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Abstract  

No in vivo imaging biomarker currently exists for BACE, a drug target for Alzheimer’s 

disease (AD). A strategy aiming to find a novel brain-penetrant positron emission tomography 

(PET) radiotracer for BACE1 led to the discovery of a highly potent and selective aminothiazine 

inhibitor, PF-06684511. This scaffold has been now evaluated as BACE1 PET radiotracer, 

([18F]PF-06684511) after labelling with fluorine-18 (18F) allowing its evaluation in non-human 

primates (NHP) as the first a brain-penetrant PET radiotracer for imaging BACE1 in vivo. 

 

 

BACE1 inhibitor drug development for AD treatment has proven to be challenging due to the 

high attrition rate of drugs entering into clinics, however there are still some promising BACE1 

drug candidates in on-going clinical trials.1 BACE1, also known as 𝛽 -site amyloid precursor 

protein cleaving enzyme 1, is a transmembrane enzyme which plays a crucial part in AD 

pathogenesis by initiating the production of the toxic protein amyloid-β which aggregates to form 

amyloid-β plaques.2 

The production of a BACE1 PET radiotracer would help to address unmet needs in AD 

research such as: 1) monitoring and progression of brain BACE1 levels from presymptomatic to 

late stage AD; 2) establish a temporal relationship between BACE1 expression versus amyloid-𝛽 

plaque formation, neurofibrillary tangles and neuroinflammation; 3) determination of target 

occupancy of therapeutic BACE1 inhibitors; and 4) the selection of non-heterogeneous AD 

cohorts for clinical trials. Therefore, the possibility of a non-invasive, high resolution, quantitative 

tool to gain information on BACE1 in vivo has fuelled a demand for BACE1 PET 

radiopharmaceuticals. 

 

In this issue, Lei Zhang and collaborators at Pfizer and Karolinska Institutet put in place a 

rational, cost-efficient, four-step discovery process for the development of BACE1 PET 

radiotracers (Figure 1).3 This involves: a) determination of target expression in vitro; b) 

radiotracer design and lead prioritisation through a combination of in silico, in vitro and in vivo 

approaches; c) PET radiotracer production; and d) PET radiotracer assessment in vivo. 

In the first step, the maximum concentration (Bmax) of BACE1 was determined in mouse 

brains. The authors identified a potent BACE1 inhibitor, 1 (IC50 = 12 nM, Figure 2), as a suitable 

candidate for tritium ([3H]) radiolabelling to enable in vitro binding studies. The BACE1 

specificity of compound 1 and BACE1 Bmax was determined in frontal cortex regions of wild-type 

(WT), BACE1 heterozygous, and homozygous knockout (KO) mouse brain tissues. The brain 

binding of [3H]1 in WT mice was reduced by roughly 50% in heterozygous BACE1 KO mice and 

abolished in homozygous BACE1 KO mice, confirming that [3H]1 binds selectively to BACE1.  

The determination of BACE1 Bmax (approximately 7 nM) was essential for PET radiotracer 

triage, using the empirical formula Bmax/Kd  ratio ≥ 10,4, 5 using this method the affinity (Kd) 

required for a successful BACE1 PET radiotracer was estimated to be ≤ 0.7 nM. Compound 1 was 

rejected as potential PET radiotracer because it was found to be a substrate of the P-glycoprotein 

(P-gp) transporter and a non-optimal Bmax/Kd ratio of 3.8. 



For the next step, sequential filters were applied to a 790 BACE1 inhibitor library in order to 

identify PET radiotracers able to enter into the brain, with strong BACE1 binding, and low non-

displaceable binding. Preferred filters were: high passive permeability (measured by Ralph Russ 

canine kidney apparent permeability coefficient apical-to-basolateral, RRCK Papp AB  > 5 × 10−6 

cm/s), low drug efflux pump liability (measured by multidrug resistance protein 1 basolateral-to-

apical/apical-to-basolateral ratio, MDR1 BA/AB  ≤ 2.5), high potency to inhibit BACE1 (IC50 < 5 

nM), and high brain free-fractions, as a predictor of low non-displaceable binding (Fu_b > 0.05) 

(Figure 1). Applying these filters, the library of 790 compounds was narrowed down to 16 

candidates. It is noted that the authors used IC50 values instead of Kd values for Bmax/Kd 

estimation. The validity of this approach is strictly speaking incorrect and would require further 

studies to validate the use of IC50 values in this context. 

Subsequently, a multi-parameter optimization score6 (CNS PET MPO score > 3) taking into 

account LogP, LogD, molecular weight, topological polar surface area, number of hydrogen bond 

donors, and pKa, combined with a visual inspection of moieties amenable to 11C- or 18F-labeling 

generated two lead compounds, PF-06684511 (2) and 3 (Figure 2).  

 

In order to select a single lead compound, in vivo non-displaceable binding assessment studies 

were performed on 2 and 3 using a liquid chromatography–mass spectroscopy/mass spectroscopy 

(LC-MS/MS) method. The non-displaceable binding was determined in four brain regions: 

cerebellum, frontal cortex, hippocampus, and striatum. Compounds 2 and 3 were injected into 

mice at tracer concentrations (iv, 10 μg/kg) and evaluated by comparing a control group with a 

blocking group pre-treated with a high dose of a selective fused aminodihydrothiazine BACE1 

inhibitor. Of the two compounds, 2 displayed BACE1 specific binding in vivo. The selectivity of 2 

for BACE1 was confirmed by demonstrating a significant reduction of binding in BACE1 KO 

versus WT mice brain. In summary, compound 2 was shown to be a potent inhibitor of BACE1, 

highly selective over BACE2 and other targets, possesses low lipophilicity and good 

physiochemical parameters, and finally it has low efflux and high passive permeability across the 

blood-brain barrier. All these factors are “go criterion” important for successful PET radiotracers 

and therefore 2 is a promising candidate to be translated into a valuable diagnostic tool to be 

evaluated in preclinical mammalian models. 

A distinguishing feature of this paper is that the researchers carefully characterised the in vitro 

and in vivo profile of the lead compound 2 before advancing to PET radiotracer assessment, 

increasing their likelihood of finding a successful PET radiotracer, minimising the effort and cost 

of PET radiotracer development.  

 

PET radiotracer production started by selecting fluorine-18 (18F) as the radionuclide with 

which to functionalise 2 for PET imaging applications, based on the assessment of potential 

radiosynthetic strategies starting from [18F]fluoride. [18F]2 ([18F]PF-06684511) was obtained in 

high radiochemical purity (>99%) and with high molar radioactivity of 84-175 GBq/μmol, by 

displacement of the tosyl moiety of 4 (Figure 2) with [18F]fluoride/K2.2.2/K2CO3, followed by the 

removal of the BOC protecting group, HPLC purification and reformulation. The radiosynthetic 

strategy suffers of a low radiochemical yield for the production of [18F]2  (4-7%) and multiple step 

synthesis to obtain precursor 4, factors that need to be considered for routine productions of [18F]2. 

Lately, in vivo PET assessment of [18F]2 was performed in NHPs (i.v. 10 µg/kg). [18F]2 

demonstrated good brain uptake and widespread distribution in various brain regions, with 

increased signal in hippocampus and striatum. The high selectivity of [18F]2 towards BACE1 was 

shown by pre-administration of BACE1 inhibitor LY2886721 (5 mg/kg, PO, 120 min prior to PET 

scanning). Blocking studies showed a markedly reduced signal in the brain. These results suggest 

that [18F]2 is a promising radiotracer for BACE1 PET imaging in humans, although the metabolic 

profile of [18F]2 has yet to be elucidated and toxicology safety assessment studies are required 



before beginning clinical trials. Furthermore, in vivo assessment in NHP was only performed in 

one healthy animal, limiting the statistical significance of the findings, which ought to be 

replicated in increased subject number and in other research institutes. 

The CNS PET ligand discovery process reported by L. Zhang et al. is a logical and efficient 

method, which successfully led to the identification of a novel BACE1 PET radiotracer. The 

process is based on a comprehensive PET ligand triage that includes: determination of BACE1 

density, prioritisation of BACE1 inhibitor guided by in silico/in vitro/in vivo parameters, and the 

design of a radiosynthetic approach.3 Following this protocol, a single lead compound 2 was 

selected from a library of 790 candidates leading to the evaluation of [18F]2 which showed in vivo 

specificity to BACE1. 

 

Although at present the AD progression cannot be halted or reversed, the availability of a 

BACE1 radiotracer for PET imaging will allow the in vivo disposition of BACE1 and 

pharmacological characterisation of BACE1 inhibitors to be studied in clinical trials. Furthermore, 

BACE1 PET imaging could positively affect the study of AD aetiology, and thus assist the 

discovery of new AD therapies. In the long term, BACE1 PET radiotracers may allow the 

development of early diagnostic tools for AD, giving patients and physicians the possibility of 

better lifestyle management and evaluation of disease modifying treatments. 
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Figure 1 Design parameters and test criteria for CNS PET ligands (1See text for 

discussion of IC50 and Kd values). 

  



 
 

 
 

Figure 2 Chemical structure of tritiated compound [3H]1, BACE1 inhibitors (2 and 

3), BACE1 PET radiotracer [18F]2 and its precursor 4. 

 


