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Abstract 

Purpose: To determine the most suitable tumour segmentation algorithm from 18-fluoro-2-

deoxyglucose (18F-FDG) PET/CT scans and to evaluate the role of 18F-FDG PET-derived 

texture parameters in determining tumour micro-environment, tumour subtype, and patient 

prognosis. 

 

Methods:  

A) Three tumour segmentation algorithms were compared for inter-observer reproducibility of 

derived texture parameters using intraclass correlation coefficient (ICC), and prognostic 

capability using cox proportional hazards models. B) 18F-FDG PET-derived texture parameters 

were compared with changes in tumour volume and tracer uptake as biomarkers of early 

response to bevacizumab treatment in a case-control mouse model. C) Correlation analysis was 

performed between 18F-FDG PET-derived texture parameters and histopathological metrics of 

tumour micro-environment in human lung cancer specimens. D) Using semantic subjective 

parameters and CT-derived texture parameters, logistic regression models were developed to 

differentiate lung adenocarcinoma from squamous cell carcinoma. 

 

Results: 

A) Forty-percent of maximum intensity threshold was the most reproducible segmentation 

algorithm (median ICC: 0.9). Survival models were of equivalent quality regardless of 

segmentation algorithm used. B) There were no differences in tumour volumes between treated 

and control mice at 3 weeks. However, 1 texture parameter - grey-level size zone matrix-derived 

size-zone variability, was significantly different.  C) Positive correlations were found between 

several histopathologic and 18F-FDG PET-derived metrics: between mean cell density (MCD) 

and mean standardised uptake value (SUVmean (rs: 0.55, p=0.007), and Pathology-lacunarity 

and SUV-lacunarity (rs: 0.5, p=0.018). Negative correlations existed between cell-poor 

proportion and metabolically active tumour volume (rs: -0.48, p=0.02), and MCD and both SUV-

skewness and SUV-kurtosis (rs: -0.47, p=0.02). D) Best tumour classification performance was 

obtained with the combined texture and semantic-features model (area under receiver operating 
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characteristics curve: 0.93) compared to semantic features-only (0.84) and texture features-only 

(0.825) models (p-value <0.05). 

 

Conclusions: 

40P is a reproducible segmentation algorithm with acceptable survival predictive performance. 

Texture parameters may outperform size measurements in early response assessment. 18F-

FDG PET-derived texture features are correlated with several histopathological metrics of 

tumour cellularity and heterogeneity. CT-derived texture parameters combined with human 

interpretation are accurate in classifying lung cancer.  
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based on the direction and distance used to parameterize the adjacency function. GLCM=Grey-level co-
occurrence matrix 
 

 

Figure 1-3 Texture analysis in lung cancer: 18F-FDG PET images of two different tumours, one 
homogeneous (left, a) and the other heterogeneous (left, b). Histograms (centre, a & b) are the basis of 
first-order texture features, whereas surface plots (right, a & b) with their spatial information, can be seen 
as the basis of second-order and higher-order texture features. Histogram-analysis allows inference of 
familiar statistical features such as mean, standard deviation, narrowness (kurtosis), and degree of 
deviation from a bell-shaped distribution (skewness). 
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Figure 1-4 Highlighting the advantage of higher-order (second-order and greater) statistical features over 
first-order features in encoding grey-value spatial interrelationship: Grey-scale images composed of the 
same pixels arranged in different ways to simulate a highly heterogeneous tumour (left, a) and a less 
heterogeneous tumour (left, b). Their respective histograms (centre, a & b) and GLCMs (right, a & b) have 
also been shown. Having the same pixel values, both tumours have identical histograms and first-order 
texture measures, e.g., first-order entropy, skewness, and kurtosis. However, the spatial relationships 
between pixel values in both images, which add to their degree of heterogeneity, are captured in the 
GLCMs (right, a & b) and their derived values. For example, second-order entropy, which measures 
degree of heterogeneity is high for (a) and low for (b) (3.15 and 2.37, respectively). Contrast, another 
measure of the amount of local variation within the image, is also much higher for (a) than (b) (9.5 and 
0.43, respectively). GLCM=grey-level co-occurrence matrix 
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Table 1-2 Studies using texture analysis to classify lung lesions and thoracic lymph nodes. FD=Fractal 
dimension, GLCM=Grey-level co-occurrence matrix, HU=Hounsfield unit, LoG=Laplacian of Gaussian, 
MSAD=mean short-axis diameter. 

 

 

Bayanati et al. performed a regression analysis on CT images of 74 thoracic lymph nodes in 

patients with lung cancer(33). Their final regression model comprised six variables, of which 

three were texture (second-order entropy, run-length non-uniformity, and grey-level non-

uniformity) and three were shape-related. Their model was 81% sensitive and 80% specific in 

diagnosing nodal metastasis. In particular, they correctly identified 12 of 14 sub-centimetre 

lymph nodes. (49,50). In another study involving 132 patients with lung cancer, the authors 

developed support vector machines (SVM; a machine learning construct) from 18F-FDG PET 

and CT texture measures to classify the lymph nodes (31). The SVMs performed equivalently to 

quantitative SUVmax and mean nodal short-axis diameter in diagnosing malignant thoracic lymph 

nodes. In a further study, mean Hounsfield units (HU) measurement was shown useful in 

predicting nodal metastasis in lung cancer (n=46) (32). The authors found a mean difference of 

Author Number 
(unit of 
analysis) 

index test / measure of 
texture 

Observations 

Gao 
(2015)(31) 

768 
(lymph 
nodes) 

PET : GLCM, SUVmean 
and SUVmedian 
CT: multiresolution 
histogram 

Support vector machines* based on 18F-
FDG PET and CT texture performed 
similarly to conventional measures, i.e., 
SUVmax + MSAD, in differentiating benign 
from malignant thoracic lymph nodes 

Andersen 
(2015)(32) 

46 (lymph 
nodes) 

LoG multiscale first-
order features derived 
from CT images. 

Mean HU was significantly higher in 
malignant lymph nodes and was 53% 
sensitive and 97% specific in diagnosing 
malignant lymph nodes on regression 
analysis 

Bayanati 
(2015)(33) 

72 (lymph 
nodes) 

second-order - GLCM -
based entropy 
(Higher-order) Grey-
level non-uniformity 
(Higher-order) Run-
length non-uniformity 

Combined texture and shape was 81% 
sensitive and 80% specific in diagnosing 
malignant lymph nodes. For sub-centimetre 
lymph nodes, the sensitivity was 86%, 
compared by SUV at a cut-off of >2.5 

McNitt-
Grey 
(1999)(34) 

32 
(solitary 
pulmonary 
nodule) 

GLCM-features derived 
from CT 

Linear discriminant analysis based on 
GLCM-measures correctly classified 30 
cases (94%) 

Kido 
(2002)(25) 

107 
(parenchy
mal 
lesion) 

Fractal dimension 
derived from CT images. 

FD of lung lesions was 83% accurate in 
diagnosing lung cancer 
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20 HU between benign and malignant lymph nodes. Binary regression, based on mean 

attenuation of lymph nodes, out-performed short-axis diameter measurement in identifying 

nodal metastasis. It was 53% sensitive and 97% specific, whereas short-axis diameter 

measurement (cut-off: 10mm) was 47% sensitive and 61% specific.  

 

1.2.2 Applications in determining tissue histopathological biological features 

Studies have tested the predictive power of image texture in determining microscopic 

characteristics of tumours such as hypoxia, angiogenesis, and fibrosis (10, 20,51). Additionally, 

texture analysis has also been used to predict tumour genetics(2, 12,52). This latter application 

has evolved into a growing field in imaging research called radiogenomics (6). Table 1-3 

summarises studies that have sought associations between texture analysis and tumour 

histopathology and genetics. 
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Table 1-3 Studies using texture analysis in predicting tumour histopathology and genetics. HU=Hounsfield unit, LoG = Laplacian of Gaussian  
Author Number 

of 

patients 

index test / measure of texture Observations 

van Baardwijk 

(2008)(10) 

5 Contours of 18F-FDG-distribution based on 

minimum uptake: low (20% of max), 

medium (50%), high (80%) 

Ex-vivo 18F-FDG PET activity correlated with tumour composition: 

low uptake regions mostly contained fibrosis (>75%) 

Ganeshan (2013)(20) 14 LoG multiscale first-order features derived 

from CT. 

Immunohistochemistry on resected specimens showed strong 

correlations between texture and hypoxia (pimonidazole staining - 

slope: 0.003; Glut-1 expression - slope: -115 ), and texture and 

angiogenesis (CD34 expression - slope: -0.0008) 

Weiss (2014)(2) 48 LoG multiscale first-order features derived 

from CT. 

A five-node decision tree was 90% accurate in predicting K-RAS 

mutation from histogram analysis of CT HU distribution. In particular, 

positive skewness and lower kurtosis were significantly associated 

with the presence of K-RAS mutation.  

Gevaert (2012)(12) 26 Radiogenomic correlation map between 

metagenes and image-features (total 180) 

derived from 18F-FDG PET and CT 

180 semantic and texture-related features were used to predict 

metagenes (clusters of co-expressed genes). The imaging features 

were 59-83% accurate in predicting metagenes. 
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Nair (2012)(52) 25 18F-FDG PET derived texture features 

correlated with single genes and 

metagenes 

8 of the 4261 testes genes were associated with 7 different 18F-FDG 

uptake features. SUVmean was significantly associated with 5 genes. 

Ganeshan (2010)(51) 17 LoG multiscale first-order features derived 

from CT. 

CT texture first-order entropy and uniformity were correlated with 

tumour SUVmean (r = 0.51 and -0.52 respectively)  
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moderately strong association between texture heterogeneity in filtered CT images and tumour 

18F-FDG metabolism (n=18) (51). They found that first-order entropy and uniformity derived from 

filtered NECT images correlated moderately well with SUVs. Since increasing entropy and 

decreasing uniformity both indicate increasing heterogeneity, their results indicate that 

increasing heterogeneity is linearly associated with tumour SUV - a prognosticator of poor 

outcome in lung cancer(67). A second study on 54 patients supported these findings directly by 

associating decreasing first-order uniformity with poorer patient survival (OR 56; 95% 

confidence interval [CI]: 4.8-665) Gevaert et al. also performed survival analysis by utilising 

publicly available datasets of gene expression with known survival outcomes(12,69). 

Multivariate regression ranked computed size, edge, shape, and sharpness highest for 

prognostic significance. Furthermore, tumours exhibiting air bronchograms were at a 3 times 

increased risk of death at any time compared with the rest (HR: 3.1).  
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Table 1-4 Studies on associations between texture analysis and patient outcome, i.e., response to treatment, recurrence, and overall survival. AUC=area under curve, DFS=disease-
free survival, GLCM=Grey-level co-occurrence matrix, GLRL =Grey-level run-length, HR=Hazard ratio, LoG=Laplacian of Gaussian, MATV=metabolically active tumour volume, 
NGTDM=Neighbourhood grey-tone difference matrix, OR=Odds-ratio ,OS=overall survival, TLG=Total lesion glycolysis 
Author Number 

of 

patients 

Index test Observations 

Cook 

(2015)(16) 

47 Statistical features: first-order and higher-order 

(NGTDM-derived) derived from 18F-FDG PET 

High-order contrast at 6 weeks and percent change in first-order 

entropy were associated with survival (Entropy change - hazard ratio 

1.14; Contrast - hazard ratio 1.8) 

Depeursinge 

(2015)(17) 

101 Wavelet transform of CT images. 

 

Predictive models derived from wavelet analysis of CT images 

allowed differentiation between recurrence and non-recurrence 

groups (AUC = 0.8) 

Grove 

(2015)(70) 

108 CT-derived: 

1. First-order entropy ratio between tumour 

periphery and core. 

2.Convexity score (small score - irregular tumour) 

Low convexity scores and high entropy ratios were associated with 

poor survival (p=.008 and 0.04 respectively) 

Hatt 101 18F-FDG PET-derived: Clinical stage (I+II vs. III), MATV (>35cc), and second-order entropy 
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(2015)(13) 1. Metabolically active tumour volume. 

2.GLCM derived texture 

(>.735) were most predictive of patient survival (HR 3.8) 

Parmar 

(2015)(7) 

647 CT-derived: 

440 radiomic features based on a) first-order 

statistics b) higher-order statistics (GLCM and 

GLRL) c) shape d) wavelet features. 

11 clusters of radiomic features were derived from the training data-

set and validated on the validation dataset (Rand statistic: 0.92). The 

majority were significantly associated with patient survival and tumour 

stage  

Fried 

(2014)(18) 

91 First-order and higher-order (GLCM-derived and 

NGTDM-derived) features derived from CT.  

Adding texture features to clinical prognostic factors in the Cox 

proportional hazards regression model improved risk stratification (p 

= .046). 

Weiss 

(2014)(2) 

48 LoG multiscale first-order features derived from 

CT. 

Kurtosis was a significant predictor of OS and DFS, with a lower 

kurtosis value linked with poorer survival. 

Cook 

(2013)(71) 

53 18F-FDG PET and CT were used to derive: 

1. Statistical features: higher-order features 

(NGTDM-derived)  

2.Measures of tumour metabolism (SUV, TLG, 

and MTV). 

Texture (coarseness, contrast, busyness) on pre-treatment scans 

was more accurate than metabolism (SUV, TLG, MATV) in predicting 

response (AUC: contrast 0.82 vs. TLG 0.68) 

 

On multivariate analysis, high coarseness was most predictive of 
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 poor survival (HR : 4.9 per unit increase in coarseness) 

Ravanelli 

(2013)(72) 

53 LoG multiscale first-order features derived from 

CT. 

High texture uniformity on pre-treatment CT was associated with 

favourable response. The product of mean GL and first-order 

uniformity was predictive of response (OR 1.14, AUROC 0.79) 

Mattonen  

(2012)(15) 

22 CT-derived: 

1.Tumour size 

2.Texture : SD and mean in solid and GGO areas 

of tumour contours 

Texture features allowed earlier differentiation between radiation-

pneumonitis and tumour recurrence (9 months), compared with size 

measurements (15 months) 

Vaidya 

(2012)(14) 

27 1. SUV, TLG (FDG-PET 

2.Intensity volume histograms (FDG-PET and CT)  

3. GLCM-derived features (FDG-PET and CT) 

Texture measured on pre-treatment 18F-FDG PET and CT was 

correlated with local recurrence (r=0.34) 

Gevaert 

(2012)(12) 

26 Radiogenomic correlation map between 

metagenes and image-features (total 180) derived 

from 18F-FDG PET and CT. 

Multivariate analysis of image-derived and clinical features predicted 

4-year regression free survival (HR: 3.88) 

Ganeshan 

(2011)(73) 

54 LoG multiscale first-order uniformity derived from 

CT. 

First-order uniformity was inversely related with OS. None of the 

patients with uniformity <0.624 survived beyond 2.5 years (OR: 56.4) 



40 
 

 

In the post-radiotherapy scenario, lesion growth on interval CT is thought to be the most robust 

non-invasive predictor of relapse (74). However, there are studies showing that texture analysis 

may allow better discrimination between radiation pneumonitis and recurrence earlier than 

lesion growth (14) (15). According to one retrospective case-control study (group1: recurrence, 

group2: radiation pneumonitis; n = 22), mean CT attenuation of early recurrence followed a 

different time-trajectory than pneumonitis (15). At 9 months, there was complete separation of 

mean ± SD CT attenuation between the two groups (relapse mean: 96 HU; pneumonitis mean: 

143 HU). In contrast, serial size measurements of lesions allowed complete separation between 

the two groups much later, at 15 months.  

Hatt et al. found second-order entropy derived from 18F-FDG PET images to be predictive of 

patient survival (HR 2.09; n=101) (13). Heterogeneity and metabolic tumour volume (which 

relates to viable tumour volume) were independent prognosticators, and adding them to clinical 

variables in multivariate analysis increased the HR from less than 2.9 to more than 3.8. 

Similarly, another study showed a multivariate HR of 4.86 per unit increase in high order feature 

coarseness, meaning that the hazard of death at any time was nearly 5 times higher for patients 

with high coarseness (71). The same study also found a significant relationship between texture 

and likelihood of response to chemoradiotherapy. Specifically, patients who demonstrated 

relatively uniform tracer distribution at 18F-FDG PET (high contrast, low coarseness) were more 

likely to respond to treatment (AUROC for contrast: 0.82). Another study on 47 patients with 

metastatic NSCLC undergoing erlotinib (a tyrosine kinase inhibitor) treatment has shown that a 

trend in texture features over serial examinations can also be predictive of long-term survival 

(16). The authors performed 18F-FDG PET scans at baseline and at 6 weeks after commencing 

treatment. They found that intensity distribution of responders became more homogeneous 

compared with baseline (i.e., increase in first-order uniformity and decrease in entropy and 

standard deviation). At multivariate survival analysis, percent change in high order contrast had 

HR of 1.8 and 10-unit increase in entropy had HR of 1.14. Based on the above discussion, 

texture parameters, especially first-order entropy, can be used to predict adverse patient 

outcome and thus plan management. 
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Chapter 2 Hypotheses & Aims 

Texture analysis of medical imaging provides a quantitative measurement of various aspects of 

tumour micro-environment. As discussed in the previous chapter, it has potential applications in 

characterising tumour histopathological composition, micro-environmental pathophysiology and 

tumour classification. It has also shown promise in predicting response to treatment as a 

complementary or alternative tool to conventional serial size measurements. Besides furthering 

research into clinical applications of texture analysis, studies addressing technical challenges 

are also needed.  

 

2.1 Hypothesis 

I hypothesised that as an essential preparatory step for texture analysis, fixed intensity 

threshold- based tumour segmentation is highly reproducible, and that the choice of 

segmentation algorithm does not significantly affect the predictive performance of derived 

texture parameters. I further hypothesised that texture analysis based on 18F-FDG PET and CT 

scans captures important tumour micro-environmental information not visible to the human eye. 

Thus, there exist measurable histopathologic determinants of texture features derived from 

medical imaging. Medical images preserve sufficient tumour histopathological and micro-

environmental information to allow derived texture features to predict tumour subtype and allow 

early assessment of response to treatment.  

 

2.2 Aims 

1. To determine the most reproducible of three contending tumour delineation algorithms 

applied to 18F-FDG PET scans of NSCLC, and compare their impact on the prediction of 

overall patient survival. 

2. To establish the relationship between 18F-FDG PET-derived texture features and 

tumour response to anti-angiogenic treatment in a preclinical mouse CRC model. 

3. To measure associations between 18F-FDG PET-derived texture features and metrics of 

tumour biology derived from whole slide images (WSIs) stained with haematoxylin & 

eosin (H&E) and immunohistochemical markers of tumour metabolism, proliferation, 

glycolysis, and vascularity. 
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were performed on a single dataset of the most experienced observer (GC). QQplots were 

examined to detect skewed distributions. Twenty-seven out of the 84 texture parameters 

showed highly positively skewed distributions; these parameters were log-transformed (base 

10). Regarding inter-observer reproducibility, I treated volume separate from the remaining 83 

texture parameters. Comparison of scalar volumes is inadequate because two techniques can 

give identical volumes yet have measured different regions and thus be discordant. Therefore, I 

used the Jaccard similarity index (JSI) to obtain a voxel-by-voxel comparison between VOIs 

drawn with different segmentation algorithms. JSI computes agreement between two VOIs 

drawn with different segmentation algorithms on a voxel-to-voxel basis. When both VOIs are 

identical, the JSI is equal to one, and when they are discordant, the JSI is equal to zero. The 

JSI was multiplied by 100 to obtain percent-agreement. 

 

I used FLAB as the reference set, based on results from phantom studies (100), and FH and 

40P were used to derive two sets of JSI for all 53 cases - one set for FH/FLAB and one for 

40P/FLAB. The JSI of FH/FLAB set was compared with the JSI of the 40P/FLAB set using the 

Mann-Whitney U test. The effect of tumour size on percent-agreement was assessed visually 

using scatterplots. The intraclass correlation co-efficient (ICC) was used to measure the 

agreement between the three readers for each of the remaining 83 texture parameters. This 

yielded three sets of 83 ICC values - one set per segmentation algorithm. To rate reproducibility 

of a segmentation algorithm, arbitrary cut-offs were used to denote high (ICC >0.85), moderate 

(0.7-0.85), and low (<0.7) reproducibility. To compare ICC values derived from different 

segmentation algorithms, 95% confidence intervals (CI) of pair-wise differences in ICC values 

were calculated from the same data resampled 100 times, using a bootstrapping approach 

(104). A difference in ICC between two segmentation algorithms was considered non-significant 

if the CI included zero.  

 

To determine if a given segmentation algorithm preserved sufficient relevant tumour 

information, I chose a subgroup of 11 texture parameters for univariate cox regression analysis: 

MATV, total lesion glycolysis (TLG), SUVmax, SUV standard deviation, first-order entropy, GLCM 

entropy, GLCM homogeneity, GLCM dissimilarity, grey-level size zone matrix (GLSZM) intensity 

variability, NGTDM coarseness, and NGTDM contrast. I selected these variables after carefully 

reviewing relevant publications for their reported associations with patient survival(13, 16, 71, 
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95,105). The quality of each univariate cox regression model was assessed using two statistics: 

The Wald statistic was used to determine the statistical significance of the derived coefficient 

(cut-off p-value: 0.05), whereas the Akaike information criterion (AIC) was used to determine 

goodness of fit of the model(106).  My purpose was not to validate any of these texture 

parameters; I accepted them as valid biomarkers based on literature review and merely used 

them to measure the performance of each segmentation algorithm. Thus detailed survival 

analysis, i.e., analysis employing Kaplan Meier curves and multivariate cox regression, was not 

performed. 

 

3.3 Results 

Patient demographic and clinical characteristics are listed in Table 3-1.  
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Table 3-1 Patient demographics and clinical characteristics 

   
Patient characteristic Value 

Male: Female 31 : 22 

Tumour subtype  

  Adenocarcinoma 21 (40%) 

  Squamous cell carcinoma 24 (45%) 

  Not specified 8 (15%) 

T status  

  T1 6 (11%) 

  T2 14 (27%) 

  T3 15 (28%) 

  T4 17 (32%) 

  Tx 1 (2%) 

N status  

  N0 11 (21%) 

  N1 4 (8%) 

  N2 33 (62%) 

  N3 5 (9%) 

Tumour stage  

  IB 3 (6%) 

  IIB 5 (9%) 

  IIIA 24 (45%) 

  IIIB 21 (40%) 

Median interval between 18F-FDG PET 
and start of treatment (days) 

45 (range: 0-174) 

Median radiotherapy dose (Gy) 64 (range: 55-64) 

Median chemotherapy cycles 4 (range: 1-6) 
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3.3.1 Effect of segmentation algorithm on tumour-volume estimation  

Comparing the three segmentation algorithms, 40P yielded the smallest volumes and FH the 

largest (Figure 3-1). Taking FLAB as the reference standard, mean JSI between FH and FLAB 

was 71.6% (range: 48% - 87%; SD: 9.4%) and between 40P and FLAB was 70.7 % (range: 

10.5% - 98.1%; SD: 21.1%). The difference between the two means was not statistically 

significant (p = 0.24). Furthermore, the percent-agreement of JSI did not appear to be related to 

tumour size (Figure 3-2). 

 

 

Figure 3-1 Boxplots comparing the three segmentation algorithms in volume measurement. The boxes 
represent the interquartile range (IQR). Horizontal lines through the boxes show median values. The 
whiskers represent values within 1.5*IQR. 40P=40% of maximum intensity threshold. FH=freehand. 
FLAB=fuzzy locally adaptive Bayesian. 
 

  














































































































































































































































































