outer layers of the particles have their cells fractured and their intracellular contents ‘released’ and thus more available to the digestive fluids in the gut. The cells underneath these layers appear to be relatively intact and retain their nutrients. No marked disruption in the structure of the particles recovered after mastication and gastric digestion was detected, which is supported by the PSD data. The microscopy images and the measured lipid release data are also in good agreement, showing that most of lipid digestion occurred in the
duodenum. The micrographs also show that some of the lipid contained in the seemingly intact cells was lost.

Figure 4.11 Micrographs of raw (A) and roasted (B) almond particles collected after mastication (A1 and B1), gastric (A2 and B2) and duodenal (A3 and B3) digestions (performed by Mary Parker at the IFR). Lipids appear as grey and cell walls as purple. Scale bars: 20 µm.

4.4.4.2 Microscopy of separated cells

Figure 4.12 shows raw (NA) and roasted (RA) almond as well as digested raw almond (i.e. gastric and duodenal, NA G+D) cells separated using the CDTA method (Section 2.2.1.2). In all the NA cells, lipids were evenly distributed as observed by Nile blue fluorescent staining (a1) and bright field (Figure 4.12 a2), and are located in OBs (Figure 4.12 a3). In roasted tissue, lipids were unevenly distributed in all cells as seen in Figures 4.12 b1 and b2, having coalesced into larger droplets (Figure 4.12 b3, arrows). In digested raw tissue (NA G+D), lipid distribution varied between cells, those from the centre of the particle contained OBs (Figure 4.12 c1 and c2), and those from the outer layers contained large lipid droplets (Figure 4.12 c2, arrows) which showed irregular shapes (Figure 4.12 c3, arrows).
Chapter 4: In vitro gastrointestinal digestion of whole almond seeds

Figure 4.12 Feasibility study for imaging lipid in cells of sharp-cut almond tissue blocks softened in CDTA. Scale bars: a1, b1, c1, a2, b2 and c2 = 50 µm; a3, b3 and c3 = 20 µm. NA, raw almond; RA, roasted almond; G, gastric phase; D, duodenal phase.

The same experiments were repeated using masticated samples before submitting them to in vitro gastric (G) and duodenal (D) digestions (Figure 4.13). Lipids in raw almond cells (Figure 4.13 a1) remained predominantly as OBs but some cells were damaged by the mastication process and contained very little lipid (arrow). In NA cells following gastric digestion (Figure 4.13 a2), some lipid coalescence occurred and there were empty cells (arrow). In NA G+D (Figure 4.13 a3) there were cells with OBs, cells with large lipid aggregates, and empty cells (arrow). Those empty cells were most likely from the surface of the particles as showed in Figure 4.11. Roasting caused most lipids to coalesce (Figure 4.13 b1), and tissue became brittle resulting in cell damage (arrow). Cells of RA G were full of coalesced lipid (Figure 4.13 b2), or empty. Cells of RA G+D (Figure 4.13 b3) contained irregular masses typical of lipid digestion or empty cells (arrow).
Figure 4.13 Bright field images of chewed raw (NA), roasted (RA) and digested almond cells separated by CDTA. Scale bar: a1, b1, a2, b2, a3 and b3 = 20 µm. G: gastric phase; D: duodenal phase.

The microscopy of separated cells is an interesting method to study the structure of the cells and their content at the different stages of digestion. The images should however be interpreted with care as the preparation itself could have altered the samples (e.g. CW damage and crushing of the cell). Moreover, this method would be difficult to apply to large particles (> 1.0 mm) as the cells become more resistant to separation as the size of the particle increases. Used conjointly with a more traditional approach (i.e. fixation and resin embedment), this novel method provided useful qualitative information about the transformation occurring to the almond tissue during digestion. The former method also confirmed the location of the cells within the almond particle, either at the edges or the core of the particle.

4.5 Discussion

The present work demonstrated that a significant proportion of lipid remained undigested after the in vitro gastric (~83%) and duodenal (~68%) phases; the majority of the lipids contained in the
almonds was encapsulated by intact CW and was therefore unavailable for hydrolysis by lipase. This is consistent with previous studies showing that a high proportion of the lipid in almonds is not digested in the upper GIT (Mandalari et al., 2008a). Some of the undigested lipid is available for microbial fermentation as previously reported (Ellis et al., 2004; Mandalari et al., 2008b). Both raw and roasted almonds have a hard texture that resists the shear forces created by peristalsis in the gastric and duodenal phases as demonstrated by the large particles remaining after the digestion. It is currently assumed that particles in the stomach need to reach a size inferior to 1-2 mm before being emptied into the duodenum (McClements and Li, 2010). Furthermore, meals with high fat content have a longer gastric residence time (Mackie et al., 2012). Lipids present in the stomach are not emptied at the same rate as other compounds of solid and liquid food as they float on the top of the gastric content (Meyer et al., 1986). These two characteristics, the presence of large particles and high lipid content, should promote lipid digestibility/availability as shown with allergens (Mackie et al., 2012), since almond would spend more time in the gastric compartment. However, if the particles are too difficult to break down (‘indigestible’), they may eventually flow from the stomach when the emptying of the digestible solid is completed and the fasting motility pattern is resumed (Kelly, 1980).

Between the oral and the gastric compartment, an important amount of lipid was lost from the particles despite the absence of major structural changes (i.e. size). When almonds are masticated, the cells on the surface of the generated particles fracture, and even though intracellular lipid content is ‘released’ it remains on the surface (Figure 3.10). This phenomenon is probably caused by the hydrophobicity of the lipids that prevent them from solubilising in the liquid (saliva) present in the oral cavity. Also, the released intracellular proteins may have created a network into which lipids are entrapped. In the stomach, some of the lipids would be removed from the surface of the particles as a result of emulsification by gastric contractions and activity of digestive agents, in particular gastric lipase. The lower pH and presence of pepsin would have disturbed the protein
structure/conformation and thereby the network they formed at the surface of the particles, which would have led to the release of some of the entrapped lipids (Maldonado-Valderrama et al., 2010).

The size reduction occurring during mastication facilitates the digestibility of the nutrients enclosed within a food matrix. In almond seeds, the CWs are a robust structure, probably impermeable to the agents involved in lipid digestion (i.e. lipase and BS, see Chapter 7), so the particles need to have a relatively small size for the lipid to be released and digested (see Chapter 3). The mode of disintegration of different solid foods including raw almond has been examined and it was reported that the initial food texture and the changes occurring during mastication and gastric digestion varied greatly among different foods (Kong and Singh, 2009b). The authors found that, in the stomach, erosion, defined by them as the degradation of the food surface due to the contact/impact with the solid material contained in the gastric fluid, was the main mechanism responsible for the disintegration of nuts. Furthermore, compared with other foods (i.e. carrot and ham), almonds absorb the highest amount of water (from 3.3% to 30.7%) when performing a static soaking test and show a significant reduction in hardness in a stomach model. Kong and Singh have also suggested that almonds disintegrate in a delayed-sigmoidal profile due to water absorption and softening (Kong and Singh, 2009a). Therefore, after a prolonged residence time in the aqueous environment of the stomach and the duodenum, the texture of the almond would be modified as well as its disintegration mode. Combined with the erosion mechanism this could explain the large increase in lipid release observed in the intestinal compartment. The rise in lipid loss from the almond tissue may have also been caused by the diffusion of lipases and BS into the tissues along internal fractures, followed by the diffusion of the lipolytic products (mixed micelles). Indeed, it would be expected that the crushing action of mastication would cause deep fractures into the tissue thereby creating fissures that facilitates the diffusion of digestive agents. Finally, the swelling of the CW may have occurred, as previously reported by our group (Mandalari et al., 2008a), which potentially could increase their porosity and lead to the digestion of the contents of the intact cells. However, contrary to the work of Kong and Singh, the roasting process did not lead to significant differences either in
particle disintegration or lipid loss (Kong and Singh, 2009a). It has also been recently reported in pigs, that no differences in physical properties between raw and roasted almonds, i.e. particle size, texture and rheological flow behaviour were seen following gastric digestion (Bornhorst et al., 2013). The difference in roasting conditions applied to the almonds may explain the disagreement with the work from Kong and Singh.

Despite an increase in the amount of lipids that were released into the duodenal compartment, this was only about a third of the total content of the almond. As the digestion progressed, alterations in the integrity of the OBs appeared (Figures 4.12 and 4.13), but most of the intact cells retained their content (Figure 4.11). Hypothetically, the almond tissue reaching the colon would therefore contain an important proportion of nutrients and DF. These undigested materials could undergo bacterial degradation but presumably not to its full extent (Ellis et al., 2004; Mandalari et al., 2008b).

The different trends observed between the results from this study and some previous work by our group (Mandalari et al., 2008a) could be explained by the use of DGM in this study, where the digestion products were removed during the time course of the experiment in order to prevent product inhibition. Also, the absence of mastication may have affected the digestion process; saliva might facilitate the subsequent digestion steps notably by lubricating and softening the ingested food. Therefore, the difference in the methodology used between the two studies (static vs dynamic models) makes comparison difficult. However, the static model study previously reported by Mandalari and colleagues demonstrated that the degree of processing had a major impact on lipid digestibility, as finely ground almonds (200 µm) had a greater lipid release than 2 mm almond cubes (Figure 4.7 B) (Mandalari et al., 2008a). This difference in lipid release was also predicted from the
In the DGM, lipid bioaccessibility from almond tissue relies on several digestion parameters, in particular mechanical forces, stomach emptying rate, and removal of lipolytic products, which is built into the model system, hence the suitability of the DGM in that context. Currently, there are no models that accurately reproduce all the complex processes occurring during *in vivo* digestion (Guerra *et al.*, 2012), and therefore a combination of *in vitro* models and human studies is the most appropriate approach. It is very difficult to replicate the mechanical disruption occurring during the oral processing of almonds, principally due to the wide range of sizes composing almond boluses. However, the physical characteristics of the almond boluses were shown to be consistent over time, with acceptable intra- and inter-subject variation (see *Chapter 3*); therefore, almond mastication by human volunteers was the most convenient and accurate method in this particular project even though performed on different days. The use of the DGM conjointly with the ileostomy study (*Chapter 6*) gives an excellent appraisal of changes in almond microstructure and the extent of lipid digestion in the different compartments of the GIT.
CHAPTER 5

EFFECT OF THE STRUCTURE OF ALMOND MATERIALS ON LIPID DIGESTIBILITY
5.1 Introduction

As described in Chapter 1, almonds are predominantly made of lipids (around 50-55%, of which 60 to 80% oleic acid, O; 15 to 20% linoleic acid, L; and 5% palmitic acid, P), which are assembled into OBs in the form of TAG (Dourado et al., 2004; Ellis et al., 2004; Yada et al., 2011). Thus, the typical TAG species found in almond oil have the following fatty acid compositions: OLO, OLL, OOO, POO, and LLL (Holcapek et al., 2003; Jakab et al., 2002). The OBs have a diameter ranging approximately from 1 to 5 µm and are surrounded by a single layer of phospholipids in which proteins, mainly oleosins, are embedded (Beisson et al., 2001b; Ellis et al., 2004; Huang, 1994). Oleosins ensure the stability of the amphiphile layer.

Since the TAGs cannot freely transfer across the enterocyte barrier because of their size and polarity, they must be degraded and presented in a form that permits their absorption (Figure 5.1). The human body is actually very efficient at digesting and absorbing TAG - around 95 to 98% efficiency (Mu and Hoy, 2004). The lipids present in milk are naturally organised in the form of emulsions (Fave et al., 2004). For most other foods, they require to be liberated from the food matrix during mastication and by mechanical and chemical digestion in the GIT and then converted into lipid droplets. The lipid digestion includes emulsification via mixing and action of amphiphile molecules, hydrolysis and micelle formation, and finally uptake by the enterocytes. The hydrolysis of TAG is performed in the stomach as well as in the small intestine predominantly via the activity of two enzymes, HGL and HPL (Bauer et al., 2005). The hydrolysis of other lipid molecules such as cholesterol esters, phospholipids and vitamins is occurring in the duodenum via the activity of two enzymes, cholesterol esterase, also called carboxyl ester hydrolase (CEH), and phospholipase A$_2$ (Carey et al., 1983). Since the pH required for its activity is broad (3 to 6), HGL can act in the stomach as well as the intestine whereas HPL acts specifically in the duodenum as it is irreversibly denatured at pH 4 and lower (Miled et al., 2000). HGL activity accounts for 5 to 40% of the lipid hydrolysis to which is added ~7.5% that can occur in the duodenum, as opposed to 40 to 70% of lipid hydrolysis...
by HPL (Armand, 2007). Other lipases are also involved in the degradation of lipids and more details of this are presented in Chapter 7.

The solubilisation of the lipolytic products is an important step in the absorption of lipid by the enterocytes. First, they have to be removed from the droplet interface in order to prevent inhibition of the lipase(s).

![Figure 5.1 Enzymic and physiological steps involved in TAG digestion (Armand, 2007).](image)

Figure 5.1 Enzymic and physiological steps involved in TAG digestion (Armand, 2007).

Abbreviations: BAL, bile-salt activated lipase; BS, bile salts; BSDL, bile-salt dependent lipase; BSSL, bile-salt stimulated lipase; CEL, carboxyl ester lipase; CEH, cholesterol ester hydrolase; CLP, colipase; FFA, free fatty acids; HGL, human gastric lipase; HPL, human pancreatic lipase; HPLRP1 or 2, human pancreatic protein-related 1 or 2; 2-MG, 2 monoglycerides; TG, triglycerides.

5.2 Aims

Chapters 3 and 4 demonstrated that almond particles of different sizes were generated following mastication and that a large proportion of the lipids contained in those particles remained encapsulated (undigested) after gastrointestinal digestion. It was hypothesised that the more complex the structure level the lower the amount of FFAs produced from TAG hydrolysis. Indeed,
lipids present on the fractured surface of the almond particles would be much more susceptible to hydrolysis, whereas the encapsulated lipid content of the intact cells is considerably less susceptible to digestion, unless digestive agents such as lipase and BS gain access to the intracellular lipid.

The purpose of the present study was to determine the effect of pancreatic lipase on the rate and extent of lipid digestion (expressed as the amount of FFA released) in raw and roasted almond materials, which have been manipulated so that they exhibit marked differences in lipid bioaccessibility. These materials include ground and chewed particles of almond and almond cells that have been separated in the laboratory (see *Section 2.2.1.2*). In addition, raw and roasted almond oil emulsions were included as reference samples with a high lipid bioaccessibility (100%). To address this main objective, two methods were employed to measure the FFAs release, the pH-stat method and GLC analysis. Microscopy methods were also used to study the structural changes of the separated lipid-rich cells pre- and post-digestion.

5.3 Materials and methods

5.3.1 Method

The preparation and protocols used are given in detail in *Chapter 2*. Briefly, duodenal digestion using the pH-stat was performed on ground almond particles of different sizes (1000 to 2000, 500 to 1000, 250 to 500, and < 250 µm), masticated whole almonds (obtained as described in *Chapter 3*), separated cells and emulsions of triolein, tributyrin and almond oils. For each material, both raw and roasted almonds were used. The simulated digestion mixture contained lipid material dissolved in β-Lg solution (amount of material used adjusted to obtain 300 mg of lipid), 12.5 mM BS solution, 150 mM NaCl solution and 10 mM CaCl₂ solution. Test runs were then performed by incubating (1h at 37°C, pH 7) the mixture with 2.4 mg/mL of pancreatic lipase. As a control, the pH fluctuation of the
assay mixture alone was determined by running the titration without any lipase; the volume obtained was then deducted from the volume data produced from the subsequent test lipid samples. Since the conditions were identical for each assay, the difference in lipolysis extent and rate would indicate that there was a difference in lipid accessibility between these materials.

Conjointly, lipids were extracted at different time points (0, 1, 2, 5, 10, 15, 20, 30, 45 and 60 min) and analysed by GLC as described in Section 2.3.1.2.2. The fatty acids were identified and quantified by comparing their relative retention time with those of standards. The concentration of FFA release was determined using the C15 IS and expressed in micromolar (μM) terms.

Lipid released for each particle size ranges was predicted using the mathematical model presented in Chapter 3.

5.3.2 Statistical analysis

The data were analysed using SPSS version 17.0. For all tests, the significance level was set at $P < 0.05$ (2 tailed). Percentages of FFA release, fatty acids concentrations and reaction rates were assessed by repeated-measures ANOVA with time and materials (i.e. emulsion, cells and particles) as ‘within-sample’ factors. Differences between raw and roasted samples as well as between the milled (four size ranges from < 250 to 2000 μm) and chewed samples were analysed by Student’s paired t-test.
5.4 Results

5.4.1 Particle size of emulsions

The mean droplet size of the emulsions was similar for raw and roasted almond oils, 3.2 ± 0.04 (d$_{3,2}$ = 1.1 ± 0.02 µm) and 3.4 ± 0.27 µm (d$_{3,2}$ = 1.1 ± 0.02 µm), respectively (Figure 5.2). Tributyrin emulsions were composed of droplets of slightly greater mean size (3.9 ± 0.23 µm; d$_{3,2}$ = 3.1 ± 0.11 µm) than the almond oils, but for triolein emulsion the mean droplet size (2.9 ± 0.07 µm; d$_{3,2}$ = 2.0 ± 0.03 µm) was slightly lower than the almond oils, but significantly lower than the tributyrin droplets. However, the size differences were statistically significant (P < 0.05) only between triolein and each of the other oils.

![Figure 5.2 Particle size distributions of raw and roasted almond oils, tributyrin, and triolein emulsions (n=3, means ± SEM).](image)

5.4.2 Release of FFA measured with the pH-stat

Figure 5.3 presents the FFA release from a 1 h reaction. The maximum amount of FFAs produced during the 60 min duodenal digestion of almond emulsion is used as a reference sample (100% FFA
release after 60 min) when comparing the lipolysis profiles of the different almond particles and cells. For both raw and roasted almonds, lipid digestion was significantly more limited for separated cells (~31% for both raw and roasted almond cells) compared with the reference emulsion. Lipid digestion was also markedly restricted for the raw and roasted almond particles (from 44 to 64% and 39 to 60% for raw and roasted almond particles, respectively). Furthermore, an inverse relationship between particle size and FFA release was found, for instance for raw almond, 44.2 ± 5.3% of FFA were released from particles with a size between 1000 and 2000 µm compared with 64.0 ± 1.6% for particles with a size < 250 µm.

A measurable amount of FFAs was produced from the digestion of almond cells which is probably due to the cell preparation containing a small proportion of ruptured cells (see Figures 5.5 A and 7.2) and thus bioaccessible lipid. Indeed, it is extremely difficult to obtain a preparation that is completely devoid of free lipids and cell fragments. The released lipid in the fractured cells of the preparation would have been susceptible to digestion (hence the ~20% of FFA release observed). Microscopy observations of the cell preparations revealed that a greater proportion of the pre-digested cells within the roasted almonds preparation were found to be damaged compared with the raw almond cells (Figures 5.5 A and E).

Furthermore for all materials studied here, the reaction rate plateaued after about 20 min of reaction indicating that no further digestion had occurred, possibly the lipase had neither access to the encapsulated lipids nor to the lipids that may have diffused out of the cell. This levelling out (reaching a plateau) could be attributed to a loss of enzyme activity, and/or product inhibition in the case of digestion of the almond oil emulsions, but this explanation cannot be used for the almond particles or cells, since a much lower amount of FFAs was produced from these materials.

Values for the extent of digestion, which were calculated as the amount of FFAs produced relative to the total amount of TAG in the sample over 60 min and expressed as a percentage FFA, and for the
initial reaction rates (μmol/min), are presented in Table 5.1. Repeated-measures ANOVA showed that there were significant differences ($P < 0.005$) in % FFA production and the initial reaction rates between tributyrin and the other emulsions and oils. The initial rates of reaction as well as the quantity of FFA produced were significantly greater for emulsions ($P < 0.05$) compared with unemulsified raw and roasted almond oils. The initial reaction rates were also statistically different ($P < 0.001$) between the different almond materials (Table 5.2), but the values were found to be similar between raw and roasted.

Figure 5.3 Percentage of FFA released versus lipolysis time over 60 min of raw (A) or roasted (B) almond materials prepared with different degrees of lipid bioaccessibility: almond particles, chewed almonds and separated almond cells. Values are presented as means ± SEM (n = 3). Significant differences, calculated by repeated-measures ANOVA ($P < 0.005$), were found between all materials, apart from the masticated almonds.
Chapter 5: Effect of the structure of almond materials on lipid digestibility

Table 5.1 Percentage of FFA released (% of total fatty acids) after 60 min and initial reaction rate (µmol/min) for lipolysis of emulsions and unemulsified oils with pancreatin. Values are presented as means ± SEM (n = 3).

<table>
<thead>
<tr>
<th></th>
<th>Particle size (d_{43} in µm)</th>
<th>FFA (%) at 60 min</th>
<th>Initial reaction rate (µmol/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tributyrin emulsion</td>
<td>3.9 ± 0.2</td>
<td>99.1 ± 2.1</td>
<td>401.0 ± 21.5</td>
</tr>
<tr>
<td>Triolein emulsion</td>
<td>2.9 ± 0.1^1,2</td>
<td>70.9 ± 2.7^1,2</td>
<td>78.1 ± 3.1^1,2</td>
</tr>
<tr>
<td>Raw almond emulsion</td>
<td>3.2 ± 0.0^1,2</td>
<td>67.8 ± 2.7^1,2</td>
<td>71.3 ± 6.3^1,2</td>
</tr>
<tr>
<td>Roasted almond emulsion</td>
<td>3.4 ± 0.3^1,2</td>
<td>70.4 ± 3.1^1,2</td>
<td>78.1 ± 4.4^1,2</td>
</tr>
<tr>
<td>Raw almond oil</td>
<td>ND</td>
<td>19.3 ± 0.9^1</td>
<td>31.8 ± 2.1^1</td>
</tr>
<tr>
<td>Roasted almond oil</td>
<td>ND</td>
<td>20.2 ± 0.6^1</td>
<td>32.1 ± 4.2^1</td>
</tr>
</tbody>
</table>

^1Statistically significant differences compared with tributyrin emulsion (P < 0.05). ^2Statistically significant differences compared with almond oil, both raw and roasted (P < 0.05). ND: not determined.

Table 5.2 Initial reaction rate (µmol/min) for lipolysis of milled (size from < 250 to 2000 µm) and chewed raw and roasted almonds. Lipolysis rate values are presented as means ± SEM (n = 3).

<table>
<thead>
<tr>
<th></th>
<th>Particle size</th>
<th>Predicted lipid released (%)^*</th>
<th>Initial reaction rate (µmol/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw almonds</td>
<td>1000 to 2000 µm</td>
<td>8.5</td>
<td>41.3 ± 3.7^1</td>
</tr>
<tr>
<td></td>
<td>500 to 1000 µm</td>
<td>16.0</td>
<td>49.7 ± 3.6^1</td>
</tr>
<tr>
<td></td>
<td>250 to 500 µm</td>
<td>30.0</td>
<td>50.6 ± 2.7</td>
</tr>
<tr>
<td></td>
<td>< 250 µm</td>
<td>39.0</td>
<td>58.6 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>Cells</td>
<td>0.0</td>
<td>18.0 ± 1.7^1</td>
</tr>
<tr>
<td></td>
<td>Chewed</td>
<td>8.5</td>
<td>64.0 ± 3.5</td>
</tr>
<tr>
<td>Roasted almonds</td>
<td>1000 to 2000 µm</td>
<td>8.5</td>
<td>34.1 ± 1.5^4</td>
</tr>
<tr>
<td></td>
<td>500 to 1000 µm</td>
<td>16.0</td>
<td>39.1 ± 3.1^1</td>
</tr>
<tr>
<td></td>
<td>250 to 500 µm</td>
<td>30.0</td>
<td>41.7 ± 3.0^1</td>
</tr>
<tr>
<td></td>
<td>< 250 µm</td>
<td>39.0</td>
<td>51.3 ± 2.0^2</td>
</tr>
<tr>
<td></td>
<td>Cells</td>
<td>0.0</td>
<td>24.8 ± 3.1^1</td>
</tr>
<tr>
<td></td>
<td>Chewed</td>
<td>11.3</td>
<td>64.6 ± 0.1</td>
</tr>
</tbody>
</table>

^4Significant difference between milled particles and chewed samples (P < 0.05). ^*Calculated using the mathematical model (see Chapter 3).
5.4.3 Release of FFA measured with GLC

The amount of lipolytic products (µmol) generated from the duodenal digestion of raw and roasted almond emulsions, chewed almonds and almond cells, as measured by pH-stat and GLC, are presented in Figure 5.4. The lipolysis profiles clearly show a difference in FFA release between materials with the lowest values observed for cells. In all cases, most of the lipolysis took place in the first 10 min of digestion. Identical trends were observed for both raw and roasted samples. The FFA release data obtained from both the pH-stat and GLC methods followed more or less the same trend although the FFA curves for GLC analysis of chewed almonds and almond cells were slightly lower. In a recent study by Helbig and coworkers using an emulsion only, GLC analysis was found to give FFA values 2-3 times higher than values obtained by pH-stat (Helbig et al., 2012). The methodology used by Helbig and colleagues was however different to that employed by our group, in particular the GLC method. The discrepancy between the hydrolysis curves for pH-stat and the GLC curves observed in the current experiments for the chewed almonds and separated cells is likely to be attributed to the limitation associated with the extraction procedure for the GLC preparation. Indeed, it is possible that some of the hydrolysed lipid products were lost during the solid phase extraction and the preparation of the samples for GLC analysis.

5.4.4 Microstructural analysis of separated cells before and after digestion

Figure 5.5 clearly show that most of the intracellular lipids remained intact after digestion as encapsulated by the CW. However, oil droplets appear coalesced inside the roasted almond cells (Figure 5.5 F) suggesting that some transformation occurred (i.e. BS and/or lipase penetration).
Figure 5.4 FFA released (µmol) over a 60 min time period during duodenal digestion using the pH-stat method (green) and GLC analysis (red, average values of duplicates GLC1 and GLC2) for raw (A-C) and roasted (D-F) almond; almond emulsions (A and D), chewed almonds (B and E) and separated almonds cells (C and F). Significant differences found between materials were calculated by repeated-measures ANOVA ($P < 0.005$).
Chapter 5: Effect of the structure of almond materials on lipid digestibility

Figure 5.5 Representative images of separated, raw (A-D) and roasted (E-H) almond cells before (A, C, E and G) and after (B, D, F and H) digestion as examined by optical (A, B, E and F) or confocal (C, D, G and H) microscopy. CL: Coalesced lipids. Lipid in C, D, G and H are stained with Nile red. Scale bars: A, B, E and F = 20 µm; C, D, G and H = 100 µm.
Chapter 5: Effect of the structure of almond materials on lipid digestibility

5.5 Discussion

Pancreatic lipase catalyses the hydrolysis of TAG into FFAs and MAGs; a reaction that can be monitored by maintaining a constant pH by automated addition of NaOH, which neutralises the newly formed FFAs. The volume of NaOH thus added corresponds to the amount of FFA released. This study focused on duodenal digestion as the majority of lipid hydrolysis takes place in the duodenum as discussed in Chapter 1. Between 67 to 70% of the initial almond oil present in the reaction vessel was digested, which is in accordance with physiological values especially since gastric digestion was omitted (Bauer et al., 2005).

As previously reported, the rate and extent of lipid digestion were strongly influenced by the structure and composition of the lipid-water interface (Li et al., 2011c), and significantly increased with the decrease in emulsion droplet sizes because of the larger surface area (Armand et al., 1992). The lipid composition of the emulsion is another key feature that influences lipolysis (Zhu et al., 2013). Indeed, the long chain lipids (i.e. oleic and linoleic fatty acids) generated from the hydrolysis of triolein and almond oils are relatively water insoluble and therefore not easily removed from the interface. Hence the smaller amount of FFA released compared with those generated from tributyrin lipolysis are probably explained by product inhibition at the lipid-water interface. However, it is important to be cautious when interpreting the outcomes of digestibility experiments where oils with different fatty acids mixture have been used. With the pH-stat, the digestion of identical molar amount of different fatty acids could lead to great variability in the quantity of NaOH added (Zhu et al., 2013). Compared with the values of fatty acids in pure molecular solution, pKas have been reported to be 1.5 to 2.0 pH units higher than the pKas of the same species in a fatty acid mixture. In the current study, this issue was taken into consideration since, apart from tributyrin, the fatty acid composition of each material studied was similar, the variability being in the proportion of cells
ruptured. Furthermore, the consistency between the GLC (total FFA release calculations based on individual fatty acids) and pH-stat data for almond oil emulsions confirms that the latter method gave an accurate measure of the level of lipolysis.

Thus, in the static model used in this study, the products of digestion were not removed as the digestion proceeded and so they accumulated at the interface. This is likely to have the effect of inhibiting the lipase before the lipolytic products are incorporated into micelles by BS, as recently reported (Golding and Wooster, 2010), leading to incomplete lipolysis. The generated MAGs are indeed strong interfacial active molecules; if they are not removed by BS, they inhibit lipase activity by ‘monopolising’ the surface of the oil droplet (Reis et al., 2009). On the other hand, the lipase almost completely hydrolysed tributyrin since butyric acid is easily solubilised, which leads to an attenuation of product inhibition phenomenon (Borgström, 1967).

Since triolein and almond oils showed an equivalent degree of lipolysis, it seems that the presence of linoleic acid in almond oils did not influence the course of the reaction and this was observed in spite of the slight difference in droplet sizes between the two emulsions. This result is consistent with a previous in vitro digestion study showing that no preferential selection in the type of fatty acids hydrolysed occurs during lipolysis (Mandalari et al., 2008a). No statistically significant differences were found in either the reaction rate or lipid released between raw and roasted almond oils emulsions which was expected given that their fatty acids composition were similar. This also indicated that the roasting process had no effect on the oil behaviour (i.e. droplet size and phases structure) during emulsification. Also, these results are not unexpected given that the characterisation of the almond oil showed that the roasting process had no effect on droplet size (i.e. surface area to volume ratio).
Chapter 5: Effect of the structure of almond materials on lipid digestibility

As lipase is only active at the interface, it was expected to observe a lag time during which the enzyme adsorbs onto the emulsion surface (Beisson et al., 2001a). The 'interfacial quality', governed notably by the interfacial molecular organisation, including the presence of lipolytic products, and the interfacial conformations of lipids, is highly relevant to the kinetics of the lipase (Verger and de Haas, 1976). In the present work, BS and calcium ions were added in the reaction system together with the substrate, prior to the addition of lipase, and any other surface-active molecules should have been removed, thus facilitating the immediate adsorption of the enzyme at the interface. As discussed in Chapter 1, BS are unusual surfactants that play a crucial role in lipid digestion and absorption (Maldonado-Valderrama et al., 2011). The interfacial proteins network (e.g. β-Lg) is displaced by BS (Maldonado-Valderrama et al., 2008), and the interface thus covered by BS is known to promote colipase, and subsequently lipase, adsorption. BS are also required to remove the lipolytic products that accumulate onto the interface and prevent lipase inhibition. Given that different BS exhibit different behaviour at the interface (promoting either colipase/lipase anchoring to the interface or displacement of lipolytic products) (Parker et al., 2014), it is therefore preferable to use a mixture of BS such as, for instance, NaTC and NaGDC.

It would have been anticipated that the lipid droplets, formed from the release of lipid from ground and chewed almond, had interfaces of different composition than the emulsion droplets, which could have affected the lipolysis rate. These interfaces may have been composed of β-Lg, storage proteins initially present in the almond tissue, and phospholipids and oleosins that covered the surface of the OBs. However, when the interface is exposed to BS solution with a concentration > 5 mM, as it is the case in these experiments, the BS would have displaced β-Lg. The interface is thus likely to have been dominated by the BS and not the proteins and phospholipids (Maldonado-Valderrama et al., 2008).
Chapter 5: Effect of the structure of almond materials on lipid digestibility

The higher concentration of FFAs generated from smaller particles compared with the largest particles is attributed to the greater number of ruptured cells, and therefore increased lipids bioaccessibility as previously shown (Ellis et al., 2004; Grassby et al., 2014). As predicted, the extent and rate of lipolysis was the highest for the particles with the smallest size (≤ 250 μm) which correspond to the sample with the largest proportion of ruptured cells, with lipid content more accessible to the lipase. Despite the significant amount of large particles contained in the chewed almond boluses (35-40% of particles > 500 μm) (Chapter 3), the initial lipolysis rate was more rapid than the milled almond samples of similar average particle size (Table 5.2). However, this result is less surprising when the broad size distribution of particles of chewed almonds is taken into consideration, as reported in Chapter 3. Thus, although mm sized particles were present in chewed samples, they also contained relatively small sized particles ~50% of which had sizes ≤ 125 μm for both raw and roasted almonds. Such small particles contain a greater proportion of bioaccessible (available) lipid relative to larger particles with lower surface: volume ratios and thus less lipid release. On this basis, we would have expected to observe a similar high initial rate of lipolysis for almond flour (i.e. < 250 μm), but both raw and roasted types had significantly lower lipolysis rates than the chewed samples. This suggests that there may be additional factors, other than particle size, that explain the relatively high rates of lipolysis of masticated almonds.

For instance, the method of trituration applied to almonds is likely to affect the physical characteristics of almond particles. Thus, the chewing of almond seeds crushes and compresses the particles resulting in cell damage (rupture) on and beneath the fractured surfaces, compared with a laboratory blending process employing sharp blades that seem to generate less damaged particles with smoother cut surfaces (data not shown).

No significant differences in the amount of FFAs produced (Figure 5.3) and reaction rate (Table 5.2) were observed between raw and roasted particles, indicating that thermal processing had negligible
effects on digestion kinetics. Figure 5.5 clearly shows that much of the intracellular lipids still remained encapsulated inside the almond cells after digestion and changes in cell morphology seemed minimal, except for extensive lipid coalescence in roasted samples, which is consistent with data seen in Chapter 4. However, some microstructural studies have shown that the roasting of almonds also alters the shape of almond parenchyma cells, ruptures some of the CWs, produces uneven distribution and coalescence of the OBs, and causes some aggregation of the protein bodies (Pascual-Albero et al., 1998; Varela et al., 2008b). It is possible, therefore, that roasting may have increased the porosity of the CW, thereby allowing greater access of digestive fluid, but did not facilitate significant intracellular lipolysis because of the presence of coalesced lipids (i.e. oil droplets with lower surface area). Large lipid aggregates can be seen inside the roasted almond cells after digestion (Figure 5 B) suggesting that some transformation had occurred (e.g. by BS and/or lipase penetration). These two mechanisms, i.e. increase in CW porosity and lipid coalescence, may explain the slight increase (not significant) in lipid loss (Chapter 4) and digestibility obtained for the roasted compared with the raw almond samples.

GLC analysis was used in the present study in order to validate the use of the pH-stat with almond materials (particles and cells). This objective was achieved given that the two methods followed the same trend particularly at the beginning of the lipolysis where most of the lipids are digested. Furthermore, a good overall reproducibility, as showed by the dash lines, was obtained between GLC measurements which confirmed the validity of the results. We have to bear in mind that chewed almond and separated cells are difficult materials to study.

The titrimetric method such as the pH-stat has been described as a rapid and convenient tool to study lipolysis generally occurring in the duodenal compartments and on synthetic lipids (e.g. tributyrin and triolein) and olive oil (Beisson et al., 2000; Hasan et al., 2009; McClements and Li, 2010). The pH-stat method has been widely used (Armand et al., 1992; Beisson et al., 2001a; Gallier
and Singh, 2012; Helbig et al., 2012; Li et al., 2011c; Wickham et al., 1998; Zhu et al., 2013) and the investigations have not been restricted just to the pancreatic lipase, since the activity of gastric lipase has also been studied (Capolino et al., 2011; Carriere et al., 2000). The current study was performed to compare the digestibility of lipids contained in almond materials with various degree of complexity using a model simulating the duodenal conditions under well-controlled conditions. For this purpose, the pH-stat was the simplest, cheapest and most convenient technique that permitted continuous measurements of lipolysis.

Many different types of DF, which are largely present in plant foods as CWs, are known to inhibit the rate and extent of digestion and absorption of nutrients, including lipids (Grassby et al., 2013; Gunness and Gidley, 2010; Lairon et al., 2007a; McClements et al., 2009). However, the mechanisms by which fibre achieves this varies depending on its characteristics, including molecular and supramolecular structure and physical form within the GIT. First, some types of fibre are water soluble and have the capacity to raise the viscosity of digesta (Dikeman and Fahey, 2006), which can interfere with the functional properties of BS that play a key role in lipid digestion. Thus for example, soluble fibre is thought to have an impact on BS recycling plus mixing and transport of mixed micelles (Gunness et al., 2012). Second, soluble fibre may interact or perhaps ‘bind’ to the BS thereby affecting the emulsification process and removal of lipolytic products (Cuesta-Alonso and Gilliland, 2003; Kritchevsky and Story, 1974). Third, soluble forms of fibre may also interact with (a) the intestinal mucus layer, thus creating a barrier to absorption of lipolytic products and BS (Gunness and Gidley, 2010), and (b) lipase and the lipase-colipase complex, leading to inhibition of lipolysis (Schneeman and Gallaher, 1985). Recent work done by Alan Mackie and his group (the IFR) on the diffusion of lipid released from a meal containing salmon and barley, revealed that β-glucan released from the barley clogged the mucus and limited the diffusion of the lipid (data unpublished). Figure 5.6 shows fluorescence (lipid concentration) increasing as it builds up in the mucus with only a small
fraction of the smallest micelles diffusing through the mucus layer to be absorbed by the enterocytes.

![Image](image.png)

Figure 5.6 Change in lipid concentration with time (unpublished data provided by Alan Mackie). The lipid concentration is directly related to the fluorescence intensity, so it is possible to follow the flow of lipids into the mucus by time lapse confocal microscopy. In the image on the right corner, the intestinal mucus layer is shown in green and the lipids in red.

An additional mechanism, which is highlighted by the results presented in the current chapter, is the role that DF plays as structurally intact CWs in acting as a physical barrier to lipase diffusion into the lipid-rich almond cells. Our results provide compelling evidence for an encapsulation mechanism in hindering lipid digestion of almonds. The importance of CW integrity is illustrated in Figure 5.5, showing separated lipid-rich cells where the extracellular environment is devoid of lipids. Therefore physical processes such as mastication and mechanical processing (milling) increases the number of ruptured cells and, has a direct effect on the amount of lipid and other nutrients released from the food matrix and potentially available for digestion, confirming previous findings by our group (Ellis et
Almond materials. Our new findings do highlight the importance of the structural integrity of the CW at the fractured surface of almond particles.

An early study performed on peanuts indicated that the structure of the food altered the quantity of fat absorbed (Levine and Silvis, 1980), and these findings have recently been confirmed (Traoret et al., 2007). Mandalari et al. reported that finely ground almonds were more digestible than 2 mm almond cubes (Mandalari et al., 2008a). The different chemical and physical processes occurring during digestion appear to be unable to disturb the resilient CW matrix of hard, brittle plant foods such as peanuts and almonds. Since the lipids provide most of the energy obtained from almonds, a significant discrepancy would be expected to arise between their estimated calorie content found on a food label and the actual energy available from digestion and absorption. Indeed, it has been recently revealed that the commonly used Atwater factors markedly overestimated the available energy found in both pistachios (Baer et al., 2012) and almonds (Novotny et al., 2012) compared with the experimental measurements of metabolisable energy.

Thermal processing of the food prior to ingestion also modifies nutrient bioaccessibility, although in our study roasting did not appear to affect this or the rate and extent of lipolysis. However, blanched almonds have been demonstrated to possess a slightly higher level of lipid digestion compared to raw almonds (Mandalari et al., 2008a). The heat treatment needed to obtain the blanched material denatures the proteins and thus may have reduced the potential interactions occurring between them and the lipids, and/or altered the almond cellular structure resulting in an increase in lipid accessibility.

These results showed that depending on the physical state of the almond materials, modified by mastication and mechanical processing, the accessibility of lipase to the lipid substrate, and the
amount of FFAs produced from the hydrolysis of TAG varied significantly. The concentration of FFA release was greater for smaller particles compared with larger particles due to the greater proportion of ruptured cells, and therefore the amount of released (free) lipid available for digestion. The marked differences in lipid digestion between almond emulsion and lipid-rich almond particles, including separated cells, confirm the role of PCW as a physical barrier against nutrient release and digestion. Despite their small size (~30 to 35 µm), almond cells had less FFA release than almond particles supporting the idea that lipid bioaccessibility relies not only on the available surface area but more importantly on the extent of damaged cells. No significant differences were observed between raw and roasted almond samples. Roasting may have an effect on plant CW integrity, but the coalescence of lipids may diminish further digestion from occurring.
CHAPTER 6

IN VIVO AND IN VITRO DIGESTION OF ALMOND MEALS OF DIFFERENT BIOACCESSIBILITY
6.1 Introduction

Using a simple in vitro model, the results reported in Chapter 5 show that the bioaccessibility (release) of lipid and its subsequent digestion varied according to the size of the almond particle. These digestibility experiments provided detailed information about the behaviour of a wide range of almond materials in well-controlled conditions. However, digestion occurring in a human digestive tract is much more complex and it is helpful to validate in vitro model data by performing human digestibility studies. Therefore this chapter describes a human intervention study undertaken in ileostomy subjects to investigate lipid digestibility in almond meals with different lipid bioaccessibility values. The ileostomy study was performed at the same time as the gut model (DGM and SDM) experiments using the same almond meals.

Digestion has been investigated in humans and animals with a ileostomy since the early 1940s using dogs (Werch and Ivy, 1941) and then in the 1980s using human volunteers (Berghouse et al., 1984; Englyst and Cummings, 1985; Sandberg et al., 1981; Sandberg et al., 1986; Sandstrom et al., 1986). Ileostomies are performed on individuals suffering from diseases of the colon and rectum such as inflammatory bowel disease (i.e. ulcerative colitis or Crohn's disease) or colorectal cancer. This surgical procedure consists in bringing out the end of the ileum through an opening made in the abdominal wall (stoma), often following the removal of the colon as presented in Figure 6.1 (Melville and Baker, 2011). The digested food passes out of the body through the stoma and is collected in a pouch.

The majority of nutrient absorption takes place in the upper-GIT, so studying the amount of lipid and starch digestion at the terminal ileum is of particular interest. As recovery of material from this part of the gut is not easily achieved, the ileostomy model, particularly in long standing stable patients, is recognised as the best option, and enables researchers to examine the digesta in the relevant region without resorting to invasive procedures (Andersson, 1992; Cummings and Macfarlane, 1991).
Furthermore, it is more relevant to investigate effluent rather than faeces as microorganisms present in the colon further degrade the food and thereby overestimates nutrient release. Other advantages of the ileostomy model are the shorter intestinal transit time that permits the collection of effluent subsequent to the digestion of food consumed during the day (Englyst and Cummings, 1986; Sandberg et al., 1981) and the consistency in ileal output within individuals (Andersson, 1992). Finally, it is easier to collect excretions from ileostomy subjects than individuals with intact colon given that handling of effluent is a routine matter for those subjects and ileal fluid is collected into pouches.

Figure 6.1 Schematic representation of the proctocolectomy (a), the Brooke (or standard) ileostomy following the operation (b), and view side with the pouch (c) (M’Koma et al., 2007).

In the UK, normal bowel habit has been estimated to be on average about 106 g of faeces per day, with subjects passing between 40 and 208 g/day (Cummings et al., 1992). Mouth to anus transit time corresponds approximately to 55 h for men and 72 h for women. Individuals with established ileostomy will pass on average 500 to 1000 mL of effluent per day depending on type and quantity of food/liquid consumed (Hill, 1976; Kock et al., 1977). The pouch is required to be changed or emptied every few hours (5 to 8 times a day). The greater volume of ileal fluid compared with faeces can be explained by the fact that most of the water is absorbed in the colon, hence the deficit in total body
Chapter 6: In vivo and in vitro digestion of almond meals of different bioaccessibility

water and sodium observed in ileostomy subjects (Clarke et al., 1967; Hill et al., 1975; Kennedy et al., 1983). Despite the major changes occurring to the morphology of GIT following an ileostomy, the digestive process remains similar to the one of an individual with a whole GIT (Hill, 1976). The patient's body adapts in order to increase the absorptive capacity of the small intestine thus reducing fluid flow and electrolyte losses (Kennedy et al., 1983; Wright et al., 1969). Therefore, ileostomy subjects, in particular those who suffer from ulcerative colitis, are likely to have healthy, normal-functioning upper GIT (Andersson et al., 1999).

Compared to normal ileal content, the effluent flora is quantitatively, the bacterial count in effluent is 100 times higher than the ileal flora but 20 times lower than the faecal flora (Andersson, 1992); and also qualitatively (Finegold et al., 1970; Ruseler-van-embden et al., 1991) different. The flora of the effluent is variable between subjects but stable within individuals. Nevertheless, high inter-subject variability is also observed in the microbial flora of individuals with a whole GIT probably due to genetic variations, lifestyle and dietary habits (Eckburg et al., 2005). These bacteria have various functions including protection against certain pathogens and also metabolic activities (i.e. fermentation of non-digestible nutrients, production of vitamin K, folate and short chain fatty acids, and ion absorption) (O'Hara and Shanahan, 2006).

If collected regularly and frozen rapidly after collection, the effluent undergo minimal microbial degradation including the DF components (Andersson, 1992); however, great care is needed to ensure this and some degradation is inevitable. Similar enzyme activity have been reported between subjects with and without an ileostomy (Hill, 1976). Transit time through the stomach and small intestine appeared consistent among those two categories of individuals. Also, the ileostomy does not seem to have an impact on the ileal break (Soper et al., 1990).
Chapter 6: In vivo and in vitro digestion of almond meals of different bioaccessibility

6.2 Aim and objectives

Nutrients bioaccessibility can be manipulated by altering the proportion of CW encapsulated nutrients (i.e. particle size) in test meals. It was hypothesised that a greater amount of lipid would be recovered (i.e. ‘undigested/unavailable’) in ileal effluent after consumption of a lower nutrient bioaccessibility meal. Also, meals designed to have a lower nutrient availability (lipid and starch) would elicit an attenuation in the postprandial rise in blood lipid and glucose concentrations than meals designed to have higher nutrient availability.

The main aim of the study described in this chapter was to investigate the effect of meals with contrasting degree of encapsulation (i.e. proportion of intact CW) on nutrient release using both in vitro (gut models: DGM and SDM) and in vivo (ileostomy model) methods. The main objectives of this investigation, referred to here as the Biogut study, were to:

(a) Quantify the loss of lipid from almond tissue due to lipid release and recovered at different stages of gastrointestinal digestion (in vitro and in vivo);
(b) Examine the changes in the physical state/microstructure of the almond materials before and after digestion; and
(c) Compare the changes in lipid release and digestion (in vitro and in vivo) with the postprandial blood lipid, glucose and gut hormone responses observed in vivo.

6.3 Materials and methods

The Biogut study was designed and conducted in collaboration with another PhD student, Cathrina Edwards, who was responsible for a separate arm of the study investigating starch digestion (Study 2). The methods and results presented below focus on the lipid digestion arm of the study (Study 1).
Because of difficulties encountered by some of the volunteers (obstruction of the stoma), Study 1 had to be interrupted prematurely. Consequently, to support this study’s outcomes, the meals were also tested using the DGM/SDM. The almond muffins were masticated by a volunteer and the expectorated bolus loaded onto the DGM.

6.3.1 Test meals

The almond muffins were specifically designed to vary in nutrient bioaccessibility, which consisted predominantly of lipid (48 g from almond). The test meals consisted of 220 g muffin made of either almond flour (AF, particles size ~187 µm) or almond particles (AP, particles size between 1700 to 2000 µm), given with 80 g of custard (Bird’s Instant Custard; Premier Ambient Products, Lincolnshire, UK). Both muffins contained 48 g of lipid, 25 g of protein, 79 g of available carbohydrate (starch and sugars) and 10 g of DF, and the total energy content was 742 kcal (3161 kJ). Details on the preparation and composition of the muffins can be found in Appendix D.

In this project the term flour was used to describe almonds that were ground to a powder consistency as opposed to particles that could be visible to the naked eye. The test meals containing almonds were prepared to maximise differences in lipid bioaccessibility, so that the almond flour and large particles are characterised as high and low bioaccessibility samples, respectively (see Section 2.2.1.1 for details about the preparation of the almond particles and flour). Volunteers were requested to swallow the meal with little mastication, which was rendered possible by the soft matrix of the muffin, in order to limit further particle size reduction and to study exclusively the effect of gastric and duodenal digestion. Data from previous studies performed by our group (Berry et al., 2008; Mandalari et al., 2008a), showed that 1700 to 2000 µm was the maximum particle size possible to ensure minimal mastication without loss in palatability whilst allowing for minimal lipid release during digestion. Using the mathematical model, lipid bioaccessibility of 1700 to 2000 µm
particles was estimated to be about 6%, compared with 49% for the flour (see Appendix B). Unfortunately, due to the limitation in the size range covered by the Malvern 2000® laser diffraction particle sizer (0.2 to 2000 μm), the large particles used in AP could not be precisely measured due to the risk of obstructing the machine.

6.3.2 In vitro digestion of almond muffins

6.3.2.1 Mastication of the almond muffins

Sections 6.3.1.2 to 6.3.1.4 were adapted from a protocol developed in collaboration with Dr Mandalari at the IFR. A volunteer was recruited by the Human Nutrition Unit at the IFR and asked to masticate half a muffin until ready to swallow. Each muffin was cut vertically into half while still frozen and one half defrosted at 4°C the day before the study day. The remaining half was kept frozen until needed. The same volunteer was used throughout the study. The protocol was reviewed and given a favourable opinion by the Research Ethics Committee of the North London National Research Ethics Service (reference no. 10/H0717/096) and the Research and Development office at Guy’s and St Thomas Hospitals NHS Foundation Trust (reference no. RJ111/N032).

6.3.2.2 In vitro gastric digestion

The solutions were prepared as detailed in Chapter 2. In brief, 180 g of masticated muffin and 20 mL of priming acid were loaded in the model that ran for about 1 h; 7 samples (~35 g each) collected at 9 min intervals. During the course of the gastric digestion, 39 mL of enzyme solution and 13 mL of acid solution were added. Each gastric sample was weighed, its pH recorded and adjusted to 7.0 with 1 M NaOH to inhibit gastric enzyme activity, and weighed again. Each gastric sample had 8 g removed for pooled sample for further digestion, and 10 g for lipid analysis.
6.3.2.3 In vitro duodenal digestion

A pooled sample (42 g), obtained from combining aliquots (8 g) of each gastric sample was transferred to a Sterilin plastic tube for duodenal digestion. The remainder of the gastric pool were retained for lipid analysis. To the pooled sample, simulated bile solution (10.42 mL) and pancreatic enzyme solution (29.18 mL) were added and the mixture incubated at 37°C under shaking conditions (170 rpm) for 8 h. Aliquots (10 g at 1 to 6 h, 15 g at 7 and 8 h) were taken every hour and replaced with fresh bile (1.2 mL) and pancreatic enzymes (3.5 mL). Each sample was stored on ice until the run was complete and then frozen at -20 °C.

6.3.2.4 Samples analysis

Masticated, pooled gastric and pooled duodenal samples were analysed for lipid loss using an automated Soxhlet as described in Chapter 2 Section 2.3.1.2.1.

For microscopy, the originals (undigested) and digested samples were prepared according to the methods described in Chapter 2. Briefly, for the digested samples, aliquots were collected and placed in vials containing the fixative. The samples containing only small particles were placed directly on a microscopy slide and Nile red used to identify lipids. The large almond particles recovered were prepared as previously explained in Chapter 2 Section 2.3.3.1.

6.3.2.5 Statistical analysis

The data were analysed using SPSS version 17.0. For all tests, the significance level was set at $P < 0.05$ (2 tailed). All data are expressed as mean ± SEM. Repeated-measures ANOVA was used to test for differences in lipid release after mastication, gastric and duodenal digestion with muffin type as
‘within-sample’ factor. Differences in lipid release between AF and AP were analysed by Student’s paired t-test.

6.3.3 In vivo study

6.3.3.1 Subjects and location

Nine adults (7 females, 2 males) who had previously undergone proctocolectomy for ulcerative colitis, Crohn’s disease (pure colonic form), or colorectal cancer with normal stoma function (i.e. able to digest and excrete food without any difficulty), were included in the study. The number of subjects required for this study was estimated with a power calculation based on the difference in TAG Incremental areas under the curve (iAUC) between macroparticles and almond oil and defatted almond flour from another study from our group (Berry et al., 2008). This power calculation (performed using G-Power© 3.1.2 software) predicted that 8 subjects would give 80% power to detect a difference between means values of 267 for TAG IAUC at a significance level (alpha) of 0.05 (two-tailed).

Volunteers were identified via the Ileostomy Association, Inside Out, Stomawise, and the events organised by these associations. The subjects willing to take part were sent the participant information sheet (approved by South East Coast Kent Ethical Committee, see Appendix E) and asked to complete two screening questionnaires about their general health and dietary habits. Volunteers who were likely to be eligible were invited to attend a screening visit which involved anthropometric measurements, blood analysis, and a medical examination to assess eligibility (Appendix F: ‘Volunteers screening and visit procedures’). Volunteers were excluded if they were allergic to almonds or related products, gluten and any other added ingredients in the recipe of the test meals; had previously suffered obstruction of the stoma, had a body mass index < 20 kg/m² or > 35 kg/m²; had a diagnosed mouth, throat or GIT problem (other than ileostomy) that might affect normal
ingestion and digestion of food; had total plasma cholesterol > 7.8 mmol/L, plasma TAG > 3 mmol/L, and plasma glucose > 7 mmol/L; had liver function and blood cell counts not within prescribed limits or had diabetes. Once checked for eligibility, volunteers attended up to four study visits at the Clinical Research Facility (CRF) of St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH.

6.3.3.2 Study design

Two single-blind (researcher-blind), randomized, cross-over design studies were undertaken to test lipid- (Study 1) or starch- (Study 2) rich meals varying in nutrient availability. Volunteers were randomly allocated to interventions (AF or AP) using an electronic randomisation program (http://www.randomizer.org/form.htm). Investigators were blinded to the analysis of the samples using a code; the intervention (AF or AP) assigned by a researcher independent to the study. The test meal was prepared and presented to the volunteer by an un-blinded investigator.

Potential volunteers then attended a screening session at the CRF. This session comprised a brief medical examination (blood pressure, waist and hip circumferences, weight and height) and fasting blood collection. Volunteers were excluded at this stage if fasting blood results were found to be outside the normal ranges. Following screening, volunteers were asked to attend the CRF on 2 to 4 separate occasions with a gap of at least one week between visits as outlined in Figure 6.2 and Appendix F.
Chapter 6: In vivo and in vitro digestion of almond meals of different bioaccessibility

Figure 6.2 Outline of study protocol

The study was reviewed and given a favourable opinion by the Research Ethics Committee of South East Coast, Kent (reference no. 12/LO/1016) and the Research and Development office at Guy’s and St Thomas Hospital (reference no. RJ112/N237). The study was also approved by the International Standard Randomised Control Trial (number: ISRCTN40517475). All the volunteers provided written informed consent. All samples were handled, transported and disposed of in accordance with the Human Tissue Act 2004. Each participant was assigned an identification number at screening. Confidential information was kept in a secure locker and on a password protected encrypted hard drive, and was only accessible to designated researchers working on the trial (in accordance with the Data Protection Act 1988). The use of the CRF was authorised by an independent Scientific Advisory Board prior to the commencement of the study.
6.3.3 Test meals

During the visits, volunteers were given for breakfast a muffin containing either almond flour or almond macroparticles (see Section 6.3.1); most of the ingested lipid coming from the almond (see Appendix G). The lunch meal provided little amount of lipid (0.7 g) and fibre (2.7 g). It was assumed that the lipids present in all the food consumed by the volunteers on each visit, apart from the muffin test meals, were more readily available and absorbed in the duodenum, and thus absent from the collected effluents. Moreover, the low-fat yoghurt given for lunch showed to have no effect on the postprandial lipaemic response (Berry et al., 2008).

6.3.3.4 Collection and handling of blood samples

The postprandial blood response corresponds to a variation in the concentrations of circulating dietary compounds and hormones (e.g. TAG, glucose or insulin) following ingestion of a meal. The measurement of these indicators over time provides information about the rate and extent of nutrient absorption (e.g. lipid) and associated physiological response (e.g. gastric emptying and satiety). Insulin regulates blood glucose concentration by increasing glucose uptake by fat and muscle cells in hyperglycaemic state (Saltiel and Kahn, 2001). It also promotes the synthesis and storage of lipids and proteins. C-peptide and insulin concentrations conjointly measured gave an accurate estimate of insulin metabolism (Polonsky and Rubenstein, 1984). Insulin and C-peptide are co-secreted in equimolar concentrations and vary with physiological circumstances (i.e. fasting or after food intake). But contrary to insulin, C-peptide has a constant metabolic clearance rate and lacks hepatic extraction. Therefore, C-peptide peripheral blood measurements correlate with the portal vein absorption. Given that carbohydrate digestion has an impact on lipid metabolism (Lairon et al., 2007a), measurements of glucose, insulin and C-peptide were necessary.
A cannula (Venflon PRO 22GA, Becton-Dickinson Oxford, UK) was inserted into the antecubital vein of the forearm; blood samples were collected into a syringe and dispensed into the appropriate vacutainers (Appendix H).

The blood collected during the screening session was directly delivered to the GSTS pathology laboratory of St Thomas’ Hospital and analysed for baseline glucose, lipid profile, liver function tests and full blood counts. Blood samples collected during each visit were analysed for glucose, TAG and NEFA using ILab 650 auto-analyser (Instrumentation Laboratories, see Appendix H for more details). The analysis for insulin and C-peptide were also performed at the GSTS pathology laboratory of St Thomas’ Hospital. The vacutainers intended for insulin and C-peptide analyses were delivered to the GSTS lab immediately after venesection. The analysis of gut hormones PYY, CCK, GLP-1 and GIP were performed at King’s College Hospital in Denmark Hill.

6.3.3.5 Samples analysis

6.3.3.5.1 Blood samples analysis

The details of the methodology for the analysis of glucose, TAG and NEFA with ILab 650 auto-analyser and gut hormones performed at Denmark Hill can be found in Appendix H. Briefly, glucose (glucose oxidase ILTest™ kit), TAG (triglycerides ILTest™ kit) and NEFA (Randox NEFA kit) concentrations were measured using colorimetric assays. Insulin, C-peptide and gut hormones (GIP, GLP-1, CCK, and PYY) were analysed by GSTS pathology using chemiluminescence or immunoassays. The iAUC, over 360 min for TAG and over 240 min for glucose, insulin and C-peptide, were calculated using the macro available in SigmaPlot 12.0.
6.3.5.2 Effluent samples

Nutrient losses

About 50 g of sample was placed in a pre-weighed aluminium dish, which was then stored at -40°C. The sample was freeze-dried to estimate moisture content and total fatty acids was obtained by lipid extraction of the dried effluent samples with a Soxhlet extraction using hexane as solvent (method details in Chapter 2).

The overnight samples, once arrived at KCL, were left to defrost at room temperature and then processed in a similar manner than the samples collected during the visits.

Mean transit time

Mean transit time was calculated from the lipid content of ileal effluent using an Equation 6.1 adapted from (Englyst and Cummings, 1985):

\[
MTT = \frac{\sum (\text{Lipid in sample} \times t)}{\text{Total lipid recovered}}
\]

(Eq. 6.1)

where MTT is the mean transit time in hours, the amount of lipid in sample and total lipid are in g and t is the time in hours.

Microscopy

An aliquot of the effluent was collected at each time point and prepared for microscopy as described in Section 6.3.2.5.
Chapter 6: In vivo and in vitro digestion of almond meals of different bioaccessibility

6.4 Results

6.4.1 In vitro gastrointestinal digestion

6.4.1.1 Lipid loss

Table 6.1 shows the percentage of lipid release in the different compartments of the GIT, with a total of 97.1% for AF and 57.6% for AP after duodenal digestion. As expected, the amount of lipids that becomes available increased throughout the digestion process with a significant difference between AF and AP \((P < 0.005)\). Repeated-measures ANOVA also showed that the differences in lipid released observed between the different compartments of the GIT were significant \((P < 0.001)\).

Table 6.1 Cumulative percentage of lipid released and deduced total undigested lipids from the almond particles (AF and AP) at the different stages of in vitro digestion. Values are presented mean ± SEM \((n=3)\).

<table>
<thead>
<tr>
<th></th>
<th>AF</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid released in the mouth (%)</td>
<td>4.4 ± 0.4</td>
<td>1.9 ± 0.2</td>
</tr>
<tr>
<td>Lipid released in the stomach (%)</td>
<td>41.6 ± 1.6</td>
<td>5.8 ± 0.1</td>
</tr>
<tr>
<td>Lipid released in the duodenum (%)</td>
<td>97.1 ± 1.7</td>
<td>57.6 ± 1.1</td>
</tr>
<tr>
<td>Undigested lipids (%)</td>
<td>2.9 ± 1.7</td>
<td>42.4 ± 1.1</td>
</tr>
</tbody>
</table>

6.4.1.2 Microstructural analysis

6.4.1.2.1 Muffin containing almond flour

The images of recovered almond flour particles are showed in Figures 6.3. As previously observed, negligible changes in the particles microstructure were observed between samples at baseline (before ingestion) and mastication or gastric digestion. Empty cells and cell debris were more abundant in the later stage of digestion, intestinal phase (Figure 6.3 D).
Figure 6.3 LM sections of raw almond particles from AF recovered at different stages of digestion: baseline (A), chewed (B), post-gastric (C), and post-duodenal (D). Lipids are stained in red with Nile red. The coalesced lipids and empty cells are indicated by the white and black arrows, respectively. Scale bars = 20 μm.

6.4.1.2.2 Muffin containing large almond particles

Large particles were recovered after simulated gastric and duodenal digestions (Figure 6.4). The lipids remained enclosed inside the almond tissue, although it appears that some of the CW fractured during the preparation of the muffins (Figure 6.5 A1 and A2). The cells within the almond tissue appeared to be tightly packed together and the lipids coalesced.
6.4.2 In vivo study

6.4.2.1 Volunteer and effluent samples characteristics

Only one female volunteer completed the lipid study, because some volunteers had complications (i.e. obstruction of the stoma) following the ingestion of the muffin with large almond particles and consequently it was decided to interrupt this arm of the study (Figure 6.5). This volunteer had an ileostomy operation more than 2 years before the start of the study due to ulcerative colitis. Her usual dietary intake was within the UK reference ranges for women for most nutrients apart from protein intake that was double that in the normal range (Table 6.2). Fat intake was also high especially for saturated fat. Blood pressure, BMI, fasted plasma glucose, TAG and cholesterol concentrations were all within normal range, and the subject was of good health. Study 2 revealed that data from this volunteer (i.e. starch recovery and blood profiles following ingestion of the wheat meal) were within one standard deviation of the population mean so for example for smooth
particles wheat porridge, the starch recovery weight was 3.63 g compared with the mean value of the group (n = 9) of 3.00 ± 1.1 g (Edwards, 2014).

Figure 6.5 CONSORT diagram of subject flow throughout the study. One subject completed Study 1, and a total of 9 subjects completed Study 2.
Table 6.2 Baseline dietary intake of the volunteers included in the study (means ± SEM).

<table>
<thead>
<tr>
<th>Dietary intake at baseline</th>
<th>Values (n=9)</th>
<th>Study 1 volunteer's values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kJ/d, (kcal/d))</td>
<td>8012 ± 1088 (1938 ± 255)</td>
<td>7842 (2081)</td>
</tr>
<tr>
<td>Protein (g/d)</td>
<td>96.3 ± 17.9</td>
<td>93.8</td>
</tr>
<tr>
<td>Carbohydrate (g/d)</td>
<td>191.1 ± 26.8</td>
<td>175.4</td>
</tr>
<tr>
<td>Fat (g/d)</td>
<td>78.5 ± 10.9</td>
<td>100.4</td>
</tr>
<tr>
<td>Dietary fibre (g/d)</td>
<td>19.4 ± 3.6</td>
<td>19.7</td>
</tr>
<tr>
<td>Physical characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>48.2 ± 6.0</td>
<td>52</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td>24.0 ± 1.3</td>
<td>19.6</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>83.3 ± 4.0</td>
<td>72.2</td>
</tr>
<tr>
<td>Hip (cm)</td>
<td>100.7 ± 2.3</td>
<td>93.2</td>
</tr>
<tr>
<td>Waist/hip</td>
<td>0.8 ± 0.03</td>
<td>0.8</td>
</tr>
<tr>
<td>Systolic / diastolic BP (mmHg)</td>
<td>110.3 ± 5.4 / 70.3 ± 3.1</td>
<td>89 / 66</td>
</tr>
<tr>
<td>Pulse (beats/min)</td>
<td>69.1 ± 4.1</td>
<td>81</td>
</tr>
<tr>
<td>Biochemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma glucose (mmol/L)</td>
<td>5.1 ± 0.23</td>
<td>4.8</td>
</tr>
<tr>
<td>Plasma TAG (mmol/L)</td>
<td>1.0 ± 0.15</td>
<td>0.76</td>
</tr>
<tr>
<td>Plasma total cholesterol (mmol/L)</td>
<td>4.9 ± 0.32</td>
<td>4.9</td>
</tr>
</tbody>
</table>

\(^1\)Values are presented mean ± SEM. \(^2\)Dietary intake as analysed by NetWisp 3.0 (Tinuviel\(^{©}\) software).

The characteristics of the effluents collected from 0 to 10 h and the corresponding MTT are outlined in Figure 6.6 A; the last time points were excluded since the collected samples contained the remainder of the evening meal, consumed 8 h after the test meal. The amount of dry matter excreted by the volunteer was higher for AP (47.4%) than for AF (42.2%), in contrast to the values obtained for moisture content, which were 88.8 and 91.2% for AP and AF, respectively. This implies that AF was digested to a greater extent than AP which is confirmed by the total lipid content in the effluent (for the 10 h period: 1.7 and 20.9 g for AF and AP, respectively). The transit time values, calculated over 10 h following the test meals ingestion, indicated that AP took longer to be digested than AF. Over the 24 h period, a total of 52.3 and 85.0 g of dry matter was excreted following AF and AP consumption, respectively (Figure 6.6 B). For most time points, more effluent matter was
recovered for AP than for AF. An important amount of large particles (AP only) were recovered even after long residence time (data not shown), although it is worth noting that some of the effluent originated from the meal consumed for the evening meal.

6.4.2.2 Lipid loss

The concentration of undigested lipids in recovered effluent at each postprandial time point, calculated as a percentage of the dry weight of the effluent samples, is presented on Figure 6.7. A marked difference in the percentage of undigested lipids could be observed between the two interventions with a maximum of 12.4% at 2 h for AF and 53% at 10 h for AP. The percentage of recovered lipids was much greater for AP compared to AF, and this at each time point with a maximum difference of ∼51% at 10 h. Apart for this peak at 2 h, the digestion of lipid contained in the almond flour appeared to be constant overtime. The total amount of undigested lipids for the whole 24 h period, calculated from the original ingested almonds, was 6.2% for the almond flour and 58.7% for the 2000 µm almond particles.
Figure 6.7 Concentration of lipid in the effluent samples recovered at each postprandial time point from the terminal ileum of the ileostomy volunteer (n=1) for AF (green) and AP (blue). Values are calculated as a percentage of the dry weight of the effluent samples. Much of the lipid found in the effluent remained enclosed in the particles of almond tissue (see Section 6.4.2.3).

6.4.2.3 Microstructural analysis

For both interventions particles of almond could be easily seen and identified in the effluent samples.

6.4.2.3.1 Muffin containing almond flour

Figure 6.8 (A-F) illustrates typical almond particles removed from effluent that had been collected at the terminal ileum at different time points following the ingestion of AF. On examination of these particles, it is clearly noticeable that a large proportion of lipids were still present within the recovered particles, even though many were of relatively small size (i.e. Figure 6.8 shows particles of
~300 µm, but particles with sizes as small as ~75 µm were also observed, *data not shown*. The structure of the particles is also visible implying that little alteration occurred to these particles throughout the digestion, although some of the content appeared to have been digested especially at the surface (6.8 B, C and D).

![Image](image_url)

Figure 6.8 LM sections of raw almond particles from AF recovered in ileal effluents at different time points: 2 h (A), 4 h (B), 6 h (C), 8 h (D), 10 h (E) and overnight (F). Lipids are stained in red with Nile red. The empty cells are indicated by the black arrows. Scale bars: A, B, D and F = 50 μm; C and E = 20 μm.

6.4.2.3.2 Muffin containing large almond particles

A large proportion of undigested lipids remained inside the macroparticles recovered at the terminal ileum (Figure 6.9 A-G). These observations correlate with the lipid measurements presented in Figure 6.7. There was a progressive loss of lipid from the surface towards the core of the large particles. This lipid loss was never complete, but this became more noticeable at the later stages of digestion (> 10 h). Only the cells on the first (surface) layer were depleted of their lipid content after 2 and 4 h of digestion (Figure 6.9 A1 and B1) compared with cells in 3-4 surface or near surface layers at 10 and 12 h (Figure 6.9 E1 and F1). Moreover, as previously reported (Mandalari *et al.*, 2008a), the almond CWs seemed to show evidence of swelling, in particular at the latest stages of digestion (Figures 6.9 F2 and G2).
At each stage of digestion, CW degradation and lipid coalescence of the almond tissue could be discerned. Despite these alterations, that may have occurred during the muffin preparation (i.e. cooking and freezing; Figure 6.4 A), lipid digestibility was limited. Similarly to the in vitro data, the tissue firmness, tight cell-cell adhesion and absence of cell separation may have prevented leaking of the lipid to the extracellular environment and diffusion of digestive agents (i.e. lipase). The extent of digestion and the resulting degradation of the almond particles looked similar in vivo and in vitro for identical residence time (i.e. 8 h).

Figure 6.9 LM (1) and TEM (2) sections of raw almond particles from AP recovered in ileal effluents at 2 h (A), 4 h (B), 6 h (C), 8 h (D), 10 h (E), 12 h (F) and 21 h (G) of digestion. The coalesced lipids, empty cells, fractured cells and swollen CW are indicated by the white, black, blue and green arrows, respectively. Scale bars: A1 = 100 μm; B1, C1, E1 and F1 = 50 μm; G1 and D1 = 20 μm; A2, B2, C2, D2, F2 and G2 = 5 μm.
6.4.2.4 Postprandial responses

6.4.2.4.1 Plasma lipids, glucose, insulin and C-peptide concentrations

The changes from fasting in postprandial TAG and NEFA concentrations after the two test meals are presented in Figure 6.10 with the TAG iAUC in the inset. Overall, AF elicited a greater rise in TAG blood levels than AP, the iAUC was ~28% lower for the latter. TAG concentrations reached peak values at 2 h 30 for AF (difference of 0.63 mmol/L from fasting) and 4 h for AP (difference of 0.42 mmol/L from fasting). Plasma concentrations of NEFA following the ingestion of AF and AP were lower than during fasting, and this for the entire duration of the intervention day. NEFA concentrations were higher after AF up to about 3 h where the trend reversed.

The postprandial glucose, insulin and C-peptide responses showed a different pattern to those seen for plasma TAG and NEFA (Figure 6.11). All three curves followed the same trend and showed a sharp peak at 30 min for AP (i.e. 7.8 mmol/L, 491 pmol/L and 2648 pmol/L at 30 min for plasma glucose, insulin and C-peptide concentrations, respectively) and a much lower peak rise at 3 h for AF (i.e. 6.9 mmol/L, 239 pmol/L and 2076 pmol/L at 30 min for plasma glucose, insulin and C-peptide concentrations, respectively). Another interesting observation is the difference in shape profiles between AF and AP; the steady rise in glucose concentrations for AF indicates that the starch present in the muffin is being slowly digested; the insulin, C-peptide profiles being consistent with the glucose data.
Figure 6.10 Changes from fasting in plasma TAG (A) and NEFA (B) concentrations in an ileostomy volunteer (n=1) after the test meals containing 48 g of lipids from AF (green) or AP (blue). Inset: Incremental area under the curve. The raw data can be found in Appendix I.
Figure 6.11 Plasma glucose (A), insulin (B) and C-peptide (C) concentrations in an ileostomy volunteer (n=1) after consumption of AF (green) or AP (blue).
6.4.2.4.2 Gut hormones concentrations

Postprandial plasma GIP, GLP-1, CCK and PYY concentrations in responses to the two test meals are shown in Figure 6.12. The muffin with the larger almond particles elicited sharp and early elevation in GIP, GLP-1 and PYY concentrations (329 ng/L at 30 min for GIP; 67 pmol at 15 min for GLP-1; and 154 ng/L at 15 min for PYY). While GLP-1 levels remained relatively constant overtime following the ingestion of AF, GIP and PYY increase to ~520 ng/L at 90 min and ~200 ng/L at 30 min, respectively. CCK concentrations showed constant fluctuation over 3 h, especially for AP, but seemed to flatten off in the last hour.
Chapter 6: In vivo and in vitro digestion of almond meals of different bioaccessibility

Figure 6.12 Plasma GIP (A), GLP-1 (B), CCK (C) and PYY (D) concentrations in an ileostomy volunteer (n=1) after the test muffin meals containing 48 g of lipids from AF (green) or AP (blue).
6.5 Discussion

This chapter describes the results of an ileostomy study in which digested lipid (i.e. lipid excreted) and the subsequent blood responses were measured following the consumption of two test muffin meals that were identical in composition, but contained almonds that differed in their physical structure (i.e. particle size and consequently lipid bioaccessibility). The importance of food structure and the role of CW in influencing the lipid availability has been previously identified by our group (Ellis et al., 2004; Mandalari et al., 2008a). The current study was designed to improve our understanding of the mechanisms of lipid bioaccessibility and digestion of almonds in the upper GIT, and how this is linked to postprandial lipaemia. The use of microstructural analysis of digested almonds in combination with measuring the extent of lipid digestion and plasma TAG concentrations in ileostomy patients is a novel approach. Unfortunately the almond meals, in particular AP, was not well-tolerated by the volunteers and only one of them was able to complete the study; hence the requirement of performing an additional in vitro digestibility study.

The structure of lipid or starch rich foods and its impact on blood responses have been investigated in many previous studies using human volunteers with a complete GIT (Holm and Bjorck, 1992; Kristensen et al., 2010; McKiernan et al., 2010). However, many of these studies lacked detailed physicochemical characterisation of the ingested food (i.e. structure of the food matrix, type and quantity of DF, and particle size) and also of the food materials reaching the terminal ileum, prior to fermentation by gut microflora. Lia et al. investigated the effect of DF from oat and wheat (DF content was 16.3 and 6.4 g for oat and wheat meal, respectively) on lipaemia in ileostomy volunteers (Lia et al., 1997). In contrast to the study design presented in this chapter, the lipids were not included in the food matrix but added separately to the test meal. They found that plasma TAG concentrations and fat excretion increased to a greater extent after the oat meal. A more recent
Chapter 6: In vivo and in vitro digestion of almond meals of different bioaccessibility

A study investigated the effect of a food matrix on the release of omega-3 long chain PUFA in ileostomy volunteers (Sanguansri et al., 2013). In their study, the authors use fairly readily available lipids (fish oil microencapsulated inside a starch mixture) and the food matrix differed greatly (i.e. orange juice, yoghurt and cereal bar), therefore there was no major modification per se in the degree of nutrient encapsulation. However, this study showed that food matrix played a role in delivering omega-3 long chain PUFA, cereal bar (i.e. the most complex food matrix) eliciting the highest lipid recovery.

Comparison between ileostomy subjects and individuals with their normal intact GIT indicated similarities in many aspects of the digestion process between these two groups (Andersson, 1992), including lipid absorption (Tornqvist et al., 1986). However, subjects who underwent proctocolectomy were reported to have elevated blood concentration in most hormones including insulin (M'Koma et al., 2007).

The changes in lipid digestibility between AF and AP obtained with the DGM/SDM and the ileostomy volunteer were consistent; the percent decrease in undigested lipid between the two meals being 94 and 89% for in vitro and in vivo, respectively. As anticipated, the proportion of lipid release was greater for the muffins containing almond particles than raw and roasted whole almonds digested using the DGM (~68% for both almond types, see Chapter 4). The data therefore confirmed that the amount of nutrient released from the almond tissue depends on its physical state when it reaches the stomach and emphasised the importance of mastication and the pre-ingestion transformations.

It is plausible that the small particles, due to the nature of the almonds and their physical properties (e.g. strong cell-cell adhesion), may have fractured in a different manner to the large ones during grinding in a similar way to the phenomenon observed during mastication (Chapter 3, Figure 3.7). However, physical disruption of the CW during the meal preparation was not sufficient to obtain a
complete lipid digestion especially if the particles were large. The overall almond tissue integrity (i.e. cells still tightly packed together) appeared to be conserved despite the mechanical damages; this behaviour along with the lipid coalescence may have limited the penetration of the digestive agents (e.g. lipase and BS) and thereby hindered lipid digestion. Indeed, as demonstrated in Chapter 5, the digestion of lipid with a large droplet size is not kinetically favourable.

As hypothesised, the low-lipid-bioaccessibility meal (almond particles) resulted in an attenuated lipaemic response, albeit in one subject, compared with the high-lipid-bioaccessibility (almond flour) meal. These results correlate with a similar study done on males and females where the authors reported a delayed peak in TAG concentration (~1.3 mmol/L at 5 h) for the test meal containing almond seeds compared with the almond oil test meal (~1.3 mmol/L at 3 h) (Burton-Freeman et al., 2004). Our group also showed that in men, muffins containing either almond oil and flour (AO) or large particles of almond (WA) elicited peak TAG concentrations at 5 h with values of 2.31 and 1.5 mmol/L for AO and WA, respectively (Berry et al., 2008). The greater fluctuations in TAG concentrations obtained in the Berry et al.'s study could have been due to the difference in lipid bioaccessibility between almond oil compared with the almond flour used in the current study. Indeed, the lipid in the almond oil was more bioaccessible (and digestible) than in the almond flour, since the former was first extracted from the particles before being incorporated into the muffin along with the residual fat-free almond tissue, which included the CWs (DF). The discrepancy between these two studies could also be attributed to the ileostomy operation that may have had a greater impact than predicted on the almond digestion, and to possible differences in microbial flora. However, caution is needed when making interpretations of the current human study due to the lack of statistical power with only one subject completing the protocol.
Since the gut hormones are secreted in response to the presence of both lipid and glucose in the duodenum (Wu et al., 2013), it is difficult to assess the contribution each of these nutrients make to the fluctuations in the hormone concentrations. However, analysed conjointly with lipid loss as well as lipid and glucose blood profiles it is reasonable to suggest that the initial rise in blood glucose is caused by the hydrolysis of the starch contained in the muffin. It is highly likely that the muffin matrix (i.e. starch-rich part) was disrupted in the stomach very early on and then transited to the duodenum, whereas the almond particles remained in the gastric compartment for a prolonged period of time. For both meals, GIP response had two peaks occurring later for AF possibly matching the entering of nutrients in the duodenum and, by extrapolation, gastric emptying. Also, the early GIP response to AP reflects the rise in glucose concentrations observed in Figure 6.11. The presence of ‘free’ lipids in the small intestine following the consumption of AF, as opposed to the encapsulated lipids within the particles of AP, may have reduced the postprandial glucose and increased the GIP response as previously observed (Collier et al., 1984). However, the mechanism(s) involved are likely to be complex and perhaps even multifactorial, e.g. a reduced gastric emptying rate and thus slower delivery to the duodenum, and possibly interaction with starch (Derycke et al., 2005).

PYY secretions were overall more important for AF than AP implying than more lipid was released from the digestion of this test meal. PYY is secreted in the more distal sections of the GIT and it is thought to inhibit gastrointestinal motility in the presence of lipid in the ileum (i.e. ‘ileal break’) (Wu et al., 2013). The rapid increase following the consumption of the test meals is likely to have been caused by the presence of readily available nutrients (lipid or starch). Given that CCK is secreted when lipids and lipolytic products reach the duodenum, it is plausible that the curves reflect the release of lipid from the almond particles. However, CCK is involved in other physiological processes (e.g. satiety and gastric emptying) which make the interpretation of these data challenging. The postprandial CCK responses obtained in the current study differed from Burton-Freeman data
(Burton-Freeman et al., 2004). They found that for women, in contrast to the low-lipid-bioaccessibility meal (max ~8.5 pmol/L), the muffin containing the almond oil produced a distinct increase in the CCK response with a peak value at 2 h of ~14.5 pmol/L.

The increased lipid losses obtained following the consumption of AP compared with AF coincided with observations of almonds after different degrees of mastication (Cassady et al., 2009). Cassady observed that a higher number of chews resulted in a greater proportion of small particles and thereby faecal energy losses. During prolonged mastication, greater sensations of satiety were also obtained subsequent to the high initial postingestive GLP-1 response. In the present work, the opposite was seen where plasma GLP-1 concentrations were higher for AP than AF. The presence of other nutrients in the muffins (i.e. starch from the maize and wheat flours) could most probably explain this observation. Furthermore, the highly dynamic nature of the postprandial phase made the interpretation of the data challenging especially since only one volunteer completed the intervention. However, an interesting observation is that after AP, larger increases in insulin and GIP concentrations were measured, compared with the responses to the AF. Similarly, a greater reduction in NEFA was measured after AF compared with AP. These response patterns are usually observed following the consumption of a meal rich in carbohydrate (Frayn, 2010). Indeed, the two gut hormones suppress the production of FFA from TAG hydrolysis which is manifested by a reduction in plasma NEFA and thereby promotes the utilisation of the absorbed glucose (Saltiel and Kahn, 2001).

The present study provides further evidence that by decreasing the size of almond particles lipid release is enhanced. We also showed that, before entering the colon, large almond particles still contained a significant quantity of lipids even after long residence time. Finally, these results support the hypothesis that different degrees of lipids encapsulation elicit different blood lipid, glucose and gut hormone responses.
CHAPTER 7

PERMEABILITY OF ALMOND CELL WALLS TO DIGESTIVE ENZYMES
7.1 Introduction

Previous studies have provided evidence that the physical encapsulation of intracellular nutrients (i.e. lipid or starch) by intact CW restricts the access of digestive enzymes and the release of nutrients (Ellis et al., 2004; Mandalari et al., 2008a). Modifications in the morphology of the CW seem to occur after prolonged retention time (i.e. 12 h of digestion) in the GIT. However, there is currently no evidence on whether or not lipases, colipase and the other digestive agents such as BS could penetrate the CW at the initiation of digestion or at its later stages.

7.1.1 Lipases

Several lipolytic enzymes, are involved in the degradation of dietary lipids (see Figure 5.1): gastric and colipase-dependent pancreatic lipases that are well known for the digestion of TAG, pancreatic lipase-related proteins (PLRP) and pancreatic carboxyl ester hydrolase (CEH), which display various lipolytic activities, and pancreatic phospholipase A2 (sPLA2) that has an activity against phospholipids. Three human pancreatic lipases have been identified: (1) ‘classical’ pancreatic lipase, (2) pancreatic lipase-related protein 1 (PLRP1), and (3) pancreatic lipase-related protein 2 (PLRP2) (Thirstrup et al., 1994). Human PLRP1 (HPLRP1) and PLRP2 (HPLRP2) share 68 and 65% similarity in their amino acid sequence, respectively, predominantly located in the lid, with the ‘classical’ PL (Giller et al., 1992). Despite its high occurrence in various species (De Caro et al., 1998), including very high levels in dogs and cats, no significant lipolytic activity has been detected for PLRP1 regardless of the species (Crenon et al., 1998; Roussel et al., 1998). From the 3D structure of dog PLRP1 and site-directed mutagenesis, it has been shown that PLRP1 activity is impaired by two amino acid substitutions relative to classical PL and steric hindrance in the vicinity of the catalytic triad, these amino acid substitutions being specific of PLRP1 whatever the species (Roussel et al., 1998). So far the function of PLRP1 is still unknown, although its interaction with colipase has been
shown. PLRP2s are enzymically-active proteins and their kinetic properties differ from those of classical PL, with some differences among species (Hjorth et al., 1993; Thirstrup et al., 1994). Human PLRP2 activity on medium/long chain TAG is mainly inhibited in the presence of bile salts and poorly restored by colipase; it is not interfacially activate and possesses a phospholipase A1 activity and a galactolipase activity in vitro (De Caro et al., 1998; Eydoux et al., 2007; Sias et al., 2004). Based on these in vitro properties, the authors presumed that dietary TAGs were not its physiological substrate. HPLRP2 has been found to lack interfacial activity as well as to act preferentially on more soluble substrates (monoacylglycerols, phospholipids and galactolipids) than the ‘classical’ pancreatic lipase. The 3D structures of classical human PL and human PLRP2 also differ in their lid domain, a structural element that controls the access to the active site and the overall amphiphilicity of the enzyme (Eydoux et al., 2008). In addition to its phospholipase A1 activity, PLRP2 is also active on MAG (Eydoux et al., 2007; Eydoux et al., 2008), vitamin A esters (Reboul et al., 2006) and non-natural esters like PEG esters found in pharmaceutical formulations (Fernandez et al., 2007) or CITREM (citric acid esters of MAG) found in infant formula (Amara et al., 2014). Finally, PLRP2 is secreted by the pancreas but it is also found in various others tissues depending on the species, i.e. T lymphocytes in the mice (Lowe et al., 1998), monocytes in humans (Record et al., 2011) and seminal plasma in the goat (Sias et al., 2005), suggesting a role in immune mechanisms. sPLA2 is synthesised from the pancreatic acinar cells and catalyses the hydrolysis of the ester bond located in the sn-2 position of the phospholipid (Burke and Dennis, 2009).

CEH, also called bile salt-stimulated lipase (found in human milk) or bile-salt dependent lipase, has for substrates cholesterol esters, MAGs, and vitamin A and E esters (Hui and Howles, 2002; Lombardo, 2001). The latter is produced by the acinar cells of the pancreas and the lactating mammary glands (Nilsson et al., 1990).
Controversy currently exists regarding the presence of lingual lipase in the human mouth as demonstrated by its recent occurrence in the literature (Kulkarni and Mattes, 2014; Stewart et al., 2010). The enzyme has been demonstrated to be present and active in rat tongue but the evidence is equivocal in humans (Bernback et al., 1990; DeNigris et al., 1988; Hamosh, 1984; Moreau et al., 1988b; Moreau et al., 1988a). The rat lingual lipase has identical gene structure and physiological function to gastric lipase, albeit secreted in the oral cavity (DeNigris et al., 1988; Lohse et al., 1997), and they belong to the same family of preduodenal lipases. Preduodenal lipases have been identified in various species from the tongue to the pylorus (Moreau et al., 1988b; Moreau et al., 1988a; Moreau et al., 1989), and this has been possible in humans through organ donors (Moreau et al., 1988a). In each of the species tested, the preduodenal lipase activity was found to be mainly associated with a single tissue, which was located either in the lingual (rat and mouse), pharyngeal (calf, lamb and sheep) or gastric region (humans, cat, rabbit, dog, monkey, horse, pig and guinea pig). Concerning the secretion of lipase in the upper GIT, an extremely high level of lipase activity (> 100 µmoles of FFA released per min per mL) was measured in human gastric juice (Ville et al., 2002), whereas no such levels of activity have been measured so far in human saliva (Kulkarni and Mattes, 2014; Stewart et al., 2010). In line with this, human preduodenal lipase has been purified only from gastric juice (Tiruppathi and Balasubramanian, 1982). Human gastric lipase was detected in the chief cells of the gastric mucosa, using antibodies raised against the lipase purified from gastric juice (Moreau et al., 1989). No data of this kind are available for human lingual lipase. As far as human preduodenal lipase gene expression is concerned, the mRNA was detected only in the gastric mucosa (Bodmer et al., 1987) while the homologous mRNA of rat lingual lipase is found in the tongue (Docherty et al., 1985). Consequently, the debate on the existence of a lingual lipase in humans is not supported by strong experimental data in contrast with the accumulation of evidence obtained for gastric lipase.
7.1.2 Almond cells

Figure 7.1 illustrates the structure of the almond cells within the tissue. The almond cells have an average diameter of about 35 μm (between 20 and 50 μm) and are surrounded by a CW (about 0.1 μm thickness). The cells are tightly bound together within the cotyledon matrix, and when in solution (e.g. separated) they have a globular conical shape (Figure 7.2). Separated cells in almonds do not exist naturally but they are a valuable tool for investigating the mechanisms behind lipid digestion in almond tissue.

CWs are made of complex heterogeneous networks of cellulose, hemicelluloses and pectic substances (see Chapter 1). The combination of cellulose microfibrils, cross-linking glycan and pectin network provides strength and rigidity to the CW. Indeed, in type I CW such as in almond cells, the cellulose-xyloglucan framework is embedded within the pectin matrix, which regulates the porosity of the CW (Carpita and Gibeaut, 1993). It is therefore likely that the access to the substrate (lipids) by lipases will be hindered by the CW when the latter is still intact. It can be anticipated that the rate and extent of lipid digestion will be reduced in intact cells compared with readily available lipid (i.e. OBs or emulsion).

![Figure 7.1 TEM images of almond seed showing oil bodies (white inclusions), scale bars = 2 μm.](image)

Figure 7.1 TEM images of almond seed showing oil bodies (white inclusions), scale bars = 2 μm.
Chapter 7: Permeability of almond cell walls to digestive enzymes

Figure 7.2 LM images of separated almond cells.

7.1.3 Oil bodies

Almond, similarly to other plant seeds, stores its lipids as TAG in OBs until they are eventually mobilised upon seed germination (Figure 7.1). The TAGs constitute about 94 to 98% of OBs total dry weight (Beisson et al., 2001b; Huang, 1994). OBs are small, spherical organelles enclosed in a monolayer of phospholipids into which unique proteins, mainly oleosins, are embedded (Figure 7.3). Oleosins represent between 1 to 4% of the mass of OBs; caleosins and steroleosins are also proteins specific to OBs, the latter being an enzyme (Purkrtova et al., 2008). Oleosins are proteins of low MW (15 to 26 kDa) with high isoelectric point that are predicted to contain three structural domains: (i) an amphipathic N-terminal domain (6 to 68 residues), (ii) a central hydrophobic domain (72 residues), and (iii) an amphipathic C-terminal domain that may adopt an α-helical structure (28 to 1000 residues) (Hsieh and Huang, 2004; Huang, 1994). The first domain varies significantly between species and it is located at the surface of the oil body (Figure 7.4 B). Due to its unusual and extremely high content of hydrophobic amino acid residues, the central domain might be positioned within the TAG matrix whereas the last domain might interact with the phospholipid layer. Oleosins maintain the integrity of the OBs by forming a stable amphipathic layer (prevent steric hindrance and electronegative repulsion) with the phospholipids and thereby prevent coalescence and
aggregation of the OBs during desiccation. They also act as a recognition signal for lipase during germination and may contain a lipase binding site (Huang, 1992).

Because of the presence of phospholipids on the surface of the OBs, the rate of the lipolysis by digestive lipases is expected to be reduced compared to that of TAG emulsions (Beisson et al., 2001a). Phospholipids are fundamental for the stability of OBs, which is likely to make it more difficult for the pancreatic lipase to have access to its substrate (TAG), as observed with lecithin-stabilized emulsions (Gargouri et al., 1986a).

![Figure 7.3 Model of an oil body (A) and the structure of oleosin (B) from maize (Huang, 1994).](image)

There is a huge gap in knowledge regarding the diffusion of digestive enzymes, including lipases, across CW. The specific mode of action of the enzyme, especially the difference in water solubility between the lipase and its substrate, and the change in the lipase conformation occurring during lipolysis, makes lipase activity difficult to study. The approach that was used in this work permitted various problems to be overcome by directly (lipase localisation) and indirectly (kinetic studies) determine if digestive enzymes could penetrate the CW or not.
7.2 Aims

This part of the project was performed in collaboration with Dr David Gray from the University of Nottingham (OBs preparation and characterisation), Prof Frédéric Carrière from EIPL in Marseille (kinetic work using various lipases), and Drs Alan Mackie and Balazs Bajka from the IFR (localisation of lipase within almond substrate).

The exact mechanism of TAG hydrolysis by lipases, in almond tissue, is far from being fully understood. Hypothetically, the complete digestion of nutrients held within intact cells relies on the following three steps: diffusion of the enzymes into the plant cells, hydrolysis of substrate inside cells and diffusion of hydrolysed products out of cells so they can be absorbed in the enterocytes.

The main objective of this particular piece of work was to provide further evidence on whether or not the limited lipid digestion observed in almond cells was due to the CW and/or to the structure of the OBs themselves. We investigated the potential diffusion of various digestive lipases through almond CWs and determined the rate and extent of lipid digestion. To address these questions, the following methodology was implemented:

(a) The main lipolytic enzymes found in the GIT were tested (gastric lipase, pancreatic lipase and colipase, pancreatic lipase-related protein 2), alone or in combination to simulate in vitro gastric and intestinal phases of digestion;

(b) Kinetic studies to measure the release of lipolysis products from almond cells, as well as from purified almond OBs used as controls. Lipids were extracted after 1 h of incubation and analysed by TLC and GLC analysis. The kinetics of almond cell and OB (crude and washed) lipolysis was also investigated using the pH-stat technique. By comparing the extent of hydrolysis between encapsulated (almond cells) and accessible lipid bodies (OBs), it was possible to obtain a better insight of the role of CWs in nutrient digestion; and
(c) Microstructural analysis using confocal microscopy was performed to localise the pancreatic lipase within the almond matrices (cells and OBs) and verify the integrity of the OBs.

A detailed characterisation of the OBs was performed in order to highlight any component that could have a major impact on lipase activity. For instance, the lipolysis rate was expected to be reduced when TAGs are within these organelles due to the presence of proteins and phospholipids on their surface (Beisson et al., 2001a). It was therefore anticipated that the greatest lipolysis rate would be obtained on OBs with the following mixture of enzymes: protease from pancreatic extract (degradation of proteins – oleosins), phospholipase (degradation of the monolayer of phospholipids) and lipase (degradation of TAGs).

7.3 Materials and methods

7.3.1 Samples preparation and characterisation

Cells and OBs from raw and roasted almonds were prepared as described in detail in Chapter 2. The crude OBs then obtained were washed, either using 9 M urea or 0.1 M NaHCO₃, in order to remove cell debris and proteins. To assess the affinity of the protein to the lipid phase of the OBs, total protein was measured in both crude and washed preparations. Mild treatment such as 0.1 M NaHCO₃, removed the extrinsic proteins (storage proteins) from the surface of the OBs while preserving their secondary structures, whereas a strong chaotropic agent (i.e. 9 M urea) denatured the proteins by destabilizing internal, non-covalent bonds (Huang, 1996).
7.3.1.1 Compositional analysis of OBs

OBs were analysed for moisture, total lipid as well as fatty acid and phospholipids composition; the details of these methods are found in Chapter 2 (Section 2.3.1). Protein content and composition were determined by the BCA method and SDS-page (see Section 2.3.1.3).

7.3.1.2 Particle size distribution and ζ-potential measurements

OB suspensions were formulated by dispersing the preparation into water (10% oil, w/w). The average size of the OBs was measured using a Beckman Coulter LS13320® and their zeta potential (ζ-potential) with a Beckman Coulter Delsa™Nano C (Beckman Coulter Ltd, High Wycombe, UK).

Zeta-potential is the measure, in mV, of the electrical charge at the interface of the particle (Beckman Coulter, High Wycombe, UK). More precisely, the ζ-potential is the electrical potential that exists at the hydrodynamic plane of shear (slipping plane) (Figure 7.4). As a result, it gives an indication of the degree of repulsion between particles in a colloidal suspension or the dispersion stability. The higher the ζ-potential the more stable the dispersion: particles with high ζ-potential will repel each other (± 30 mV), whereas those with low ζ-potential will attract each other which can lead to aggregation or flocculation.

The sample was placed into the flow cell using syringes, and then a laser beam illuminated the cell. The electrophoretic mobility of the particles was measured using Laser Doppler Anemometry (LDA). Any charged particle moved toward an electrode of opposite surface charge. The light, scattered by the particles, is shifted from the incident light (laser) at a frequency that is proportional to the velocity of the particles movement. The ζ-potential is then obtained using the Smoluchowski equation (Sze et al., 2003):

\[\zeta = \frac{n \nu}{\varepsilon_0 \varepsilon_d} \]

(Eq. 7.1)
where η is the dispersant viscosity, v the particle velocity, ε_0 dielectric constant \textit{in vacuo} and ε_d dielectric constant of the dispersant.

Figure 7.4 Illustration of the electrical double layer of a negatively charged particle. The ζ-potential is the electrical potential at the slipping plane.

The measurements were performed at 25°C with a dispersant (water) refractive index of 1.330, viscosity of 0.891 mPa·s, and relative dielectric constant of 79.0. The electrode spacing was 50.0 mm. The ζ-potential was calculated by the instrument Software based on the Smoluchowski equation (Eq. 7.1). Each measurement was reported as the mean of three readings.

7.3.2 Lipolysis of almond lipids

The enzymes used for the experiments were provided by Prof Carrière, and were as follows (assay conditions described in Section 2.4.2.1):
Chapter 7: Permeability of almond cell walls to digestive enzymes

- **RGE**: lipase SA of 77 U/mg of powder on tributyrin at pH 5.5, corresponding to 62 % w/w of lipase per milligram of powder,
- **PPE**: lipase SA of about 464 U/mg of powder on tributyrin at pH 8, corresponding to 5.8 % w/w of lipase per milligram of powder,
- **PPL**: purified enzyme with lipase SA of about 1000 U/mg of protein on tributyrin at pH 8,
- **GPLRP2** acts on galactolipids, monoglycerides, and phospholipids (phospholipase A1 activity). SA of about 1700 U/mg of protein on tributyrin and 500 U/mg of protein on egg lecithin.

7.3.2.1 Analysis by chromatography of in vitro gastrointestinal digestions

Almond materials were added into Eppendorf tubes for a weight equivalent to 50 mg of lipids, which corresponded to about 120 mg of cell preparation and 50 mg of OBs. Each reaction system had a volume of 1 mL and was left incubating for 1 h at 37°C. The buffer consisted of either 10 mM MES (i.e. gastric phase) or Tris (duodenal and gastric and duodenal phases) containing 150 mM of NaCl. BS were omitted in these experiments and permitted to highlight the inhibition effect of the lipolytic products. The reactions were performed using RGE (1 mg/mL) and PPE (20 mg/mL), alone and in combination, as well as PPL (1 mg/mL) with colipase (added at a 2 to 1 excess molar ratio). GPLRP2 (2.3 mg/mL, on OBs only) was also used in conditions identical to the duodenal phase. After incubation, the lipids were extracted then separated and quantified by either GLC or TLC as outlined in Section 2.3.1.2.

7.3.2.2 Assays of lipase activity with the pH-stat technique

The extent and rate of lipolysis (method in Chapter 5) and the SA of the lipases on almond materials were measured using the pH-stat technique. The reaction system for SA measurements is outlined in
Chapter 7: Permeability of almond cell walls to digestive enzymes

Table 7.1. Back titrations were performed for assaying the activity of gastric lipase (RGE) at acidic pH. NaTDC was used in these experiments instead of the mixture of NaTC and NaGDC used in Chapters 4 and 6 as these BS tend to precipitate at acidic pH.

<table>
<thead>
<tr>
<th>Enzyme concentration (mg/mL)</th>
<th>RGE</th>
<th>PPE</th>
<th>PPL + colipase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme volume used for the assay (μL)</td>
<td>10</td>
<td>10</td>
<td>10 + 50</td>
</tr>
<tr>
<td>Assay solution composition</td>
<td>Tris 1 mM</td>
<td>Tris 1 mM</td>
<td>Tris 1 mM</td>
</tr>
<tr>
<td>NaCl 150 mM</td>
<td>NaCl 150 mM</td>
<td>NaCl 150 mM</td>
<td></td>
</tr>
<tr>
<td>BSA 0.1 g/L</td>
<td>CaCl₂ 5 mM</td>
<td>CaCl₂ 5 mM</td>
<td></td>
</tr>
<tr>
<td>NaTDC 2 mM</td>
<td>NaTDC 4 mM</td>
<td>NaTDC 4 mM</td>
<td></td>
</tr>
<tr>
<td>Assay solution volume (mL)</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Substrate/lipids (mg)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>pH</td>
<td>5.5</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

7.3.3 Penetration of pancreatic lipase inside the cellular compartment

7.3.3.1 Preliminary work using FITC labelled dextran

Raw and roasted separated almond cells were incubated with fluorescein isothiocyanate (FITC, Sigma, No FD-20 and No FD-40) labelled dextran of MW 20 and 40 kDa (radius of gyration, R_g ~34 and ~50 Å, respectively) (Andrieux et al., 2002). The diffusion of the molecules was observed with an optical Zeiss Axioskop 2 mot plus microscope using the Zeiss Filter Set 10 (excitation around 450-490 nm and emission around 515 to 585 nm).

7.3.3.2 Pancreatic lipase diffusion

This work was done in collaboration with the IFR (Drs Alan Mackie and Balazs Bajka). Pancreatic lipase was separated and purified from porcine extract (type II from sigma, # L3126) using
concanavalin A-sepharose (sigma, #C9017). The enzyme was purified/desalted using a Centipure P25 desalting column (Generon, # GEN-CP-0108-25). This step permitted the dispersing solution to be changed from Tris buffer to phosphate buffered saline (PBS buffer). The purified lipase was then labelled with Alexa Fluor 488 nm (Life Technologies™, # A10235) as described by the manufacturer.

The labelling molecules of Alexa Fluor 488 are low MW (~855 Da) carboxylic acids containing TFP (tetrafluorophenyl) esters moieties. They bind to primary amide (R'NH₂) in proteins to produce conjugates with excitation/emission of 495/515 nm. Because of its low MW, the increase in the size of the labelled enzyme compared with the lipase alone is negligible.

SA of the labelled lipase was performed by Neil Rigby from the IFR according to the protocol in Section 2.4.2.1 and was found to be 289 U/mg, which means that the enzyme retained about 25% of its activity after labelling. The protein concentration of the lipase was 0.76 mg/mL (determined using the BCA assay). Finally, the bound and eluted protein fraction was examined by SDS-PAGE on a 10% BisTris gel run in MES buffer under reducing conditions (Figure 7.5).

![Figure 7.5 Protein composition of unlabelled (unbound fractions) and labelled (bound fractions) lipase type II (SDS-page provided by Neil Rigby from Alan Mackie’s group at the IFR).]
Chapter 7: Permeability of almond cell walls to digestive enzymes

The reaction environment contained 25 µL of diluted (1/10 in BS solution) cell or OB preparation, 1 µL of Nile red solution (saturated in polyethylene glycol), 1 µL of calcofluor white (2% w/v in deionised water), 25 µL of labelled lipase (0.76 mg/mL) and 4 µL of colipase (1 mg/mL). Aliquots were taken at different time points (0, 30, 60 and 120 min, and ~20 h of digestion) and visualised using a confocal microscope.

7.4 Results

7.4.1 Characterisation of the OBs

7.4.1.1 Particle size distribution and ζ-potential measurements

The PSDs of almond OBs are shown in Figure 7.6. The average diameter of the OBs was significantly different ($P < 0.005$) between raw and roasted almonds: 2.6 ± 0.09 ($d_{3,2} = 2.0 ± 0.07$ µm) and 3.8 ± 0.11 ($d_{3,2} = 2.4 ± 0.08$ µm) µm, respectively. This is in agreement with the data from other groups (Beisson et al., 2001a; Gallier et al., 2012) as well as the microscopy images that illustrated OBs with sizes between 0.5 and 5 µm (Figure 7.1). OBs washed with urea had an average size of 7.6 ± 0.45 µm ($d_{3,2} = 3.6 ± 0.07$ µm) and the ones washed with NaHCO$_3$ 6.0 ± 0.28 µm ($d_{3,2} = 3.0 ± 0.35$ µm). The significant increase ($P < 0.001$) in particle size for these two OB preparations compared to the crude OBs is likely to have been caused by loss in OB integrity (i.e. dispersion and coalescence) following the washing process.
Chapter 7: Permeability of almond cell walls to digestive enzymes

Figure 7.6 Particle size distribution of raw and roasted almond OBs (A) and raw almond OBs washed with urea or sodium bicarbonate (B) (n=3, means ± SEM).

The \(\zeta \)-potential of raw, roasted, urea-washed and NaHCO\(_3\)-washed almond OBs were \(-33.7 \pm 1.54\), \(-27.7 \pm 1.32\), \(-31.7 \pm 1.04\) and \(-34.5 \pm 2.61\) mV, respectively. The crude OB values are in agreement with previous work (Bonsegna et al., 2011; Gallier et al., 2012). The structure of the OB interface (anionic phospholipids and protein molecules) is responsible for the negative surface charges obtained which prevent coalescence of the OBs. The \(\zeta \)-potential values confirmed that raw almond OBs, similarly to OBs found in other seeds, are stable even in isolated preparations. On the other hand, roasted and washed almond OBs tend to aggregate and coalesce as demonstrated notably by the variability in their particle size. The roasting process presumably disturbed the proteins embedded in the phospholipid layer thus compromising the OBs stability.

7.4.1.2 Lipid composition

Crude lipid analyses indicated that OBs contained between 85 and 94% of lipid depending on the preparation, but the differences observed were not statistically significant (Table 7.2). A non-
negligible fraction of the total weight could not be identified (contamination by cell debris such as polysaccharides form the CW) as previously noticed (Makkhun, 2012). This unidentified mass could also have contained some of the degradation products formed from the OBs by the seed, between harvest and pasteurisation, to generate energy as sugars, amino acids (mainly asparagine, aspartate, glutamine and glutamate) and carbon chains required for embryonic growth (more details in Sections 7.4.2.1 and 7.4.2.2) (Barros et al., 2010).

Table 7.2 Total lipid and protein content of crude and washed OBs.

<table>
<thead>
<tr>
<th>OB type</th>
<th>Total lipid (% dry wt basis)</th>
<th>Protein (% dry wt basis)</th>
<th>Unidentified mass (% dry wt basis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude raw almond</td>
<td>89.3 ± 2.00</td>
<td>5.8 ± 0.70</td>
<td>4.9</td>
</tr>
<tr>
<td>Crude roasted almond</td>
<td>85.1 ± 1.54</td>
<td>5.3 ± 1.39</td>
<td>9.7</td>
</tr>
<tr>
<td>Raw almond urea-washed</td>
<td>90.5 ± 2.06</td>
<td>0.6 ± 0.09</td>
<td>8.9</td>
</tr>
<tr>
<td>Raw almond NaHCO₃-washed</td>
<td>94.4 ± 3.60</td>
<td>1.5 ± 0.29</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Values are presented as means ± SEM (n=3). Wt: weight.

The membrane of OBs contained principally phosphatidylcholine (PC, 50-60%), phosphatidylserine (20-30%), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidic acid (PA) (David et al., 2013). The phospholipids previously found in almond OBs are PC (60%), PI (25%), PE (12%), and PA (3%) (Beisson et al., 2001a). These four phospholipids were similarly identified only in the raw almond OBs (Figure 7.7). Roasted almond OBs appear to be lacking some of the phospholipids species, including PA. In a similar way to the embedded proteins (see Section 7.4.1.3), phospholipid composition appeared to have been affected by the roasting process. The presence of PA could be due to the enzymic degradation of phospholipids by phospholipases D occurring prior to almond pasteurisation (Gallier et al., 2012) similar to TAGs degradation (Section 7.4.2.1). The roasting process might have inactivated the phospholipase D and thus protected phospholipids from degradation. The deleterious effect of endogeneous phospholipase D on phospholipid composition is
a well-known phenomenon occurring in the course of oil seed production and refining (Kovari, 2004).

![Image](image.png)

Figure 7.7 TLC analysis of phospholipids from raw and roasted almond OBs.

7.4.1.3 Protein composition

As expected, the protein content of raw almond OBs decreased significantly ($P < 0.05$) between the crude and washed preparations (Table 7.3). The proteins were a mixture of intrinsic proteins (i.e. oleosins) and proteins originating from the degradation of the protein bodies during milling of the almonds. Other authors have also reported that OB preparations can be contaminated extensively by storage proteins due to electrostatic interactions (Jolivet et al., 2004). Washing however removed most of these extrinsic proteins (Figure 7.8).

The proteins present in the crude OBs had MW of 15, 23, 35, 38 and 40 kDa. The gel patterns were very similar to the ones obtained in other studies (Beisson et al., 2001b; Gallier et al., 2012). The proteins with the largest MW are identified as amandine which is the major storage protein found in almond (Sathe et al., 2002). Amandin (62 to 66 kDa) consists of two polypeptides, a basic β-chain of MW ranging from 20 to 22 kDa and an acidic α-chain of MW between 40 and 42 kDa. The treatment of the samples with β-mercaptoethanol cleaved the disulphide bonds found in amandine and destroyed the oligomeric form of the protein. The proteins with a MW of 15 kDa are likely to be
oleosins, only one isoform of the molecule could be distinctly seen. It could also be plausible that some of the proteins were degraded by endogenous proteases prior to the almond pasteurisation in the same way as what we observed with lipids (Sections 7.4.1.2 and 7.4.2.1).

Proteins with similar MW (so presumably they are likely to be identical) were found in raw and roasted almonds, but, as expected, most of the storage proteins were removed by the washing (Figure 7.8). It is possible that the OBs were in fact hybrid oil droplets stabilised by extrinsic proteins which may explain the larger OBs obtained after washing (Makkhun, 2012).

![Figure 7.8 Protein composition of oil bodies. Lane 1 M wastewater marker, lane 2 crude raw almond, lane 3 crude roasted almond, lane 4 urea-washed raw almond, and lane 5 NaHCO3-washed raw almond.](image)

7.4.2 Lipolysis of almond lipids

7.4.2.1 Identification of endogenous lipase activity

Analysis of neutral lipids was performed by TLC of blanched (native almonds placed in boiling water for 15 min) versus native almonds after incubation in Tris buffer (composition described in Table 7.2). The TLC plate revealed the presence of lipolysis products (1,3- and 1,2-DAG, MAG and FFA) as well as
Chapter 7: Permeability of almond cell walls to digestive enzymes

TAG in absence of any gastric and pancreatic lipases (Figure 7.9) for both blanched and unblanched almonds. These results indicated that between the harvest and the pasteurisation of the almonds, endogenous lipase digested part of the TAG. This phenomenon has previously been detected (Beisson et al., 2001a). TLC analysis of phospholipids (Figure 7.7) also suggests the presence of endogeneous phospholipase D as identified in another work (Gallier et al., 2012).

Figure 7.9 TLC analysis of neutral lipids present in blanched and native raw almond milk. Lane 1, neutral lipid standards; lane 2, blanched almonds; lanes 3 and 4, native almonds at 0 and 60 min.

7.4.2.2 Analysis by chromatography of in vitro gastrointestinal digestions

Figure 7.10 illustrates the extent of digestion for almond OBs and cells by gastric and pancreatic lipases. The TLC-densitometry method permitted the identification and quantification of both TAG and lipolytic products (Table 7.3). 1,3-DAG should not have been visible in these samples since pancreatic and gastric lipases preferentially hydrolyse ester bonds located at sn-1 and sn-3 positions. Pancreatic lipase has a strict regioselectivity for these positions (Constantin et al., 1960). Gastric lipase can potentially cleave the ester bond at sn-2 position (Carriere et al., 1991) but this is never observed before other esters bonds are cleaved (Rodriguez et al., 2008). Therefore, in compliance with the results from Figure 7.9, this implies TAG hydrolysis catalysed by almond seed’s endogenous lipase(s) is non-regiospecific (Barros et al., 2010) or that some isomerisation of 1,2-DAG in 1,3-DAG may have occurred after enzymic lipolysis.
Chapter 7: Permeability of almond cell walls to digestive enzymes

Figure 7.10 TLC analysis of digested raw almond oil bodies and cells with various enzymes.

Table 7.3 Quantitative data of the TLC plate obtained by densitometry following 1 h incubation of the raw almond samples, OBs and cells (mean of duplicates).

<table>
<thead>
<tr>
<th></th>
<th>TAG (µmol)</th>
<th>DAG (µmol)</th>
<th>MAG (µmol)</th>
<th>FFA (µmol)</th>
<th>Hydrolysis % (FFA vs total acyl chains)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td>14.06</td>
<td>0.31</td>
<td>0.41</td>
<td>1.23</td>
<td>2.8%</td>
</tr>
<tr>
<td>RGE</td>
<td>13.03</td>
<td>0.63</td>
<td>0.86</td>
<td>3.38</td>
<td>7.6%</td>
</tr>
<tr>
<td>PPE</td>
<td>7.16</td>
<td>2.28</td>
<td>6.42</td>
<td>12.38</td>
<td>27.6%</td>
</tr>
<tr>
<td>PPL</td>
<td>8.17</td>
<td>2.00</td>
<td>4.77</td>
<td>11.98</td>
<td>26.5%</td>
</tr>
<tr>
<td>Cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank</td>
<td>7.14</td>
<td>0.21</td>
<td>0.3</td>
<td>1.04</td>
<td>4.5%</td>
</tr>
<tr>
<td>RGE</td>
<td>5.92</td>
<td>0.21</td>
<td>0.67</td>
<td>1.17</td>
<td>5.8%</td>
</tr>
<tr>
<td>PPE</td>
<td>4.9</td>
<td>0.59</td>
<td>0.91</td>
<td>3.84</td>
<td>18.6%</td>
</tr>
<tr>
<td>PPL</td>
<td>5.24</td>
<td>0.66</td>
<td>0.74</td>
<td>3.08</td>
<td>14.8%</td>
</tr>
</tbody>
</table>

The lipid digestion appeared more limited for separated cells than OBs and this regardless of the enzyme preparation used, i.e. average of ~34% decrease in FFA release for cells relative to the OBs.

The samples incubated with RGE and PPE were digested to a greater extent than PPE alone. Also, lipolysis occurred in a more significant manner in presence of PPE than pancreatic lipase (PPL) alone.

Given that the extract contains a mixture of different enzymes (i.e. PPL, CEH, proteases and phospholipase A2, see Figure 2.10), most probably, degradation of oleosins and phospholipids on
the surface of OBs occurred, which permitted better access of the PPL to its substrate (TAG). Phospholipase activities were indeed clearly seen for both GPLRP2 and PPE as illustrated by the loss in intensity of the phospholipid bands, especially for the washed OBs, in the TLC plates in Figure 7.11. A synergistic action of lipolytic enzymes may have also increased the overall lipolysis rate.

As mentioned above, PA were absent only in the roasted almond OBs, suggesting that the roasting process may have degraded the phospholipase D probably still active in raw almonds. Due to the higher concentration of sample used, other species of phospholipids could be discerned which could correspond to phosphatidylglycerol, cardiolipin and/or N-acylphosphatidylethanolamine (Gallier et al., 2012).

![TLC analysis of phospholipids of raw almond OB, crude and digested with either PPE or GPLRP2.](image)

The average level of lipolysis, analysed by GLC, was also greater for OBs and cells (27.4% and 12.8% for OBs and cells, respectively) when PPE was included in the reaction system (Figure 7.12). The washed OBs showed the greatest extent of digestion in particular when PPE and GPLRP2 were combined despite the product inhibition that occurred due to the absence of BS.
Chapter 7: Permeability of almond cell walls to digestive enzymes

Figure 7.12 Percentage of residual FFA of almond OBs (crude, urea and NaHCO₃) determined by GLC analysis after 1 h duodenal digestion by PPE and GPLRP2, alone or in combination (mean of duplicates).

7.4.2.3 Assays of lipase activity with the pH-stat technique

The extent and rate of lipolysis in almond OBs and cells were measured with the pH-stat technique (Table 7.4). The amount of FFA released following 1 h of digestion as well as the initial reaction rate were similar between the different OB types. Lipolysis by HPL has been reported to be reduced with crude OBs when compared to almond oil emulsion (Beisson et al., 2001b); however the protease and phospholipase contained in the PPE used in this investigation would have promoted TAG hydrolysis. The presence of the proteins on the surface of the OBs did not lead to alteration in lipid digestibility maybe because of the slight variability in lipase content between experiments which concealed any potential variations. Indeed, a large proportion of the PPE was insoluble and settled out; this was reflected by a slight fluctuation in lipase activity.

On the other hand, a marked decrease ($P < 0.05$) in FFA release (~67%) was recorded during cell digestion when compared with the FFA formed during the digestion of OBs.
Table 7.4 Percentage of FFA released (% of total fatty acids) and initial reaction rate (µmol/min) for lipolysis of almond OBs and cells with pancreatin.

<table>
<thead>
<tr>
<th></th>
<th>FFA (%) at 1h</th>
<th>Initial reaction rate (µmol FFA/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw OBs</td>
<td>Roasted OBs</td>
</tr>
<tr>
<td>Raw</td>
<td>68.8 ± 2.64</td>
<td>71.3 ± 2.04</td>
</tr>
<tr>
<td>Roasted</td>
<td>57.5 ± 6.15</td>
<td>66.0 ± 1.19</td>
</tr>
<tr>
<td>NaHCO₃-washed</td>
<td>70.6 ± 7.58</td>
<td>61.9 ± 6.46</td>
</tr>
<tr>
<td>Urea-washed</td>
<td>66.3 ± 1.79</td>
<td>61.3 ± 1.02</td>
</tr>
<tr>
<td>Cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw</td>
<td>21.2 ± 1.59</td>
<td>36.5 ± 5.21</td>
</tr>
<tr>
<td>Roasted</td>
<td>22.1 ± 2.04</td>
<td>42.5 ± 3.35</td>
</tr>
</tbody>
</table>

Values are presented as means ± SEM (n=3).

For each enzyme the SA decreased as the complexity of the substrate increased: tributyrin > OBs > cells (Table 7.5). The same trend was observed for both raw and roasted almonds. The activity of the gastric lipase was not detected with almond cells.

Table 7.5 Specific activity of lipases on different materials in U/mg (mean of duplicates).

<table>
<thead>
<tr>
<th></th>
<th>Tributyrin</th>
<th>Raw OBs</th>
<th>Raw cells</th>
<th>Roasted OBs</th>
<th>Roasted cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGE</td>
<td>mg of powder</td>
<td>76.5</td>
<td>0.79</td>
<td>ND</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>1.05</td>
<td>ND</td>
<td>65.2</td>
<td>51.2</td>
<td>2.5</td>
</tr>
<tr>
<td>PPE</td>
<td>mg of powder</td>
<td>464</td>
<td>65</td>
<td>2.8</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>121</td>
<td>48.5</td>
<td>873</td>
<td>43.1</td>
</tr>
<tr>
<td>PPL + colipase</td>
<td>mg of powder</td>
<td>10000</td>
<td>1388</td>
<td>113</td>
<td>1550</td>
</tr>
</tbody>
</table>

ND: not determined.

7.4.3 Penetration of pancreatic lipase inside the cellular compartment

7.4.3.1 Preliminary work using FITC labelled dextran

Figure 7.13 shows the diffusion of 20 kDa dextran (Rg ~34 Å) inside the cells for both raw and roasted almond but this did not occur when using 40 kDa dextran (Rg ~50 Å). It is therefore presumed, that lipases should not be able to penetrate the CW of the almond cells (MW ~50 kDa), however, MW
alone is not sufficient to characterise the size of a biopolymer. Indeed, other information such as shape, charge (pH environment) and behaviour in solution are necessary. Therefore further experiments were carried out using fluorescently labelled pancreatic lipase.

Figure 7.13 Micrographs of FITC-dextran permeation into separated raw (A and B) and roasted (C and D) almond cells. FITC-dextran molecular weights were 20 (A and C) or 40 (B and D) kDa. Grey (left): bright field, green (right): FITC-dextran under filtered light. Scale bars = 20 μm.

7.4.3.2 Pancreatic lipase diffusion

In Figure 7.14, clusters of labelled lipase were visible in the vicinity of the oil droplets. A reduction in the size of OBs confirmed that lipolysis took place. However, the incubation of almond cells, similar to the observations made in Chapter 6, revealed that their lipid content was still intact even after extended incubation time (Figure 7.15). One interesting observation is the uneven distribution of the labelled lipases between the intra- and extracellular environments, so that the bulk of green areas appeared in some, probably damaged, cells (Figure 7.16). The OBs inside these cells have lost their integrity which most likely occurred during the preparation of the separated cells. Unfortunately, it is virtually impossible to obtain a preparation devoid of any broken or fragmented cells; however the majority of the cells were intact as shown in Figure 7.15 H.
It is possible that the lipase binds preferentially to lipolytic products generated from the droplets and forms other types of aggregates after being released from the droplet. The apparent absence of lipase on free lipids could be due to the fact that only a small fraction of the lipase adsorbed to the interface as seen with various systems (e.g. monolayers) (Benarouche et al., 2013).

BS are strong surfactants and could induce changes in the partitioning of the lipase between the aqueous phase and the interface (i.e. competition for the interface) (Delorme et al., 2011). Lipase could also move from bulk phase to the interface and back with rapid adsorption-desorption from the interface (Haiker et al., 2004).

Figure 7.14 CLSM images of crude raw almond OBs stained with Nile red (A) and in presence of labelled pancreatic lipase (green) after 30 min incubation (B, C and D). Scale bars: A-D = 5 µm.
Figure 7.15 CLSM images of raw almond cells stained with Nile red (B) and in presence of labelled pancreatic lipase at baseline (A), 0 min (B), 30 min (C), 1 h (D) 1 h 30 (E), 2 h (F), 3 h (G) and 20 h (H) of incubation. The areas coloured in green, where the lipase diffused inside the cell, are indicated by the white arrows. Scale bars: A, C, D, E, G and H = 20 µm; B and F = 10 µm.
Figure 7.16 CLSM images of raw almond cells after 1 h incubation showing the diffusion of lipase through the CW. Lipids are stained in red and labelled lipase appears in green. In image C, the CW was stained in blue with calcofluor white. Scale bars: A, B and C = 10 µm.

7.5 Discussion

Lipids contained within a food are released at different stages of the digestion process to form lipid droplets. However, for plant foods such as seeds and nuts, the majority of their content remains within the food matrix for a long period of time and are still present in the lower part of the GIT. As mentioned in Chapter 5, DF are able to inhibit lipid digestion in different ways either by binding to BS, interfering with the emulsification process, increasing the viscosity of intestinal content, and/or by interacting with lipase or lipase substrates (Gunness and Gidley, 2010; Lairon et al., 2007a). On the other hand, intact plant CW appear to limit lipid digestibility by encapsulating the lipids and thus preventing digestive enzymes including lipase(s) having direct access to their substrate. In another study done by our group on 2 mm almond cubes (Mandalari et al., 2008a), it was revealed that after
12 h of in vivo digestion the lipid content of undisturbed cells located 3 to 5 layers underneath the layer of fractured cells appeared to be leaching. Two hypotheses can arise from this observation:

- the lipids may have diffused out of the cells through the different layers to reach the extracellular environment where they were then hydrolysed by lipase

- or the lipase may have diffused through the different cell layers and CWs to degrade the TAGs inside the cell, the lipolytic products then diffusing out to the extracellular environment.

The almond CW is a complex matrix that reduces the accessibility of the lipase to the intracellular TAG and thus impairs hydrolysis as shown by the lessened lipid digestibility in cells compared with OBs and this occurs regardless of the mixture of enzymes or the measurement method used. If the TAG hydrolysis takes place in the intracellular compartment, the enzyme has to be able to penetrate the cell via ‘pores’ or following endocytosis. The size range of CW pores of different plants has been estimated to be between 35 to 52 Å (Carpita et al., 1979). The polysaccharide network, and the cross-links between them affect the digestibility of the food, but also at a microscopic level the size of the pore (Fleischer et al., 1999). Gastric and pancreatic lipases (50 kDa) have a R_g of about 16.7 and 19.0 Å, respectively (Peters et al., 1996; Selvan et al., 2010). This is below the pore size that could enable free diffusion of the lipase through the CW. Since FITC labelled dextran of 20 kDa (R_g of 34 Å) permeated through the CW, presumably lipases can also penetrate the cell. Moreover, an investigation made on alginate beads revealed that lipase could penetrate the beads and hydrolyse the lipids they contained (Li et al., 2011b). However, the pore diameter of alginate beads has been estimated to be between 30 and 450 nm, much larger than lipases (Chan and Neufeld, 2009). Diffusion experiments revealed that dextran with a R_g of 34 Å penetrated the almond CW whereas dextran of 50 Å did not, so based on this R_g rather than MW, lipases could presumably freely diffuse inside the almond cell. Nevertheless, as explained in Chapter 1, pancreatic lipase on its own is not sufficient for the hydrolysis to occur; colipase, BS and other agents (i.e. calcium) are also needed.
Chapter 7: Permeability of almond cell walls to digestive enzymes

The R_g of the lipase-colipase complex has been estimated at 26 Å (Pignol et al., 2000). The relative mobility of the colipase molecule within the lipase-colipase complex implies that the size of the latter may vary according to the intra- and intercellular composition, in particular the presence of BS (Breg et al., 1995). Another group stated that when the lid adopted a different conformation, some residues were shifted over a distance of 30 Å (Verger et al., 1995). However, these variations may occur once the enzyme penetrates the cell, when in contact with the substrate (open conformation), and it clearly relies on the location where the complex forms (it is likely to be formed at the interface rather than in solution). In the presence of BS, it has been shown that the lid can open in solution (Belle et al., 2007). In contrast to the structure of gastric lipase, which has a globular shape, pancreatic lipase possesses two structural domains and an elongated form. The lipase-colipase complex has a maximum longitudinal section of 90 Å for a transverse section of 42 Å, which suggests that the cell penetration of the HPL as a procolipase-lipase complex is unlikely (Miled et al., 2000).

At interfaces, pancreatic lipase activity is high either in emulsions, monolayers or OBs (Beisson et al., 2001a; Verger, 1984). Consequently, once inside the cell, the enzyme should theoretically be able to efficiently hydrolyse the TAGs contained in the OBs. Lipolysis of OBs is facilitated by their small size that provides a large surface area per unit TAG (~2700 cm2/mL for crude OBs). The phospholipids present in OB membranes are likely to slow down the lipolysis by PL. However, it was formerly shown that the addition of phospholipase (i.e. GPLRP2) did not enhance the TAG hydrolysis by pancreatic lipase (Beisson et al., 2001a). The absence of proteases in that particular experiment may provide an explanation for these results since proteases are also involved in the break down in OBs. Indeed, phospholipid hydrolysis occurred only when the oleosin were removed (Tzen and Huang, 1992) which is consistent with the results illustrated in Figure 7.11. Beisson et al. also showed that oleosins were partially protected from protease digestion due to the central hydrophobic domain they contain (Beisson et al., 2001b). Other work performed on almond milk showed digestion of the
proteins (i.e. amandin and oleosin) by the action of pepsin and subsequently trypsin and chymotrypsin which affected the microstructure of the OBs and permitted their lipolysis (Gallier and Singh, 2012).

The absence of BS in some of the experiments highlighted the importance of the lipolytic product inhibition phenomenon (about 28% of lipolysis for raw almond, crude OBs without BS versus 69% in their presence). This also indicated that these surface active molecules interacted with the lipids and proteins present in the OB membrane. The cells on the other hand had similar degree of lipolysis in both cases (19 and 22% of FFA release with and without BS, respectively) which implies that they are not a good substrate for the pancreatic lipase. Before reaching the encapsulated lipids, the enzyme would have had to cross different barriers (i.e. CW, possibly plasma membrane and the OBs monolayer) and interact with components of a different nature (e.g. polysaccharides, phospholipids and proteins). The activity quantified is likely to be a ‘background measurement’ of cell preparation showing the diversity and complexity of this material, including the fragmented and damaged cells in which the lipid substrate is available to the lipase and also intact cells which are protected from lipolysis by the CWs. The high initial reaction rates but low amount of FFAs released relative to the OBs also point toward the conclusion that some of the lipids in the preparation were freely available, and thus rapidly hydrolysed, whereas the encapsulated substrate remain undigested.

Digestibility experiments performed on washed OBs did not indicate any impact of the extraneous proteins on the surface of the OBs. It is however possible that the washing procedure compromised the integrity of the OBs by changing the structure of their membrane as showed by the increase in the size of these OBs. This decrease in their relative surface area reduced their digestibility. The
current work also confirmed the evidence presented in Chapter 6 that the roasting process did not have a bearing on either the extent or the rate of lipolysis either for OBs or cells.

Localisation of pancreatic lipase within the almond matrices (i.e. cells and OBs) provided further explanations on the mechanisms governing lipolysis in almonds. The loss of structural integrity of the OBs within the cells, caused by the preparation of the material, led to lipid coalescence; these coalesced lipids could not pass through the CW and remained inside the cell as formerly observed (Chapters 4 and 6). Lipase on the other hand appeared to be reaching the intracellular compartment but only when disruption occurred to the CW and subsequently the OBs. Presumably, the permeability of the CW increased due to the treatment used to separate the cells. A video (data not shown), performed for 3 h, on the digestion of almond cells by pancreatic lipase, including both ‘damaged’ and intact cells (identified by the integrity of the OBs within the cells), displayed no visual modification in the overall cell structure (i.e. lipid droplets or CW) apart from the diffusion of lipases in the damaged cells. Nevertheless, most of the lipids were still enclosed inside these cells, albeit some of the lipase appeared to diffuse through the CWs. Therefore, if the same mechanisms take place in vivo, the lipid content of this material would remain unavailable when reaching the colon. The potential presence of lipolytic products within the damaged cells, generated from endogenous lipases prior to pasteurisation, may explain the accumulation of lipase inside certain cells and the predominant green colour observed. Indeed, similar to the increase in lipid digestibility occurring following the gastric phase, this ‘pre-digestion’ (i.e. formation of mixed micelles and oil droplets of small surface area) may have facilitated the activity of the pancreatic lipase and promoted their migration inside these cells.
Chapter 7: Permeability of almond cell walls to digestive enzymes

The results from this chapter provide clear evidence that the CW of almond cells acts as a physical barrier to lipid digestibility. Even though lipase(s) and other digestive agents could diffuse through the CW, and lipolysis occurred, the majority of the lipids remained enclosed within the cells and this even after 20 h of incubation. This study has revealed also that OBs are highly digestible substrates and lipolysis does appear to be affected by their structure compared with almond emulsions. Finally, the roasting process may have altered the CW and its porosity, but this had little or no effect on the rate and extent of lipid hydrolysis, probably because of the resulting coalesced lipids.
CHAPTER 8

GENERAL DISCUSSION AND CONCLUSION
The main objective of the project described in this thesis was to investigate the role of cell walls (CWs) in regulating the bioaccessibility of lipid from almond seeds, a lipid-rich plant food. The structural changes and extent of digestion of raw and roasted almond seeds were studied using a multidisciplinary approach involving a novel combination of *in vivo, in vitro* and *in silico* methods.

This project was a continuation of previous work performed by our group (Berry *et al.*, 2008; Ellis *et al.*, 2004; Mandalari *et al.*, 2008a). The release of lipid from almonds was formerly investigated using faecal excretion studies in which structural analysis of digested material revealed that a significant proportion of lipid remained undigested mainly due to the entrapment of lipid by intact CW (Ellis *et al.*, 2004). It was also demonstrated that the consumption of muffins made with macroparticles of almonds (low lipid bioaccessibility) produced a much lower rise in postprandial lipaemia, compared with a muffin meal containing almond flour (high lipid bioaccessibility) (Berry *et al.*, 2008). Almond consumption and the resulting physiological responses such as the effects on satiety and gut hormone stimulation (e.g. GLP-1 and PYY) have also been previously investigated by others (Cassady *et al.*, 2009; Frecka *et al.*, 2008).

While evidence existed on the health benefits associated with the inclusion of almonds in the diet (Cohen and Johnston, 2011; Jenkins *et al.*, 2006; Joice *et al.*, 2008; Li *et al.*, 2011a; Sabate and Ang, 2009; Tan and Mattes, 2013), the mechanisms that explain the physiological effects and the long term benefits are not well understood, in particular, the behaviour of almond CWs in each compartment of the GIT (i.e. mouth, stomach and intestine). Obtaining information about the changes occurring to the structure of the almond tissue as the digestion process progresses and the mechanisms of lipid release were considered to be of crucial importance (Ellis *et al.*, 2004). One specific aspect of interest of this project was to identify the site, rate and extent of lipid release and digestion. Finally, the effect of processing, notably roasting, on lipid bioaccessibility was examined.

Overall, the results of the *in vitro* and *in vivo* studies reported in this thesis confirmed that almonds consumed whole and processed were not fully digested, and the lipids were released slowly during
the digestion process. This behaviour is strongly linked to the resistance of almond tissue to chemical and physical breakdown in the mouth, stomach and small intestine. A significant proportion of undigested almond tissue, with intracellular lipid encapsulated by CWs, was recovered at the terminal ileum of an ileostomy volunteer (i.e. beyond the site of lipid absorption). Thus, CWs appear to play a key role as a physical barrier against lipid release and digestion even though other mechanisms (e.g. lipid coalescence) also hinder lipid digestibility once the CWs are ruptured.

8.1 Mastication and digestion of whole almond seeds

Mastication of raw or roasted almonds produced boluses made of particles with a wide range of sizes (<20 to >3350 µm), leading to an average size of approximately 500 µm. The different sized particles generated during chewing had different properties/characteristics, with the large particles showing only damage to fractured surfaces characterised by CW rupture, whereas the smaller particles displayed much deeper fractures in all areas of the tissue (see Figure 3.7). The damage to these smaller particles may have occurred as a result of receiving a larger number of deformations during mastication. We then demonstrated in Chapters 4 and 6 that the overall structure of almond tissue during gastric digestion was relatively unaffected, especially for large particles. However, at the cellular level some CW swelling was observed close to the surfaces of the tissue after prolonged residence time as previously observed in other digestion studies (Mandalari et al., 2008a; Tydeman et al., 2010).

Lipid release following mastication was estimated using the mathematical model developed by our group (Grassby et al., 2014). The mastication study detailed in Chapter 3 showed that a high proportion of almond cells within particles remain undisturbed after oral processing with only ~8 and 11% of lipid released from ruptured cells on the fractured surfaces of masticated raw and
roasted almonds, respectively. The values obtained experimentally were reassuringly close to the predicted values from the theoretical model. After gastric and duodenal digestions, almond digestion was still incomplete with ~68% of lipid remaining encapsulated, which was consistent with the particles size and structure (i.e. PSD and images of almond microstructure). However, the amounts of lipid release as well as the disruption of the almond tissue were found to be more noticeable during intestinal digestion than in the gastric phase. The surface active proteins contained in saliva, its viscosity and pH generated a ‘network’ around the surface of the almond particles making the boluses cohesive and, at the same time, lipid appeared to strongly adhere to the particle surface (see Figure 3.10), thus becoming less available to digestive enzymes in the stomach (Carpenter, 2013). Under gastric conditions, some of the adsorbed proteins may have been removed and solubilised into the aqueous phase; however, the addition of BS in the duodenal compartment is likely to have promoted the disruption of this network to a greater extent thus ‘liberating’ the lipids from the particles surface (Maldonado-Valderrama et al., 2010). Further degradation of the almond tissue could be anticipated in the colon since our early study showed that about 10% of lipids from a diet rich in almond seeds were excreted in the faeces (Ellis et al., 2004). Microbial fermentation of the nutrients enclosed within the almond cells and CW most probably explain the lower amount of lipid recovered (Ellis et al., 2004; Mandalari et al., 2008b).

Particulates of smaller size had more fractured cells and thereby greater lipid losses than large particles. Cells within the almond tissue rupture rather than separate, the proportion of ruptured cells relying on the number of fractured surfaces created by mechanical processing and/or mastication. Cells of plant food may either rupture or separate depending on the strength of their cell-cell adhesion, which is largely structure of the the pectic polysaccharides and the calcium crosslinking between these polymers in the middle lamella. The composition and overall structure of the CW, specific to the plant studied, has consequences on its behaviour in the GIT and the nutrients bioaccessibility,
depending also on processing conditions. For instance, wheat cells appear to be similar to almonds by rupturing when mechanically disrupted (e.g. milling or mastication), whereas chickpeas cells are known to separate when they have been hydrothermally processed, but will rupture during milling (Edwards, 2014). When the cells fracture, their contents empty in the GIT and thereby evoke a physiological response (i.e. hormone secretions linked to effects such as adjustment of gastric emptying and gastrointestinal contractions). On the other hand, when the cells are intact (separated) and encapsulate the nutrients they contained, they transit towards the colon without being further digested as observed in white beans (Noah et al., 1998).

Mastication is a crucial step in the digestion process and it impacts on energy intake and gut hormones secretion (Cassady et al., 2009). The work from Mattes and his group demonstrated that prolonged mastication of almond elicited higher feeling of satiety which was reflected by a rise in GLP-1 concentrations. Nutrients released from the almond tissues in the oral cavity and the subsequent GIT parts trigger neuronal and humoral signals that have an impact on the digestion (i.e. gastric emptying, contractions and ileal brake) (Feltrin et al., 2004; Maljaars et al., 2008). However, if the nutrients are still enclosed within the food matrix it is highly probable that the digesta transit throughout the GIT without specific nutrients being ‘detected’. Some of the content of intact cells may nevertheless get digested after prolonged residence time due to swelling of the CW that rendered them permeable to digestive enzymes (Figures 4.11 and 6.9). Under identical mechanisms, and assuming that other microorganisms present are unable to digest the CW, the microbial lipases may have only limited access to their substrate. It is for these reasons and despite the common belief that TAGs are absent in stool of healthy individuals (Carey and Hernell, 1992), that the digestion of lipids contained in almond ingested whole is not total and lipids were recovered in effluent (Chapter 6) as well as faecal (Ellis et al., 2004) samples.
More particles of small sizes were produced after mastication of roasted than raw almonds however mastication parameters (i.e. duration and number of chews) showed little variation between these two almond forms. This suggests that the differences in particle size distribution were due to the nature of the almond (i.e. raw vs roasted) rather than the way subjects masticated them. Roasted almonds fractured differently when submitted to a mechanical force (e.g. mastication) because of the changes that occurred during the roasted process (i.e. dehydration of the tissues). The amount of lipid release in the oral cavity was more important for roasted almonds but this difference was less clear in the subsequent GIT compartments. The loss in the OB integrity and the resulting lipid coalescence in the roasted almonds is a plausible explanation to the consistency in lipid digestibility between raw and roasted almonds.

The results from these in vivo and in vitro studies revealed that the majority of the almond tissue disruptions and the subsequent lipid digestion took place during the duodenal phase. Therefore, there was a requirement to investigate the behaviour of various almond materials (particles with different sizes as well as ‘free’ lipids) at this stage of digestion.

8.2 Lipid digestibility of different almond materials

Characterisation of the native almonds used during this project, before addition of lipase into the reaction environment, indicated the presence of lipolytic products, FFAs and PA, due to the degradation of TAGs and phospholipids, respectively, either prior to pasteurisation or during storage (see Chapter 7). This would have led to a slight overestimation of the amount of FFAs generated and thereby extent of lipolysis. Interestingly, the roasting process seemed to have prevented this phenomenon as shown by the absence of phosphatidic acid. It is thus conceivable that the lipolyses occurred after pasteurisation.
Chapter 8: General discussion and conclusion

The nature and physical characteristics of the particles within the bolus (i.e. size and degree of disruption) are of crucial importance since they have a direct impact on the functions of the stomach, in particular on the mixing of the food and its delivery to the small intestine as explained above. The duodenal digestibility experiments presented in Chapter 5 revealed that separated almond cells had the lowest digestibility, and that there was an inverse relationship between particle size of almonds and the rate and extent of their digestion.

One of the original objectives of this project was the examination of the potential diffusion of lipase through CWs using initially FITC-dextrans and then labelled lipase. This approach permitted us to have a closer examination of the potential for lipid digestion occurring within intact cells. To our knowledge, the exact value of the pore radius of almond CW, corresponding to the pore size expressed as Stoke’s radius of a molecule that is sufficient to restrict its free diffusion through the CW (Carpita et al., 1979), is lacking. Dextrans of 34 Å penetrated the CW so pancreatic lipase (19 Å) should have done this, which was not the case. This contradiction highlights the complexity of the diffusion phenomenon, possibly the spatial arrangement and charge of the enzyme may have prevented its permeation when CWs were intact. Furthermore, not all ruptured cells contained labelled lipase suggesting that other mechanisms may hinder lipase diffusion. Microscopy of digested almond particles indicated that lipase succeeded in penetrating the intracellular environment in the latest stages of digestion. Alterations in the structure (not the composition since it was consistent throughout digestion, Chapter 4) of the CW such as swelling, may have rendered the almond cells permeable to the lipase(s) and other enzymes.

The in vitro data from Chapter 5 are in accordance with the results from the human study (Chapter 6) where 6 and 59% of lipids remained undigested in almond flour (AF) and large particles (AP), respectively. Based on the particle size of the almond contained in each muffin, it was predicted from the mathematical model (Appendix B) that about 49% of the lipids contained in AF and 6% in AP were released and therefore potentially available for digestion from the almond tissue at the
early stage of digestion (i.e. oral phase). Presumably a further 45 and 36% of lipids were released from AF and AP, respectively, between the gastric phase and the excretion at the terminal ileum. Particles within the muffins therefore resulted in an important recovery of lipids, if whole almond were ingested we could have expected an even higher recovery rate as indicated by the results from Chapter 5. Unfortunately the results were only from one volunteer since the subsequent feeding of whole almond to other ileostomy volunteers had to be terminated because of the risks of stoma obstruction. This by itself demonstrated the difficulty of digesting almond. Nevertheless, the results from the participant that tolerated the meal provide valuable evidence that in vitro observations were compatible with the data obtained in vivo.

Beside the macrostructure of the material reaching the stomach and intestine, the microstructure of the lipid within it is also of importance. It is likely that the processing of the almonds within the muffins, grinding, cooking and then freezing, enhanced the lipid bioaccessibility compared with whole almonds because it generated fractures in the CW (Figure 6.4 A). The size of the droplets release during mastication and digestion is likely to differ between almonds depending on the processing they underwent. We showed in Chapters 5 and 7 that the amounts of lipid digested between raw and roasted almond were similar. It was however expected to find a greater lipid digestibility in the roasted form, in particular for the chewed samples, since their mastication led to a larger number of particles with smaller sizes (i.e. increased lipid bioaccessibility) compared with the raw chewed almonds. Roasting affects the CWs and OBs integrity of the almond (Perren and Escher, 2013). The disruption of the OBs and the resulting lipid coalescence made them less favourable to lipase hydrolysis because of the increase in their surface area. Mastication and processing (i.e. roasting, cooking and grinding) of the almonds is likely to have resulted in the release of lipid droplets with different properties/characteristics (e.g. size, surface active molecules present.
on the interface). Finally, it is also possible that the roasting process led to the formation of compounds, such as phenolic compounds, that could have inhibited the lipase (Yang et al., 2014).

Vors et al. developed an interesting concept of ‘slow vs fast’ lipids, stating that postprandial lipaemia could be modulated by the physical structure of the lipid droplets (i.e. emulsified and unemulsified) contained in a food/meal (Vors et al., 2013). Emulsified lipid induced higher intestinal absorption and thereby postprandial response. We can postulate that the coalesced lipids within the almond tissue may have attenuated the postprandial response observed in Chapter 6 compared with lipid that would have been present as OBs. Chapters 5 and 7 validated that idea as unemulsified almond oil had a lower rate and extent of lipolysis compared with emulsions and OBs.

Intact CWs therefore play an important role in limiting lipid bioaccessibility and lipolysis as they physically encapsulate the intracellular lipid. We revealed that the size of the lipid droplets and the ‘quality’ of the interface (e.g. type of proteins and other molecules adsorbed) had a significant impact on these processes, as formerly established (Verger and de Haas, 1976), but more importantly the overall structure of the food matrix (i.e. ‘compaction’ of the cells together within the tissue) plays a key role in inhibiting lipolysis.

8.3 Modelling of the digestion process with almond as plant food

In this project, gastric and intestinal digestions were simulated using a wide range of techniques and approaches, from the simplest (i.e. pH-stat) to the most realistic model (i.e. ileostomy ‘model’). In vitro models may not entirely mimic the complex phenomena taking place during human digestion (e.g. hormonal response) but they do have the advantages of being more rapid, less expensive, less
labour intensive, and having no ethical restriction (Guerra et al., 2012). A wide range of food and pharmaceutical products can therefore be easily investigated with those models. The mechanical and chemical processes can be reproduced but the complex postprandial responses and feedback mechanisms are more problematic, and supposedly large disparities exist between individuals.

The DGM has proved to be the optimal method to simulate the mechanical and biochemical processes occurring in the stomach. Combined with a static duodenal phase (SDM), it permitted the examination of the extent of lipid digestibility in native and processed almonds; the results obtained with the almond muffins were in good agreement with the data from our ileostomy volunteer. Regardless of its high sophistication and the complex software associated with it, the model is still missing some important parameters present in humans such as for instance the microflora. However, introducing a microflora ‘model’ is extremely challenging given the variability in bacterial species populating the human digestive system (Eckburg et al., 2005).

The pH-stat method permits a comparison, under well-controlled conditions, of a wider range of almond materials than the DGM/SDM and allows continuously monitoring of lipolysis without the requirement of further analysis. Combined with other *in vitro* techniques (i.e. chromatography and microscopy analyses), it gav detailed information about the different mechanisms taking place during almond digestion. However, caution must be taken when interpreting the data generated as the device does not provide absolute values and product inhibitions may underestimate the amount of FFAs produced. Future experiments should include a back titration step to ensure that the total amount of the FFAs produced is ionised and neutralised with NaOH, especially if studying TAGs made of long chain fatty acids (i.e. pKa of FFA > pH of digestion).
Human studies remain the gold-standard but difficulties still exist in collecting digesta samples in a non-invasive manner between the oral and colonic phases. Ileostomy volunteers could overcome part of the issue as analysis of the materials excreted at the terminal ileum could be performed but this model is not a good option to investigate almond digestibility. Indeed, high risk of obstruction persisted despite the attention taken before and during the trial, especially the meticulous selection of volunteers. Furthermore, information was lacking regarding the state of the digested almond, in terms of structure and lipid content, in the proximal GIT sites (e.g. stomach and duodenum).

8.4 Health benefits and relevance to the industry

It is of interest to encourage consumption of foods which evoke a desirable blood lipid or glucose response. Evidence from various sources indicates that high and prolonged blood lipid and glucose levels following a meal are associated with increased risk of coronary heart disease and other lifestyle related health implications (Jenkins et al., 2002b; O'Keefe et al., 2008; Patsch et al., 1992). However, further work was needed in order to understand the factors that affect the blood lipid response. The programme of research work reported in this thesis has brought additional knowledge about the mechanisms by which plant tissue disassemble during mastication and digestion. The beneficial health effects of almonds therefore rely not only on their nutritional composition, they are a good source of unsaturated fatty acids (i.e. MUFA and PUFA), vitamin E, and polyphenol (Yada et al., 2011), but also their structure when ingested. The physical form of almonds that are consumed leads to variability in lipid digestibility (Chapters 5 and 7) and consequently evokes different lipid profile and gut hormones release (Chapter 6).

Energy values of raw almond calculated using Atwater factors overestimated their actual energy content (Novotny et al., 2012). These findings together with the results obtained during this project
raise questions about the validity of the information found on food labels that are based on food composition data and Atwater correction factors. Indeed, almond meals with different degree of lipid bioaccessibility led to different rates and extents of lipolysis (and different postprandial responses); hence the importance of considering the structure of the food when estimating its nutritional value. The concept of bioaccessibility and bioavailability in plant food is well recognised for micronutrients such as carotenoids, polyphenol and lycopene (Parada and Aguilera, 2007) but this should be applied to macronutrients especially within complex food matrix such as vegetables, nuts, seeds and cereals.

With regards to the industrial impact, the current work provided further information on the functional properties of processed almond. By gaining a better understanding of nutrient availability and how it is affected by food structure it may be possible to develop healthier processed food products with benefits to consumer health. During processing (i.e. roasting and grinding), the structure of the food matrix is altered resulting in a modification of the proportion of nutrients encapsulated by CWs. Therefore, by applying different processing treatments to the almond seeds, it could become possible to control or sustain the release of lipids and other nutrients they contain. Consumption of whole almonds and other nuts could lead to appetite control, weight management and prevention of diet-related diseases such as CVD and type II diabetes. Alternatively, nutrient uptake could be increased as needed by athletes and undernourished populations (i.e. premature babies, the elderly and patients with chronic diseases such as HIV and cancer) by including processed almonds, e.g. marzipan and finely ground almonds, in their diet.
8.5 Final comments and further prospective

Following the work on particle sizing we recommend using for ground, masticated or digested tree nuts and other hard food a laser diffraction technique combined with mechanical sieving if the size range is not totally covered by the laser instrument. However, since both particle sizing methods employed wet samples, it has to be ensured that the material studied does not absorb water. One should bear in mind also that a direct comparison of the two techniques is not easy to achieve as they give particles sizes in two different units (i.e. volume vs weight). Analysis of the shapes of the particles according to their size was performed by Sympatec, in Germany, using dynamic image analysis (QICPIC; data not shown) which showed that the shape of particles changed with size. However, obtaining a shape factor that allowed the two types of data to coincide was difficult as particle shape has to be constant over the size ranges (Wang et al., 2006). The process was also compromised by the multimodal pattern of the PSDs. Using the latest particle sizer from Malvern (Malvern Mastersizer 3000®) could overcome these issues as the instrument has the capacity to measure particles, wet and dry, with sizes ranging from 0.01 to 3500 μm.

Further work could include the investigation of the integrity of almond cells and particles within the colon. Submitting the digested almonds to the colonic phase could provide information about their behaviour and structure in this compartment. As we showed that a significant proportion of almond particles remained after intestinal digestion, studying the impact of microbiota activity on that material would be of interest, in particular the degree of degradation of almond materials with different characteristics (i.e. size, shape, separated cells vs freely available lipids). For instance, particles that have damaged CW when ingested, as observed in almonds contained in the muffins, may eventually lead to a total digestibility of the lipid they contain. Grinding, cooking and freezing are treatments that are likely to be employed by the industry to generate this type of product (i.e.
muffins containing nuts), so it may be of commercial interest to gain knowledge on nutrients digestibility in the colonic phase.

It could also be worthwhile to investigate the potential existence of a plasma membrane underneath the CW. In the current project, we assumed that the two elements were combined but it is possible that the plasma membrane is absent in almonds. Having intact CW and plasma membrane may compromise even further the digestibility of the lipid contained in intact cells. The mechanisms monitoring the diffusion of lipase through CW are likely to be different from those governing the crossing of the plasma membrane. In the colonic phase, polysaccharides from the CW as well as phospholipids and other molecules composing the plasma membrane ought to be metabolised by bacteria. However, studying the structure and spatial organisation of the CW is a challenging task so is the isolation of the potential plasma membrane from the CW and intracellular compounds, including other lipid bilayers.

8.6 Conclusions

The work described in this thesis provides further evidence that CWs act as a physical barrier that limit and sometimes prevent lipid bioaccessibility and digestibility. I revealed that the transformations performed on the almond tissue, either during the meal preparation or the mastication itself, have a crucial impact on its structure and properties in the GiT and therefore on its lipid digestibility. Lipase and other digestive agents may be able to diffuse through the CW but this is more likely to happen when its integrity has been compromised or there has been an increase in CW porosity. These findings showed the complexity of the mechanisms involved in the digestion of nutrients contained in almonds and provide some explanations on the beneficial effects associated with their consumption.

References

References

References

References

304

References

References

References

316

Appendix A: Gas chromatography parameters used for sugar analysis

Instrument conditions
- **Instrument:** PerkinElmer Autosystem XL
- **Column:** ESTEK Rtx-225
- **Column length:** 30 m x 320 μm internal diameter
- **Carrier gas:** Helium
- **Flow rate:** 2 mL/min
- **Split ratio:** 1:1
- **Temperature:** Gradient
- **Injector temperature:** 250°C
- **Notes:** Split ratio set to 60:1 at 2 min, and back to 10:1 at 10 min.

Channel parameters
- **Channel A signal source:** DetA
- **Analogue output:** INT
- **Attenuation:** -6
- **Offset:** 5.0 mV
- **Delay time:** 0.00 min
- **Run time:** 78.00 min
- **Sampling rate:** 12.5 pts/s

Autosampler method
- **Injection volume:** 1.0 μL
- **Sample washes:** 2
- **Injection speed:** NORM
- **Sample pumps:** 6
- **Viscosity delay:** 0
- **Pre-sequence washes:** 0
- **Waste vial:** 1
- **Solvent A washes:** 6

Carrier’s parameters
- **Carrier A control:** PFlow – He
- **Column A length:** 30.00 m
- **Column A diameter:** 320 μm
- **Vacuum compensation:** OFF
- **Split control mode:** Ratio
- **Set point:** 0.0:1
- **Initial set point:** 2.0 mL/min
- **Initial hold:** 999 min

Valve configuration and settings
- **Valve 1:** SPLIT ON
- **Valves 2-6:** NONE

Detector parameters
- **Detector A:** FID
- **Detector B:** NONE
- **Range:** 1
- **Time constant:** 200
- **Autozero:** ON
- **Ref gas flow:** 250.0 mL/m
- **MKUp gas flow:** 25.0 mL/m

Heated zones
- **Injector A:** PSSI
- **Injector B:** NONE
- **Initial set point:** 250°C
- **Injector B setpoint:** OFF
- **Initial hold:** 999.00 min
- **Detector A:** 250°C
- **Detector B:** 0°C
- **Auxiliary (NONE):** 0°C
Oven program

Cryogenics: OFF
Initial temperature: 140°C
Maximum temperature: 350°C
Initial hold: 5.00 min
Equilibration time: 2.0 min
Ramp 1: 2.5°C/min to 210°C, hold for 45 min
Total run time: 78.00 min

Timed events

SPL1: set to 60 at 1.00 min
SPL1: set to 10 at 10.00 min

Real-time plot parameters

Channel A – Pages: 1
Offset: 0.000 mV
Scale: 1000.000 mV
Appendix B: Lipid release according to size as predicted by the mathematical model

The average diameter of the almond cell (d) is ~35 µm. The particle size for which all cells are fractured is ~55 µm (adapted from Grassby et al., 2014).

Equations used for the calculations

<table>
<thead>
<tr>
<th>Sphere diameter, D (mm)</th>
<th>Volume at diameter (%)</th>
<th>Mass at diameter (%)</th>
<th>Equivalent cubic particle size, p (mm)</th>
<th>d/p</th>
<th>Lipid released, L₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>x From laser diffraction</td>
<td>= (V \times \frac{\text{almond for the size range}}{100})</td>
<td>= (\frac{\frac{4}{3} \pi \left(\frac{D}{2}\right)^3}{\frac{4}{3} \pi \left(\frac{p}{2}\right)^3})</td>
<td>= (\frac{d}{p})</td>
<td>= (\frac{1}{2} \left(\frac{64}{\pi} \left(\frac{d}{p}\right)^2 - 8 \left(\frac{d}{p}\right)^2 + \frac{4}{3} \pi \left(\frac{d}{p}\right)^3 \right))</td>
<td></td>
</tr>
</tbody>
</table>

Where \(D \) is the specific diameter of a particle (assumed to be spherical), \(r \) is the sphere radius \((D/2)\), \(V \) is the volume measure by the laser diffraction analyser, \(m \) the mass, \(d \) the cell diameter and \(p \) is the average cubic particle size of size fraction. To obtain the lipid release in percentage, \(L₀ \) has to be multiplied by 100.

Values for lipid release

For reasons of clarity, only the values for the sizes of interest have been presented. By adding the percentage of lipid release based on the volume percentage of particles that have a given size, the predicted lipid release for the whole bolus can be obtained.

<table>
<thead>
<tr>
<th>Sphere diameter, D (µm)</th>
<th>d/p</th>
<th>Lipid released, L₀ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.802</td>
<td>100</td>
</tr>
<tr>
<td>32</td>
<td>1.126</td>
<td>100</td>
</tr>
<tr>
<td>63</td>
<td>0.601</td>
<td>93</td>
</tr>
<tr>
<td>125</td>
<td>0.288</td>
<td>65</td>
</tr>
<tr>
<td>187</td>
<td>0.193</td>
<td>49</td>
</tr>
<tr>
<td>250</td>
<td>0.144</td>
<td>39</td>
</tr>
<tr>
<td>500</td>
<td>0.072</td>
<td>21</td>
</tr>
<tr>
<td>850</td>
<td>0.042</td>
<td>13</td>
</tr>
<tr>
<td>1000</td>
<td>0.036</td>
<td>11</td>
</tr>
<tr>
<td>1700</td>
<td>0.021</td>
<td>7</td>
</tr>
<tr>
<td>2000</td>
<td>0.018</td>
<td>6</td>
</tr>
<tr>
<td>3350</td>
<td>0.011</td>
<td>3</td>
</tr>
</tbody>
</table>
Appendix C: Schematic representation of mono- and multicompartmental models adapted from (De Boever et al., 2000; Guerra et al., 2012; Salles et al., 2007)
Appendices

Appendix D: Test meals preparation and composition

The ingredients used for the muffins are presented in Table D. The dry ingredients were sifted together twice to ensure that they were thoroughly mixed. The wet ingredients were mixed together in a separate mixing bowl. The dry ingredients were then added to the wet ingredients and stirred gently for about 2 minutes to fully incorporate all the ingredients. The batter was poured into muffin cases and cooked for 20 min Gas 4, 10 min Gas 6 and an additional 3 min Gas 6 recovered with some foil.

Table D Ingredients entering into the composition of almond muffins and their weight.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Weight (in g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornflour</td>
<td>10.57</td>
</tr>
<tr>
<td>Wheat flour, white, plain</td>
<td>25.00</td>
</tr>
<tr>
<td>White sugar</td>
<td>32.59</td>
</tr>
<tr>
<td>Baking powder</td>
<td>2.29</td>
</tr>
<tr>
<td>Skimmed milk</td>
<td>54.61</td>
</tr>
<tr>
<td>Egg white</td>
<td>5.73</td>
</tr>
<tr>
<td>Flavouring</td>
<td>4.40</td>
</tr>
<tr>
<td>Almond</td>
<td>85.00</td>
</tr>
<tr>
<td>Custard</td>
<td>80.00</td>
</tr>
<tr>
<td>Total without custard</td>
<td>220.19</td>
</tr>
<tr>
<td>TOTAL</td>
<td>300.19</td>
</tr>
</tbody>
</table>
Participant Information Sheet:

BIOGUT

A study of nutrient bioaccessibility
IMPORTANT INFORMATION

We would like to invite you to take part in our research study. Before you decide, we would like you to understand why the research is being done and what it would involve for you. We will be happy to answer any questions you may have before you decide to take part. You may also discuss the study with friends and family. Participation is entirely voluntary and you may withdraw from the study at any time without giving any reason.

What is the study for?
Accumulating evidence shows that the structure and properties of plant foods, particularly of the cell wall component (‘dietary fibre’), play an important role in regulating the release (bioaccessibility) of nutrients from plant foods during chewing and digestion. Cell walls may act as a physical barrier to the digestion of carbohydrate and/or fat thus attenuating the blood glucose or lipid response induced. In a meal, fat and/or starch availability can therefore be controlled by modifying the amount of the nutrients encapsulated by cell walls. Because glucose and lipid responses following the consumption of a meal are associated with reduced risk factors for type 2 diabetes mellitus and cardiovascular disease, this work has implications for the prevention and management of these diseases.

Therefore, we want to understand how much lipid or starch are lost at the terminal ileum after consumption of plant foods, either almonds for lipids or wheat for starch, and relate this to the blood glucose and lipid response generated.

Am I eligible to take part?
We are looking for ileostomy patients, who are not allergic to almonds or any other ingredients incorporated in any of the test meals to participate in this study. To be eligible, you must:

- Be a male or female aged 20-75 years, who previously had proctocolectomy for ulcerative colitis, colon cancer or Crohn’s disease (pure colonic form).
- Be stable at least 12 months post-operative
- Have eaten almonds with no adverse effects.

You must not:

- Be allergic to nuts of any kind or gluten
- Have previous case of obstruction of the stoma
These eligibility criteria have been selected to ensure the safety of the study volunteers and researchers involved, and also to produce consistent samples between individuals. We will also record your age, BMI and sex.

What does the study involve?

Once we have checked your eligibility and you have given consent, we will ask you to attend a screening session and five study visits at the Clinical Research Facility of St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH. **Note that the study will take place on Tuesdays and Thursdays ONLY.** Furthermore, each visit session will last approximately 13 hours starting at either 8 or 8.30 am and finishing around 9 pm. Therefore, before agreeing to take part, make sure that you can attend these days at these times.

The study visits are divided into two studies: **Study 1** looking at fat release and **Study 2** looking at starch release.

During the session (between 13 and 14 hours) you will be given for breakfast either:

Study 1: Fat availability (2 visits)

a- a muffin containing almond flour and almond oil with some custard

b- a muffin containing 2 mm almond pieces and some custard

Study 2: Starch availability (2 visits)

a- porridge containing durum wheat flour (77g dry) and 300 mL water

b-. porridge containing 2 mm durum wheat large semolina (77g dry) and 300 mL water.

You will attend Study 2 first and if you wish you could carry on with Study 1. In Study 1, you will have the choice to attend 3 (meals a, b and c) or 2 (meals b and c only) visits depending on how the study goes for you.

Screening visit (lasting about 1h½):

1) You should avoid eating or drinking anything, except water, from 10 pm the previous night.

2) You will arrive at the Clinical Research Facility of St Thomas’ Hospital at between 8 and 9.30 am.

3) We will give you a copy of this information sheet, explain to you all the details of the study and answer any questions you have. If you are still happy to take part in the study, you will be asked to sign a consent form.

4) We shall ask you questions about your medical history, your food habits and measure your weight, height, blood pressure and waist and hip circumference.

5) We will need to take a blood sample (approximately 15 mL = 3 x teaspoons).
6) You will try a smaller portion of the almond meals: 4 g of almonds as well as 25 g of muffin containing 2 mm almond particles.

7) You will be asked to chew about 5 g of almonds (four), 5 times, 3 of which will be expectorated.

8) Finally, you will be given a 3 day diet diary to fill up as well as instructions for the day before the study visits.

Study visit:

Day before your visit:

1) You will have eaten for dinner the meal provided.
2) You should avoid eating or drinking anything, except water, from 10 pm the previous night.

Visit day:

3) You will arrive at the Clinical Research Facility of St Thomas’ Hospital at 8.00 or 8.30 am.
4) A venous cannula (fixed needle) will be inserted into your arm by an experienced nurse and a fasting blood sample collected.
5) You will eat the test meal.
6) You will be given a marker, a food colorant dissolved in water (not a licenced medication).
7) Effluent will be collected once every 2h up to 12h and at your convenience in the evening and overnight.
8) Blood will be collected (about 200 mL) after the meals at different time intervals up to 8 h for Study 1 and 4 h for Study 2.
9) We will provide you with a meal 4.5 h and 10 h after breakfast.

You will be paid £100 per session completed included screening (£600 in total), which will be paid by cheque or bank transfer after completion of the appropriate form.

What do I have to do?

We would like you to visit the Clinical Research Facility at St Thomas before agreeing to participate so you can see the area where you would stay and meet some of the staff, so we can describe the research in more detail, and so we can answer any questions. On that day we will also process to
the screening as described above. A light breakfast will also be provided before you leave the screening session.

On the day preceding each of the 5 visits, you will be given a ready meal (low in fat or residue) to have for your dinner and asked to drink enough water to avoid dehydration. We will also ask you to fast overnight and avoid eating or drinking anything, except water, after 10 pm. We would then like you to come to the Clinical Research Facility for five study visits on the days and at the time we agree. We would like you to eat the lunch and evening meals that we provide (we would discuss your food preferences before you come, and would try to accommodate them). We would provide drinks when you wish, but these would be free from caffeine. Before you start eating your breakfast and lunch, we will ask you to ingest a marker (a capsule containing small pieces of different shape) to estimate transit time. We would like to collect effluents during your time spent at the Clinical Research Facility as well as overnight at home. We will give you a kit with some explanation on how to store the samples. Overnight effluent may be brought to King’s College London (Franklin Wilkins Building, Waterloo Campus, London) the next day or may be collected by a courier (your choice). Each visit will also include blood collection (about 200 mL which corresponds to less than 1/2 pint) as described above. During your visit we would like you to remain within the Clinical Research Facility until around 13 hours after your arrival. For the duration of your visit there will be a room for you to sit and study/work/read in, with a DVD player and a selection of films for your entertainment.

What will happen to my samples?
Your samples will be marked with your participant number, the date, sample type and sample code only, so you will not be identifiable to the researchers studying your samples. The effluent samples produced will be used for nutrient analysis (lipid or starch), microscopy and particle sizing. Glucose and lipid levels will be measure in the collected blood samples. They will either be analysed immediately or be stored in a freezer in a locked laboratory on a corridor not accessible to the public until October 2014. Also, some of the blood that we will be collecting may be analysed for gut hormones (peptide YY (PYY), cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) and may be stored for use in a later study. No genetic tests will be done.

What are the advantages/disadvantages in taking part?
We do not anticipate any direct benefits to volunteers from taking part, but it will help us understand the digestion and absorption of fat and starch from plant foods (almond and wheat).
We believe the risks to participants are minimal as the study involves everyday activities. Our main concern is for individuals who are allergic to nuts, gluten and/or have previously experienced obstruction of the stoma, and we therefore specify that individuals who fall into this category should not take part. There is also a small risk of bruising from blood collection.

What will happen if I wish to withdraw from the study?
You are free to withdraw from the study at any time without giving a reason. However when we ask for your consent at the start of the study, we will also ask you for permission to continue to use any samples you have already provided.

Will my taking part in this study be kept confidential?
We will request your contact details in order to organise sessions. They will be stored on an encrypted pen drive that will be kept in a locked filing cabinet in the private office of the researchers. Only the researchers organising sessions will be authorised to access your details. Should you wish to find out the results of this study you are welcome to contact either Myriam Grundy or Cathrina Edwards (details below) for a copy of the final report once the study is finished.

Who is organising and funding the study?
The project is organised by researchers from Kings College London and funded by the Biotechnology and Biological Sciences Research Council (BBSRC) under reference BB/H004866/1. The study has also been reviewed and given a favourable opinion by the Research Ethics Committee of South East Coast – Kent (reference no. 12/LO/1016), an independent group who protect the interests of research participants.

What if I have questions/want to make a complaint?
If you have any questions/concerns about any aspect of this study, you should ask to speak to the researchers (020 7848 4345, myriam.grundy@kcl.ac.uk or cathrina.edwards@kcl.ac.uk), who will do their best to answer your questions.

Address: King’s College London
Diabetes and Nutritional Sciences Division
4.131 Franklin-Wilkins Building
150 Stamford Street
London
SE1 9NH
If this study has harmed you in any way you can contact KCL using the details below for further advice and information: Dr Peter Ellis, p.ellis@kcl.ac.uk (telephone 020 7848 4238), Nutritional Sciences Division, King’s College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH. In the event that something does go wrong and you are harmed during the research, and this is due to someone’s negligence then you may have grounds for a legal action for compensation against King’s College London, but you may have to pay your legal costs.

Thank you for your interest.

For further information, please contact:

Myriam Grundy or Cathrina Edwards
Diabetes and Nutritional Sciences Division
Tel.: 020 7848 4345
email: biogut@kcl.ac.uk
Appendices

Appendix F: Volunteers screening and visit procedures

Prior to screening, volunteers were asked to complete pre-screening questionnaires with general questions about their health (e.g., regarding medical conditions, medicines, allergies, smoking and dietary habits). The completed questionnaires were used to assess the volunteers suitability for Study 1 and Study 2. If the volunteers were likely to be eligible for either one of these studies, they were invited to attend a screening visit at the CRF. Invited volunteers were provided with further information about the study, and instructed not to eat any food or drink (except water) for 12 h prior to their screening appointment.

At screening, the study was explained again, and the volunteers had several opportunities to ask questions about the study before written consent was taken.

Following screening, volunteers were asked to attend the CRF on 2 to 4 separate occasions with a gap of at least one week between visits. At each visit, lasting about 13 h, volunteers received one of the 4 test meals for breakfast. On the day preceding the study day, volunteers were given a low-residue and low-fat ready-meal to have for their dinner, asked to fast overnight and instructed to avoid eating or drinking anything, except water, after 8 pm.

When volunteers arrived at the CRF on the visit day a venous cannula was inserted and fasting blood (15 mL) collected. They then consumed the test meal in a manner convenient to them (e.g. taking a bite of muffin with some custard). They were also provided with meals designed not to interfere with the test meals but still providing enough nutrients, at 4.5 h (lunch) and 10 h (dinner) post-breakfast test meal (Appendix G). Venous samples were collected at regular intervals (see Appendix H for more details).

Simultaneously, ileal effluent were collected after consumption of the meal every 2 h up to 10 h. After having had their dinner the volunteers returned home with a sample collection pack and resume their normal life. Effluent collections continued up to 24 h at their convenience. The pack consisted in a cold bag containing a polystyrene box with cool blocks (Eutectic plates, Phase change material products Ltd., Yaxley, UK) that have been stored at -80°C, a grip bag, Stomacher® bags and gloves (thermal and nitrile) for the volunteers to protect their hands when handling the cool blocks. These overnight collections were brought to the CRF the next day or send to KCL by courier.
Appendix G: Typical intakes of a visit day

Table G Typical nutritional composition of meals served for a visit day.

<table>
<thead>
<tr>
<th></th>
<th>Dinner evening before visit</th>
<th>Breakfast</th>
<th>Lunch</th>
<th>Dinner</th>
<th>Total visit day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ready meal</td>
<td>Yogurt</td>
<td>Muffin</td>
<td>Custard</td>
<td>Müllerlight® yogurt</td>
</tr>
<tr>
<td>Energy (kJ)</td>
<td>1422</td>
<td>366</td>
<td>3161</td>
<td>224</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>(kcal)</td>
<td></td>
<td></td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>16.1</td>
<td>6.1</td>
<td>25</td>
<td>0.5</td>
<td>6.8</td>
</tr>
<tr>
<td>Carbohydrate (g)</td>
<td>45.8</td>
<td>14.8</td>
<td>79</td>
<td>9.5</td>
<td>14.2</td>
</tr>
<tr>
<td>Total Sugars (g)</td>
<td>8.8</td>
<td>13.9</td>
<td>40</td>
<td>6.4</td>
<td>12.3</td>
</tr>
<tr>
<td>Starch (g)</td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat (g)</td>
<td>9.0</td>
<td>0.1</td>
<td>48</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Saturates (g)</td>
<td>5.0</td>
<td>0.1</td>
<td>3</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>MUFA (g)</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td>PUFA (g)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td>Fibre (g)</td>
<td>4.5</td>
<td>0.7</td>
<td>10</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Salt (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium (g)</td>
<td>0.93</td>
<td>0.09</td>
<td>0.30</td>
<td>0.04</td>
<td>0.20</td>
</tr>
</tbody>
</table>

The test meal is circled in red.
Appendix H: Protocols for blood analysis

A venous cannula (BD Nexiva 20 GA) was inserted into a vein on the forearm by the nurse appointed to this study. Two fasted blood samples were collected from the cannula with a syringe 15 min apart. Immediately after the fasted blood sample was taken, participants were served the test meal (time = 0) and accompanying drink of water. Bloods were then collected at 15, 30, 45, 60, 90, 120, 150, 180, 240 min and thereafter either at 3 and 4 h for glucose, insulin, C-peptide and gut hormones, or hourly up to 8 h for TAG and NEFA. Four mL BD vacutainer® collection tubes were filled at each time point (Table 8a) These were centrifuged, and duplicate aliquots of serum were taken and stored in freezers at -40 °C or -70 °C.

Table H Overview of the blood collection

<table>
<thead>
<tr>
<th>TUBE</th>
<th>ADDITIVE</th>
<th>ICE</th>
<th>SPIN</th>
<th>ANALYTE</th>
<th>ANALYSIS¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREY</td>
<td>Sodium fluoride (antiglycolytic agent) and Potassium Oxalate (anti-coagulant)</td>
<td>YES</td>
<td>10 min 1300xG 4 °C</td>
<td>GLUCOSE</td>
<td>IL Test™ Glucose (Oxidase)</td>
</tr>
<tr>
<td>GOLD</td>
<td>Clotting accelerator and separation gel</td>
<td>NO</td>
<td>10 min 1300xG 4 °C</td>
<td>TAG</td>
<td>IL Test™ Triglycerides</td>
</tr>
<tr>
<td>GOLD</td>
<td>Clotting accelerator and separation gel</td>
<td>NO</td>
<td>10 min 1300xG 4 °C</td>
<td>NEFA</td>
<td>Randox NEFA</td>
</tr>
<tr>
<td>LAVENDER</td>
<td>Spray-coated K₂ EDTA (anticoagulant) added DPPIV- inhibitor* (Merck Millipore)</td>
<td>YES</td>
<td>10 min 1300xG 4 °C</td>
<td>GLP-1</td>
<td>GLP-1 ELISA kit Merck Millipore</td>
</tr>
<tr>
<td>LAVENDER</td>
<td>Spray-coated K₂ EDTA (anticoagulant) added Aprotinin (10,000 KIU/mL, Nordic Pharma)*</td>
<td>YES</td>
<td>10 min 1300xG 4 °C</td>
<td>GIP</td>
<td>GIP ELISA kit Merck Millipore</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PYY</td>
<td>PYY (total) RIA kit Millipore</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CCK</td>
<td>CCK ELISA kit USCN Life Science Inc.</td>
</tr>
</tbody>
</table>

*additives, were added to the vacutainer tubes one day before use.
Abbreviations: TAG, triacylglycerol; NEFA, non-esterified fatty acids; GLP-1, glucagon-like peptide 1 ; GIP, glucose dependent insulinotropic peptide; PYY, Peptide YY; CCK, cholecystokinin.
Glucose, TAG and NEFA were determined at King’s College London, UK. Insulin and C-peptide were analysed by GSTS pathology, St Thomas Hospital, London, UK, and gut hormones (PYY, CCK, GLP-1 and GIP) were analysed by GSTS pathology at Denmark Hill, King’s College Hospital, UK.

Plasma glucose, TAG and NEFA analysis was performed on an iLab 650 auto-analyzer (Instrumentation Laboratories). Calibrations were carried out before each set of analysis, and quality control standards (i.e. upper and lower end of working range) were run between each sample tray. ReferrIL G (Instrumentation Laboratories) was used as the calibrant for IL Test™ kits, whereas the internal Randox calibrant (Randox Laboratories) was used for NEFA calibrations.

Glucose was determined using a glucose oxidase assay kit (IL Test™), which is based on a two-step reaction in which glucose is first converted to gluconic acid and hydrogen peroxide by glucose oxidase. The hydrogen peroxide then reacts, in the presence of peroxidase, 4-aminophenazone and phenol to produce a red quinoneimine dye. The increase in absorbance as generated by the red dye is proportional to the glucose concentration in the sample. Primary absorbance measurements are taken at 510 nm, and a blank reading is taken at 600 nm on the iLab 650. This assay has a linear working range for serum glucose levels between 0.1 and 28.2 mmol/L.

TAG were determined with an IL Test™ Triglycerides assay kit, which is based on an end-point colorimetric assay. In this assay, TAG are first broken down into glycerol and fatty acids by lipoprotein lipase. The glycerol is then phosphorylated by glycerol kinase, forming glycerol-3-phosphate (G3P), which, in turn is oxidized in a reaction catalysed by glycerolphosphate oxidase to form dihydroxyacetone phosphate and peroxide. The peroxide then reacts, in the presence of aminoantipyrine and 4-chlorophenol to form a red quinoneimine dye. Thus, the increase in absorbance generated by the red dye is proportional to the TAG concentration of the sample. Absorbance measurements are taken at 510 nm. The assay has a linear working range for serum or plasma TAG between 0.02 and 11.4 mmol/L.

NEFA were determined with a Randox NEFA Kit (Randox Laboratories, County Antrim, UK), which is based on a colorimetric end-point reaction in which NEFA is first converted to Acyl Co A by Acyl Co A Synthetase, which is then converted to 2,3,-trans-Enoyl-CoA and peroxide by Acyl CoA Oxidase. Peroxide, in the presence of 4-aminoantipyrine and toluidine, reacts with peroxidase to form a purple adduct. The increase in absorbance as generated by the purple complex is proportional to the NEFA concentration of the sample. Absorbance measurements are taken at 546 nm. This assay has a linear working range for serum or plasma NEFA levels up 0.072 to 2.24 mmol/L.
Insulin and C-peptide concentrations were determined by Immulite® (electro-) chemiluminescence assays with an Immulite 2000 analyser, according to manufacturer specifications (Siemens Medical Solutions, Diagnostics Europe Ltd.). In brief, these assays are both based on a two-site sandwich assay in which C-peptide or Insulin is sandwiched between two antibodies. One antibody is covalently linked to paramagnetic particles, whereas the second antibody is labelled with either acridinium ester (for insulin detection) or with ruthenium (C-peptide). Insulin is detected by the light emitted upon reaction of the complex with horseradish peroxidase (HRP), whereas C-peptide is detected under voltage, which causes emission from ruthenium. Thus, the light intensity measured in a luminometer was proportional to the insulin or C-peptide concentration.

GLP-1 and GIP concentrations were determined by sandwich-ELISA using human GIP and GLP-1 (active) ELISA kits from Merck Millipore Corp. In brief, GLP-1 or GIP are immobilised on a microwell plate, washed to remove unbound materials, and then bound to a biotinylated anti-GLP-1 or anti-GIP monoclonal antibody. Unbound conjugate is then washed off, and HRP-labelled Streptavidin, which binds to the biotinylated antibodies, is added. Free enzyme conjugates are washed off, and the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) is added. HRP catalyses the oxidation of this substrate in the presence of hydrogen peroxides. The resulting diimine can be quantified spectrophotometrically. The increase in absorbance at 450 nm is directly proportionate to the amount of GLP-1 or GIP in the sample.

CCK was determined using an ELISA kit obtained from USCN Life Science Inc. This kit is based on a competitive inhibition enzyme immunoassay technique. In brief, the microplate is coated with a monoclonal antibody specific to CCK. Biotin-labelled CCK and the sample (contains CCK) are then added to the plate and will competitively bind to the coating. Next, the plate is washed to remove any unbound conjugate. Avidin (a biotin binding protein) conjugated to HRP is then added to each well. This binds to the biotin labelled CCK, and is visualised, after a period of incubation, by the addition of a chromogenic substrate (TMB, as above). Thus, the amount of colour intensity developed on addition of the visualisation substrate (as described above) is reversely proportional to the concentration of CCK in the sample.

PYY was determined using a Human PYY (total) radioimmunoassay kit (Merck Millipore Corp.), which measures both the 1-36 and 3-36 forms of this peptide. This assay kit uses 125I-labeled PYY and a PYY antiserum to determine the concentration of total PYY in serum samples. The 125I-labeled PYY and the sample containing PYY are incubated with PYY antiserum and competitively bind to binding sites on the PYY antibody. Any unbound material is then removed and the amount of radiolabelled antigen is quantified (bound or unbound) using an instrument to count radioactivity.
Appendix I: Blood results, raw data

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Glucose (mmol/L)</th>
<th>TAG (mmol/L)</th>
<th>NEFA (mmol/L)</th>
<th>Insulin (pmol/L)</th>
<th>C-peptide (pmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>4.9</td>
<td>1.02</td>
<td>0.84</td>
<td>20</td>
<td>496</td>
</tr>
<tr>
<td>15</td>
<td>5.2</td>
<td>1.00</td>
<td>0.66</td>
<td>107</td>
<td>825</td>
</tr>
<tr>
<td>30</td>
<td>5.6</td>
<td>0.89</td>
<td>0.44</td>
<td>94</td>
<td>1137</td>
</tr>
<tr>
<td>45</td>
<td>5.3</td>
<td>0.94</td>
<td>0.31</td>
<td>170</td>
<td>1468</td>
</tr>
<tr>
<td>60</td>
<td>5.6</td>
<td>1.02</td>
<td>0.22</td>
<td>136</td>
<td>1486</td>
</tr>
<tr>
<td>90</td>
<td>6.3</td>
<td>1.11</td>
<td>0.20</td>
<td>196</td>
<td>1765</td>
</tr>
<tr>
<td>120</td>
<td>6.2</td>
<td>1.33</td>
<td>0.21</td>
<td>180</td>
<td>2015</td>
</tr>
<tr>
<td>150</td>
<td>6.6</td>
<td>1.65</td>
<td>0.26</td>
<td>178</td>
<td>2035</td>
</tr>
<tr>
<td>180</td>
<td>6.9</td>
<td>1.55</td>
<td>0.22</td>
<td>239</td>
<td>2076</td>
</tr>
<tr>
<td>240</td>
<td>6.7</td>
<td>1.4</td>
<td>0.17</td>
<td>116</td>
<td>1693</td>
</tr>
<tr>
<td>300</td>
<td>1.38</td>
<td>0.1</td>
<td></td>
<td></td>
<td>1.24</td>
</tr>
<tr>
<td>360</td>
<td>1.22</td>
<td>0.08</td>
<td></td>
<td></td>
<td>1.12</td>
</tr>
<tr>
<td>420</td>
<td>1.33</td>
<td>0.41</td>
<td></td>
<td></td>
<td>1.04</td>
</tr>
<tr>
<td>480</td>
<td>1.77</td>
<td>0.65</td>
<td></td>
<td></td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5.0</td>
<td>0.90</td>
<td>0.55</td>
<td>31</td>
<td>523</td>
</tr>
<tr>
<td>15</td>
<td>7.3</td>
<td>0.88</td>
<td>0.25</td>
<td>352</td>
<td>1718</td>
</tr>
<tr>
<td>30</td>
<td>7.8</td>
<td>0.84</td>
<td>0.23</td>
<td>491</td>
<td>2648</td>
</tr>
<tr>
<td>45</td>
<td>7.2</td>
<td>0.83</td>
<td>0.06</td>
<td>305</td>
<td>2273</td>
</tr>
<tr>
<td>60</td>
<td>6.3</td>
<td>0.85</td>
<td>0.03</td>
<td>228</td>
<td>2175</td>
</tr>
<tr>
<td>90</td>
<td>5.2</td>
<td>0.85</td>
<td>0.02</td>
<td>114</td>
<td>1658</td>
</tr>
<tr>
<td>120</td>
<td>4.7</td>
<td>0.96</td>
<td>0.03</td>
<td>80</td>
<td>1428</td>
</tr>
<tr>
<td>150</td>
<td>5.8</td>
<td>1.16</td>
<td>0.08</td>
<td>106</td>
<td>1264</td>
</tr>
<tr>
<td>180</td>
<td>6</td>
<td>1.20</td>
<td>0.08</td>
<td>75</td>
<td>1063</td>
</tr>
<tr>
<td>240</td>
<td>5.4</td>
<td>1.32</td>
<td>0.25</td>
<td>43</td>
<td>829</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.24</td>
</tr>
<tr>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.12</td>
</tr>
<tr>
<td>420</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.04</td>
</tr>
<tr>
<td>480</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.13</td>
</tr>
</tbody>
</table>