Dialysis in pregnancy

Authors: Kate Wiles
NIHR Doctoral Research Fellow
Department of Women and Children’s Health
King’s College London and the Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust
London SE1 7EH

Leandro de Oliveira
Professor of Obstetrics
UNESP Sao Paulo State University
Brazil

Corresponding author: Kate Wiles, kate.wiles@kcl.ac.uk

Conflicts of interest: None.

Acknowledgement:
The authors acknowledge the National Institute for Health Research (NIHR) Rare Diseases Translational Research Collaboration as well as the Biomedical Research Centre at Guy’s and St. Thomas’ NHS Foundation Trust and King’s College London for funding KW under the terms of a doctoral research fellowship. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the UK Department of Health.
Abstract

Although kidney disease impacts on fertility, increasing numbers of pregnancies are reported in women on dialysis. Despite a trend of increasing live birth rates over recent decades, pregnancies on dialysis remain high risk, with increased rates of adverse pregnancy outcomes including pregnancy loss, pre-eclampsia, pre-term delivery, low birth weight and the requirement for neonatal intensive care. This article describes the prevalence of dialysis and pregnancy in women of childbearing age, with relevant information regarding the effects of end-stage renal disease on fertility in women. Pregnancy outcomes for women on dialysis are summarised, including their association with dialysis intensity. A guide to pre-pregnancy counselling, and the management of pregnancy on dialysis is provided. Factors that inform the decision to commence dialysis in pregnancy are examined. The advantages and disadvantages of peritoneal dialysis in pregnancy are discussed.

KEY WORDS: renal dialysis, peritoneal dialysis, renal replacement therapy, pregnancy, reproduction.
Dialysis and pregnancy in women of childbearing age

The number of women of childbearing age receiving dialysis varies according to healthcare provision and renal disease incidence. In the United Kingdom, the prevalence of dialysis in women of childbearing age (18-45 years) is 150 women per million population, with the most prevalent underlying diagnoses being glomerulonephritis and diabetic nephropathy [1,2]. For women receiving dialysis, reproductive healthcare options and outcomes are dictated by the effect of end-stage renal disease on pregnancy.

The first report of a live birth in a woman receiving haemodialysis was published in 1971 [3]. Since then, increasing rates of pregnancy in women on dialysis are reported. The Australian and New Zealand Dialysis and Transplantation (ANZDATA) registry reported pregnancy rates of 0.54 per 1000 person years from 1976-1985, 0.67 from 1986-1995, and 3.3 from 1996-2008 [4]. Similarly, a systematic review of dialysis in pregnancy identified 90 cases between 2000 and 2008, compared to 584 pregnancies in the years 2008-2014 [5]. Although publication bias cannot be excluded, a six-fold increase in literature is strongly suggestive of an increasing incidence of pregnancy in women on dialysis. Improved obstetric surveillance, blood pressure control, the availability of erythropoietin stimulating agents, a change in the clinician-approach to pregnancy in chronic kidney disease, and the use of intensive dialysis regimens can all be hypothesised to be important contributing factors. However, the overall incidence of pregnancy in women receiving dialysis remains low and is estimated to be 1% of that in the population [6, 7].
Fertility and dialysis

Impaired renal function impacts that hypothalamic-pituitary-ovarian axis leading to an inverse relationship between glomerular filtration and fertility [7]. Ovulation is triggered by a surge in the concentration of leutenising hormone at the mid-point of the menstrual cycle, driven by the positive feedback of oestrogen to the hypothalamus-pituitary. In women with advanced chronic kidney disease, oestrogen concentrations are low leading to negative feedback to the hypothalamus, and although leutenising hormone (LH) concentrations are increased [8], there is a loss of variability and the mid-cycle surge [9] and ovulation fail to occur. In addition, there is impaired renal clearance of prolactin [9,10], which mimics the physiological effect of breast-feeding and confers additional suppression of ovulation. Treatment with cyclophosphamide, which is used in the treatment of rapidly progressive glomerular disease is known to be gonadotoxic and may contribute to infertility. Small cohort studies show that 42% of women on dialysis have a regular menstrual cycle, compared to 75% prior to the start of dialysis [11], and 37-59% of women on hameodialysis are amenorrhoeic [11,12]. Importantly, kidney disease is also associated with non-mechanistic sexual dysfunction including reduced libido, dyspareunia, negative body image and depression, even before the need for dialysis arises [13,14].

Pregnancy rates in women receiving peritoneal dialysis are less well described in published literature, but appear lower than rates on haemodialysis. ANZDATA shows pregnancy rates of 1.06 pregnancies per 1000 patient years in women on peritoneal dialysis, which is significantly less than the haemodialysis rate of 2.54 [4]. This has
led to conjecture that the use of intraperitoneal fluid may be associated with mechanical or inflammatory effects on the fallopian tube and/or uterus, in addition to the endocrine effects of renal impairment.

Although end-stage renal disease impairs fertility, it is not in itself a reliable form of contraception and unplanned pregnancies do occur. There is emerging evidence that this may be particularly relevant for women receiving an increased number of hours of dialysis. Increasing haemodialysis provision from 16.5 to 28 hours per week in a small cohort of seven women was associated return of menses in 2 out of 3 previously amenorrhoiec women, and intensifying treatment to 36 hours of dialysis per week (from 12 hours) in a single centre led to conception rates of 15.6% (7 out of 45 women), which is 10 times greater than that reported by national registries [15,16].

The provision of safe and effective contraception is essential for women on dialysis who do not wish to conceive. However, contraceptive advice and provision for women on dialysis remains inadequate for women with CKD, including those on dialysis [7]. There is limited guidance on contraception for women on dialysis, and safety data [17] are generalised from other high-risk groups. Effectiveness must consider the failure rate with ‘typical-use’ as discrepancies exist compared to ‘perfect-use’ [18]. For example, the ‘typical-use’ of condoms leads to 18-21% of couples experiencing an unintended pregnancy in the first year of use, which means they are an unacceptable long-term option for women who wish to avoid pregnancy. Progesterone based methods avoid the risks associated with oestrogen use; namely
hypertension, vascular disease, lupus flare, thromboembolism and cervical cancer. Progesterone only methods are therefore considered safe for women on dialysis [19] and include the progesterone-only pill, the intra-uterine system (Mirena®) and the progesterone implant (Nexplanon®), with typical use failure rates of 9%, 0.5% and 0.02% respectively [18]. The copper coil is a safe and effective non-hormonal based method. Progesterone-only emergency contraception can be provided to prevent pregnancy up to 72 hours after unprotected sexual intercourse.

Pregnancy outcomes on haemodialysis

Population studies [20], large cohorts [21], and meta-analysis [22] show that chronic kidney disease confers an increased risk of adverse pregnancy outcomes including pregnancy loss, pre-eclampsia, pre-term delivery, small-for-gestational-age babies, admission to neonatal intensive care and perinatal death. Absolute risk rates vary between studies and are affected by cohort size, the timing and method by which renal function is measured, and clinician thresholds for iatrogenic delivery and intensive care admission. However, a consistent finding is the increment in risk with worsening CKD stage and the highest rates of adverse outcomes for women on dialysis.

Rates of adverse pregnancy outcomes for women on dialysis are shown in Table 1. This table demonstrates an increase in the live birth rate of babies born to women on dialysis over the last 30 years, although a high prevalence of pre-term delivery and low-birth weight babies remain consistent findings. Rates of pre-eclampsia are heterogeneous. The difficulty in making a diagnosis of superimposed pre-eclampsia
in the clinical context of pre-existing hypertension and/or proteinuria/anuria is a likely contributing factor (see: Obstetric management).

Numerous cohort studies demonstrate a trend of improved pregnancy outcomes with longer dialysis time in pregnancy [23–30]. This is most convincingly shown in a Canadian cohort of 22 women with established end-stage renal disease receiving 43±6 hours of dialysis per week during pregnancy. This was associated with a significantly higher birth rate (83% versus 53%) and increased gestational age (36 versus 27 weeks) compared to the provision of 17±5 hours of dialysis per week [28]. Meta-analysis of data from 2000-2014 showed that dialysis frequency and dialysis duration show an inverse correlation with rates of preterm delivery and small for gestational age infants [5], although data heterogeneity prevents stratification by other potentially important factors including maternal age, renal disease aetiology and the level of residual renal function. A recent large Brazilian case series of women receiving haemodialysis during pregnancy between 2000 and 2017 included 47 women with established end-stage renal disease and 46 women with new dialysis requirements in pregnancy [30]. Multivariable modelling of the data showed that midweek blood urea nitrogen was significantly associated with gestation adjusted fetal weight, although the development of pre-eclampsia remained the most important factor in predicting adverse pregnancy outcome.

Pre-pregnancy counselling for women on dialysis

Pre-pregnancy counselling is advocated for all women with a pre-existing medical condition given the identification of maternal mortality in women who do not
receive pre-pregnancy advice [31]. Although maternal risk in CKD is comparable to the general population, there is a significantly increased risk to the babies born to women on dialysis including preterm delivery, small for gestational age infants, and an 18% risk of perinatal death [5]. However, CKD does not remove the innate longing to have a child and the patient experience of physicians’ warnings against pregnancy in CKD can be traumatic [32]. Neither CKD nor the need for dialysis should negate the autonomous decision to undertake a pregnancy, but autonomy is only possible with a full understanding of the implications of kidney disease for pregnancy and therefore the provision of expert, individualised pre-pregnancy counselling is essential. The challenges of undertaking a pregnancy on dialysis for women and their care-givers, as well as the very real possibility of parenting a small, sick neonate must be effectively communicated.

The risks of pregnancy following successful kidney transplantation are lower than those on dialysis. The possibility of a lower-risk pregnancy in the future should therefore be considered, although this is dependent upon the likely timing of transplantation within the window of child-bearing age, graft stability at >1 year and immunosuppressive regimens compatible with pregnancy. Parenthood in the absence of pregnancy can be achieved by surrogacy and adoption although the validity of these options for women on dialysis depend upon legal, ethical, and cultural factors, which vary across the world. In the UK, adoption is not a service for infertile or high-risk women, but a service for children, who often have complex parenting needs. It requires a detailed approval process including consideration of the time commitment of dialysis, the capacity of partners and family to provide
parenting support in the event of deteriorating maternal health, and prognosis within the life of the child.

Pre-pregnancy counselling requires optimisation of maternal health in advance of pregnancy. Relevant modifiable risk factors are shown in Table 2. Given the association between longer dialysis time and improved neonatal outcome (see: Pregnancy outcomes on haemodialysis) and concern regarding intensification of peritoneal dialysis (see: Peritoneal dialysis), a plan should be made for increased provision of haemodialysis in the event of pregnancy.

The management of pregnancy in women established on haemodialysis

Published data on dialysis in pregnancy is limited by cohort size and clinical heterogeneity. Randomised control trial evidence is unlikely to inform the management of women on dialysis in pregnancy due to both the rarity of the condition and the ethical difficulties in randomisation given a perceived lack of clinical equipoise, with clinicians uncomfortable with the provision of less than 6-times-weekly dialysis for women with established renal failure in pregnancy [33]. Clinical guidance is therefore based on low-moderate levels of evidence, generalisation of evidence from non-CKD cohorts, and expert consensus. However, levels of evidence defined by traditional hierarchies should not lead to presumptions about quality. Clinical experience and multidisciplinary working are difficult to quantify for the purposes of intervention research but such factors are repeatedly hypothesised to contribute to improved pregnancy outcomes [16,28,30]. Antenatal care for women on dialysis should take place within an expert, collaborative
multidisciplinary team including obstetricians, nephrologists, fetal medicine specialists, neonatologists, nurses, midwives and dieticians; acknowledging the essential the support that is provided by partners and family. The clinical value of expert consensus statements from such groups should not be underestimated.

Diagnosing pregnancy

Diagnosis of pregnancy is difficult in end stage renal disease due to the fact that irregular menstrual cycles and amenorrhea are common in women on dialysis (see: Fertility and dialysis), and urine volumes may be insufficient for standard pregnancy tests. The kidney plays a key role in the metabolism of beta-human chorionic gonadotrophin (β-HCG). Reduced parenchymal and excretory function is thought to contribute to the detection of elevated serum concentrations β-HCG in 8-16% of non-pregnant women with CKD [34,35]. The sensitivity and specificity of a relative rise in β-HCG for the diagnosis of pregnancy in CKD remain unknown. Verification and dating of pregnancy by ultrasound imaging is recommended [36].

Haemodialysis management for established end-stage renal failure in pregnancy

Intensive (>36 h/week) haemodialysis in pregnancy facilitates ‘gentle’ excess fluid removal with less variation in intra-dialytic blood pressure, better blood pressure control and better fetal outcomes compared to standard dialysis (≤20 h/week) [15, 28]. A continuous association between increased dialysis provision and improved fetal outcome is shown at >20h/week [25,26,29] and >36 hours per week [28]. Expert consensus from Italy suggests 36 hours as a minimum target for haemodialysis provision in pregnancy [36].
An alternative approach uses the serum urea concentration to guide the intensification of dialysis. Retrospective survey data suggests better pregnancy outcome at urea thresholds of <21mmol/L [37] and <17.9mmol/L [29]. A large contemporary cohort of 93 pregnancies showed that a midweek pre-dialysis blood-urea-nitrogen >35mg/dl (urea >12.5mmol/L) had a sensitivity of 88% and an odds ratio of 6.4 (CI: 1.4-30.0) for adverse fetal outcome [30]. With increasing recognition of the value of intensive dialysis in pregnancy, recommended targets for pre-dialysis urea concentration in pregnancy have shown a progressive decline from <17mmol/L [36], to 10-15mmol/L [16], to <12.5mmol/L [19]. The use of a target serum urea concentration potential facilitates individualisation of dialysis intensification in pregnancy, allowing for adjustment according to residual renal function. This is likely to be most relevant to women newly commenced on dialysis (see: New haemodialysis in pregnancy).

Establishing an appropriate dry-weight for dialysis requires expert clinical examination including an appreciation of the normal haemodynamic changes of pregnancy (‘a hyperdynamic hyperhydrated state’[36]), aiming for a post-dialysis blood pressure <140/90mmHg whilst avoiding intra-dialytic hypotension (<120/70mmHg) [16]. Weight gain due to pregnancy is estimated to be 300-500g/week during the second and third trimesters and should be accommodated appropriately in dialysis weight targets [36,38]. Low molecular weight and unfractionated heparins can be safely used in pregnancy to prevent clotting of the haemodialysis circuit, according to non-pregnant protocols. For women receiving
intensified daily dialysis regimens in pregnancy there may be a need to use higher
dialysate concentrations of potassium (3mEq/L), calcium (1.5mmol/L), and
phosphate [16]. Serum magnesium concentration may also fall with intensive dialysis
and oral supplementation may be required given the recognised association of low
magnesium levels with hypertensive disorders of pregnancy [39] and uterine
contraction [36].

Erythropoietin concentrations approximately double in physiological pregnancy in
the absence of CKD [40] so an increase in synthetic erythropoietin requirements
should be anticipated for women on dialysis in pregnancy. Iron deficiency is common
in pregnancy and the safe use of intravenous iron sucrose [41, 42,43] and dextran
[44] are described in pregnancy. Vitamin D deficiency should be corrected for all
pregnant women, including the use of activated analogues for women on dialysis.
Calcimimetic drugs are discontinued given the limited data on their use in
pregnancy. Depending on the amount of dialysis provided in pregnancy, it may be
possible to discontinue phosphate binders. If phosphate binders are indicated,
calcium is safe for use in pregnancy, although sevelamer should be avoided due to
animal evidence of impaired ossification of the fetal skeleton.

Obstetric management

All women who require, or who may require, dialysis in pregnancy have a high risk
for adverse pregnancy outcomes and should be referred in early pregnancy for
consultant-led obstetric care. Recommendations for the obstetric management of
pregnant women on dialysis are based on case series [15, 28], expert opinion [16, 36,
Meta-analysis demonstrates that women with CKD have a ten-fold higher risk for the development of pre-eclampsia compared to women with normal renal function [22] and statistical modelling of retrospective cohort data shows that the development of pre-eclampsia is the most important factor in predicting adverse pregnancy outcome in women on dialysis [30]. However, diagnosis of pre-eclampsia is complicated in women with CKD, including those on dialysis. A diagnosis of pre-eclampsia is based on *de novo* development of hypertension after 20 weeks gestation in association with proteinuria and/or evidence of systemic disease (maternal acute kidney injury, liver dysfunction, neurological features, haemolysis, thrombocytopenia, or fetal growth restriction) [48]. Such definitions are rendered redundant for the majority of women on dialysis who may have chronic hypertension, variation in blood pressure according to fluid state, pre-existing proteinuria and/or anuria. Standardised definitions of superimposed pre-eclampsia in women with CKD do not exist. Regular, expert surveillance of fetal growth and well-being, and clinical assessment for systemic signs and symptoms are mandatory for pregnant women on dialysis.

Fetal surveillance in women on dialysis involves regular assessment of fetal growth after 20 weeks gestation in conjunction with Doppler ultrasound assessments of flow in uterine and umbilical arteries. A small prospective study of 15 women with hypertension and/or CKD has demonstrated that an increased vascular resistance in the uterine artery at 20-24 weeks gestation has 100% specificity for the
development of superimposed pre-eclampsia, although this requires validation in a larger cohort, including women on dialysis [49]. Progressive changes in the waveform in the umbilical artery are used in the assessment of fetal distress and inform decisions regarding iatrogenic preterm delivery. Data from 61 women with CKD suggest that the combination of uterine and umbilical flow patterns can be used to distinguish CKD, which is associated with normal flow, from superimposed pre-eclampsia where flow velocity waveforms are abnormal [50].

There is now emerging evidence for the use of angiogenic (placental growth factor, PlGF) and antiangiogenic (soluble fms-like tyrosine kinase, sFlt-1) biomarkers in the prediction and diagnosis of pre-eclampsia. Low circulating concentrations of PlGF and/or high concentrations of sFlt-1 have been shown to be useful tools for the prediction of pre-eclampsia [51] and the need for delivery [52] in the general obstetric population. Similar biomarker profiles are reported in women with chronic hypertension and CKD [49], and in a case report of a woman receiving dialysis in pregnancy [53]. Rolfo et al. was able to demonstrate distinction of CKD from pre-eclampsia using the ratio of s-FLT:PIGF, although superimposed pre-eclampsia in women with CKD was not examined [54]. Further data on the predictive and diagnostic use of PlGF and s-Flt1 in women with advanced CKD are awaited.

New haemodialysis in pregnancy

Published literature from 1985-2007 shows that women with a pre-pregnancy creatinine >180µmol/L have a 70% chance of a decline in renal function during pregnancy [55]. Contemporary cohorts show the risk of progression to dialysis in
pregnancy is 20-50% for women with a pre-pregnancy eGFR <30ml/min/1.73m2 [21,56]. In the event of such a decline in renal function in pregnancy, the clinical dilemma of when to start dialysis in pregnancy remains.

Indications for commencement of dialysis in the non-pregnant population include symptomatic uraemia, evidence of protein-energy wasting, and the inability to safely manage metabolic abnormalities and/or volume overload with medical therapy [33]. However, in the context of pregnancy, the fetotoxicity of urea is likely to precede any maternal indications for dialysis, although the absolute level of urea at which the provision of dialysis improves pregnancy outcome remains unknown. Studies that have examined the level of urea at which fetal harm occurs are largely historical. In 1963, there were no surviving infants in a cohort of women with urea >21.4mmol/L [57], and in 1968 there 50% infant survival rate when maternal urea was >17.9mmol/L [58], although such outcomes also reflect standards of obstetric, renal and neonatal care from 50 years ago. Current practice remains variable from automatic commencement of dialysis when urea is >17mmol/L [59], to the consideration of dialysis only for women with progressive loss of renal function and a urea consistently >20mmol/L [16].

Residual renal function is hypothesised to contribute to the better outcomes seen in women commencing dialysis during pregnancy, compared to women established on dialysis prior to pregnancy [60]. As residual function confers some filtration capacity, intensification of dialysis may not show the same benefit as it does for women established on haemodialysis prior to pregnancy, with no significant residual
function. Meta-analysis data demonstrating improved outcomes with intensification of dialysis do not include women starting dialysis after 20 weeks so should not be generalised [5]. In a study of intensive dialysis in pregnancy, a subgroup analysis of 17 women commencing haemodialysis after conception found no difference in gestational age at delivery between those receiving 33 ± 6 hours/week ($n=4$) compared to 15 ± 4h/week ($n=13$) [28]. In the absence of benefit to pregnancy outcome, it is therefore important to consider the potential disadvantages of intensive dialysis in pregnancy including treatment burden and accelerated decline in residual function [33]. Despite increasing recognition that dialysis in pregnancy should be adjusted to residual renal function [16], validated methods for the assessment of residual renal function in pregnancy do not exist.

Whether the initiation and prescription of dialysis in pregnancy based on serum urea concentration or alternative measures of urinary clearance can optimise pregnancy outcome remains unknown. In the absence of better evidence, current expert consensus advises that commencement of dialysis in pregnancy is informed urea concentration in combination with the trajectory of renal function decline, fluid balance, blood pressure control and gestation [36]. The risks of commencing dialysis in pregnancy should be weighed against those of preterm delivery, especially after 34 weeks gestation when there is a recognised reduction in risk to the neonate [36].

Peritoneal dialysis and pregnancy

The incidence of pregnancy is lower for women on peritoneal dialysis compared to haemodialysis (see: Fertility and dialysis). However, successful pregnancies on
peritoneal dialysis are described. Batarse et al. (2015) examined outcomes in 47 pregnant women treated with peritoneal dialysis in pregnancy. Overall infant survival was 77%, at a mean gestation of 33 weeks, with a mean birth weight of 1755g [61]. Jefferys et al. published a series of 5 patients with early start peritoneal dialysis in pregnancy (mean urea concentration of 14.6mmol/L). Median gestation at delivery was 35 weeks (range 25-38 weeks), and complications of peritoneal dialysis including exit site infection, catheter displacement and peritonitis occurred in 3 of 5 pregnancies [62]. Systematic review data reveals that, despite comparable rates of pre-term delivery, peritoneal dialysis is associated with a higher rate of small-for-gestational-age infants (67%) compared to haemodialysis (31%)[5]. Although cohort size and publication bias may inform these data, this finding has led to the hypothesis that placentation could be adversely affected by the mechanics of peritoneal dialysis.

Peritoneal dialysis offers potential benefits for pregnancy including continuous ultrafiltration, avoidance of haemodynamic fluctuation, and no requirement for anticoagulation at the time of delivery. However, progressive distension of the uterus may necessitate reduced dialysate volumes and affect catheter position leading to concern about the capacity to intensify dialysis requirements in pregnancy. The supplementation of peritoneal dialysis with intermittent haemodialysis in order to augment clearance is described [63].

The choice of dialysis modality in pregnancy should be informed by availability, current and anticipated dialysis efficiency, residual renal function, gestation, infection risk, and patient choice.
Summary

Pregnancy rates in women on dialysis have increased and the effects of end-stage renal disease on fertility may be reversed by intensified dialysis. Contraceptive and pre-pregnancy counselling are therefore required for women on dialysis. Lower risk reproductive options including the likelihood of pregnancy following transplantation should be considered. All women on dialysis in pregnancy should be managed by an experienced, multidisciplinary team.

There is an association between increased dialysis time and improved neonatal outcomes for women on dialysis prior to pregnancy. Intensification of dialysis can be achieved by an increased in dialysis time and the use of pre-dialysis urea targets. Current recommendations include haemodialysis for >36h/week [36,38] and a target pre-dialysis urea <12.5mmol/L [30].

There is an increased risk of pre-eclampsia, the development of which is a key determinant of pregnancy outcome. Diagnosis of superimposed pre-eclampsia is complex with no diagnostic criteria. There is emerging evidence that circulating concentrations of PlGF and sFlt-1 have diagnostic utility, although validation in dialysis cohorts is required.

For women with advanced progressive CKD, dialysis in pregnancy is usually commenced due to the fetotoxicity of urea, rather than for maternal indications. Residual renal function contributes to clearance and evidence that dialysis should be
intensified in the same way as for women established on dialysis prior to pregnancy does not exist. The concentration of urea at which it is beneficial to provide dialysis in pregnancy remains unknown.

Limited published data on peritoneal dialysis suggest there may be modality specific adverse effects on fertility and fetal growth and intensification dialysis may be harder to achieve.

Research agenda

- Standardisation of data collection from pregnant cohorts and the establishment of multicentre research groups to allow prospective, large cohort analysis of factors contributing to pregnancy outcomes in women on dialysis including maternal urea concentration, residual renal function, dialysis modality, renal disease aetiology, blood pressure, maternal haemoglobin and cervical length.

- The validation of angiogenic (PIGF) and antiangiogenic (sFlt-1) biomarkers in the prediction and diagnosis of pre-eclampsia in women on dialysis.

- Qualitative evaluation of methods used to communicate risk in pregnancy in order to increase the understanding of risk and facilitate shared decision-making in reproductive health.
Table 1: Summary of published literature examining dialysis provision and outcomes in pregnancy. Studies included in systematic reviews [5, 64] are not listed separately with the exception of [28], which is an important comparative cohort study of intensive dialysis in pregnancy. Values are mean unless otherwise stated.

HD=haemodialysis, PD=peritoneal dialysis, IUGR=intrauterine growth restriction, SGA=small for gestational age, T1=first trimester, T2=second trimester, T3=third trimester

<table>
<thead>
<tr>
<th>Study</th>
<th>Study details</th>
<th>Number of pregnancies</th>
<th>Dialysis details</th>
<th>Live birth rate/neonatal survival</th>
<th>Hypertension/ Pre-eclampsia</th>
<th>Gestation</th>
<th>Birthweight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Souqiyyeh et al. 1992 [23]</td>
<td>Questionnaire (Saudi Arabia)</td>
<td>27 HD</td>
<td>Longer dialysis in pregnancies >28 weeks gestation</td>
<td>37%</td>
<td>74% <34 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hou 1994 [65]</td>
<td>Questionnaire (US)</td>
<td>19</td>
<td>Not available</td>
<td>37% overall, 52% after 1990.</td>
<td></td>
<td>95% preterm</td>
<td></td>
</tr>
<tr>
<td>Bagon et al. 1998 [24]</td>
<td>National survey (Belgium)</td>
<td>15 HD</td>
<td>Correlation between birth weight and dialysis dose</td>
<td>50% for established HD, 80% if new HD in pregnancy</td>
<td></td>
<td>100% preterm</td>
<td>100% low birthweight</td>
</tr>
<tr>
<td>Okundaye et al. 1998 [25]</td>
<td>Questionnaire (US)</td>
<td>245 HD, 59 PD, 40 unknown</td>
<td>Trend to better survival with dialysis >20h/week</td>
<td>42%</td>
<td>79% >140/90, 48% >170/110</td>
<td>32.4 weeks</td>
<td>1401g</td>
</tr>
<tr>
<td>Romão et al. 1998 [66]</td>
<td>Retrospective cohort (Brazil)</td>
<td>14 HD, 3 PD</td>
<td>HD 15-18h/week, PD 6 x 2L/day mean urea 28mmol/L</td>
<td>79% HD, 33% PD</td>
<td>47%</td>
<td>32.3 weeks</td>
<td>1401g</td>
</tr>
<tr>
<td>Toma et al. 1999 [37]</td>
<td>Questionnaire (Japan)</td>
<td>74 HD</td>
<td>Target urea <21mmol/L, mean 22h/week</td>
<td>49%</td>
<td>Severe hypertension 42%</td>
<td>31.9 weeks</td>
<td>1544g</td>
</tr>
<tr>
<td>Asamiya et al., 2009 [27]</td>
<td>Retrospective cohort (Japan)</td>
<td>28 HD</td>
<td>Mean HD time:- T1: 12.7h/week T2: 15.9h/week T3: 18.4h/week Negative correlation between BW and urea</td>
<td>64%</td>
<td>Hypertension 39%</td>
<td>92% preterm</td>
<td>42% small for dates</td>
</tr>
<tr>
<td>Piccoli et al. 2014 [64]</td>
<td>Systematic review of published literature 2000-2008</td>
<td>90 HD, 86 HD, 4 PD</td>
<td>HD 15-40h/week</td>
<td>76%</td>
<td>20-66% depending on study definition</td>
<td>67-100% preterm</td>
<td>1390-2418g</td>
</tr>
<tr>
<td>Piccoli et al. 2016 [5]</td>
<td>Systematic review of published literature 2000-2014, extension of [63]</td>
<td>35 HD start after conception 58 conception after HD start 14 PD</td>
<td>HD: 18-36h/week PD: 5-6 x 1.5L</td>
<td>82%</td>
<td>Hypertension 48-63% Pre-eclampsia 5-14%</td>
<td>HD: 33 weeks PD: 34 weeks</td>
<td>Conception before HD: 1804g, SGA 17%</td>
</tr>
<tr>
<td>Study</td>
<td>Study Design</td>
<td>Conception Details</td>
<td>Gestation Related Data</td>
<td>Birth Related Data</td>
<td>Urea Related Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jesudson et al. 2014 [60]</td>
<td>Retrospective (Australia and New Zealand)</td>
<td>63 22 conceived before dialysis, 41 conceptions on dialysis (34 HD, 7 PD)</td>
<td>Not available</td>
<td>73% (82% after 20 weeks gestation)</td>
<td>Not available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sachdeva et al. 2017 [29]</td>
<td>Internet based survey of practice (USA)</td>
<td>187 Most common prescription 24-27h/week. 66% aim for pre-dialysis urea <17.9mmol/L. More live births with dialysis >20h/week</td>
<td>78%</td>
<td>Pre-eclampsia 44%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luders et al. 2018 [30]</td>
<td>Retrospective cohort (Brazil), extension of previously published data [67]</td>
<td>93 2000-2008: 9-18h/week depending on urine output, > or < 1 year of HD, and body weight. 2009-2017: Target midweek urea <12.5mmol/L</td>
<td>89%</td>
<td>Pre-eclampsia 14%</td>
<td>35 weeks</td>
<td>1689g</td>
<td>SGA: 48%</td>
</tr>
<tr>
<td>Normand et al. [68]</td>
<td>Retrospective cohort (France)</td>
<td>100 Mean HD time: T1 14.6h/week T3 20.5h/week Mean urea: T1 17.0mmol/L T2 13.4mmol/L</td>
<td>78%</td>
<td>18.8%</td>
<td>33.2 weeks</td>
<td>1719g</td>
<td>45% <10th centile</td>
</tr>
</tbody>
</table>
Table 2: Pre-pregnancy counselling in women on dialysis: modifiable risk factors in advance of pregnancy

<table>
<thead>
<tr>
<th>Factor</th>
<th>Details</th>
</tr>
</thead>
</table>
| **Medication** | • Substitute angiotensin blockade (ACEi/ARB) in advance of pregnancy if used for hypertension. Continue angiotensin blockade until conception for cardiac indications with regular pregnancy testing during attempts to conceive.
 • Stop mycophenolate 6 weeks in advance of pregnancy, substitute with azathioprine and ensure disease control before attempts to conceive.
 • Stop statins. |
| **Blood pressure** | • Aim for BP<140/90 on pregnancy safe medications: labetalol, nifedipine, methyldopa.
 • Limited published safety data on amlodipine. |
| **Supplements** | • Folate: 5mg daily for ≥12 weeks prior to conception for fetal neural tube formation. Higher dose recommended due to increased loses with both HD and PD [69].
 • Vitamin D: treat deficiency |
| **Co-existing conditions** | • Diabetes: pre-pregnancy HbA1c is associated with pregnancy complications. Aim for fasting blood glucose <7mmol/L, HbA1c <48mmol/mol (6.5%) but avoid problematic hypoglycaemia.
 • Lupus: quiescent disease for 6 months prior to pregnancy.
 • Genetic counselling for inherited conditions. |
| **Other** | • Weight reduction for increased BMI
 • Confirm rubella immunity and vaccinate in advance of pregnancy if required
 • Stop smoking |
Table 3: Obstetric management of women on dialysis [36] [38] should occur in addition to standard obstetric care including anomaly screening, lifestyle advice, vaccination, delivery and breastfeeding information, mental health screening and support.

<table>
<thead>
<tr>
<th>Pregnancy stage</th>
<th>Management</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Individualised care plan, manage as high-risk.</td>
<td>Coordination of appointments with times on dialysis</td>
</tr>
<tr>
<td>Target blood pressure <140/90mmHg (post-dialysis)</td>
<td>Blood pressure may vary according to fluid state between dialysis sessions. Avoid hypotension (<120/70mmHg) on dialysis.</td>
<td></td>
</tr>
<tr>
<td>Early</td>
<td>Early referral for consultant-led care</td>
<td>Surveillance and management should occur in the context of an expert multidisciplinary team.</td>
</tr>
<tr>
<td>Pre-eclampsia prophylaxis with low dose aspirin (75-150mg)</td>
<td>High quality data for high-risk women in general obstetric population. [47] [46]</td>
<td></td>
</tr>
<tr>
<td>Pre-eclampsia prophylaxis with calcium supplementation</td>
<td>Indicated for women with calcium deficiency [70], although this likely to have been managed in advance of pregnancy in women known to nephrology services. Supplementation should be limited to 1.5g/day in women on dialysis as per CKD guidelines.</td>
<td></td>
</tr>
<tr>
<td>Trisomy screening</td>
<td>No increased trisomy risk associated with CKD and dialysis. Elevation of ß-HCG and PAPP-A in CKD may lead to false results. Consider non-invasive testing based on circulating fetal DNA if available.</td>
<td></td>
</tr>
<tr>
<td>Folate supplementation</td>
<td>Increased prophylactic dose (5mg daily) due to increased losses on dialysis.</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>Increased fetal surveillance</td>
<td>No outcome data related to different schedules of care. Expert consensus: fetal growth and well-being assessment at least every 4 weeks from 24 weeks, with more frequent assessment if clinically indicated including slowed growth trajectory, waveform abnormalities, any clinical concern regarding possible superimposed pre-eclampsia.</td>
</tr>
<tr>
<td>Cervical length</td>
<td>Increased rates of cervical shortening (18%) in recent published cohort of women on dialysis [28]. Significance and role of cerclage unknown.</td>
<td></td>
</tr>
<tr>
<td>End</td>
<td>Magnesium</td>
<td>Maintenance doses given for eclampsia prophylaxis/treatment or fetal neuroprotection should be omitted or reduced. Monitor for toxicity.</td>
</tr>
<tr>
<td>Delivery</td>
<td>Timing of delivery is based on maternal and fetal wellbeing. Elective induction of labour may be considered at 37 weeks to allow for planning of dialysis and the need for anticoagulation around delivery. Vaginal delivery is preferred in the absence of obstetric indications for Caesarean delivery.</td>
<td></td>
</tr>
<tr>
<td>Post-partum</td>
<td>Contraception</td>
<td>Safe and effective contraception should be offered: progesterone-only pill, intrauterine device, progesterone implant.</td>
</tr>
<tr>
<td>Breast-feeding</td>
<td>Breast-feeding should be encouraged and supported. Prescribed medication should be compatible with lactation (see https://toxnet.nlm.nih.gov/newtoxnet/lactmed.htm).</td>
<td></td>
</tr>
</tbody>
</table>
| On-going renal replacement therapy | Dialysis regimens should accommodate breastfeeding. The decision to (re)activate on transplant lists should be collaborative. Consider:
 - transplant immunosuppression may not be compatible with lactation
 - balance between neonatal/family commitments and the required time in hospital should a transplant become available. |
References

51. Agrawal S, Cerdeira AS, Redman C, Vatish M. Meta-Analysis and Systematic Review to Assess the Role of Soluble FMS-Like Tyrosine Kinase-1 and Placenta

Highlights

- Women on dialysis should be offered contraceptive and pre-pregnancy counselling
- Women on dialysis have a high-risk of adverse pregnancy outcomes
- Intensification of dialysis is associated with improved pregnancy outcomes for women who are established on dialysis prior to pregnancy
- Urea is fetotoxic but the optimum threshold at which dialysis should start in pregnancy is not known.
- Multidisciplinary, collaborative expertise is important in the management of all women on dialysis in pregnancy.