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Abstract

Many multi-agent coordination problems can be understood as a se-

quence of autonomous local choices between a finite set of options, with

each local choice undertaken simultaneously without explicit coordina-

tion between decision-makers, and with a shared goal of achieving a

desired global state or states. Examples of such problems include classic

consensus problems between nodes in a distributed computer network

and the adoption of competing technology standards. In this thesis, we

model such problems as a multi-round game between agents having flags

of different colours to represent the finite choice options, and all agents

seeking to achieve global patterns of colours through a succession of local

colour-selection choices.

We generalise and formalise the problem, proving results for the probabil-

ities of achievement of common desired global states when these games

are undertaken on directed or undirected bipartite graphs, extending

known results that require graphs to be non-bipartite. We also calculate

probabilities for the game entering infinite cycles of non-convergence. In

addition, we present a game-theoretic approach to the problem that has

a mixed-strategy Nash equilibrium where two players can simultaneously

flip the colour of one of the opponent’s nodes in an arbitrary directed

graph before or during a Flag Coordination Game.

A known hard problem in consensus protocols consists of the introduc-

tion of a bias towards a given opinion. Such problems in a general graph

are unlikely to have an analytic solution, however, for cycles we pro-

vide the probabilities of convergence for each colour based on the initial

configuration of the game.

We apply results on Flag Coordination Games into the Theory of Ar-

gumentation. We consider two teams of agents engaging in a debate to

persuade an audience of the acceptability of a central argument. This is



modelled by a bipartite abstract argumentation framework with a distin-

guished topic argument, where each argument is asserted by a distinct

agent. One partition defends the topic argument and the other partition

attacks the topic argument. The dynamics are based on Flag Coordi-

nation Games: in each round, each agent decides whether to assert its

argument based on local knowledge. The audience can see the induced

sub-framework of all asserted arguments in a given round, and thus the

audience can determine whether the topic argument is acceptable, and

therefore which team is winning. We derive an analytical expression for

the probability of either team winning given the initially asserted argu-

ments, where in each round, each agent probabilistically decides whether

to assert or withdraw its argument given the number of attackers.
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Chapter 1

Introduction

1.1 Motivation

Many multi-agent coordination problems may be represented as a collection of agents

choosing autonomously from a finite set of options using only limited information,

while sharing a common desire for a global state. For example, users of a new

technology choosing between alternative technical standards each face the same

choice of possible options, but make their choices without necessarily knowing the

choices of others. In the case of network goods [69], the utilities of each option to

any one user depend on the choices made by the other users; in the classic example,

a fax machine is only of value to any one company if the organisations with which

that company communicates also have fax machines. Hence, potential adopters may

choose the option they believe most others will choose [77]. Even for non-technology

products, such as clothes and food, consumers might gain additional benefits from

purchasing products or services that they believe have been chosen (or not chosen)

by other consumers, over any perceived benefits of the good or service itself.

In these cases, agents might wish to all adopt the same choice as one another, so

that the desired shared global state is one of consensus. In other cases, the global

state might have a different pattern, for example, a sequence of alternating states.

For instance, in a robot bucket brigade, each robot in a line would need to be either

in a giving state or in a receiving state at each time step, and in the complementary

state to each of its neighbours at that time step. At each subsequent time step, each

robot would need to switch to the other state.

We can model such situations as an abstract multi-agent game of flag colouring,

where the different flag colours represent the different decision options each agent

faces. While there are applications where the desired global state of the system
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needs to be achieved in a single step [46], we consider only cases where the agents

proceed in a sequence of rounds, making individual choices simultaneously at each

step. If at any step, a desired global state is achieved, the game ends. Otherwise, it

continues.

As a motivating example, consider the context of robot fire brigades, in which

robots are expected to be able to replace firefighters by performing rescue missions

in buildings on fire. We do not expect a human to accompany robots, therefore

human orders cannot be given regarding the best way to conduct this operation

(e.g., which room should each robot go to and when). Furthermore, there might be

no time or means for a conversation to take place between the AIs, and therefore

robots might have to decide what to do on the basis of only the action of the other

robots and their local environment.

With that motivation in mind, we define a Flag Coordination Game as a frame-

work to study distributed processes, with no central authority involved, and in which

the only information each agent can broadcast is their current state. In broad terms,

Flag Coordination Games encompass both consensus games on graphs, in which

each node copies a neighbour to seek a global consensus, and distributed proper

colouring of graphs, in which nodes want to move away from neighbours’ opinions.

Flag Coordination Games can describe both randomised processes such as random

walks on a graph and deterministic ones such as Conway’s Game of Life. Voting

protocols, and disease-spreading processes, are further examples of processes that

can be seen as Flag Coordination Games. The particularity of such games is that

the decentralised decisions only take into account agents’ states, with no additional

information shared between agents within the network.

There are many possible variations on this general situation. We illustrate some

of them before formally defining Flag Coordination Games in the next chapter.

(i) We assume a finite set of autonomous agents, possibly with a shared clock,

with each empowered to decide between a finite set of decision options at

different points in time. These options may or may not be the same for every

agent and decisions may or may not be made synchronously, at successive time

steps. For simplicity, the decision options are represented by flags of different

colours.

(ii) Agents are connected via a network, and at any given time, each agent is able

to see the decisions made by some subset of the set of agents, typically its

immediate neighbours, i.e., those agents to which it is directly linked. For
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generality, we allow the visibility of agents to change throughout this game.

Agents do not communicate in any other way with one another.

(iii) Agents know the decision option they themselves choose at each time step but

they are not necessarily assumed to have any memory of previous choices, of

themselves, of other agents, or of previous global states. Indeed, in this work,

we are going to focus on Flag Coordination Games in which agents have no

memories.

(iv) Agents all share a desired set of global goal states (possibly just one state)

for the collective set of agents. This set of shared global goal states could

be, for example, consensus (all agents choose the same decision option) or a

global state in which no two connected agents have made the same choice (e.g.,

alternating flag colours).

(v) We assume that, between one time step and the next, agents are not informed

whether or not their previous decisions achieved one of the desired goal states.

That is why we will be looking into algorithms under which the global goal

states are stable, i.e., a state where the algorithm would not lead agents to

change their state. If and when a stable goal state is achieved, we say the

sequential decision process ends.

(vi) In most frameworks studied in this thesis, agents are assumed to be well in-

tentioned (i.e., not malicious or whimsical), and bug-free. However, we allow

Flag Coordination Game in general to include malicious agents that try to

prevent a global goal state to be achieved.

In this thesis, we articulate a formal model (defined as the set of rules of a Flag

Coordination Game) for a flag-colouring game, based on these assumptions, with

the purpose of answering the following questions:

A1 Given a defined set of rules of a Flag Coordination Game and given an initial

state, what is the probability that the sequential decision process will enter an

infinite cycle that does not converge to a pre-specified global goal state (i.e.,

an infinite cycle of non-convergence)?

A2 Given a defined set of rules of a Flag Coordination Game and given an initial

state, what is the probability that the sequential decision process will converge

to a pre-specified desired global goal state?

12



A3 Given a defined set of rules of a Flag Coordination Game and given an initial

state, what is the expected number of decision rounds (time steps) to reach a

pre-specified global goal state?

A4 Which sufficient conditions on the rules of a Flag Coordination Game are such

that, for at least one possible initial state, there is a positive probability that

the state loop described in Question A1 is entered?

A5 How can we apply the concept of Flag Coordination Games to the field of

Argumentation Theory to study a form of distributed argumentation in which

each argument is controlled by an independent agent?

A6 How can a Flag Coordination Game be influenced by external agents?

A7 What is the impact of the introduction of bias towards a given opinion (or flag

colour) in the set of rules of a Flag Coordination Game?

A8 Can every state in a Flag Coordination Game be reached from any other state

with positive probability?

1.2 Thesis Structure and Contribution

In this section we provide an overview of each chapter of the thesis by summarising

its main contributions based on the questions set earlier in this introduction.

Chapter 2 formally defines the set of rules of a Flag Coordination Game, and in-

troduces the necessary technical background and provides a summary of the relevant

related work.

In Chapter 3, we focus on the convergence of synchronous consensus protocols.

Prior work in this field established probabilities for the convergence-to-consensus for

each one of several possible opinions, as well as time bounds for the process to end.

All agents change their opinions synchronously taking into account the colours of

their neighbours and using a common algorithm. Previous work, however, assumes

that the Markov chain that describes this process has only the consensus states as

recurrent ones, discarding graphs that might lead to loops in the consensus game.

In the first part of Chapter 3, building on previous work on general graphs

by Hassin and Peleg [35], we present results for Questions A1, A2, and A3 for

bipartite undirected graphs. These are graphs where the nodes can be divided
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Chapter 1: Introduction

Chapter 2: Formalities
and Related Work

Chapter 3: Flag Co-
ordination Games:
Consensus or Fail-

ure of Convergence?

Chapter 4: Team
Persuasion Games

Chapter 5: Biased
Consensus Games

Chapter 6: Conclusions
and Future Work

A1

A2

A3

A4

A5

A6

A7

A8

Figure 1.1: Thesis Structure, Chapter Correlation, and Question Index.

naturally into two mutually exclusive types, for example, buyers and sellers in an

online marketplace. In the second part of Chapter 3, we fully answer Question

A4 in the domain of consensus games on any directed graph, as well as addressing

Questions A1, and A2 for such graphs.

Chapter 4 covers anti-consensus games and computational argumentation theory.

We address Question A5 by introducing a distributed argumentation scenario, in

which each node acts as an agent that is an expert in their own knowledge domain.

The agent decides whether or not to assert their argument at each round. Our

results provide the probabilities that a given argument, the topic, will be accepted

or rejected in the long run of this process.

In addition to this analysis and in light of Question A6, we consider, also in
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Chapter 4, the effect of bribery in such games: we present a game-theoretic approach

to the situation which two or more players can simultaneously flip the colour of one

of their opponents’ nodes in a bipartite graph before or during a flag-coordination

game. We also prove that such games, regardless of the number of bribers, always

admit a pure strategy Nash equilibrium.

Finally, in order to explore Question A7, Chapter 5 introduces a generalisation

of the consensus games from Chapter 3 by taking into account processes in which

agents have a bias towards a given opinion. Such problems in a general graph are

unlikely to have an analytic solution, however, for cycle graphs, a martingale with

respect to the Markov chain describing the biased colouring process has been found.

This generalisation can be motivated by the following situation: consider a voting

process represented by a consensus game on a graph in which a given opinion (or

colour) wins. Consider now that a second game takes place in the same graph. It

is not unreasonable to expect that the previous result will have an impact on this

second process. For example, voters might favour the previously consensual opinion,

generating a bias towards this outcome. In the context of biased consensus games,

we explore Question A8 of whether a given state can be reached by another in a

cycle graph by introducing a correspondence between such games and a process of

self-annihilating random walks.

We present Figure 1.1 to summarise this thesis structure highlighting in which

chapter each of these questions are explored. An arrow from Chapter i to Chapter

j indicate that results in Chapter j might be based on results from Chapter i or

earlier ones. In particular, Chapters 4 and 5 are independent.

1.2.1 A Note on Presentation

Most chapters begin (before the introduction section) with a motivational prob-

lem that aims to contextualise what is to be studied subsequently in the chapter.

These problems will then be resolved later in the same chapter or, more rarely, in

subsequent ones.

Figures in this thesis make extensive use of colours. For that reason, a black-and-

white version of every coloured figure was included in Appendix B with reference to

the original image and a global key to correspond both versions.

There is often usage of notation-heavy definitions. Because of that, a list of

figures, an index, and a list of symbols are added at the end of this thesis.
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More lists of questions such as the one above (A1, . . . , A8) will be presented

in chapters to follow. To guarantee uniqueness, each new list will be indexed by a

different character.

1.3 Publications

This thesis includes results published in the following peer-reviewed papers.

[44] David Kohan Marzagão, Nicolás Rivera, Colin Cooper, Peter McBurney, and

Kathleen Steinhöfel. Multi-agent flag coordination games. In Proceedings of

the 16th Conference on Autonomous Agents and MultiAgent Systems (AA-

MAS), pages 1442–1450. International Foundation for Autonomous Agents

and Multiagent Systems, 2017.

[43] David Kohan Marzagão, Josh Murphy, Anthony Peter Young, Marcelo M

Gauy, Michael Luck, Peter McBurney, and Elizabeth Black. Team Persuasion.

In The 3rd International Workshop on Theory and Applications of Formal

Argument (TAFA), pages 159–174. Springer, 2017.

The main contribution and results of [44] can be found in Chapter 2 and Chapter

3. Moreover, ideas, such as those related to Question A6, were introduced in [44]

and developed and further explored in Chapter 4, which also contains the main

contribution of [43].
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Chapter 2

Formalities and Related Work

Problem 1 (Robot Bucket Brigade). Consider a line formed of autonomous

robots that have the shared goal of passing buckets of water in the direction of a

building on fire, and empty buckets in the other direction. Each robot has two

possible actions: to receive a bucket from each neighbour or to pass a bucket to

each neighbour. They want to avoid the situation in which two neighbouring robots

are currently taking the same action (neither can both pass to each other nor both

receive a bucket from each other at the same time). Therefore, at each time step

they all synchronously reconsider their action on the basis of their neighbours: if

both neighbours are taking the same action, they choose the opposite action, oth-

erwise they randomise with 1
2

probability of each action. Figure 2.1 depicts two

configurations, where the two colours represent the two different possible actions.

(i) Which of the starting configurations (A or B) is more likely to lead to an

alternating pattern, i.e., one of the goal states in which neighbouring robots

are taking opposite actions?

(ii) Is there a positive probability that a process that starts as Configuration A

will reach Configuration B at some time point?

(a) Configuration A.

(b) Configuration B.

Figure 2.1: Two possible configurations of Robot Bucket Brigade.
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2.1 Introduction

In this chapter, we present a formal definition of a Flag Coordination Game (Sec-

tion 2.2.1), and provide some examples from other domains (Section 2.2.2). We

also discuss prior related work (Section 2.3) along with some background technical

results we will use later in the dissertation (Section 2.4). The motivational example

(Problem 1) that opens this chapter will be formalised in Section 2.2.2 and solved

in subsequent chapters.

2.2 Flag Coordination Games

In this section, based on the informal description of Flag Coordination Games given

in Chapter 1, we provide a detailed and formal definition of such processes. Later,

we frame different well-known problems as Flag Coordination Games to better un-

derstand the potentialities and restrictions of our model.

2.2.1 Formal Rules of a Flag Coordination Game

Let G = (V,E) be a graph and X be a set of colours (or states). We are interested in

games in which, as time progresses, nodes may possibly change their colours. That

decision is not necessarily deterministic, and thus we define the random process

{St}t≥0 as a family {St | t ∈ T} of random variables indexed by some set T , where

St is the colouring of vertices of G at time t.i Formally, each St is a function

St : V → X that associates a colour x ∈ X to a node v ∈ V . Note that when

T = {0, 1, 2, . . . } =: N, we have a discrete-time process (in which we say t ∈ T is

a round of this game), whereas if, for example, T = R, we have a continuous-time

process.ii We are primarily going to explore Flag Coordination Games based on

discrete processes. At this point, we have not yet fully specified what defines (or

might define) {St}t≥0. This is done below.

The random process {St}t≥0 is based on local decisions, made at each node. As

previously discussed, such decisions cannot be made taking into account any other

information than the current (or previous) colourings. First, we define the goal set

Γ as a subset of all possible colourings of V with colours in X, i.e., S = XV . Also,

iAlthough counter-intuitive, we will use the general term random process for {St}t≥0, that also
includes processes that might be deterministic depending on, for example, the agents’ algorithms.

iiNote that in Computational environments, real numbers must be approximated by rational
numbers, and therefore we can consider such processes to be discrete given the enumerability of
Q. We allow T = R for continuous processes to be consistent with Markov chain literature.
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each node v ∈ V might not be able to see all other nodes, and thus we define the

visibility function φ, formally φG : V × T → P(V ), that associates to a given node

v ∈ V and time t ∈ T a subset of nodes that it can see at that time. We say φG

formally also depends on the graph G, for example, we often define φ(v) as N (v),

the neighbourhood of v. Moreover, we assume our agents might not have infinite

memory. Indeed, most of the Flag Coordination Games studied in this dissertation

assume agents have no memory of previous rounds, and so we define a function

ψ : V × T → N that assigns to each node, at a given time, the number of previous

rounds it can remember when making new decisions. Finally, we consider that each

node v might not be able to choose between any flag (or colour) in any given round,

thus we define the function β : V × T → P(X), which associates to pair (v, t) a

subset of X of colours at v’s disposal in time t.

Taking all of these functions into account, we define a set of algorithms A such

that for each v ∈ V , there is αv ∈ A that determines v’s decision on that given round.

We will consider mostly randomised algorithms, although there are examples (see

Example 2.2.5), in which they are deterministic.

The final component of the rules of a Flag Coordination Games is a scheduler

σ. Possibly based on T , β, Γ, ψ, and φ, it determines whether, for example, nodes

act synchronously, or, if not, in what order and when. Formally, σ(t) = V ′ ⊂ V ,

a subset of nodes that act in time t. We can also consider games in which σ is

in the possession of an attacker that wants to avoid the game reaching one of the

goal states, in which case we also consider how much this attacker can remember of

previous rounds. Most times we are going to consider a dumb scheduler that makes

nodes act synchronously.

We say a game F with starting configuration S0 is a winning game if it eventually

reaches a state γ ∈ Γ.

Definition 2.2.1 (Flag Coordination Game) In order to summarise the defini-

tion discussed in this section, we define (the rules of) a Flag Coordination Game as

a tuple F = 〈G,X, T,Γ, φ, β, ψ, σ,A〉 such that

G: The graph G = (V,E) in which the game takes place. It can be either a directed

or undirected graph. We can also have a dynamic graph G(t) = (V,E(t)),

which edges might change through time. We denote v ∈ V as agents, or

simply nodes in this game.

T : The set of rounds of the game. It can be either discrete or continuous.
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X: The set of colours in the game. We will use the terms colour, flag, and

opinion interchangeably. We will also refer to x ∈ X as an agent’s current

state.

Γ: The goal set. This is a subset of the colourings of nodes of G, i.e. Γ ⊂ S,

where S = XV . It depends on G and X. We assume Γ is known to all nodes.

φ: The function that associates a subset of V to each node v at round t, i.e.,

φ : V ×T → P(V ). We say that the induced subgraph of φ(v, t) is the visibility

of node v at round t.

β: The function that associates a subset of X to each node v at round t, i.e.,

β : V × T → P(X). We say that β(v, t) is the set of flags (or colours)

available to node v at round t.

ψ: For discrete processes, the memory function ψ : V × T → N associates each

node and time to the number of previous rounds it remembers, subject to its

visibility in each of the previous rounds. If ψ(v, t) = 0 for all t ∈ T , then v only

knows the current configuration of the game at a given time. For continuous-

time games, ψ : V × T → R associates an agent and a particular time t ∈ T
to the time length that v remembers at a given time t, i.e., configurations from

St−ψ(v) up to St.

σ: The function that associates each point in time (or each round) to a subset of

nodes to play at that round, i.e., a scheduler σ : T → P(V ). This scheduler

may also take into account previous or current configurations of the game.

A: The set of functions αv that, for node v, associates round t to an algorithm

that decides v’s colour in the next round. Functions in A might depend on T ,

φ, Γ, β, ψ and, most importantly, the previous configurations of this game up

to the current round. We consider that algorithms may include ’no action’ as

a possible decision, even if the node’s current colour is unknown to the node.

Most importantly, we define {St}t≥0 as the random process {St | t ∈ T} indexed by

T that describes this game. Formally, St : V → X is a function that colours the

nodes of G with colours in X. We usually denote S0 as the initial colouring, or

initial state, or initial configuration of a game F . We will sometimes denote

‘rules F of a Flag Coordination Game’ simply as ‘Game F ’.
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Moreover, we say that St0 := (S0, . . . , St) is the trace of the game up to round

t, and that S∞0 := (S0, . . . , St, . . . ) is the trace of a full game. Finally, we use (F , S0)

to refer to a game F with initial configuration S0.

Remark 2.2.2. Unless otherwise stated, we are going to consider agents that are

memory-less, i.e., ψ(v, t) = 0, for all v ∈ V , t ∈ T , for the remainder of this

dissertation.

Recall that a key aspect of Flag Coordination Games is that the only information

that an agent v may transmit to others (that have v in their line of vision at that

given time) is their current state.

Remark 2.2.3. We are going to denote both S and s as colourings of G, i.e.,

functions from V to X, with the difference that S will indicate the configuration

of a game at a given time, whereas s will denote a configuration independently of

a running game. That way, when we ask Pr(St = s | S0), we mean ‘probability of

configuration St in round t being equal to state s given that the initial configuration

is S0’.

Given a set of rules of a Flag Coordination Game, we might be interested, for

example, in the expected number of rounds until a goal is reached given an initial

configuration denoted by E(τ | Sτ ∈ Γ), where τ = mint{St ∈ Γ}, or even in the

probability that a given game ends successfully, i.e., that it eventually reaches a

configuration γ ∈ Γ.iii

2.2.2 Examples of Flag Coordination Games

We start by showing that the robot bucket brigade process presented in Problem 1

can indeed be seen as a Flag Coordination Game. Questions (i) and (ii) raised in

Problem 1 are going to be answered in Chapters 3 and 5, respectively.

Example 2.2.4 (Robot Bucket Brigade as Flag Coordination Game).

Consider Problem 1 discussed earlier in this chapter. We are now framing it as a Flag

Coordination Game F = 〈G,X, T,Γ, φ, β, ψ, σ,A〉. Here, G is a path (v1, . . . , vn)

iiiConsider the notion of communication complexity, i.e., the number of bits needed to be
exchanged between the agents to share information, and consider that φ stands for the maximum
visibility among the n agents. Then, the communication complexity is bounded by O(τnφ log |X|)
bits. In other words, at each round, each agent learns the colour of at most φ other agents, that
can each be encoded with dlog |X|e bits.
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of size n, X = { , } = {receive-then-pass, pass-then-receive}, T is a discrete set,

for example, non-negative integers. At this point, we need to clarify our choice of

colours. We want our goal configurations to be stable, thus to receive buckets cannot

be a colour (otherwise will have agents receiving buckets indefinitely and not passing

them on). For that reason, we define receive-then-pass as the state in which agents

start time t by receiving buckets to then pass them on to its neighbours before the

end of time t. We define pass-then-receive analogously. Furthermore, Γ = {γ1, γ2},
where γ1 and γ2 are the two proper colourings of G,iv with γ1(v1) = receive-then-pass

and γ2(v1) = pass-then-receive. We define φ(v) = N (v),v and β(v) = X, ∀v ∈ V .

The scheduler σ is such that all nodes act synchronously. Finally, the algorithms αv

are such that, for i /∈ {0, n}

St+1(vi) =

{
St(vi+1), with probability 1

2
, and

St(vi−1), otherwise.
(2.1)

Also, St+1(v0) = St(v1) and St+1(vn) = St(vn−1), both with probability 1.

We can also have deterministic Flag Coordination Games, depending only on the

initial state. Cellular automata are examples of discrete processes with such deter-

ministic behaviour, having the celebrated Game of Life by John Conway as one of

the best known cellular automaton.

Example 2.2.5 (Conway’s Game of Life). John Conway’s Game of Life [30]

can be seen as an example of a Flag Coordination Game in which each new state is

fully determined by the previous state. How can we, then, derive the rules of a flag

coordination game that represents the Game of Life? We say G is the infinite two-

dimensional grid with edges between each node and their eight neighboursvi. The

set X has only two colours, alive or dead. Time T is discrete, T = {0, . . . , t, . . . },
and ψ(v) = 0 and φ(v, t) = N (v) ∪ {v} for all v and all t. All nodes have all flags

available at all times, so β(v, t) = X for all pairs (v, t). All cells act synchronously

and therefore σ(t) = V for all t. We can define the set of algorithms A even before

defining Γ, because they are fixed. Note that algorithms take into account the

current configuration S. We can represent αv by showing what happens from one

ivA proper colouring of G is such that given pair of neighbouring nodes, their colours do not
match.

vNote that here we do not even assume agents can see their current state.
viHere we could have no edges at all as long as visibility of nodes is modified accordingly.
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round to the next in the (not random) process S. Denote kt as the number of alive

neighbours of v in round t. We have that, for all t ∈ T and v ∈ V ,

St+1(v) =


alive, if kt ∈ {2, 3} and St(v) = alive,

alive, if kt = 3 and St(v) = dead,

dead, otherwise.

Finally, we define the goal set Γ. Here there are many possible end states that we

might be interested in (note that most games will never end). For example, we might

want to define Γ1 as the set of states that are stable, in the sense that if St ∈ Γ1,

then Sn+1 = Sn for all n ≥ t with probability 1. More generally, we might want

Γm as the set of recurrent states such that the time of first return is always m, i.e.,

St ∈ Γ1, then Sn+m = Sn for all n ≥ t.

Next, we present an example of a game in which, although agents have complete

memory of previous rounds, they are not able to see their own state at any point.

In fact, their goal is precisely to find our their own state.

Example 2.2.6 (Muddy Children Problem). The commonly studied Muddy

Children Problem [4] can be summarised as follows. Consider n children standing

in a circle. At least one child has mud on their forehead (and all the children know

this), and each child’s individual task is to establish whether they are one of those

with muddy foreheads by looking at the other children but with no mirror or any

communication, except the following: at the end of every hour, when a common clock

rings, any child that has rationally concluded that they themselves must have mud

on their foreheads will immediately announce that conclusion publicly. Assuming

they are all rational agents and are not malicious nor faulty in any way, how is this

game going to unfold given an initial number of muddy children?

We will now frame the muddy children problem as a Flag Coordination Game

F = 〈G,X, T,Γ, φ, β, ψ, σ,A〉. We can have G = (V,E) as, for instance, the com-

plete graph with n nodes, where n is the number of children in the game, T is a

countable set, so we can define T = N. The set of colours (or states) in this game is

X = {mud, no mud, mud detected}. The initial configuration may have the nodes

coloured with any of the two first colours, but we only allow the children the options

of mud detected and no action (note that no action is not a colour, but the choice

for the node to not change their current colour), i.e., β(v) = {mud detected}. We

need to restrict the visibility of each agent to all other agents except themselves, so

that: φ(v, t) = V \ {v}, ∀(v, t) ∈ V × T . Moreover, agents have complete memory,
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so ψ(v, t) = t for all v ∈ V . Finally, the scheduler σ is such that all nodes act

synchronously, so σ(t) = V do all t.

Our desired algorithm for v is to wait (i.e., take no action) until round k, where

k is the number of mud nodes that v can see. If no agent changes to mud detected

until round k, then chose mud detected for round k + 1. To be consistent with our

model, we have to define a public set of goal states Γ. Because we cannot simply

give away the desired configuration to the nodes on the basis of the number of mud

coloured ones, we can define Γ = {γ | γ(v) 6= mud ∀v ∈ V } \ {all mud detected}.
This way, the set Γ does not give the nodes any new information and prevents them

from arbitrarily choosing mud detected in the first round, because if they all do so

they are trapped in the non-winning all mud detected state. Moreover, the rules of

this Flag Coordination Game guarantee that the game is a winning game regardless

of the initial state S0. The duration of these games under these rules is always equal

to k, where k is the number of muddy children in the initial configuration.

In the next example, we state the graph proper colouring problem as a Flag Coor-

dination Game. Note that the colouring problem is hard even in a non-distributed

way, and thus this is not an attempt to solve an NP-hard problem (of finding a

colour with χ(G))vii, but rather to show that our model can describe such a problem

as well. A solution for distributed colouring of graphs considering communication

between agents (therefore not a Flag Coordination Game) can be found in [46].

Example 2.2.7 (Proper Colouring of Graphs). Consider a Flag Coordina-

tion Game F = 〈G,X, T,Γ, φ, β, ψ, σ,A〉 played in an unidrected graph G. Agents

(at each node) aim to proper colour this graph with colours in X, and acting syn-

chronously in a discrete time set T , i.e., σ(t) = V, ∀t ∈ T . We may assume agents

(nodes) are memory-less and have access to all colours available, ψ(v) = 0 and

β(v) = X for all v ∈ V and t ∈ T , and that their visibility is only their neighbours,

φ(v, t) = N (v),∀t ∈ T . A goal configuration is one in which no neighbouring agent

is coloured the same, thus Γ = {γ ∈ S | γ(v) 6= γ(w) if (v, w) ∈ E}. Finally, we

may define set A such that, in round t with configuration St, an agent v will choose

for round t + 1 a colour at random from the set (X \ {St(w) | w ∈ N (v)}). If this

set is empty, they choose a random colour from X.

viiNotation χ(G) stands for the chromatic number of a graph, i.e., the minimum number of
colours needed to proper colour graph G.
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We now frame a problem studied by Vincent Blondel at al. in [7] as a Flag

Coordination Game, where a dynamic graph G(t) is modelled using the visibility

function φ(v, t) evolving with time.

Example 2.2.8 (Coordination by Computing Average Values). Let G(t)

be a complete finite dynamic graph with n nodes, E(t) edges such that G(t) is

strongly connected for all t ∈ T . Let also S0 be an initial configuration of values in

X ⊂ R.viii For the i-th node vi ∈ V , the algorithm αvi is such that

St+1(vi) =
n∑
j=1

aij(t)St(vj) (2.2)

Where A(t) is a non-negative matrix with entries aij(t) and T is a discrete set of

time steps t. For the Equal Neighbour Model [7, Page 2], we assume that each node

performs an average of the current value of all its neighbours (including its own

value). Therefore, we set β(v, t) = X for all v, t. The goal set is any consensus

configuration, i.e., Γ = {γx | x ∈ X}, where γx(v) = x, ∀v ∈ V .

We finally assume that if (i, j) ∈ E(t) infinitely often, then there is an integer B

such that, for all t, (i, j) ∈ E(t)∪E(t+ 1)∪ · · · ∪E(t+B− 1). In these conditions,

the agreement algorithm guarantees asymptotic consensus [7, Theorem 1].

We now discuss an example from Edsger Dijkstra’s seminal paper in which he in-

troduces a formalisation of self-stabilising systems. We have chosen this example

not only for its historical importance, but also because it involves a potentially ma-

licious agent controlling when nodes act. For now we are just stating it as a Flag

Coordination Game, whereas later in Section 2.3 we will present properties of this

system and background definitions.

Example 2.2.9 (Dijkstra’s Self-Stabilisation Problem #1, 1974). Let a

game F = 〈G,X, T,Γ, φ, β, ψ, σ,A〉 be such that G = (V,E) is a directed cycle of

size n, i.e., there is a direct edge from vi to vi+1, for 1 ≤ i < n, and from vn to v1.ix

Nodes can only see themselves and the neighbour to which there is a direct edge to,

i.e., for all t ∈ T , φ(v, t) = N (v)∪{v}. The set X = {0, . . . , K} is such that K ≥ n,

and T = N is discrete. The goal set is given by

Γ = {γ | (γ(v1) = γ(v2)) ∨ (γ(vi) 6= γ(vi+1), for i 6= 1} (2.3)

viiiNote that set X is countable because the number of initial nodes is finite and that they only
perform averages between values of subsequent rounds.

ixFor simplicity, in future instances in this dissertation, we are going to abuse notation by
omitting (modn) when considering labels of nodes in a cycle.
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We assume that the the scheduler σ is in the hands of a malicious agent that wants

to prevent configurations in Γ from being achieved. There are, however, some re-

strictions from σ. Although the malicious agent has a complete memory of previous

rounds, at a given round, they cannot freely choose any agent v to act in that round

(note that game is then asynchronous). Instead, they can only choose, for i 6= 1, an

agent vi if S(vi) 6= S(vi+1), or v1 if S(v1) 6= S(v2).

Although the motivation behind these results are gong to be discussed in more

detail later on, there is a set of algorithms that guarantees the agents to not leave

the goal set regardless of the scheduler’s choice, i.e., a set of algorithms such that if

St0 ∈ Γ, then St ∈ Γ for t ≥ t0. Note that they only act in certain conditions, and

their algorithms are deterministic. These algorithms αvi are

St+1(vi) =

{
St(vi+1) if i 6= 1, and

St(v2) + 1 (modK) if i = 1.
(2.4)

As a final example, we slightly simplify a well-known concept of spin alignment in

statistical mechanics in order to understand it as a Flag Coordination Game [38].

Example 2.2.10 (Ising Model). The two-dimensional Ising model for ferromag-

netism (and antiferromagnetism) includes a lattice in which each site would have a

positive (up) or negative (down) spin (see [50] for a book on the two dimensional

model and [38] for Ising’s original paper). In the ferromagnetic model, spins tend to

be aligned with their neighbours whereas in the antiferromagnetic model they tend

to be in opposite directions. We can model a simplified process as a Flag Coordina-

tion Game F = 〈G,X, T,Γ, φ, β, ψ, σ,A〉 such that G is a (large) two-dimensional

grid, X = {+1,−1}, T is continuous. For ferromagnetism, Γ is the set of two consen-

suses in G whereas, for antiferromagnetism, Γ represents the two proper colourings

of G with two colours. Nodes can see their four neighbours and their algorithm is

to choose one at random and copy (ferromanetism) or choose the opposite direction

(antiferromagnetism).

As an illustration of what is not a Flag Coordination Game, we present the following

example.

Example 2.2.11 (Counterexample: Push Model). Consider a process on a

graph G in which at each round, an agent v contaminates one or all of their neigh-

bours with v’s current opinion. This is not a Flag Coordination Game because for

those, we assume that each agent independently decides on their eventual changes

of colour, instead of being forced to do so by another agent.
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2.3 Related Work

The problem of distributed consensus in computational systems has been extensively

studied, including specifically in multi-agent contexts; for reviews, see e.g., [57, 64].

If we consider communications protocols in which nodes base their decisions only

on the colour of one of their neighbours (chosen at random), the probability of

convergence for each colour and the complexity of the expected duration has been

established by Hassin and Peleg [35, Corollary 2.2] for any non-bipartite graph.

Theorem 2.3.1 (Restatement of Hassin and Peleg, 2001) Let G be a non-

bipartite undirected graph such that nodes have a common clock and change or keep

their colours by copying a neighbour uniformly at random, synchronously in rounds,

until a consensus is reached. The probability of a given colour c to win that consensus

game is ∑
v∈Vx

deg (v)

2 |E|
, (2.5)

where Vx is the subset of nodes that are coloured x. Moreover, the time for the

process to end is bounded by O(n3 log n).

Experiments with human participants for proper colouring of graphs on networks

were conducted by Kearns et al.. They studied consensus processes in which there

was no bias towards any particular colour in [42], but also processes in which partic-

ipants would be paid more if, say, blue wins (although payment would only be made

if a consensus was achieved) in [41]. These authors explored different restrictions on

the visibilities of the participating human agents and showed that more information

does not necessarily lead to better performance. This finding is in line with the

well-known phenomenon in Statistics that a larger sample does not necessarily lead

to more accurate conclusions.x There are two key differences between [42] and the

Flag Coordination Games we explore in Chapters 3 and 5. First, [42] does not as-

sume that agents share a common clock, so that agents could change their selected

colours at will, asynchronously. Second, the agents in the experiments by Kearns et

al. were actual humans who were able to use any decision algorithm or combination

of algorithms, or none at all, to select colours. Real humans might also have been

xAn infamous example goes back to 1936, when the magazine Literary Digest wrongly predicted
the outcome of the US presidential elections despite conducting a poll in which ballots were sent
out to more then 20 million residencies. Gallup, in contrast, correctly predicted the winner with
a much smaller sample of only twenty thousand reports. For a detailed analysis of why Literary
Digest’s poll failed, refer to [72].
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whimsical or malicious. Note that, seen as a Flag Coordination Game, the processes

studies by Kearns would embed a continuous time set T , because participants could

change their state at any time.

A game-theoretical approach for graph colouring was studied by Panagopoulou

and Spirakis in [59]. In their model, each node v chooses a colour and then receives

a payoff equal to the number of nodes that have chosen the same colour, unless a

neighbour of v is one of those nodes choosing the same colour, in which case the

payoff to v is zero. The authors prove that a Nash Equilibrium is always possible in

this game. The key difference from our work is that Panagopoulou and Spirakis do

not require nodes to choose their colours synchronously, whereas we do require this

in our analysis of consensus games.

Other papers that consider different variants of the distributed consensus prob-

lem are [16, 46, 14]. In brief, in the work by Cooper et al. ([16]), nodes make

their decisions based on two random neighbours, not just one. In [46] by Kuhn and

Wattenhofer, one-round algorithms are studied instead of an evolutionary process.

For Chaudhuri et al., in [14], the number of available colours for the nodes is ∆ + 2,

whereas in our work the number of colours is not a function of ∆ (e.g., we use two

colours in any bipartite graph for the graph colouring problem for any ∆). A so-

cial influence and consensus game model in which the population grows, and other

related problems, have been described by Matthew O. Jackson in [39].

We now provide a review of Alain Sarlette’s work [66, 67], which can be sum-

marised as a study of the collective behaviour of agents in structures with high

symmetry, with no hierarchy nor external interference. Several aspects of Sarlette’s

research overlap with our study of Flag Coordination Games. For example, both

assume the visibility of different agents might vary, as well as no leader that controls

the group. Moreover, we both provide a detailed analysis of processes on the circle

[68]. The main difference, however, is that agents in coordination control are moving

along the structure (e.g., a circle), whereas in Flag Coordination Games they are

static and change their state, instead of position, in each round. Another key aspect

in which Sarlette’s work differs from ours is that we consider algorithms based on

randomness, whereas his processes are deterministic.

Convergence in multi-agent coordination is also studied by Vincent Blondel et

al. in [7]. Their work can also be seen as a Flag Coordination Game (see Example

2.2.8). Each node holds a value at each given time (their flag), which is then

updated on the basis of the values of nodes that they can see at this given time.

The update rule does not depend on a random decision of each node, but rather
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on the current (dynamic) set of edges in G(t). The main difference between their

work and our results in chapters to follow is that we assume nodes make a possibly

random decision at each time, and we consider a finite set of choices for each agent

at each time, instead of a value in R. For models related to Blondel’s, refer to work

by Tsitsiklis et al. [74, 75, 6] and Vicsek et al. [76].

There is also earlier work in the theory of distributed systems which is relevant

to our work.

In 1974, Dijkstra introduced a formalisation of self-stabilisation in distributed

systems. His paper [24] became widely known only after a talk by Lamport in 1984,

which was subsequently published as [47]. We provide the pertinent background

from Dijkstra’s paper in Definition 2.3.2.

Definition 2.3.2 A privilege is a boolean function of the current agents’ states

that is given to a node v. We say a privilege is present at a given time if the

function is true at that time. Dijkstra defines a global state as legitimate if it

follows the following criterion:

(i) in each legitimate state, one or more privileges will be present;

(ii) in each legitimate state, each possible move will bring the system again to a

legitimate state;

(iii) each privilege must be present in at least one legitimate state; and

(iv) for any pair of legitimate states, there exists a sequence of moves transferring

the system from the one into the other

Finally, a system is self-stabilising if and only if, regardless of the initial state and

regardless of the privilege selected each time for the next move, at least one privilege

will always be present and the system is guaranteed to find itself in a legitimate state

after a finite number of moves.

In order to clarify Dijkstra’s definitions, please refer to Example 2.2.9, based on the

original problem #1 in [24]. In that, a privilege is present if and only if the scheduler

is allowed to choose a given node to act. In other words, for i 6= 1, the privilege in

vi is present if S(vi) 6= S(vi+1), and the privilege in v1 is present if S(v1) 6= S(v2).

We can see that, regardless of the initial configuration S0 and the choices of the

malicious agent controlling the scheduler σ under the rules described in Example
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2.2.9, the game is always self-stabilising according to Definition 2.3.2. This family

of games was studied with a game-theoretical approach by Apt et al. in [2].

We now introduce the well-known concept of Markov Decision Process (MDP)

[61], in order to be able to highlight similarities and differences when compared to

Flag Coordination Games.

Definition 2.3.3 (Markov Decision Process) A Markov decision process is a

tuple 〈S,A, T,R〉

(i) S is a set of states.

(ii) X is a set of actions

(iii) T (s, x, s′) is the state transition function and denotes the probability of moving

from s to state s′ on taking action x, with s, s′ ∈ S and x ∈ X.

(iv) R(s, x), is the reward function, which outputs the reward of taking action x in

state s, with s ∈ S and x ∈ X.

Although MDPs capture the idea of a group of agents aiming to jointly achieve

a shared goal as in Flag Coordination Games, MDPs assume the system (or the

agents) have no memory (see Example 2.2.6 for an example of a Flag Coordination

Game in which agents have longer memory). Moreover, MDPs assume agents have

global knowledge, which is not necessarily the case for Flag Coordination Games, in

particular not for the ones studied in this dissertation. Finally, in Flag Coordination

Games we assume the restriction that agents do not send messages, but their current

state can be seen by the subset of agents that can see them at that given time. That

might be because communication is either too expensive or the environment in which

agents are located does not allow them to exchange messages.

In his work, Mihaylov [51, 52] studied decentralised coordination in multi-agent

systems in great detail. In particular, he studied both pure coordination and anti-

coordination processes, in which agents seek a global configuration with only local

actions. The algorithm proposed by him is based on pairwise interactions between

neighbours in the network for each agent to decide on their next state. A novel

aspect of this model compared to the related literature in multi-agent systems, is

that, in Mihaylov’s algorithm, only the agent that initiates the pairwise interaction

with a neighbour takes that interaction into account when choosing their next state.

This algorithm always eventually reaches a global goal configuration. He assumes

agents do not have knowledge of their position in the network, or the names of their
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neighbours. Finally, each agent has a positive probability of not interacting with

any neighbour and therefore maintaining their current state for the following round.

The fact that in Mihaylov’s algorithm only one of the agents change their state

on the basis of their pairwise interaction can be seen in part as a particular case of

a consensus game, as the one discussed in Theorem 2.3.1, but played on a directed

graph instead (see Theorem 2.4.17 by [18]). With that in mind, the probability of an

agent keeping their current state can be represented by a loop edge from the agent

to itself.xi That is the reason why Mihaylov’s algorithm guarantees convergence. In

Chapter 3 we are going to give probabilities for convergence in situations in which

agents cannot keep their own state. This might be necessary in scenarios where

agents do not know their current state, or where the costs of an agent to discover its

current state are prohibitive, or they are are somehow forced to renew their decision

periodically. As we are going to see also in Chapter 3, both pure coordination and

anti-coordination will be particular cases to be defined later as generalised consensus

(see Definition 3.2.1).

We are also interested in the probability of convergence for each one of the

possible colours in a consensus game. We will use a result by Cooper and Rivera

[18] that gives us the probabilities of convergence in directed graphs given an initial

configuration of colours. Morris DeGroot also studies consensus protocols using

Markov chains in [22]. The restriction of those analyses is that consensus must be

achieved with probability 1 as the number of steps goes to infinity, and therefore

graphs that may generate state loops are not considered. This result, to be used in

Chapter 3, will be reproduced in Theorem 2.4.17 once some technical background

on Markov chains is introduced.

2.4 Technical Background

In this section, we provide some technical background on stochastic processes, in-

cluding Markov chain, martingales, and the linear voting model. Beforehand, for

completeness, we state a few definitions of graphs.

Definition 2.4.1 (Cycle Graphs) A cycle graph Cn (also referred to by n-

cycle, n-ring, or even circle) is an undirected graph such that V = {v1, . . . , vn}
xiThe reason why we cannot fully see Mihaylov’s algorithms as a linear voting model (see Section

2.4.3) is because the probability of an agent maintaining their state depends on their previous
interaction, and thus might change over time, whereas linear voting models assume probabilities
are constant.
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and E = {(v1, v2), (v2, v3), . . . , (vn, v1)}. If n is odd, we will say Cn is an odd cy-

cle. Otherwise, Cn is an even cycle. We say we move clockwise if we consider

the sequence (v1, v2, . . . , vn, v1, . . . ). It is considering this sequence that we add or

subtract indexes of nodes in a cycle. For example, in the context of C20, v15+7 = v2.

We also make reference to odd nodes (or odd positioned nodes) in a cycle,

i.e., the set {vk | k is odd}. Analogously, we refer to even nodes (or even po-

sitioned nodes). When cycles are depicted in figures, unless stated otherwise, v1

will be the top-most vertex (with indexes increasing clockwise) (see Remark 2.4.3).

Definition 2.4.2 (Miscellaneous Graph Definition) Define the neighbour-

hood of a vertex, denoted by N (v), as the set of vertices connected to it, i.e.,

N (v) = {w | (v, w) ∈ E}. We define the degree of a vertex is deg v = |N (v)|.
A m-regular graph is such that (∀v ∈ V ) deg v = m. A graph G = (V,E) is

bipartite with partitions V1 and V2, with V1∪V2 = V and V1∩V2 = ∅, if every edge

(v, w) is such that v and w are in different partitions.

A complete graph Kn is such that (∀v ∈ V )N (v) = V \ {v}. A star graph is

such that V = {w, v1, . . . , vn−1} and E = {(w, vi) | 1 ≤ i < n}. A path can be seen

as a cycle with a missing edge, i.e., E = {(v1, v2), . . . , (vn−1, vn)}. We denote path

graphs as (v1, . . . , vn).

A dynamic graph G(t) = (V,E(t)) is such that the set of edges might change

as a function of time t.

Remark 2.4.3. Unless said otherwise, images of cycles Cn with nodes {v1, . . . , vn}
will depict node v1 in the top most vertex, with indexes increasing clockwise. Im-

ages of bipartite graphs, unless stated otherwise, will depict partition V1 as the top

partition (with nodes depicted in order v11, v12, . . . , from left to right), and V2 as

the bottom one (with nodes depicted in order v21, v22, . . . , from left to right)

Definition 2.4.4 (In-matrix and Out-matrix of a Graph G) Let G = (V,E)

be a finite digraph.xii Given some fixed order of the nodes V =
{
v1, . . . , v|V |

}
, the

(row-normalised) in-matrix of G is the |V | × |V | matrix F := (fij), where

if (vj, vi) ∈ E then fij =
1∣∣v−i ∣∣ , else fij = 0. (2.6)

xiiNote that we abuse notation by not distinguishing notation for edges in both undirected and
directed graph. The notation e = (v, w) in a digraph means that there is a directed edge from v
to w, but not necessarily otherwise.
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Analogously, the (row-normalised) out-matrix of G is the |V | × |V | matrix

H := (hij), where

if (vi, vj) ∈ E then hij =
1∣∣v+
i

∣∣ , else hij = 0. (2.7)

Definition 2.4.5 (Weakly Connected Graph) Let G be a digraph and let G̃ be

the undirected graph generated from G by replacing each directed edge in G by a

undirected one in G̃ (ignoring repetitions). We say that G is weakly connected if,

and only if, G̃ is connected.

2.4.1 Markov Chains

Definition 2.4.6 (Markov Chain) A sequence of random variables {Y }t∈T that

takes values in a countable set S is said to be a Markov chain if it satisfies the

Markov property, i.e., if ∀t ≥ 1, s, s0, . . . , st ∈ S,

Pr(Yt+1 = s | Yt = st, . . . , Y1 = s1, Y0 = s0) = Pr(Yt+1 = s | Yt = st) (2.8)

A time-homogeneous Markov chain has the property that the transition proba-

bility from state i to state j does not depend on time. Unless stated otherwise, all

Markov chains studied in this dissertation are time homogeneous.

Every time-homogeneous Markov chain on a finite set S can have its behaviour

modelled by a transition matrix

P = {pij} (2.9)

Where pij denotes the probability of the Markov chain transitioning from state si to

state sj in one step at a given time. Because every row of P sums to 1, we say that

P is row stochastic. Note that then λ = 1 is an eigenvalue of P , i.e., there is v 6= 0

such that Pv = v. Therefore, λ = 1 is also an eigenvalue of P−1 (or, alternatively,

a left eigenvalue of P ). This motivates the definition of stationary distribution of a

Markov chain.

Definition 2.4.7 (Stationary Distribution ) Let P be the transition matrix of

a Markov chain. We say that µ is a stationary distribution of P if

µP = P (2.10)

33



Definition 2.4.8 A state s ∈ S is called persistent, or recurrent, if, for some

t ≥ 1,

Pr(Yt = s | Y0 = s) = 1 (2.11)

Otherwise, the state is called transient.

We now introduce the concept of irreducibility of Markov chains.

Definition 2.4.9 (Irreducible Markov Chain) A Markov chain is irreducible

if, and only if, all states are recurrent.

Note that the stationary distribution is unique (up to multiples) if the Markov chain

is irreducible.

Definition 2.4.10 (Reachable States) Regarding reachability, we say that a

state si is reachable by a state sj in a Markov chain Y if, for some t ≥ 1,

Pr(Yt = si | Y0 = sj) > 0 (2.12)

The following example, known as Gambler’s Ruin, gives us the probabilities of

reaching each one of two absorbing states. Informally, suppose a gambler starts with

a fortune of k, 0 ≤ k ≤ n. At each round, there is a probability p that it wins.

Example 2.4.11 (Gambler’s Ruin). Let Yt+1 = Yt + Zt+1 be a random walk

on [0, n] starting at Y0 = k, where {Zt}t≥1 forms an independent and identically

distributed sequence of random variables distributed as Pr(Zt = 1) = p and Pr(Zt =

−1) = q = 1− p.
Assume also that 0 and n are absorbing states, this is, if Yτ = 0, then Yt = 0,

∀t ≥ τ . Analogously for n. Let Pr(τ0 < τn | Y0 = k) be the probability for the

random walk to visit 0 before visiting n when starting at position k. Then,

Pr(τn < τ0 | Y0 = k) =
k

n
(2.13)

if p = q. And given by

Pr(τn < τ0 | Y0 = k) =
1−

(
q
p

)k
1−

(
q
p

)n (2.14)

if p 6= q.xiii

xiiiFor a proof, see [12, Example 6.1.3].
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2.4.2 Martingales

Martingales will be useful in our analysis in both Chapters 3 and 5. For a more

detailed approach, see books by Brémaud [12] and by Durrett [29]. In loose terms,

a martingale is a sequence of random variables that does not tend to increase or

decrease.

Definition 2.4.12 (Martingales) Let {Yt}t≥0 and {Zt}t≥0 be two sequences of dis-

crete real-value random variables (i.e., real-valued stochastic processes) such

that for each t ≥ 0

(i) Yt is a function of t and Zt
0 := (Z0, . . . , Zt), and

(ii) E(|Yt|) <∞ or Yt ≥ 0.

We say that {Yt}t≥0 is a martingale with respect to {Zt}t≥0 if

E(Yt+1 | Zt
0) = Yt. (2.15)

A classic example of a martingale is a particular case of Example 2.4.11, as follows:

Example 2.4.13 (Fortune in a Fair Game). Let Yt+1 = Yt + Zt+1 be the for-

tune of a gambler in time t. At each round, she bets k into a fair game, i.e., wins or

loses with equal probability. Here, the stochastic process {Zt}t≥1 represents the out-

come at the end of round t and is such that Pr(Zt = k) = 1
2

and Pr(Zt = −k) = 1
2
.

Then,

E(Yt+1 | Zt
0) =

1

2
(Yt + k) +

1

2
(Yt − k) = Yt. (2.16)

Therefore {Yt}t≥0 is a martingale with respect to {Zt}t≥1.

Our review of stochastic processes thus far prompts the question regarding the formal

definition of the stopping time of a Markov chain. In Example 2.4.11 we say that

the game ends when the chain reaches either value 0 or n. However, how do we

formally define the duration of a stochastic process?

Definition 2.4.14 (Stopping time) Let {Yt}t≥0 be a stochastic process with val-

ues in a countable set E. Let τ be a random variable with values in N ∪ {∞}. We

say that τ is a Y t
0 -stopping time if for all m ∈ (N ∪ {∞}), the event {τ = m} can

be expressed in terms of the variables Y0, . . . , Yt.
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Our main proofs are going to use the following result, which informally states that

if a martingale is bounded, then the expected value at the stopping time is equal to

the expected value at the beginning.

Theorem 2.4.15 (Corollary of Doob’s Optional Sampling Theorem) Let

{Yt}t≥0 be a martingale with respect to {Zt}t≥0 and let τ be a Zt
0-stopping time.

Suppose at least one of the following conditions hold,

(i) Pr(τ < k) = 1, for some k ≥ 0.

(ii) Pr(τ <∞) = 1 and |Yt| ≤ K <∞ when t ≤ τ .

Then, E(Yτ ) = E(Y0).

Note that Theorem 2.4.15 is a weak version of Doob’s optional sampling theorem,

which will not be used in this dissertation in its more general form.

2.4.3 Linear Voting Model

In this section, we briefly introduce linear voting models of Cooper and Rivera [18],

to be used in our proofs mainly from Chapter 3.

Definition 2.4.16 (Linear Voting Model) Let G = (V,E) be a graph, |V | = n

and M be the set of all matrices n × n such that M is a row-stochastic matrix

with, in each row, exactly one entry 1 and all the others 0. Let l be a probability

distribution over matrices in M. Finally, let S0 be the initial colouring of G with

colours in a set X = {0, . . . , |X| − 1}, with the update rule given by

St+1 = MtSt, (2.17)

where Mt are independently and identically distributed matrices sampled from l. We

say that this process is a linear voting model with parameters (l, S0).

The following theorem provides a solution for the consensus games on graphs as long

as they always converge. Although this is the opposite of what we explore in the

following chapter, we will draw from their results to establish a solution for games

that fail to converge.
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Theorem 2.4.17 (Cooper and Rivera, 2016) Let (St)t≥0 be a linear voting

model with parameters (l, S0), mean matrix H, and X = {0, 1}. Moreover,

Γ = {γ0, γ1} represent the set of consensus configurations in x = 0 and x = 1,

respectively. Assume that H has a unique stationary distribution µ and that the

time for consensus is finite, i.e., τ <∞. Then,

Pr(Sτ = 1 | S0) =
∑
v∈V

µ(v)S0(v) (2.18)

Note that what prevents us from using this theorem to understand failure of

convergence in Flag Coordination Games is that one of its hypotheses requires con-

vergence time to be finite.

We are also going to use one of Cooper and Rivera’s results, [18, Lemma 3], that

says that both synchronous and asynchronous consensus games are linear voting

models.

2.4.4 Conclusion

In this section, we have identified all related work relevant to the study of Flag

Coordination Games. As was seen, nobody has studied exactly the problem we

consider, although we will be able to draw on the results and the methods of this

other work.

37



Chapter 3

Flag Coordination Games:
Consensus or Failure of
Convergence?

Problem 2 (Consensus in a Cycle). Consider a set of twenty agents playing

a Flag Coordination Game in a circle, with initial configuration as in Figure 3.1.

Each node represent an autonomous agent that can decide to change their colour at

the beginning of every round, choosing from a set of 3 colours. They aim to reach

consensus, but can only see their neighbours. Thus, they all follow an algorithm

given by: at each round, each agent chooses one neighbour at random and copies its

colour. All changes are made synchronously. In these conditions, what is the chance

that they eventually succeed in achieving consensus?

Will consensus be
achieved from this

configuration?

Figure 3.1: Consensus Game on a Cycle C20 with 3 Colours.
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A winning
configuration

A losing
configuration

Figure 3.2: A Consensus in Blue (left) and a Configuration from which Consensus
Will Never be Achieved (right) on a Cycle C12.

3.1 Introduction

In this chapter, motivated by Problem 2, we will explore the situations in which a so

called losing configuration might arise, and what are the probabilities involved. Note

that this might happen in game described in Problem 2 if an alternating pattern is

reached. We are going to define formally consensus games shortly. For now, consider

a consensus game similar to the one in Problem 2, but now in a 12-cycle instead.

Figure 3.2 exemplifies one situation in which consensus is achieved and one situation

in which such a game is trapped in a loop (of size 2). At first, we are interested in

the following questions

B1 Why are there losing configurations in the first place?

B2 What is the probability of each colour winning?

B3 How long will it take for either a winning or a losing configuration to be

reached?

B4 Which are the initial states that might lead to a loop such as the one in Figure

3.2? Is it the case that any initial configuration that is not already in consensus

can lead to a loop?
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Question B1 can be immediately answered by observing that not only consensus

games on cycles of even length (such as C20 and C12) but also games in any bipartitei

graph will admit losing configurations for games with two or more colours. Recall

that Theorem 2.3.1 excludes bipartite graphs from their analysis, and thus by solving

the probability problem for bipartite graphs we will be extending Hassin and Peleg’s

results for any undirected graph G.

3.2 Games on Undirected Graphs

In this section, we are studying Questions B2, B3, and B4. In order to do that,

we observe that consensus protocols in distributed systems can also be seen as Flag

Coordination Games. We first define a slightly broader class of consensus games, in

which not only monochromatic goal states can be achieved.

Definition 3.2.1 (Generalised Consensus Game) Consider the tuple given by

FGC = 〈G,X, T,Γ, φ, β, ψ, σ,A〉 to be the set of rules of a Flag Coordination Game

played in a (non-dynamic) graph G = (V,E), where X = {x0, . . . , x|Γ|−1}. Also,

Γ = {γ0, γ1, . . . , γ|Γ|−1}, such that, for a given pair (v, x), where v ∈ V and x ∈ X,

there exists exactly one γ ∈ Γ with γ(v) = x. We define β(v) = X and ψ(v, t) = 0

for all v ∈ V and all t ∈ T . For undirected graphs, the visibility φ(v, t) of each vertex

v is, for any t ∈ T , the set of neighbours of v, denoted by N (v). For directed graphs,

φ(v, t) = v+ := {u | (v, u) ∈ E}. Finally, for each v, the algorithm αv consists in

choosing on round t a neighbour of v according to some probability function,ii say u,

then observing which γ ∈ Γ is the one such that γ(u) = St(u). We then define the

value St+1(v) = γ(v).

The algorithm above is well defined because, for each pair (v, x), where x = s(v),

there is only one goal configuration in which v takes colour x. We use the term

generalised consensus because, assuming the nodes know where they are and which

other nodes they can see, they adhere to the winning configuration that the ran-

domly chosen neighbour belongs to. In particular, if for a given k, 0 ≤ k < |Γ|,
γk(v) = xk, ∀v ∈ V , then we have a consensus problem in the usual way. Either

in usual consensus problems or in anti-consensus problems in bipartite graphs, the

iRecall (Definition 2.4.2) that G is a bipartite graph with partitions V1 and V2, denoted by
G = (V1, V2, E), if V1 ∪ V2 = V , V1 ∩ V2 = ∅ and ∀(u, v) ∈ E, either u ∈ V1 and v ∈ V2 or v ∈ V1
and u ∈ V2.

iiThat may possibly depend on the current colours of v and its neighbours.
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assumption that nodes know their place (and of their neighbours) in the network

can be lifted.

Example 3.2.2 (Generalised Consensus Game). Consider a generalised con-

sensus game played in G = C4 and such that X = { , , } with the set of goal

configurations given by

Γ = {γ1, γ2, γ3} =

{
, ,

}
(3.1)

For example, at any point during a game, if the left most node of C4 chooses the

top most node at random and this top most node is currently blue, then, the left

node will turn gray in the next round because it follows the same goal configuration

as the top node is currently in, i.e., γ1.

Note that this now generalised consensus Flag Coordination Game for any graph G

does not require that agents know their current colour in order to make a decision.

Although each agent has to make a decision of a colour at each round, this decision

may be forgotten immediately afterwards, and before deciding colours at the next

round.

In order to answer our questions posed in previous section, we will explore gen-

eralised consensus protocols on undirected graphs. We will focus our attention on

bipartite graphs. Apart from the even-length cycles presented earlier in this work as

a motivation for the study of bipartite graphs, we can also find such examples aris-

ing from competing standards in a network comprised of agents of two distinguished

groups that always interact across groups, never within. For example, consider

the bipartite graph G that represents doctors (partition V1) and patients (partition

V2), in which each edge (v1, v2) indicates that a v2 is a patient of doctor v1. The

same patient may consult with more than one doctor (of different specialisations),

and clearly a given doctor may have more than one patient. The different colours

represent different health insurance providers. We assume agents have no intrinsic

preference for one provider to detriment of another to use as a patient (resp. to

accept as a doctor), but they do want to share the same insurance of their doctor

(resp. patient). Taking in account they are allowed one choice that can be changed

from time to time, we may see this process as a Flag Coordination Game. The

formal definition of Flag Coordination Games on bipartite graphs is given below.
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Definition 3.2.3 (Game on Undirected Bipartite Graphs) Let us denote by

F2 = 〈G,X, T,Γ, φ, β, ψ, σ,A〉 the rules of a generalised consensus flag coordination

game played on an undirected bipartite graph G = (V1, V2, E), with V = V1 ∪ V2.iii

We also simplify the collection of algorithms of agents in this game by setting the

probability function in each αv to be a uniformly random choice among the

neighbours of v. We also define what is a monochromatic partition in a broader

way, in line with Definition 3.2.1: we say partition V is monochromatic in round

t if ∃γ ∈ Γ such that ∀v ∈ Vi, St(v) = γ(v). For short, we say that V is γ-

monochromatic.

Later in this section, we will define single-partition games, games in which there is

only one reachable winning configuration (Proposition 3.2.10). Alternatively, these

games always have a non-randomising partition: a partition whose nodes have a

deterministic behaviour. In order to provide a motivation for single-partition games

and the split function (see Definition 3.2.24), we describe an interesting connection

between annihilating random walks on cycles and Flag Coordination Games.

3.2.1 Flag Coordination Games and Random Walks

Consider G an n-cycle (or n-ring), n even, and also random-walking particles each

positioned at a different node of G. We consider further that there is an even number

of random-walking particles in each partition of this cycle. Note that partitions in

a cycle of even length are given by the set of odd nodes and the set of even nodes

(recall Definition 2.4.1). At each round of this game, each particle walks clockwise

or counter-clockwise with probability 1
2

each. They all move synchronously. If two

particles meet, both disappear. The game ends when there are no particles left.

Note that particles that start within an odd distance between each other will never

meet, because they are always in opposite partitions of the cycle.

Annihilating random-walking particles on a ring have been studied by Grigoriev

and Priezzhev in [33]. They establish the transition probabilities between configu-

rations of the same number of random walks, i.e., they study cases in which no pair

of particles meet. For simplicity, they assume all particles lie in the same partition

of a ring of even length. For a given start configuration and a final configuration,

they give the transition probability of the group of particles in an arbitrary number

iiiWhen depicting bipartite graphs, we will place partition V1 as the upper partition, and V2 as
the lower one.
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of discrete rounds. For other approaches on consensus and random walks on graphs,

see [15].

Independently of the game described above, consider a Flag Coordination Game

(F2, S0) as in Definition 3.2.3, where X = {blue, red} and G is not only bipartite but

also a cycle. For simplicity, we assume the goal states are the standard consensus

configurations: all-blue and all-red. In a given round St, we say that a vertex is a

non-randomising node if it has deterministic behaviour, that is, if both neighbours

are currently showing the same colour (e.g., node v1 in Figure 3.3). Otherwise, we

have a randomising node. These nodes are going to choose blue or red with 1
2

chance

each (e.g., node v4 in Figure 3.3).

We claim that we can draw a comparison between the two games described above

according to the definition bellow.

Definition 3.2.4 (Placing Random Walks on a Consensus Game) Given a

consensus game (F2, S0) on a bipartite n-cycle, we define the initial places of

random-walking particles by positioning them at the nodes that are randomising

nodes in (F2, S0).

Example 3.2.5 (Annihilating Random-Walking Particles on a Cycle).

We can see an example in Figure 3.3. If a node is labelled with pi, it then indicates

that the random walking particle i sits on the node in round t = 0, and is to move

clockwise or counter-clockwise with probability 1
2

each direction, just before round

t = 1.

Consider on one hand a consensus game on a cycle and, on the other hand, a sequence

of moves (with possible annihilations) of random-walking particles on the same cycle.

If we place the particles according to the consensus game using Definition 3.2.4, and

let both processes then run independently, we will find that the expected duration of

each process to finish is the same. Note that the end of a consensus game coincides

with the moment when either a consensus is achieved or the process enters a loop

(see Figure 3.2), whereas the process with random-walking particles game ends when

all particles disappear.

In fact, there is more to the relation of both games than just their expected

duration being the same. A formal definition and full analysis of their similarities

will be explored and proved in Chapter 5 (Section 5.3.1.1). For now, we just want to

focus our attention on the following simple fact: particles that lie in nodes belonging
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p1

p5

p2

p3

p6

p4

(F2, S0)

Figure 3.3: Initial states of a Flag Coordination Game, and its Correspondent An-
nihilating Random-Walking Particles, Depicted in the Same Graph. Nodes with pi
Indicate the Presence of Random Walking Particle i on that Node.

to different partitions at the initial round (or any given round) in the game, will

never meet. That is the same to say that there are two groups of particles that are

completely independent of one another. Taking Figure 3.3 as an example, particles

in the group {p1, p2, p3, p4} will never meet or have their movement interfered with

particles in the group {p5, p6}.
Finally, note that nodes in processes of random-walking particles described in

this section (to be formalised in Section 5.3.1.1) do not decide independently whether

to host or not a particle in subsequent rounds, thus such processes cannot be seen

as Flag Coordination Games. Even considering, instead, each particle as an agent

and its state being the position in a cycle graph, agents would not be able to control

whether to be annihilated or not, as it depends on the behaviour of other nodes.

However, although games involving random particles do not seem to be directly

suitable Flag Coordination Games, there is a clear correspondence between these

two processes. That connection is what motivates us to study each partition of the

graph in a Flag Coordination Game independently. We formalise this approach in

the section that follows.

3.2.2 Single-partition Games

The observation that random-walking particles can only interact in the future with

particles that currently lie in nodes of the same partition leads us to simplify our

Flag Coordination Games in Definition 3.2.3 to games in which only one partition

can have a non-deterministic behaviour. More formally, we present the following
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Figure 3.4: Example of a Single-
partition Round.

Figure 3.5: Only Reachable Consen-
sus From Game in Figure 3.4.

definition.

Definition 3.2.6 (Single-partition round and game) Let (F2, S0) be a general

consensus game on a bipartite graph as in Definition 3.2.3. We define a single-

partition round of (F2, S0) as a round St in which the behaviour of all nodes in at

least one partition of G is deterministic. Moreover, we define a single-partition

game as a game in which all rounds are single-partition rounds.

Note that, in the case G is a cycle, the corresponding random walks model of a single-

partition flag coordination game has particles in one partition only. We will now

show that if round S0 is a single-partition round, then (F2, S0) is a single-partition

game.

Proposition 3.2.7 Let (F2, S0) be a general consensus game on a bipartite graph

as in Definition 3.2.3 where G is connected. If St is a single-partition round, then

there is at least one partition, say V1, that is monochromatic.

Proof. Let V2 be the non-randomising partition on such round. Then, for each

v ∈ V2, all u ∈ N (v) are coloured according to the same γu ∈ Γ. Because G is

connected, all u ∈ V1 must be coloured according to the same γu (otherwise there

would be a v ∈ V2 with neighbours coloured according to two different γ, which is

not possible). We call that common colouring γ. Then, V1 is γ-monochromatic. �

Example 3.2.8 (Single-partition Round). Figure 3.4 depicts an example of a

single-partition round of a consensus game on a bipartite graph. Note that the top

partition (V1) is blue-monochromatic, and therefore nodes on the bottom partition

(V2) are non-randomising nodes in the current round. Figure 3.5 represents the only

winning state reachable from game in 3.4.
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Proposition 3.2.9 A game that eventually reaches a single-partition round has all

its subsequent rounds also single-partition. In particular, if S0 is a single-partition

round, (F2, S0) is a single-partition game.

Proof. Say V1 is γ-monochromatic partition in a single-partition round St. Then,

in round St+1, all nodes in Γ will have been adhered to γ, thus V2 will be γ-

monochromatic and so St+1 is also a single-partition round. By induction on t,

(F2, S0) is a single-partition game. �

Does this proposition imply anything regarding the possible final configurations of

single-partition games? Indeed, the next corollary of Proposition 3.2.9 shows that

there is only one possible winning state for such games.

Corollary 3.2.10 (Ending of Single-partition Games) Let γ ∈ Γ be such that

there is a γ-monochromatic partition on the initial round of a single-partition game

(F2, S0). Then, in the case the game reaches consensus (it might not), such consen-

sus must be γ.

We now define a function that labels edges in single-partition rounds according to

whether the colour of the nodes it connects belong to the same colouring or not.

This will help us keep track of how close the given single-partition game is from its

only possible winning configuration.

Definition 3.2.11 (Edge-colouring Function) Let (F2, S0) be a single-partition

consensus game on a bipartite graph as in Definition 3.2.6 and SE = XE be the

collection of all |X||E| possible colourings (ou labellings) for the edges in G. Assume

wlog that partition V1 is γ-monochromatic. We define f : S → SE, f(s) = r as the

function that colour each edge e = (u, v) (u ∈ V1 and v ∈ V2) according to whether

they are currently belong to the same γ (black edge) or not (green edge), i.e.,

r(e) =

{
black, if (∃γ ∈ Γ)[s(u) = γ(u) ∧ s(v) = γ(v)]

green, otherwise.
(3.2)

In other words, in a consensus game between blue and red in which there is a blue-

monochromatic partition, an edge is black if and only if the current colours of the

nodes it links agree (i.e., both blue because one partition is already blue), otherwise

the edge is coloured green. Note that a game ends successfully when all edges are

black (and therefore blue wins). We can now give the probability of success based

on the initial configuration of a single-partition game. We first formally define what

we mean by “success”.
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Definition 3.2.12 (Winning Game) We say that a game (F2, S0) is successful,

or it is a winning game, if it reaches and indefinitely stays in one of the goal

statesiv. In other words, a game is successful if there exists γ ∈ Γ and τ ≥ 0 s.t. ∀t ≥
τ , St = γ, where (S0, . . . , St, . . . ) is the trace of such a game. For γ ∈ Γ and τ as

above, we then denote Pr (Sτ = γ | S0) as the probability that opinion γ wins (F2, S0),

i.e., that it is eventually achieved. More generally, we define Pr (Sτ ∈ Γ | S0) as

the probability that (F2, S0) is a successful (or winning) game regardless of which

consensus it reaches at the end, as long as a consensus is achieved.

Definition 3.2.12 prompts us to explore what are the situations in which consensus is

not achieved. Moreover, thus far τ is not yet fully defined in the sense that τ might

not exist for games that never reach a consensus state. To address these issues, we

first define a random variable that counts the number of labelled edges during a

given game.

Definition 3.2.13 (Black Edges Counter) Let (F2, S0) be a single-partition

consensus game on a bipartite graph G = (V,E) as in Definition 3.2.6. We define

(Yt)t>0 as the random variable that counts the number of black edges in St according

to Definition 3.2.11.

Note that, for single-partition games on connected graphs, if Y0 = |E|, then S0 ∈ Γ

and therefore the game is certainly a winning game. On the other hand, if Y0 = 0,

then Y1 is also null and indeed Yt = 0 for t ≥ 0. We can show this by induction.

Assume Yt = 0. Then, there is one partition, say V1, that is γ-monochromatic in St.

Therefore, V2 will be γ-monochromatic on round St+1 and also no node in V1 will

keep their colour, i.e., St+1(u) 6= γ(u) for u ∈ V1, because no node in V1 on round

St has a neighbour in γ (since Yt = 0). Thus, Yt+1 = 0 and, by induction, the game

will never fully reach colouring γ .

Definition 3.2.14 (Duration of a Game) For games of the form (F2, S0), we

now define the duration τ of the trace of a game being the smallest t such that

Yt ∈ {0, |E|}. In other words, we are considering both winning and losing games in

our definition of duration. We define τ(F2,S0) := E(τ | Yτ ∈ {0, |E|}, S0) to be the

expected duration of a game with set of rules F2 and initial configuration S0. We

will also just use τ for τ(F2,S0) when clear from the context.

ivNote that (F2, S0) is not necessarily a single-partition game.
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Figure 3.6: Example of a Winning
Configuration.

Figure 3.7: Example of a Losing Con-
figuration.

Definition 3.2.15 From this point on, we are more commonly going to refer to

consensus in blue or red than to a general consensus in γ. We then define γblue and

γred as being the states in which all nodes are coloured blue and red, respectively.

More generally, we denote sx as the state in which all nodes are coloured x ∈ X.

Remark 3.2.16. We will often abuse notation and use Pr( ) when referring to

Pr (Sτ = γblue | S0) and Pr( ) when referring to Pr (Sτ = γred | S0), when clear from

the context. We will also use , , and to refer to its respective colours.

We are now ready to answer Question B4: indeed, any configuration in a bipartite

graph that is not already in consensus has a positive probability of non-convergence.

This can be seen because there will be at least one blue edge and one black edge in

G (otherwise consensus or a losing configuration would have been achieved).

Example 3.2.17 (Winning and Losing Configurations). Here, as usual, we

assume Γ = {γblue, γred}. Figure 3.6 depicts a winning scenario for colour blue, in

which state γblue has been achieved. Figure 3.7, on the other hand, shows an example

of a game that will never reach consensus from this current state.

Theorem 3.2.18 (Winning Probabilities For Single-Partition Games) Let

(F2, S0) be a single-partition game on a connected graph G as in Definition 3.2.6.

Assume, wlog, that partition V1 is γ-monochromatic, for γ ∈ Γ, in S0. Then the

probability of success of (F2, S0) is given by:

Pr (Sτ = γ | S0) =
Y0

|E|
(3.3)

Note that this result is similar to the one by Hassin and Peleg [35] (Theorem 2.3.1) ,

but now instead of considering the entire graph, we consider only partition V1. Then,

defining (V1)γ = {u ∈ V1 | S0(V1) = γ(u)} we have the alternative formula

Pr (Sτ = γ | S0) =
∑

u∈(V1)γ

deg u

|E|
. (3.4)
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Proof. We first prove that (Yt)t≥0 is a bounded martingale (recall Definition 2.4.12)

with respect to (St)t≥0 (note that by knowing St we also have rt = f(St)). Denote

also Zt(v) = Yt+1(v) − Yt(v), where Yt(v) denotes the number of black edges con-

nected to v on round t. Note that deg v stands for the number of neighbours of

v.

If Y0 = |E|, then Pr (Sτ = γ | S0) = 1. On the other hand, Pr (Sτ = γ | S0) = 0

if Y0 = 0. Else, we call, Vt the monochromatic partition on round t. Then,

E(Yt+1 | St) = E

(∑
v∈Vi

(Yt(v) + Zt(v)) | St

)
=
∑
v∈Vi

Yt(v) +
∑
v∈Vi

E(Zt(v) | St) =

= Yt +
∑
v∈Vi

[
Pr {St+1(v) = St(v)} (deg v − Yt(v))

+ Pr {St+1(v) 6= St(v)} (−Yt(v))
]

=

= Yt.

The last step follows from the fact that

Pr {St+1(v) = St(v)} =
Yt(v)

deg v
and Pr {St+1(v) 6= St(v)} =

deg v − Yt(v)

deg v
. (3.5)

Therefore, (Yt)i≥0 is a martingale with respect to (St)i≥0. Since 0 ≤ Yt ≤ |E|, the

martingale is also bounded and thus we can apply (a corollary of) Doob’s Optional

Sampling Theorem (recall Theorem 2.4.15) to get E(Y0) = E(Y∞) = Yτ , where τ

stands for the duration of the game. Note that there are two absorbing states for

Y : 0 and |E|. Thus,

Y0 = E(Y0) = E(Y∞) = |E|Pr(Yτ = |E|) + 0(Pr(Yτ = 0)). (3.6)

This concludes the proof. �

Note that there is only one winning state in a single-partition game: the state

which the nodes on the randomising partition are in. Therefore Pr (Sτ ∈ Γ | S0) =

Pr (Sτ = γ | S0).

We now present an upper-bound for the expected time τ . Here we look into a

formula that takes explicitly into account the number of edges of G. That result

will be then explored in particular cases such as cycles and paths.

Theorem 3.2.19 (Upper-bound for Expected Duration E(τ )) Let the game

(F2, S0) be a single-partition game on a connected graph G as in Definition 3.2.6,
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where |V | = n and |E| = m. If Y0 = 0 or Y0 = m, then the duration of the game is

zero. Otherwise, let γ ∈ Γ be the colouring of the monochromatic partition in this

initial state. Denote Yt(v) as the number of black edges connected to v on round t.

Finally, let Vt be the monochromatic partition on round t. Then, we have

mY0 − Y 2
0 = E

(
∞∑
t=0

∑
v∈Vt

Yt(v) (deg v − Yt(v))

)
(3.7)

Thus, because the internal sum is greater than or equal to 1 for the duration of the

game we can show that the expectation of the duration of the game (F2, S0) until

there are either no black edges left (the game is a losing game) or only black edges

left (colouring γ wins) is bounded by:

τ(F2,S0) ≤ mY0 − Y 2
0 (3.8)

The proof of this theorem is a direct application of the following three lemmas. All

proofs are presented after Lemma 3.2.22.

Lemma 3.2.20 E(Y 2
∞) = mY0.

Lemma 3.2.21 For each t ≥ 0, we have

E(Y 2
t+1)− Y 2

0 =
t∑
i=0

E(Z2
i ). (3.9)

Lemma 3.2.22 For each i ≥ 0 we have that

E(Z2
i ) = E

(∑
v∈Vi

Yi(v) (deg v − Yi(v))

)
. (3.10)

Proof (of Lemma 3.2.20). From Pr(Yτ = m) = Y0
m

, we get

E(Y 2
∞) = m2Pr(Yτ = m) + 02Pr(Yτ = 0) = mY0. �

Proof (of Lemma 3.2.21). Define Zi = Yi+1−Yi, i.e., the change in the total number

of black edges from round i to round i + 1.v It is then clear that Yi+1 = Yi + Zi.

Note that Zi is the sum of Zi(v) for all nodes v in one given partition of G. By

Theorem 3.2.18, E(Zi | Si) = 0. Then,

E(Y 2
i+1 | Si) = E(Y 2

i + 2YiZi + Z2
i | Si) = Y 2

i + E(Z2
i | Si)

By induction we have the result. �
vPlease note the change in index notation.
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Figure 3.8: Game (F2, S0) as in Example 3.2.23.

Proof (of Lemma 3.2.22). We start by E(Z2
i | Si). Recall that Zi(v) = Yi+1(v) −

Yi(v). Since E(Zi | Si) = 0, then E(Z2
i | Si) = Var(Zi | Si). The random variables

Zi(v) are independent, then

Var(Zi | Si) =
∑
v∈Vi

Var (Zi(v)) =
∑
v∈Vi

Yi(v) (deg v − Yi(v))

because we have Var(δi(v)) = (−Zi(v))2 deg v−Zi(v)
deg v

+ (deg v − Zi(v))2 Zi(v)
deg v

. Using

E(Z2
i ) = E(E(Z2

i | Si)) = E(Var(Zi | Si)), we get

E(Z2
i ) = E

(∑
v∈Vi

Yi(v) (deg v − Yi(v))

)
. (3.11)

Which concludes the proof of this Lemma. Please note that the random variable∑
v∈Vi Yi(v) (deg v − Yi(v)) is non-negative, therefore we can apply the monotone

convergence theorem to interchange summation and expectation, .i.e.,

∞∑
i=1

E

(∑
v∈Vi

Yi(v) (deg v − Yi(v))

)
= E

(
∞∑
i=1

∑
v∈Vi

Yi(v) (deg v − Yi(v))

)
. (3.12)

�

Example 3.2.23. Consider the initial configuration of a game (F2, S0) depicted in

Figure 3.8. Here X = { , } and Γ = {γblue, γred}. Observe that |E| = 12 and

Y0 = 7, therefore, by Theorem 3.2.18, Pr( ) = Pr (Sτ = γblue | S0) = 7
12

, and, as

expected, and because of Proposition 3.2.10, Pr( ) = Pr (Sτ = γred | S0) = 0.

Also, by Theorem 3.2.19, the expected duration of the game is bounded by

τ(F2,S0) ≤ 84− 49 = 35.

3.2.3 General bipartite graphs

The previous results were somehow restrictive as we assume that one entire partition

is monochromatically coloured. In this section, to be able to solve the problem for an

arbitrary initial configuration, we define a function that splits the original problem
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into two single-partition games. Then, based on the results of the two new games, we

can fully determine what happens on the original one. The idea is also motivated by

the relationship between consensus games on a cycle and process involving random-

walking particles in the same cycle discussed in Section 3.2.1: we may know that

there are two independent groups of particles that represent the change in colours

of the nodes in the correspondent Flag Coordination Game. However, how do we

conclude the overall result by just knowing what happens in each one?

Definition 3.2.24 (Split function) We let (F2, S0) be a game on a connected

graph G and splitG be the function that takes a colouring s ∈ S and outputs two

colouringsvi ρ, σ ∈ S such that one colouring copies the colours of s in partition V1

and where the other colouring copies colours in V2, colouring the remaining nodes

according to the same given winning colouring γ ∈ Γ. Formally, we define

splitG : S × Γ→ S × S
splitG(s, γ) = (ρ, σ)

Where ρ �V1= s �V1 and ρ �V2= γ �V2, also σ �V2= s �V2 and σ �V1= γ �V1.vii

Example 3.2.25. Figure 3.9 shows us an example of function split applied to the

initial configuration of a game (F2, S0) resulting on the two initial configurations

of the independent games (F2, σ0) and (F2, ρ0). As usual, X = { , } and Γ =

{γblue, γred}. More formally, splitG(S0, γblue) = (ρ0, σ0).

Note that the split function is solely a concrete way to visualise the independence

of the behaviour of the two partitions in such games.

We are now in a position to answer Question B2, by stating the more general the-

orem for bipartite graphs, irrespective of whether the initial configurations involved

are single-partition or not.

Theorem 3.2.26 (Consensus Probability in Bipartite Graphs) Let (F2, S0)

be a Flag Coordination Game as in Definition 3.2.3 and let (ρ0, σ0) = splitG(S0, γ),

where γ ∈ Γ is any given winning configuration. In these conditions,

Pr (Sτ = γ | S0) =
∑

u∈(V1)γ

deg u

|E|
∑

v∈(V2)γ

deg v

|E|
. (3.13)

viRecall that both notations s and S represent an element in S, with the contextual difference
that S indicates a random variable, whereas s denotes the values the random variable S can take.
However, for simplicity, regarding ρ and σ, we are not differentiating between configurations that
are part of a process of not.

viiLet f : A→ B. We define f �Ã: Ã→ B, where Ã ⊂ A as a function that is only defined in a

subset of A and coincides with f for any ã ∈ Ã. We say that f �Ã is the restriction of f to Ã
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(F2, S0)

(F2, ρ0) (F2, σ0)

Figure 3.9: Example of Game (F2, S0) Being Split in (F2, σ0) and (F2, ρ0) .

This comes from the fact that Pr (Sτ = γ | S0) = Pr (ρτ = γ | ρ0)×Pr (στ = γ | σ0).

In other words, goal γ is the winning configuration of (F2, S0) if and only if both

(F2, σ0) and (F2, ρ0) are winning games (note that, according to Proposition 3.2.10,

such games can only reach one winning configuration, and that is γ). Alternatively,

denoting Y0 and X0 as the number of black edges in (F2, σ0) and (F2, ρ0), respectively,

then Pr (Sτ = γ | S0) = Y0X0

|E|2 .

Proof. The idea of the proof is straightforward: the behaviour of nodes in V2 in

(F2, ρ0) is the same as the ones in V2 in (F2, S0). That is because a node v ∈ V2

see the same set of colours in both games. At the same time, the behaviour of V1 in

(F2, σ0) is the same as V1 in (F2, S0). During the next round, the same is true but

now for the opposite partitions. Moreover, all nodes v in non-randomising partitions

(the ones looking at vertices all in γ) will have a deterministic behaviour: to choose

the colour γ(v).

The core of the proof relies on the fact that the behaviour of the nodes in

a given partition, say V1, in game (F2, S0) on even rounds will never depend on

decisions these same nodes took on previous odd rounds. That happens because

bipartite graphs have no cycles with odd length. All the ‘information’ contained in

partition V1 on St is captured by partition V2 on St+1, and only by partition V2.

That information will go back to V1 on St+2. Therefore, the split function captures
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that behaviour by generating two independent games whose nodes in randomising

partitions make decisions as nodes in V1 and V2 on (F2, S0) do. �

In some cases we might not be interested in the final consensus but solely whether

the game ends successfully (see Problem 1 for an example). In these conditions,

because winning colourings are stable, we have

Pr (Sτ ∈ Γ | S0) =
∑
γ∈Γ

Pr (Sτ = γ | S0) . (3.14)

We have so far found an analytic solution for the probability of consensus being

achieved for each goal state, as well as for the game to be a losing game, for both

single-partition and general games on bipartite graphs. Regarding the expected

duration of games, we provided an upper bound for the process to end for single-

partition games only. The next step is to generalise upper bound results for general

games on bipartite graphs, as well as finding lower bounds for the expected time for

both processes to end.

Both single-partition games generated by split function are independent. Also,

the general game ends when the second single-partition game ends. However, we

cannot just take the greater of the two bounds for (F2, σ0) and (F2, ρ0) to estimate

the bound for (F2, S0). As an illustration of this, consider the problem of expected

times in dice tossing: although the expected number of tosses to get a face, say “4”,

in one die for the first time is 6, the expected number of rounds, on the other hand,

for two dice (both tossed in each round) in order to get the first “4” in both, not

necessarily at the same time, is 96
11

which is greater than 6.

We present the next result as a corollary of Theorem 3.2.19, as we are only

combining the bounds of each single-partition game using that E(max{X, Y }) ≤
E(X) + E(Y ). This, together with Theorem 3.2.28 below, gives us a satisfactory

answer to Question B3.

Corollary 3.2.27 (of Theorem 3.2.19) Let (F2, S0) be a Flag Coordination

Game as in Definition 3.2.3 and let (ρ0, σ0) = splitG(S0, γ). Let Y0 and X0 be

the number of black edges in the initial round of (F2, σ0) and (F2, ρ0), respectively.

Then, the expected duration τ of (F2, S0) is bounded by

E(τ) ≤ m(Y0 +X0)− (Y 2
0 +X2

0 ) (3.15)

Theorem 3.2.28 (Lower-bound for Expected Duration E(τ )) For a single-

partition game, a lower bound for the duration τ of the game that is given by

E(τ) ≥ 8(mY0 − Y 2
0 )

mn
− 1 (3.16)
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Proof. For this proof we are going to use some Graph Theory results, in particular

concerning the first Zagreb index [34, 20]. The first Zagreb index, M1(G), is defined

by the sum of the squares of all degrees in a given graph, i.e.,

M1(G) =
∑
v∈V

deg2(v). (3.17)

The particular result used here is the one by Zhou [79, Theorem 1] that, when

applied to a bipartite graph G, noting that bipartite are triangle-free graphs, gives

us the following bound

M1(G) ≤ mn (3.18)

Other results on the first Zagreb index can be found in the work by de Caen [21],

and, more recently, by Das [19]. Although Zhang and Zhou [78] presents results

only for bipartite graphs, they do not aim to provide tighter bounds. Instead, they

find the set of bipartite graphs of a given number of edges and nodes such that their

first Zagreb index is maximised. For a recent survey on Zagreb indices, see [11].

We now focus our attention back to finding a lower bound for E(τ). We start

from the right-hand side of Equation 3.7.

E

(
∞∑
t=0

∑
v∈Vt

Yt(v) (deg v − Yt(v))

)
≤ E

(
∞∑
t=0

∑
v∈Vt

deg2(v)

4

)
(3.19)

The inequality comes from the fact that any function f(x) = x(k − x) defined on

x ∈ R admits its maximum at x = k
2
. We now apply Equation 3.18, noting that all

nodes are added every two rounds, to get

E

(
∞∑
t=0

∑
v∈Vt

deg2(v)

4

)
≤ 1

4
E

 d τ2 e∑
t=0

mn

 ≤ mn(E(τ) + 1)

8
. (3.20)

Note that the (+1) term is necessary for when τ is odd. �

Corollary 3.2.29 Let (F2, S0) be a Flag Coordination Game as in Definition 3.2.3

and let (ρ0, σ0) = splitG(S0, γ). Let Y0 and X0 be the number of black edges in the

initial round of (F2, σ0) and (F2, ρ0), respectively. Then, the expected duration τ of

(F2, S0) is bounded below by

E(τ) ≥ 4m(Y0 +X0)− 4(Y 2
0 +X2

0 )

mn
(3.21)
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Single-partition games on
bipartite graphs

General games on bipartite
graphs

Winning
probability

Pr(Sτ = γ | S0)

Y0

|E|
Y0X0

|E|2

Upper-bound
for expected

duration E(τ)

mY0 − Y 2
0 m(Y0 +X0)− (Y 2

0 +X2
0 )

Lower-bound
for expected

duration E(τ)

8(mY0 − Y 2
0 )

mn
+ 1

4(m(Y0 +X0)− (Y 2
0 +X2

0 )

mn

Table 3.1: Summary of Results of This Chapter for Undirected Graphs.

Remark 3.2.30 (A Note on Complexity). All games seen so far end, on aver-

age, in O(n3 log n) rounds. That upper-bound on τ was given by Hassin and Peleg

[35] for all consensus games on non-bipartite graphs, which can trivially expanded

to include bipartite ones as well.

Table 3.1 summarises the result we have seen so far in this chapter, including our

answers to Questions B2 and B3. Results take into account that every node knows

the position of the neighbours they see in the graph G. If we relax that condition

determining that nodes do see the colours of their neighbours, but not their labels,

then we cannot solve the generalised consensus problem in the same way. In a

non-bipartite graph, the standard consensus problem can be solved, as shown in

[35]. Moreover, in bipartite graphs, not only can the standard consensus problem

be solved, but also the proper colouring problem. Nodes do not have to know the

partition they are in nor the labels of the nodes whose colours they are looking at,

as long as they know they are in a bipartite graph and whether they seek standard

consensus or proper colouring of the graph. That is the case because for both

problems all neighbours of a given node are coloured the same in each of the goal

states γ ∈ Γ.

Solution to Problem 2. We now return to the problem posed in Problem 2.

Because it is a cycle, this graph is regular (see Figure 3.1). Thus, the influence

of each node is the same. Moreover, G is bipartite. Figure 3.10 rearranged nodes

in Figure 3.1 evidencing the two partitions of G.viii It may have seemed counter-

viiiNote that the blue node on the top left corner of Figure 3.10 corresponds to the top node in
the cycle in Figure 3.1, and it is connected to the red node on the bottom right corner.
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Figure 3.10: Alternative Display of the Cycle in Figure 3.1 Evidencing Partitions of
G.

intuitive at first, but we can now clearly see that the probability of blue being the

winning colouring, although there are 7 blue nodes of the 20 nodes in total, is zero.

Note that there is no blue node in V2 (bottom partition) of G in Figure 3.10. By

Theorem 3.2.26,

Pr( ) = Pr (Sτ = γblue | S0) =
14

20
× 0

20
= 0

Pr( ) = Pr (Sτ = γred | S0) =
2

20
× 12

20
= 0.06

Pr( ) = Pr (Sτ = γgray | S0) =
4

20
× 8

20
= 0.08

Thus, the probability that consensus is achieved, regardless of which, is 0.14. Note

that the least common colour (also the colour with the fewest number of edges

connected to nodes of that colour) is the most likely to win. Still, the most likely

outcome is not success, but that the game is a losing game, with probability 0.86.

Such unexpected situations do not occur when G is non-bipartite: in these cases

the most connected colour (considering the weights of edges) always has the highest

probability of winning [35]. Also, the fact that non-bipartite graphs have at least

one odd cycle implies that every generalised consensus game on such graphs is a

winning game.

Note that our results extend the work of Hassin and Peleg (Theorem 2.3.1) to

bipartite graphs. Moreover, such results propose a solution for the generalised con-

sensus problem (see Definition 3.2.1), provided nodes are aware of their neighbours’

labels and of the graph structure.

Finally, we revisit Problem 1 (Robot Bucket Brigade) presented at the start of

Chapter 2 and provide a solution for its first question. The solution to its second

question will be presented in Chapter 5. Note that this is an example of an anti-

consensus game in which agents seek to proper colour this graph.
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(a) Configuration A’.

(b) Configuration B’.

Figure 3.11: Translation of Robot Bucket Brigades Configurations Into Consensus
Games.

Solution to Problem 1 (Take 1). Recall that we had a line of autonomous

robots in a bucket brigade aiming to choose an action (colour) different from their

neighbours’, i.e., playing an anti-consensus game. In Example 2.2.4, we formally

defined their goal set Γ = {γ1, γ2} as the set of both alternating colours in this

path, i.e., the two proper colourings of this bipartite graph. We are therefore under

the assumptions of Definition 3.2.1 where the graph is bipartite, so we can apply

Theorem 3.2.26. Before, however, we translate this anti-consensus game into a

consensus game (F2, S0) to help us better visualise the goal states. In Figure 3.11,

a node is blue if and only if the colour of this node in Figure 2.1 corresponds to its

colour in γ1 (recall that γ1(v1) = orange). We then have, for configuration A,

Pr(γ1 is achieved) = Pr (Sτ = γblue | S0 = A′) =
1

8
× 4

8
=

4

64
(3.22)

Pr(γ2 is achieved) = Pr (Sτ = γred | S0 = A′) =
7

8
× 4

8
=

28

64
(3.23)

Therefore, the probability of agents to succeed with starting configuration A is of
1
2
. For configuration B, we have

Pr(γ1 is achieved) = Pr (Sτ = γblue | S0 = B′) =
2

8
× 2

8
=

4

64
(3.24)

Pr(γ2 is achieved) = Pr (Sτ = γred | S0 = B′) =
6

8
× 6

8
=

36

64
(3.25)

Therefore, the probability of agents to succeed with starting configuration B is of
5
8
. Thus, a game that starts at configuration B has a higher probability of reaching

some generalised consensus than configuration A.

A more detailed translation from consensus to anti-consensus games can be found

in Chapter 4, Section 4.4.2.1.
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3.2.4 A Small Generalisation

Results presented so far in this chapter assume that neighbours are chosen with

equal probability. In fact, results do not change significantly if we allow edges to

have different weights in a way that the probability of v copying the colour of a

given neighbour w is the weight of the edge (v, w) divided by the sum of weights of

edges of the form (v, u), for u ∈ N (v). Note that this would require that both ends

of a given edge are affected the same way.

Definition 3.2.31 (Weighted Edges of G) Given a graph G = (V,E), we define

the function weight : E → R+, that associates each edge with a value weight(e),

e ∈ E. We also extend this definition for sets in the usual way. Let F ⊂ E be a

subset of edges of G. Then, weight(F ) =
∑

e∈F weight(e).

We can now generalise Theorem 3.2.18 to take weighted edges into consideration

when calculating probabilities of consensus in single-partition games.

Corollary 3.2.32 (of Theorem 3.2.18) Let (F2, S0) be a single-partition game

on a connected graph G with weighted edges as in Definition 3.2.6. Assume, wlog,

that partition V1 is γ-monochromatic, for γ ∈ Γ, in S0. Let (Ỹt)t≥0 be the random

variable that sums the weighted of black edges in round t. Then the probability of

success of (F2, S0) is given by:

Pr (Sτ = γ | S0) =
Ỹ0

|E|
(3.26)

Proof. This proof is nearly a copy of proof of the original Theorem 3.2.18. We

just need to replace Yt by Ỹt, and to state that Ỹt is bounded because 0 ≤ Ỹt ≤
weight(E). �

The main restriction of this generalisation is clear: both nodes at different ends of a

given edge must apply the same weight to each other, although the sum of weights of

all edges connected to each of them might be different. How do we further generalise

this by allowing an asymmetric relationship between neighbouring agents? The

answer to this and other generalisations will be presented in the following section.
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3.3 Games on Directed Graphs

In this section, we will seek to try to understand what is behind the approaches and

strategies defined in the previous section and how to generalise them. In sum, we

are looking into the following questions:

C1 Bipartite graphs in generalised consensus games as seen so far in this chapter

might lead to loops of states that will never lead to consensus. These loops

have length 2. Is there any set of games in a graph G that might enter in

a loop of size 3 instead? If so, are they tripartite graphs? How would these

graphs be defined?

C2 What would be a characterisation of graphs that admit state-loops of given

size?

C3 If the situation in Question C2 happens in a graph G and initial state S0, is

there an analogous version of our split function that would generate 3 (instead

of 2) single-partition games from S0?

C4 In these conditions, what is the probability of generalised consensus games

that admit such loops to be winning games?

C5 Are there graphs in which losing games might not include loops?

C6 Finally, what is the probability of success of these more general games?

The answer for the questions above boils down to the algorithm use by the agents, as

well as the graph they are in. In order to answer Question C1, consider the example

below in which, although there are only two possible consensus states, neither one

can be achieved.

Example 3.3.1 (The Direct 3-Cycle). Consider consensus game on a digraph

G = (V,E) in which V = {v1, v2, v3} and E = {(v1, v2), (v2, v3), (v3, v1)}. Assume

directed edges represent nodes’ visibilities. In this example, v1 only sees v2, v2

only sees v3, and v3 only sees v1. Assume the initial configuration of this game

is S0(v1) = S0(v2) = blue and S0(v3) = red. Considering that they uniformly at

random choose a colour they see (in this case, only one choice for each), then we

can see that this game is already in a 3-state loop and will never reach consensus.

60



The example above would have similar behaviour if our graph G had three partitions,

V1, V2, and V3 such that all edges go from a node in partition i to a node in partition

i+1.ix Now that we understand that directed graphs (or digraphs) are to be explored,

we formally define the terms of Flag Coordination Games explored in this section.

Definition 3.3.2 (Generalised Consensus in Directed Graphs) We define a

game (
#»F , S0), where

#»F = 〈G,X, T,Γ, φ, β, ψ, σ,A〉 as in Definition 3.2.1, with the

difference that G is a weakly connected digraph and that nodes follow a different

set of algorithms A. For each node v ∈ V , αv is such that v copies the colour of

one neighbour according to H, the row-normalised out matrix of G (see Definition

2.4.4).x The intuition here is that the ith node vi ∈ V has a probability hij > 0 to

copy the colour of vj when (vj, vi) ∈ E.xi

3.3.1 Strongly Connected Graphs

Problem 3 (Consensus in a Strongly Connected Digraph). Consider

the generalised consensus game (
#»F , S0), in a digraph G and initial configuration S0

as depicted in Figure 3.12. Node vij is the jth node in partition i. The out-matrix

H is given by

H =



0 0 1
2

1
2

0 0 0 0 0

0 0 0 1
2

1
2

0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1
3

1
3

1
3

0

0 0 0 0 0 1
3

0 1
3

1
3

1 0 0 0 0 0 0 0 0
1
2

1
2

0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0


Note that H has its entries representing nodes first regarding its partition, then

their position within the partition. In this case: v11, v12, v21, v22, v23, v31, v32, v33, v34.

What is the probability of consensus in each of the colours involved?

For Problem 3, we cannot apply Theorem 2.4.17 by Cooper and Rivera [18] because

ixAs usual, we abuse notation by not making explicit that a node in partition V3 connects to a
node in V1, instead of to the inexistent V4.

xIn the case a node v has no out-degree, v maintains its initial colour during all subsequent
rounds.

xiSimilarly to Section 3.2.4, simple generalisation methods apply here. We are going to leave
nodes’ choices to be uniformly random for now.
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v11

v12

v21

v22

v23

v31

v32

v33

v34

Figure 3.12: A Generalised Consensus Game (
#»F , S0) in a Digraph G that Might Not

Lead to Consensus.

the game might not have a finite duration. In order to see that, just consider the

situation in which we have monochromatic partitions but of different colours. The

game then will stay in a 3-state loop. We now focus our attention on the length of

cycles in Figure 3.12. It is not the case that all cycles have length 3, as some have

length 6, for example (v12v23v34v11v22v32v12). In order to answer Question C3, we

present two definitions and a proposition, that addresses whether a given game has

the chance of entering in a loop based on lengths of cycles in G.

Definition 3.3.3 (Greatest Common Divisor of Cycles Lengths in G) Let

G be a digraph and C ⊂ N be the set of the lengths of all cycles in G. We then

define k = k(G) := gcdC, the greatest common divisor of the lengths of all cycles

in G.

Definition 3.3.4 (Digraphs that are k-partite) We say that a directed graph G

is k-partite if partitions V1, . . . , Vk of V are such that every edge (v, u) ∈ E connects

v ∈ Vi to u ∈ Vi+1 for some i.xii

We begin addressing Question C2, of how to characterise graphs regarding to the

possible size of state-loops that can occur if consensus games are played on these

graphs, by presenting the following proposition.

xiiAgain, as usual, consider Vk+1 = V1.
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Proposition 3.3.5 If k is the greatest common divisor of the lengths of all cycles

in a graph G, then G is k-partite.

Proof. Let v ∈ V . For all w ∈ V , we define the partition that w belongs to by

taking the x(mod k), where x is the length of any path from v to w.

We show that this is well defined. First, the existence of such a path is guaranteed

by the strongly connectivity of G. Also, the lengths of all paths from v to w must

coincide, modulo k. If not, by concatenating both paths to the same returning path

from w to v, we would have created two cycles from v to v that differ in length,

modulo k (by assumption, all cycles must be 0(mod k)).

Thus, by defining Vi+1 as the set of vertices such that their distance (modulo k)

from a given v ∈ V is i, we construct partitions of V as required. �

Note that the converse of Proposition 3.3.5 does not necessarily hold. The definition

of k-partite graphs allows us to combine partitions into, say, groups of two. This

way a graph with k(G) = 6 can be seen as a 3-partite graph if we combine each of

the original 6 partitions (given by Proposition 3.3.5) into three: V1 ∪ V4, V2 ∪ V5,

and V3 ∪ V6.

Definition 3.3.6 (Generalised Consensus in k-partite Digraphs) We define

a set of generalised consensus games (
#»Fk, S0) as in Definition 3.2.1 with the restric-

tion that the greatest common divisor of all cycles in G is k. We also know from

Proposition 3.3.5 that G is a k-partite graph.

Question C2 is now fully resolved with the Lemma that follows.

Lemma 3.3.7 A consensus game (
#»Fk, S0) on a strongly-connected digraph G =

(V,E) reaches consensus with probability 1 for all initial configurations if and only

if k = 1. More generally, (
#»Fk, S0) might only enter a state-loop of size k, otherwise

it reaches consensus.

Proof. (⇐) Assuming k = 1. Then, given an initial configuration, a game has

already reached consensus or it has not. If it has, the problem is solved. If not

consider v ∈ V coloured according to some γ ∈ Γ. We note that gcdCv = 1, where

Cv is the set of the lengths of the cycles passing through v. This follows from the

fact that G is strongly connected. We can then show that there is a large enough

n0 > 0 such that for any n ≥ n0, we have Pr(Sn(u) = γ | S0) > 0 for all u ∈ V .

For that it is enough to show that there is finite n0, such that for every n ≥ n0
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there is a directed path from v to u of length n.xiii The existence of such n0 follows

from Lemma 2.1 of [65]. Thus, if the game runs long enough, it will reach (some)

consensus with probability 1.

(⇒) We now want to prove that if the game reaches consensus with probability

1, then k = 1. We are going to prove this by showing that if k > 1, then there

is a positive chance that the game never reaches consensus. By Proposition 3.3.5,

G is k-partite. We now observe that, if the game reaches a configuration in which

one partition is all γ-monochromatic and another is γ̃-monochromatic, for γ̃ 6= γ

consensus will never be reached. Thus it can not be reaching consensus for sure from

all possible initial configurations. We will later show that having monochromatic

partitions are not the only counterexample. In fact, for k > 1, any initial configu-

ration that differs from consensus, even slightly, has a positive probability of never

achieving it. �

At this point, in order to answer Question C3, we informally introduce a generali-

sation of single-partition games for digraphs. Note that the introduction of single-

partition games is not strictly necessary for our future theorems; however it assists

in the visualisation of the independence of partitions in directed graphs. In sum, a

single-partition game in the context of directed graphs is, as expected, a game in

which nodes of all but one partition (at most) have deterministic behaviour. For

such consensus games, we can apply the result by Cooper and Rivera [18] (Theo-

rem 2.4.17) to this ‘moving’ partition in which nodes are randomising. There are |Γ|
possible end states for this game: in each one, the randomising partition becomes

γ-monochromatic for a different γ ∈ Γ, and consensus is achieved depending on the

colour of the other partitions involved.

We are not going formally to define single-partition games. However, this idea

is going to be used in the proof of Lemma 3.3.12, which gives us the probabilities of

consensus being achieved for each γ in a strongly connect graph G.

Definition 3.3.8 (The Influence of a Node) Let G be a strongly connected k-

partite directed graph and H be its (row-normalised) out-matrix. Let the row vector

µ denote the stationary distribution of H, i.e. µ satisfies µH = µ (see Definition

2.4.7). We consider that µ is normalised such that its entries sum to k. We then

define µ(v) as the influence of v, for v ∈ V . Finally, let U ⊂ V . Then, we define

the influence of U as

µ(U) =
∑
v∈U

µ(v) (3.27)

xiiiNote that the colour changes run according to the reverse path.
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Remark 3.3.9. Note that we normalise µ such that the sum of its entries sum to

k, instead of 1. Let us show that µ(Vi) = 1 for each partition Vi. Noting that H is

row-stochastic and that hvw is only positive if w is in a consecutive partition of the

one that v is in, we have

µ(Vi) =
∑
w∈Vi

∑
v∈Vi−1

µ(v)hvw =
∑
v∈Vi−1

µ(v)
∑

w∈Vv−1

hvw

 = µ(Vi−1) (3.28)

Remark 3.3.10 (G is Strongly Connected iff µ is Unique). Note that an

out-matrix H is irreducible if, and only if, G is strongly connected. This means

looking at H as a transition matrix of a Markov chain, all states are reachable

(with positive probability) from all other states, which is clear from the strong

connectivity of G. We now apply a standard result [12, Theorem 7.2.5] that states

that a irreducible Markov chain is positive recurrent if, and only if, there exists

a stationary distribution. Also by the same theorem, µ is unique (up to scalar

multiples).

Intuitively, the higher the influence of a node v, the more it contributes to the

probability of the game reaching consensus in v’s current colour. The independence

of partitions in such games adds another layer of complexity to the analysis, therefore

in introduce the following definition before Lemma 3.3.12 (which responds Question

C4).

Definition 3.3.11 Let (F , S0) be a Flag Coordination Game and γ ∈ Γ. Then, we

define Θγ(St) as the sum of influences of nodes coloured according to γ at round t,

i.e.,

Θγ(St) =
∑
v∈V

S(v)=γ(v)

µ(v). (3.29)

If G is k-partite, we analogously define Θγ
i (St) as the sum of influences of nodes

in partition Vi that are coloured according to γ at round t. For convenience, we will

use simply Θγ and Θγ
i for Θγ(S0) and Θγ

i (S0), respectively.

Lemma 3.3.12 Let (
#»Fk, S0) be a game as in Definition 3.3.6. In these conditions,

Pr(Sτ = γ | S0) =
k∏
i=1

Θγ
i (3.30)
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Proof. We use a similar approach to the one in Theorem 3.2.26 and apply Theorem

1 of [18] (see Theorem 2.4.17). Note that the state of vertices of Vi−1 in round t+ 1,

depends only in the state of vertices of Vi in the round t. We can then consider k

parallel consensus games on k copies of G, where in the i-th consensus game we set

the initial state of the vertices in Vi to their original initial state in the consensus

game, but set the state of all other vertices according to the goal state γ. Denote

by pi the probability of the i-th consensus game reaching a γ winning state. We can

then conclude that Pr(Sτ = γ | S0) =
∏k

i=1 pi.

We are left to show that pi = Θγ
i . For that end, over the i-th consensus game

define the random variable Xt = Θγ
j (St), where j = t+ i+ 1(mod k). For simpicity,

we introduce the boolean variable S̃t(v) := 1 if S(v) = γ(v) and 0 otherwise. We

show that the process (Xt)t≥0 is a martingale with respect to the sequence St. We

need to show that E(Xt+1 | St) = Xt. By linearity of expectation E(Xt+1 | St) =∑
v∈Vj+1

µ(v)E(S̃t+1(v) | St). Note that

E(S̃t+1(v) | St) =
∑
u∈Vj

hvuS̃t(u) (3.31)

and, by changing the order of summation, we get that:

E(Xt+1 | St) =
∑
u∈Vj

S̃t(u)
∑
v∈Vj+1

µ(v)hvu. (3.32)

Due to stationarity of µ and the fact that hvu is non-zero only for v ∈ Vj+1, we have

that
∑

v∈Vj+1
µ(v)hvu = µ(u), which implies that E(Xt+1 | St) = Xt.

Now, we use (a corollary of) Doob’s Optional Stopping Theorem (recall Theorem

2.4.15) together with the fact that 0 ≤ Xt ≤ µ(V ) = k to get

E(X0) = E(X∞ | X0) = µ(Vi)pi (3.33)

and this proves, using µ(Vi) = 1, that pi = Θγ
i , which concludes the result. �

Note that the theorem giving probabilities for bipartite graphs (Theorem 3.2.26)

is just a particular case of the result presented above in which each edge of the

undirected graph is replaced by two directed edges (one in each direction), and

so the gcd of all cycles is 2. That flexibility will later allow us to find a better

generalisation compared to the one in Section 3.2.4.

We can now go back to Problem 3.

66



42

v11

18

v12

21

v21

30

v22

9

v23

34

v31

10

v32

13

v33

3

v34

Figure 3.13: Game (
#»F 3, S0) with Influences of Each Node (Multiplied by 60 for

Readability).

Solution to Problem 3. Note thatG is 3-partite with partitions V1 = {v11, v12},
V2 = {v21, v22, v23}, and V3 = {v31, v32, v33, v34}. We calculate the (k-normalised)

stationary distribution µ of H to get

µ =
1

60
(42, 18︸ ︷︷ ︸

V1

, 21, 30, 9︸ ︷︷ ︸
V2

, 34, 10, 13, 3︸ ︷︷ ︸
V3

) (3.34)

Refer to Figure 3.13 for a copy of G with influences highlighted in each node. We

now apply Lemma 3.3.12 to get

Pr( ) = Pr (Sτ = γblue | S0) =
42

60
× 30

60
× 34

60
≈ 0.20

Pr( ) = Pr (Sτ = γred | S0) =
18

60
× 30

60
× 26

60
≈ 0.06

3.3.2 Weakly Connected Graphs

We have so far only explored strongly connected graphs in our analysis of syn-

chronous consensus games. In this section, we extend our results to any weakly

connected graph (see Definition 2.4.5). The particularity of graphs that are not

strongly connected is that some nodes might not influence the final outcome of a
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1 4 0 0

3 0 2 0 0

Figure 3.14: A Game (
#»F , S0) on a Weakly Connected Graph.

consensus game in any way. For example, in a star graph in which all edges point

towards the central node v, the consensus will be solely determined by v’s initial

colour. Recall that, according to Definition 3.3.2, a node with no out-degree main-

tains its initial colours for the entirety of the game.

Problem 4 (Consensus in a Weakly Connected Digraph). Consider the

game (
#»F , S0) depicted in Figure 3.14. The stationary distribution of its out-matrix

H is given by

µ =
1

5
(1, 4, 0, 0︸ ︷︷ ︸

V1

, 3, 0, 2, 0, 0︸ ︷︷ ︸
V2

). (3.35)

What is the probability of each opinion to win?

Recall that in the previous section we had a unique stationary distribution µ because

matrix H was irreducible (coming from the fact that G was strongly connected).

However, the graph in Problem 4 is not strongly connected. How can we know

that we have found the correct stationary distribution for such cases? Does having

µ(v) = 0 imply that v’s initial colour does not influence the game at all?

We will be able to fully understand how games in weakly connected graphs

behave by looking at the condensation graph of G.

Definition 3.3.13 (Condensation Graph of a Graph G) Let G = (V,E) be

a digraph. Its condensation is the digraph (K, E) such that K ⊆ P (V ) is the

set of strongly connected components (SCCs) of G and (K,K ′) ∈ E ⊆ K2 iff

[(∃v ∈ K) (∃u ∈ K ′) (v, u) ∈ E and K 6= K ′]. A source component is a compo-

nent with no in-degree. A sink component is a component with no out-degree.

Note that nodes with no out-degree form a SCC by themselves.

Example 3.3.14 (Condensation Graph). Consider the game from Problem 4

in graph G. Figure 3.15 represents the condensation graph of G.
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v11, v12, v21, v23

v24

v25

v13, v22 v14

Figure 3.15: Condensation Graph of Graph in Figure 3.14.

Example 3.3.14 hints that the sink SCC of G is the one that determines the re-

sult, since all other nodes direct or indirectly depend on what happens in partition

{v11, v12, v21, v23}. In the case that this partition reaches consensus, the rest of the

graph will follow eventually. This is evidenced by µ and the fact that µ(v) = 0 if

v /∈ {v11, v12, v21, v23}.
We are left with a final problem: what happens if there is more than one sink

SCC? Intuitively, we can see that, because they are independent, we would need

them all to reach consensus according to the same γ ∈ Γ in order to have consen-

sus in global game. The next proposition formalises this intuition and provides a

characterisation of the solution we are looking for.

Proposition 3.3.15 (Sink SCCs and Dimension of µ Eigenspace) Let H be

the (row-stochastic) out-matrix of a digraph G and (K, E) its condensation graph.

In these conditions, |sink(K)| is the dimension of the eigenspace associated to the

eigenvalue λ = 1, i.e., the eigenspace of the stationary distributions of H. Moreover,

µ(v) = 0 iff v /∈ sink(K) for any µ in the eigenspace of λ = 1.

Proof. First, note that, because H is stochastic, λ = 1 is an eigenvalue, and therefore

a stationary distribution exists. Let sink(K) = {K1, . . . , Kd} and let Hi be the out-

matrix of Ki, for 1 ≤ i ≤ d. Note that no edge leaves each Ki. Then, the out-matrix

of G can be written as

H =



H1 0 0 0

0
. . . 0 0

0 0 Hd 0

∗ ∗ ∗ M


(3.36)
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Where ∗ represent any entries and M is substochastic matrixxiv (otherwise M would

be the out-matrix of a sink SCC). Let µ̃i be the unique stationary distribution of

Hi (recall Remark 3.3.10). It is not hard to see that, for each i, 1 ≤ i ≤ d, the

row vector µi defined as µi(v) := µ̃i(v) if v ∈ Ki, and µi(v) := 0 otherwise, is a

stationary distribution of H. Thus, the dimension of the eigenspace of H associated

to λ = 1 is greater than or equal to d.

We finally need to show that, if µ is a stationary distribution of H, then µ(v) = 0

for v /∈ Ki, for all i. Let µ be a stationary distribution of H. Let the µ̃ be vector

formed by the last coordinates of µ, i.e., formed by the coordinates associated to

v /∈ Ki, for all i. Because values above M in Equation 3.36 are all 0, if µ̃ is non-

zero, it would be a stationary distribution of M . However, by Perron and Frobenius

Theorem (described in [12, Page 137]), we have that M , for being substochastic,

does not admit a stationary distribution. Therefore µ̃ is the zero vector, and thus

the dimension of the eigenspace of H associated to λ = 1 is d. �

The proposition above is useful if we want to standardise our vector µ for a weakly

connected graph G, with out-matix H. Each SCC Kj ∈ K of G can be seen as

a induced subgraph of G and thus will have a stationary distribution normalised

according to Definition 3.3.8. Then, we will have a sequence of µj, one for each Kj,

such that their entries are the influence of each node v if v ∈ Kj and null otherwise.

We then define a standard stationary distribution µ of H as

µ = µ1 + · · ·+ µ|sink(K)| (3.37)

Note that µ is indeed such that µH = µ because {µj}j form an eigenspace.

We finally address Question C6 by presenting the following theorem.

Theorem 3.3.16 (Probability of Consensus in Digraphs) Let (
#»F , S) on G be

a consensus game, and let γ ∈ Γ be a winning configuration. Let also (K, (E)) be

the condensation graph of G. Then the probability of consensus in γ given an initial

configuration S0 is given by

Pr(Sτ = γ | S0) =
∏
K∈K

k(K)∏
i=1

Θγ
i . (3.38)

xivA substochastic matrix is such that its rows sum to at most 1, with at least one row adding
up to a value strictly less than 1.
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Proof. We combine Lemma 3.3.12 with Proposition 3.3.15. For each SCC Kj of G

we apply Lemma 3.3.12 to get a stationary distribution and extending it to µj for

the entire graph G by having zeros in all coordinates µj(v) when v /∈ Kj. Because

all SCC act independently, we need all of them to converge to the same γ in order

to reach consensus. �

Remark 3.3.17. Note that the existence of state-loops on a given sink SCC does

not necessarily imply the existence of state-loops on the entire graph G. In fact, not

even the presence of state-loops in all sink SCCs is enough to characterise a global

state-loop. The final necessary condition depends on how the edges of G connect all

nodes in the graph to the SCCs. To be more precise, in order to always achieve a

state-loop configuration in losing games, our graph G must be of the following form:

all nodes v in non-sink SCCs must be such that all paths starting from v reach only

one sink SCC K, and the length of all paths from v to any reachable w ∈ K must be

equivalent modulo k(K). The size of the global loop will be equal to the minimum

common multiple of the set {k(K)}K∈K.

Solution to Problem 4. Probabilities of convergence are given by

Pr( ) = Pr(Sτ = γblue | S0) =
12

25
= 0.48. (3.39)

Pr( ) = Pr(Sτ = γred | S0) =
2

25
= 0.08. (3.40)

The probability for this game not reaching consensus is 0.44. For a more detailed

solution for this problem, see Example 4.4.11.

3.3.3 Another Small Generalisation

As in Section 3.2.4, we have assumed, for simplicity, that our nodes treat their

neighbours equally. The results and the proof remain essentially the same if we

require only that the probabilities of copying neighbours sum to one. Note that self

loops are accepted, and thus the model allows nodes to have a positive probability of

keeping their current colour. Thus, all theorems (and their proofs) remain the same

if we replace “row-normalised out-matrix H”, in Definition 3.3.2 by “row stochastic

adjacent matrix H”.

71



3.4 Summary of Results

In this chapter, we analysed synchronous generalised consensus games on graphs.

In particular, we were interested in the probability that these games fail to reach

consensus. These failures were characterised by state-loops in strongly connected

components of G. Here we revisit the sets of questions raised in the beginning of

sections and present their solutions.

B1: Losing configurations in undirected graphs have a positive probability of being

achieved for at least one initial configuration if and only if G is bipartite.

B2: Theorem 3.2.26 gives us the probabilities of goal configuration γ ∈ Γ to be

achieved. Results are also in Table 3.1.

B3: Table 3.1 summarises all upper and lower bounds found for the expected du-

ration of games on undirected bipartite graphs.

B4: Our analysis also concludes that any configuration other than consensus might

lead to an infinite loop in bipartite graphs. That reinforces our definition that

winning games are only the ones that already reached consensus.xv

C1: Examples of graphs that admit infinite loops of configurations of size 3 are

tripartite digraphs. (see Figure 3.12).

C2: Lemma 3.3.7 gives us the characterisation that only games of the form (
#»Fk, S0)

might enter a state-loop of size k.

C3: For games of the form (
#»Fk, S0), we can define a split function that takes config-

uration S0 as input and outputs k configurations, each one formed by copying

the colours of a different partition in S0 and colouring all the other partitions

according to a common given goal configuration γ ∈ Γ.

C4: Lemma 3.3.12 gives us the probability that a game (
#»Fk, S0) reaches consensus

in a given winning configuration γ ∈ Γ.

C5: Games on weakly connected digraphs might admit losing games with no state-

loops on G (see Remark 3.3.17), although loops might be present in sink SCCs

of G.

xvNote that the same is not true for losing games if we consider more than 2 colours and have no
colour present in both partitions. In these situations, the game has no chance of being a winning
game at a point in which partitions might not yet be all monochromatic.
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C6: Theorem 3.3.16 presents the probability of a given winning configuration γ ∈ Γ

to be achieved in a game (
#»F , S0) on a weakly connected graph G.
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Chapter 4

Team Persuasion Games

4.1 Introduction and Motivation

Argument-based persuasion dialogues provide an effective mechanism for agents to

communicate their beliefs and reasoning in order to convince other agents of some

central topic argument [60]. In complex environments, persuasion is a distributed

process. To determine the acceptability of claims, a sophisticated agent or audience

should consider multiple, possibly conflicting, sources of information that can have

some level of agent-hood. In this chapter, we consider teams of agents that work

together in order to convince some audience of a topic argument. While strategic

considerations have been investigated for one-to-one persuasion (e.g. [73]), and for

one-to-many persuasion (e.g. [36]), the act of persuading as a team is a largely

unexplored problem.

Consider a political referendum, where two campaigns seek to persuade the gen-

eral public of whether or not they should vote for or against an important proposi-

tion. Each campaign consists of separate agents, where each agent is an expert in

a single argument. For example, an environmentalist might argue how a favourable

outcome in the referendum would reduce air pollution. Each agent can assert its ar-

gument to the public, and each agent is aware of counterarguments that other agents

can make. However, no agent can completely grasp all aspects of the campaign, for

example the environmentalist may be ignorant of relevant economic issues. If the

agent thinks there are no counterarguments to its argument, then it should keep

asserting its argument, as it is beneficial for its team. While each agent wishes to

further their team’s persuasion goal, they do not want to risk having their argument

publicly defeated by counterarguments.

From this example, we consider a team of agents to have three key properties that
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differentiate them from an individual agent when persuading. Firstly, each agent

may have localised knowledge which is inaccessible and non-communicable to other

agents in the same team. Secondly, agents may not be wholly benevolent, potentially

acting in their own interest before that of their team; reconciling this conflict between

individual and team goals makes strategising more complex. Thirdly, there is no

omniscient or authoritative agent able to determine the actions of the other agents

in the team, meaning each agent must act independently, making the problem a

distributed one. This problem is distinct from that of an individual persuader, and

therefore requires a different approach to model the outcomes of persuasion.

We approach the problem of modelling team persuasion by exploring a particular

team persuasion game, in which two opposing teams attempt to convince an audience

of whether some central issue, termed the topic, is acceptable or not. For simplicity,

we assume that each agent in a team is individually responsible for one argument

in the domain, being strongly associated to that particular argument in audience’s

perception. As such, each agent must independently decide whether to actively

assert its argument to the audience, or to hold back from asserting its argument.

The persuasion game proceeds in rounds, where in each round an agent decides

whether to assert its argument. An agent can decide to stop asserting its argument

even if in previous rounds they had asserted it. Teams aim to reach a state in which

the topic is acceptable or unacceptable according to the audience (depending on

whether the agent is defending or attacking the topic), and in which no individual

agent will change its decision of whether to assert (reinforce) its argument; in such

a state the topic is guaranteed to retain its (un)acceptability indefinitely. When

deciding whether to assert its argument, an agent takes into account whether the

other agents are currently asserting their arguments. It aims to have a positive effect

on its team’s persuasion goal, but may also wish to avoid having its own argument

publicly defeated (since this may, for example, negatively affect their public standing

or reputation). When deciding whether to assert its argument, the agent must

therefore balance the potential positive effect of this on its team’s persuasion goal

with the risk of its own argument being publicly defeated.

The audience determines whether they find the topic argument acceptable in a

particular round by considering the set of arguments that are currently asserted.

Note that the audience has no knowledge of which arguments were asserted in pre-

vious rounds; we consider the audience to be memoryless, only considering the

arguments that are asserted in the current round.
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Michael Gove:

“We have

heard enough

from experts”

YouGov:

“Polls show

most people

think hospital

waiting times

will fall if

UK leave”

Alistair

Heath:

“Financial

institutions

are often

wrong and

therefore un-

trustworthy”

The UK

should leave

the EU

Richard

Dawkins:

“The

public is

ill-informed,

experts know

more so we

should listen

to them”

Financial

Times:

“Financial

institutions

have many

experts and

so are often

correct”

Bank of

England:

“Inflation

will fall to

dangerous

levels if

we leave”

Treasury:

“The value

of sterling

will fall if

we leave”

NHS: “Au-

thoritative

academic

studies show

that leaving

the EU will

cause hospital

waiting times

to increase”

Leave; arguments for the topic

Remain; arguments against the topic

Topic

Figure 4.1: An instantiated example of a bipartite argumentation framework. A
Possible Debate Prior to the 2016 Vote for Britain to Leave the European Union.
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For example, consider the arguments in Figure 4.1, in which the directed edges

represent conflict between arguments. The topic argument in this example is that the

United Kingdom should leave the European Union, with three arguments defending

the topic and five arguments attacking the topic (some indirectly). Each argument

is controlled by a particular individual or institution. The agents are organised into

two teams, those defending the topic (the Leave campaign), and those attacking

the topic (the Remain campaign). Consider the argument that might be asserted

by the Treasury: the Treasury is motivated to assert their argument as it directly

attacks the topic argument (which they are seeking to dissuade the audience of).

If they are aware of the argument possibly asserted by Alistair Heath, they may

decide not to assert their own argument to avoid the risk of being publicly defeated.

The public decides whether leaving the European Union is acceptable depending on

which arguments are currently being asserted.

The perceived acceptability of the topic of the dialogue can also be of interest

to the audience, who are not themselves interlocutors, but are observing the course

of the persuasion dialogue. Previous work has considered how the values of an

audience can determine how the interlocutors should argue in order to be persuasive

(e.g. [5]). Though unable to assert arguments themselves, we consider how external

agents may be able to influence the dialogue towards a preferred outcome through

bribing the interlocutors. We use the term bribery as the offer of an incentive to an

interlocutor so that the interlocutor behaves in a way that increases the likelihood

that the dialogue will result in that audience member’s preferred outcome.

Here, potential bribers must balance the increase in utility, which we will for-

malise as the increase in the probability for a favourable outcome, against the loss

of utility through the cost of the bribe. This raises strategic questions for them,

for example, which interlocutors should be bribed? How should their behaviour be

changed? How much incentive should be offered? We begin by analysing the deci-

sions to be made when there is only one briber, and then expand to a two-briber

scenario.

The contribution of this chapter is the application of Flag Coordination Games

to model public debates of this form. We are also introducing the concept of bribery

in Flag Coordination Games. We answer the following:

D1 How do we formalise the situation where one team has definitively

won? We define such a situation to be a state where agents that are as-

77



serting their arguments will continue to do so, and agents not asserting their

arguments will never do so.

D2 What is the probability that a particular team (e.g. the Remain

Campaign) has definitively won? We prove an expression for this proba-

bility, given the initially asserted arguments and the attacks between them.

D3 Single briber: We introduce an external agent - the briber - who at a given

point in the dialogue can sway any interlocutor to start or stop asserting their

argument. Assuming that the briber acts to maximise their expected utility,

which interlocutor should be bribed, and how much should the briber be willing

to pay?

D4 Two bribers: We now consider two bribers who at a given point in the

dialogue simultaneously make a decision about which interlocutors they will

bribe. How should each briber amend the answer to the above question if there

is another such briber?

In Section 4.2 we provide the necessary Argumentation Theory background. In

Section 4.3 we define a team persuasion game on a bipartite abstract argumentation

framework [25], which is a special case of a Flag Coordination Game (in digraphs)

seen in Chapter 3. In Section 4.4, we use our framework and results from Chapter 3

to answer Questions D1 and D2. Finally, in Section 4.5, we answers Questions D3

and D4. We discuss related work in Section 4.6, and conclude in Section 4.7.

4.2 Argumentation Theory

In this section we present our model of team persuasion games. We begin by briefly

reviewing the relevant aspects of abstract argumentation [25].

Definition 4.2.1 An argumentation framework is a directed graph (digraph)

AF := 〈A,R〉 where A is the set of arguments and R ⊆ A×A is the attack relation,

where (a, b) ∈ R denotes that the argument a attacks the argument b.

Figure 4.1 is an example argumentation framework. We will only consider finite,

non-empty argumentation frameworks, i.e. where A 6= ∅ is finite. Given an argu-

mentation framework, we can determine which sets of arguments (extensions) are

justified given the attacks [25]. There are many ways (semantics) to do this, each
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based on different intuitions of justification. We do not assume a specific semantics

in this chapter, only that all agents and the audience use the same semantics.

Definition 4.2.2 Let AF be an argumentation framework. The set Acc(AF ) ⊆ A

is the set of acceptable arguments of AF , with respect to some argumenta-

tion semantics under credulous or sceptical inference. An argument a is said to be

acceptable with respect to AF iff a ∈ Acc(AF ).

We now define a refinement of the concept of neighbourhood for directed graphs,

taking in account the direction of the attacks.

Definition 4.2.3 Let AF = (A,R) be an argumentation framework and a ∈ A.

Define the set of arguments attacked by a as a+ := {b ∈ A | (a, b) ∈ R}, and

the set of arguments attacking a as a− := {b ∈ A | (b, a) ∈ R}.

4.3 Team Persuasion Games

We model team persuasion as an instance of a Flag Coordination Game over an

argumentation framework. As we have seen before in this dissertation, such models

have been studied in the context of the adoption of new technology standards,

voting and achieving consensus, and also in the context of failure of consensus in

synchronous protocols. But what exactly are we looking for and how can we frame

it as a Flag Coordination Game? We will gradually define terms in what we will

call a Team Persuasion Game. More formally, FTP = 〈G,X, T,Γ, φ, β, ψ, σ,A〉. For

now, we say that G = AF .

Definition 4.3.1 A team persuasion framework is a tuple given by FTP =

〈AF,X, T,Γ, φ, β, ψ, σ,A〉. Let AF = (A,R) be an argumentation framework, where

the nodes represent arguments, each owned by distinct agents.i Let φ : A → P(A)

be the visibility function, i.e. φ(a) ⊆ A is the set of arguments that a can see.

Let X := {on, off, topic} denote the set of opinions, or colours in this game.

Let t ∈ A be a distinguished argument called the topic (argument). Define

β : A× T → P(X) as the function that associates a set of possible colours, or flags,

to an argument a at a given time. Unless otherwise state, we fix β over time for a

given a. We then define β(t) := {topic} and (∀a ∈ A \ {t}) β(a) ∈ {on, off}.
Let S := XA be the space of functions that assigns a state to each argument,

which defines a configuration. Let Γ ⊆ S be the set of goal states. For a ∈ A
iAs each argument is owned by a distinct agent, we use the terms interchangeably.
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let αa be the decision algorithm of agent a, that takes as input T , β, ψ, Γ, and

φ and outputs S(a) ∈ X, for S ∈ S. We define A as the set of algorithms for all

a ∈ A.

The team persuasion framework is such that each agent asserts a single argument,

which can attack and be attacked by other asserted arguments, so it is isomorphic

to an argument framework. Each of the agents can assert their argument (turning

it on) or not assert their argument (turning it off ). The topic is a special argument

that is labelled topic throughout the duration of the game.

Definition 4.3.2 (Team Persuasion Game) Let FTP denote a team persuasion

framework. Let T be a discrete time set. Let {S}t∈T , be a random variable that

describe the configurations of this game over time. We call S0 the initial con-

figuration, and St is the tth configuration. The update rule is such that for all

a ∈ A \ {t}, St+1(a) ∈ X is the output of αa given St(b) ∈ X for all b ∈ φ(a) and

possibly β(a). Further, (∀t ∈ T )St(t) := topic. Arguments make their decision at

the end of round t and change at the start of round t + 1. A team persuasion

game with initial configuration S0 is the tuple (FTP, S0).

Initially, the agents start in some initial configuration defined by whether each agent

asserts its argument. In each subsequent round, the agents decide using their own

decision procedure whether to assert or stop asserting their argument in the next

round, given the actions of other agents they see.

Both teams are presenting their arguments to an audience who are assumed to

be memoryless across rounds and can only see the topic and the arguments that are

being currently presented. This prompts the following definition.

Definition 4.3.3 Given a Team Persuasion Game, the set of arguments that

are on in round t is Aon
t := {a ∈ A | St(a) = on}∪{t}. The induced argument

framework is AF on
t := 〈Aon

t , R
on
t 〉, where Ron

t := R ∩ [Aon
t × Aon

t ].

The audience will therefore see a sequence of argument frameworks (AF on
t )t∈t as the

teams debate each other about the topic. The audience can determine which team

is winning based on whether the topic is justified in a given round.

Definition 4.3.4 In a given round t ∈ t of a team persuasion game, we say that the

team of defenders are winning iff t ∈ Acc (AF on
t ) iff the team of attackers

are not winning.
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In each round the acceptability of the topic may change, and hence the winner can

change. We are interested in definitively winning states, as defined in D1 in Section

4.1. We explore the existence of such states in Section 4.4.

Since we are modelling the arguments between two teams, each trying to per-

suade or dissuade an audience of the topic, we specialise to bipartite argumentation

frameworks because no agent should attack an argument of another agent in its own

team. Further, the framework is weakly connected because all arguments asserted

are relevant to the debate. Further, we assume that every argument has a coun-

terargument, and that the topic is not capable of defending itself, so it does not

directly attack any argument.

Definition 4.3.5 Team persuasion frameworks FTP = 〈AF,X, T,Γ, φ, β, ψ, σ,A〉
have an underlying argument framework AF = (A,R) that is bipartite and weakly

connected, with the requirements that (∀a ∈ A) a− 6= ∅ and t+ = ∅.ii A team’s

goal is to make the topic acceptable or unacceptable to the audience, depending on

whether they are the team for or against the topic, respectively. The teams each form

their own partition of the bipartite AF , which we denote A = Pfor∪Pag such that the

two ⊆-maximal independent sets are Pfor ∪ {t} and Pag, where partition Pfor is the

team that is for the topic t and Pag is the team that is against t.iii As a digraph,

we assume that this AF is weakly connected, where all arguments are attacked by

some other argument, and t attacks no argument.

More formally, we have that the set of goal states is Γ := {γfor, γag}, where

γfor(Pfor \ {t}) = {on} and γfor(Pag) = {off}, and γag(Pfor \ {t}) = {off} and

γag(Pag) = {on}.iv

Intuitively, these requirements formalise the idea that all arguments that can be

put forward can be criticised, and are relevant to the topic. As each argument is

being asserted by a distinct agent who is an expert in that argument, we will use

the terms agent and argument interchangeably.

The goal states indicate that each team has the goal of unilaterally asserting their

arguments and making the opposing team unilaterally withdraw their arguments.

See Figure 4.2 for an example of γfor, and Figure 4.3 for an example of γag. In our

figures, white (resp. black) nodes are arguments that are on (resp. off ).

iiRecall that for an AF〈A,R〉 where a, t ∈ A, a− := {b ∈ A | (b, a) ∈ R}, and t+ :=
{b ∈ A | (t, b) ∈ R}.

iiiWe assume that Pfor, Pag 6= ∅, so A ∪ {t} has at least 3 arguments.
iv Recall that for a function f : X → Y and A ⊆ X the image set of A under f is f(A) :=

{y ∈ Y | (∃x ∈ A) f(x) = y}.
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Note that arguments that are against the topic do not have to necessary attack

t directly. Moreover, since we do not require AF to be strongly connect, there may

not be a path from every argument to the topic. In case there is one, the parity of

its length will be determined by the partition the given agent is: path of even length

for a ∈ Pfor and odd length for a ∈ Pag.

v11 v12 v13 t

v21 v22 v23 v24 v25

Figure 4.2: The defenders’ goal state
γfor; all defenders are asserting their ar-
gument.

v11 v12 v13 t

v21 v22 v23 v24 v25

Figure 4.3: The attackers’ goal state
γag; all attackers are asserting their ar-
gument.

4.3.1 The Scheduler and Agent Visibility

It is somehow unrealistic to suppose that agents can only see their neighbours, as

we did for problems studied in Chapter 3. If a member of the audience may see

the entire argumentation framework, why cannot debaters? We will then assume

that agents participating in the debate have visibility given by φ(a, t) = A, for all

a ∈ A \ {t} and all t ∈ T . Which does not mean that they will equally consider all

nodes when making their own decision of being off or on. In next section (Section

4.3.2), we will better detail how agents can differently use the various layers of their

visibility.

The scheduler of a team persuasion game can be either such that nodes act

synchronously or such that they act asynchronously.

(i) The scheduler σ is such that agents act synchronously. This models situations

in which agents are expected to act somehow together (e.g. from one day to

the next). Formally, for all t ∈ T , we have σ(t) = A.

(ii) The scheduler σ is such that agents act asynchronously chosen by the scheduler

uniformly at random. This models situations of more dynamic public debate,

for example, in which agents revise their state independently of the other

agents in the network. Formally, for each a ∈ A and for all t ∈ T , we have

σ(t) = a, with probability |A \ {t}|−1.
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In the sections that follow, we are going to provide solutions for both cases. We

can already observe that losing configurations are only possible with a synchronous

scheduler.

4.3.2 The Agents’ Decision Algorithm

Although agents can see the entire argumentation framework AF , it is reasonable

to expected that an agent might give higher importance to an immediate attacker

rather than to an indirect distant one. They also desire to make the topic accept-

able/unacceptable to the audience (the goal of the team), at the same time as not

having their argument publicly defeated (the goal of the individual). An individ-

ual does not want to have its argument publicly defeated (that is, its argument is

asserted but is not considered acceptable by the audience in the current round),

as it is somehow a challenge to the agent’s authority. An agent can estimate how

likely it is that their argument will be publicly defeated in the short- or long-run by

considering different levels:

Level 1: Agents take into account solely their (immediate) attackers, i.e., the set

a− := level1(a−), with an arbitrary distribution of weights on each attacking

argument. We denote the sum of weights on Level 1 by w1.

Level 2: Agents take into account the set of attackers of their attackers, i.e., the

set (a−)− := level2(a−). We denote the sum of weights on Level 2 by w2.

...

Level L: Agents consider the set levelL(a−) := level2(a−)−. We denote the sum

of weights on Level L by wL.

Definition 4.3.6 Given an agent a ∈ A\{t}, let L be the highest integer for which

wL > 0, in this conditions we say that a is a L-agent. Moreover, we denote the

weight agent a assigns to agent b as w(a→ b).

Although different agents in the same game may have different assignment of weights

to other agents, as well as consider different levels of neighbourhood, we assume, for

a given agent a, weights maintain unchanged for the duration of the game.

Although weights may be assigned freely by each agent, it is expected that

the weight on each agent b ∈ levelL−1(a−) takes into account the weight of their

attackers (b)− ⊂ levelL(a−).
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The state of agents in even and odd levels transmit opposite information to agent

a. For odd levels, agent a can estimate how likely it is that their own argument is

successful by how many attacking arguments the agent could see are being asserted:

the more attackers that are asserted, the more likely one of the attacks will be

successful (either directly or indirectly), and therefore the higher the chance its

argument is defeated. On the other hand, for even levels, agent a can estimate how

likely it is that their own argument is successful by how many attacking arguments

the agent could see are being asserted: the more arguments that are asserted, the

more likely one of the attacks will be successful in defeating an argument from the

other team, and therefore the higher the chance a is accepted.

• Altruistic: An agent which is only motivated by the team goal of making

the topic (un)acceptable would always assert its argument a, regardless of the

state of the arguments up to levelL(a−). We call such selfless agents altruistic.

• Timid: An agent which is only motivated by its individual goal of not having

its argument being publicly defeated would never assert its argument, regard-

less of which arguments up to levelL(a−) are being asserted. If the agent

never asserts its argument, it can never be defeated, and therefore will always

achieve its individual goal.

• Balanced: An agent motivated by both factors must find a way to balance

these two goals. Such an agent is certain to assert its argument when none of

its attackers in up to levelL(a−) are asserted and all of its defenders in up to

levelL(a−) are, because the chance of a successful defeat is minimal. Similarly,

the agent is least likely to assert when all of its attackers in up to levelL(a−)

are asserted and all of its defenders are not, because the chance of successful

defeat is maximised.

In this chapter, we will consider our analysis based on balanced agents, leaving

the rest for future work. We define the probability of the agent, based on its weights

given across all levels, not asserting its argument when all of its attackers are on and

defenders are off as 1, and conversely the probability of the agent not asserting its

argument when all of its attackers are off and defenders as 0. We provide a formal

definition as follows.

Definition 4.3.7 Let FTP be a team persuasion framework on an argument frame-

work AF as defined in Definition 4.3.5. An agent a ∈ A \ {t} is balanced iff αa
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v11 v12 v13 t

v21 v22 v23 v24 v25

Figure 4.4: An Initial Configuration (FTP, S0) for the example in Figure 4.1.

(Definition 4.3.1) is defined as follows. Denote wl(on) and wl(off) as the sum of the

weights of agents in Level l that are currently on and off, respectively. For t ∈ T ,

αa outputs St+1(a) = off with conditional probability

Pr (St+1(a) = off | St) =

∑L
l odd wl(on) +

∑L
l even wl(off)∑L

l=1 wl

∈ [0, 1]. (4.1)

Further, αa outputs St+1(a) = on given St with probability 1−Pr (St+1(a) = off | St).

We will assume that for all a ∈ A \ {t}, a is balanced.

Example 4.3.8. Consider Figure 4.4, which represents the situation in Figure 4.1

as a team persuasion framework with the initial configuration where the on argu-

ments are v12, v13, v22, and v23, with the rest of the arguments being off. Consider

the argument v23. Consider that it is a 1-agent, with w1 = 1 and uniformly dis-

tributed among its immediate neighbours (set v2
−
3 ). It is attacked by v11 and v12,

which are respectively off and on. Therefore, the probability of v23 remaining on in

the next round is 1
2
.

4.4 Reaching State-Stable Configurations

From the setup described in Section 4.3, we can now more formally define Questions

D1 and D2 as follows.

D1’ Are there any states of the arguments (on or off ) in which no agent is going to

change their state in any future round according to αa as defined in Equation

4.1? We call such a state a state-stable configuration.v

D2’ What is the probability of a particular team winning, i.e. achieving a state-

stable configuration, where the topic is either acceptable or unacceptable?

vThis is to avoid confusion with the notion of stable semantics [25].
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4.4.1 State-Stable Configurations

We now answer Question D1, which concerns state-stable configurations.

Definition 4.4.1 A state-stable configuration is a function s ∈ S such that, if

attained at round t ∈ T of the team persuasion game following Equation 4.1, will

also be the state of the game in all subsequent rounds.

This formalises the intuition that no agent is going to change their state in any

future round once a state-stable configuration is reached.

We now identify the state-stable configurations which are desirable for each team.

A state-stable configuration is considered a winning state by a team only if the topic

has the desired acceptability in that state.

Proposition 4.4.2 Given the setup of Section 4.3, the two goal states, γfor and γag

(Definition 4.3.5) are the only state-stable configurations.

Proof. To show that γfor is a state stable configuration, notice that in round t ∈ T ,

if γfor is attained, then for a ∈ Pfor \ {t}, the probability (Equation 4.1) a will be off

in round t+ 1 is zero, because a− ⊆ Pag and all attackers of a are off. Therefore, a

will still be on in round t+ 1. Similarly, we can show that the probability of being

off for all b ∈ v2 in round t + 1 is one. Therefore, in round t + 1, the state is still

γfor. A similar argument to this proves that if γag is attained in round t, then it will

also be the state for round t+ 1. By induction over i, γfor and γag satisfy Definition

4.4.1.

We now show that both γfor and γag are the only state stable configurations.

Assuming the contrary. Then, we have a configuration different from γfor and γag in

which no argument has a positive probability of changing their state. In this case,

we would have two nodes, say v11 and v12, in the same partition, say Pfor, that have

different colours (otherwise we have γfor and γag). Since G is weakly connected, there

is a path that ignores edges’ directions from v11 to v12. This path has even length

and, therefore, since v11 to v12 are different, there must be at least two consecutive

nodes in this path with the same colour. One it attacking the other, therefore,

the attacked one has a positive probability of changing their colour. We have a

contradiction. Thus γfor and γag must be the only state-stable configurations in a

bipartite AF . �
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4.4.2 Probabilities for State-Stable Configurations

We now answer Question D2 for synchronous and asynchronous games. We first

translate our team persuasion game into a consensus game . Recall that, in a

consensus game, the update is such that in round t+ 1, every digraph node a copies

the colour of a randomly (uniformly or not) sampled neighbour in a+, rather than

adopting the opposite colour as in Equation 4.1.

Note that this procedure is partially necessary but partially not. Although we do

need to reverse the edges, and take in account weights assigned from one argument

to another, in order to frame this as a generalised consensus game, we did not need

to transform an anti-consensus into a consensus game. The reason is because both

are generalised consensus games and our analysis in Chapter 3 takes them all into

account. The reason why this change will be made is so that visualisation becomes

easier throughout the remainder of this chapter.

4.4.2.1 The translation to a consensus game

The translation from proper colouring a bipartite graph into consensus is straight

forwards. The procedure is as described now in detail.

We consider the finite, weakly connected, bipartite digraph G = (V,E) which

is the induced subgraph of 〈A,R〉 with nodes := A \ {t}. For each configuration

s : A \ {t} → S, where S = {on, off} we define a colouring function s : V → X ′,

where X ′ := {0, 1} such that

s(a) := 1 if [(a ∈ Pfor and s(a) = on) or (a ∈ Pag and s(a) = off)] . (4.2)

s(a) := 0 if [(a ∈ Pfor and s(a) = off) or (a ∈ Pag and s(a) = on)] . (4.3)

Usually, we intuitively associate the colour 1 with the state on and similarly, 0 with

off, but notice how this association is swapped for a ∈ Pag. Thus, the correspondence

s 7→ s is well-defined and bijective.

Note that, as before, we use notation s for a possible colouring when it is not

part of a random process, whereas S, although also a colouring drawn from the exact

same set S, will be used when referring to a configuration indexed by time. That

way we can denote situations such as “let s = (0, 0, 1, 1, 0, 1, 0, 1) be a colouring of

a graph G. Consider a game that starts with that configuration, i.e., S0 = s.”

Example 4.4.3. Consider the digraph in Figure 4.4. Given this initial configura-

tion S0 such that S0 (v11) = off, S0 (v12) = on... etc. (see Example 4.3.8), we get a
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corresponding S0 where S0 ({v12, v13, v21, v24, v25}) = {1} and S0 ({v11, v22, v23}) =

{0}, by Footnote iv. If we arrange V = {v11, . . . , v13, v21, . . . , v25}, we can represent

S0 as the boolean vector (0, 1, 1, 1, 0, 0, 1, 1).

Given this translation of a proper colouring game to a consensus game, how can we

translate Equation 4.1 to give the one-step updating process for St to St+1? The

intuition is that starting with the adjacency matrix M of G, which contains infor-

mation on which node points to (attacks) which other node, we take the transpose

MT , which contains information on which node is pointed at (attacked by) which

other node. We then row normalise MT to capture the consensus game where each

node a copies the colour of a randomly and (not necessarily) uniformly sampled

neighbour of a−. Recall the more formal Definition 2.4.4, in Chapter 2.vi

Definition 4.4.4 (Weighted Adjacency Matrix) Let
(
FTP, S0

)
be the consen-

sus version of a team persuasion game as in Definition 4.3.2 with balanced agents

on a bipartite AF = (A,R) with initial colouring S0. Recall that w(a → b) is the

weight assigned by a to b. We are going to define the matrix HTP as the weighted

adjacency matrix of game
(
FTP, S0

)
as follows: for every pair of arguments a, b),

we have

(HTP)ab =
w(a→ b)∑

a′∈A w(a→ a′)
(4.4)

Note that HTP is always a stochastic matrix. We denote GTP the digraph associated

to HTP.

Note that matrix HTP represent the probability that a chooses an argument b to copy

its (consensus-version) state. We can now work with graph GTP almost exactly the

same as with digraphs in Theorem 3.3.16 presented and proven in Chapter 3. The

only difference has to do with the position of the topic argument in the condensation

graph. In order to do that, we recall the definition of the condensation (di)graph of

a given graph (Definition 3.3.13) by an examplevii.

Example 4.4.5. The condensation of Figure 4.4 is Figure 4.5. The only source

component is {v11, v12, v21, v23}. If we consider the consensus version of the same

game, we have a condensation graph as in Figure 3.15 from Chapter 3.

viIn the context of team persuasion games, we write all nodes in Pfor first and then the nodes
in Pag, as in Example 4.3.8.

viiNote that this example is essentially the same as the one provided in Problem 4, with just its
edges reversed.
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v11, v12, v21, v23

v24

v25

v13, v22 t

Figure 4.5: Condensation Graph of Figure 4.4, Showing Strongly Connected Com-
ponents.

Remark 4.4.6. Note that the condensation graph does not change when adding

the weights of different layers of attackers to each of the arguments in the framework.

That is because no path from a to b was created if it did not exist before.

4.4.2.2 Probabilities in Synchronous Games

The following theorem (which is just a slight generalisation of Theorem 3.3.16)

answers Question D2 with an analytic expression of the probability of a particular

team winning for synchronous games. Intuitively, we first look at the condensation

of a given bipartite AF (which is the same as the one of GTP but with the edges

reversed). Since source components (resp. sink components for GTP) are not going

to be influenced by any external argument, the probability of them reaching either

one of the state-stable configurations is independent of the eventual state of the rest

of the network. Thus, we need all source SCCs (resp. sink SCCs in GTP) to converge

to the same state-stable configuration, otherwise a global state-stable configuration

will not be reached. Finally, in order to calculate the probability of either the

defender or the attacker to win in each source SCC, we find each individual agents’

influence on the network.

In sum, we are looking at the following differences when compared to our analysis

in Chapter 3.

(i) Source SCCs in Team Persuasion Games play the role of Sink SCCs in gener-

alised consensus games. That is because agents decide on their colours based

on incoming edges, and not outgoing ones. However, if we use graph GTP, we

are back into considering only Sink SCCs.

(ii) Not all Source SCCs are important for the final consensus given that only the

ones that lead to the topic are to be considered.

Definition 4.4.7 Let K = {{t}, K1, . . . , Km} be the set of SCCs of AF (for some

m ∈ N+), where {t} is the component that contains only the topic argument. We

89



also define sourceK ⊆ K as the set of source SCCs in the condensation of AF .

Let K{t} ⊆ sourceK denote the set of SCCs for which there is a E-path in the

condensation of AF to {t}.

Proposition 4.4.8 Let
(
FTP, S0

)
be the consensus version of a team persuasion

game as in Definition 4.3.2 with balanced agents on a bipartite AF = (A,R). Then,

this game admit losing configurations if and only if each strongly connected compo-

nent K ∈ K{t}, the subgraph of GTP induced by K is bipartite.

Proof. The proof is immediate by observing that if GTP is bipartite, then

k(GTP(K)), i.e., the greatest common divisor of the length of all cycles in the sub-

graph of GTP induced by each K ∈ K{t}, is strictly greater than 1. We then apply

Lemma 3.3.7. �

Remark 4.4.9. Note that GTP is bipartite if and only if wi = 0 for i even and for

every a ∈ A.

The following theorem generalises Theorem 3.3.16 in order to take into account only

nodes that can directly or indirectly influence the topic argument.

Theorem 4.4.10 (Probabilities in Team Persuasion Games) Let
(
FTP, S0

)
be the consensus version of a synchronous team persuasion game as in Definition

4.3.2 with balanced agents on a bipartite AF = (A,R) with initial colouring S0.

Let HTP be the weighted adjacency matrix of game
(
FTP, S0

)
, and GTP the digraph

associated to HTP.

Each set K ∈ K{t} has a value k that stands for the greatest common divisor

(gcd) of the lengths of all cycles in K. This generates a k-partite graph with par-

titions {K1, . . . , Kk} as in Proposition 3.3.5 . Let µ be a stationary distribution of

HTP, normalised such that, for each SCC K of GTP we have
∑

a∈K µ(a) = k(K)

Considering that τ stands for the duration of this game, we have thatviii

Pr
(
Sτ = γfor

∣∣ S0

)
=

∏
K∈K{t}

k∏
i=1

(∑
a∈Ki

µ(a)S0(a)

)
. (4.5)

viiiWe have abused notation here: we have considered γfor to be a state configuration not on the
entire AF , but just on the subgraph induced by the arguments that have a path to the topic. In
other words, we exclude arguments that do not even indirectly influence the acceptability of the
topic.
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Example 4.4.11. Consider the synchronous game on the bipartite AF = (V,E)

in Figure 4.1 and S0 as in Figure 4.4. Here, all agents a ∈ A \ {t} are 1-agents

with w1 = 1 uniformly distributed across the set a−. The condensation graph can

be seen in Figure 4.5, so K = {{t}, K1, K2, K3, K4}, where K1 = {v11, v12, v21, v23},
K2 = {v13, v22}, K3 = {v24} and K4 = {v25}. K1 is the only source component.

Since K1 (indirectly) influences the acceptability of the topic, we have K{t} = {K1}.
We now need to evaluate µ, a stationary distribution of the matrix HTP. Then, we

have

µHTP = µ⇔ µ


0 0 1 0

0 0 1
2

1
2

0 1 0 0
1
2

1
2

0 0

 = µ⇒ µ =
1

5
(1, 4, 3, 2). (4.6)

Note that k = 2. We now use the initial configuration S0 and the generalised

consensus version of it, S0, according to Equations 4.2 and 4.3. We have S0(v11) = 0,

S0(v12) = 1, S0(v21) = 1, S0(v23) = 0, therefore, by Theorem 4.4.10, we have

Pr
(
Sτ = γfor

∣∣ S0

)
=

12

25
= 0.48. (4.7)

Therefore, the probability of the topic being accepted is 0.48. Analogously, the

probability of the topic being rejected is given by

Pr
(
Sτ = γag

∣∣ S0

)
=

2

25
= 0.08. (4.8)

The probability for this game not reaching a state-stable configuration is 0.44.

4.4.2.3 Probabilities in Asynchronous Games

For asynchronous games, we do not have losing configurations. That comes from

the fact that now the only absorbing states are the (generalised) consensus ones.

We are going to use a result from linear voting models [18, Theorem 5] that says

that the mean matrix for asynchronous consensus games is given by

Ha =
n− 1

n
I +

1

n
HTP (4.9)

Here n = |GTP| = |A|, and I denote the (n×n) identity matrix. It is not hard to see

that the mean matrix should be given by Ha: at each round, there is a probability

of n−1
n

that a given agent is not chosen by the scheduler, and thus simply keeps

its colour. Note that this is not the same as synchronous game in a digraph with

adjacency matrix given by Ha, because in that case we could potentially have more

than one node acting at the same time. That is why we used [18, Theorem 5].
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Theorem 4.4.12 Let
(
FTP, S0

)
be the consensus version of a asynchronous team

persuasion game as in Definition 4.3.2 with balanced agents on a bipartite AF =

(A,R) with initial colouring S0. Let HTP be the weighted adjacency matrix of game(
FTP, S0

)
, and GTP the digraph associated to HTP. Then,

Pr
(
Sτ = γfor

∣∣ S0

)
=

∏
K∈K{t}

(∑
a∈K

µ(a)S0(a)

)
. (4.10)

Proof. It is enough to note that although the eigenvalues differ, the eigenvectors (in

particular, the stationary distribution) of Ha and HTP are the same. �

As an illustration of the effect of asynchronicity, we are solving for the same AF .

Example 4.4.13. Consider a game as described in Example 4.4.11 with the differ-

ence that now agents act asynchronously. Let us check that µ of Ha is indeed equal

to the one given in Equation 4.6.

µHa = µ⇔ µ


3
4

0 1
4

0

0 3
4

1
8

1
8

0 1
4

3
4

0
1
8

1
8

0 3
4

 = µ⇒ µ =
1

10
(1, 4, 3, 2). (4.11)

We have S0(v11) = 0, S0(v12) = 1, S0(v21) = 1, S0(v23) = 0, therefore, by Theorem

4.4.12, we have

Pr
(
Sτ = γfor

∣∣ S0

)
= 0.7 (4.12)

Therefore, the probability of the topic being accepted is 0.7. Analogously, the

probability of the topic being rejected is given by

Pr
(
Sτ = γag

∣∣ S0

)
= 0.3 (4.13)

4.5 Bribery in Team Persuasion

In Section 4.3, we have defined the basic setup of team persuasion games, and

motivated how each agent probabilistically updates the state of its arguments in

each round. In Section 4.4, we provided a solution for what it means for a team to

win given the acceptability of the topic, and the probability for each team to reach
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its goal state (i.e., Questions D1 and D2). We now consider: what if in between

rounds, an external agent who is not part of the game can choose to bribe one of

the agents in the game to change the status of its argument (i.e. from on to off or

off to on). We now motivate and answer Questions D3 and D4 from Section 4.1.

Remark 4.5.1. All examples in this section assume all agents are 1-agents with

w1 = 1 and distributed uniformly across its attackers. We further assume games are

synchronous. However, generalisations for games in which there are no independence

of partitions (asynchronous games or synchronous games with wi > 0 for some even

i.), are immediate (see Remark 4.5.6).

4.5.1 Motivating Example

Consider the AF in Figure 4.6, where t is omitted but still defended by partition

Pfor. Nodes are labelled v11, ..., v15 and v21, ..., v26. The entire AF forms one SCC

K with gcd (K) = 2 (so Pfor = P1) whose row-normalised in-matrix using this order

of nodes is

HTP =



0 0 0 0 0 1
3

0 0 1
3

1
3

0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1
2

1
2

0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
4

1
4

1
4

1
4

1
2

1
2

0 0 0 0 0 0 0 0 0
1
3

0 1
3

1
3

0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0
1
3

1
3

1
3

0 0 0 0 0 0 0 0
1
3

0 0 1
3

1
3

0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0



(4.14)

The corresponding stationary distribution, µ, can be calculated from HTP.

µ =
1

506
(138, 72, 174, 66, 56︸ ︷︷ ︸

for the argument

, 46, 72, 101, 147, 126, 14︸ ︷︷ ︸
against the argument

). (4.15)

We have chosen the normalisation constant to be 506 because we would like the sum

of the components of µ in each partition to be 1.ix In this example, 506 is half of

the sum of components (= 1012). We have labelled each node in Figure 4.6 with

ixHere we are using the result that the sum of each partition in a given SCC is the same.
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138

v11

72

v12

174

v13

66

v14

56

v15

46

v21

72

v22

101

v23

147

v24

126

v25

14

v26

Figure 4.6: The AF Underlying our Example. Current Colouring and Influences
Depicted in Each Argument. Influences were Multiplied by 506 for readability.

the corresponding numerical value of µ (multiplied by 506 for readability) . Note

that the topic has been omitted. This is because we are interested in the probability

of converging to state-stable configurations, thus which particular arguments of Pag

attack the topic is irrelevant. We now calculate the probability Pr (Sτ = γfor | S0)

of consensus in favour of the topic being reached for this example. .

(i) In Figure 4.6, we are given S0 directly (not through an S0). This colouring

assigns green to v11, v14, v15, v23, and v26, and assigns blue to all other nodes.

(ii) Figure 4.6 is already strongly connected. As the topic is attacked by some

argument in P2, we have that K{t} = {v11, . . . , v15, v21, . . . , v26} =: {K}.

(iii) Equations 4.14 and 4.15 have calculated HTP and µ, respectively. Also,

gcd(K) = 2.

(iv) Recall the notion of influence of a node (Definition 3.3.8). Here, Θg
1 and Θg

2

stand for the sum of influences of nodes currently coloured green in partitions

1 (Pfor) and 2 (Pag), respectively. Analogously, Θg
1 and Θg

2 stand for the sum

of influences of nodes currently coloured blue in partitions 1 (Pfor) and 2 (Pag),

respectively. We have

Θg
1 =

138 + 66 + 56

506
=

260

506
(4.16)

and

Θg
2 =

101 + 14

506
=

115

506
(4.17)

94



(v) Applying Theorem 4.4.10 and recalling that we have normalised over each

partition so Θg
i + Θb

i = 1 for i = 1, 2, we have

Pr (Sτ = γfor | S0) =

(
260

506

)(
115

506

)
=

325

2783
≈ 0.12 (4.18)

Now suppose that there is an external agent G who would like the topic to win. G

has the power to successfully bribe any agent in the team persuasion game to change

the state of their argument, i.e. from off to on or vice versa. Equivalently, this

changes the colour (blue or green) of the same node, depending on which partition

it is in. We assume this bribe occurs between rounds and before all agents make

their decision for the next change. Which agent should G choose to bribe? As the

probability of reaching γfor (and hence the topic being accepted) depends on the

influences of each node, it is reasonable to conclude that G’s choices on whom to

bribe are between the most influential nodes in each partition that are currently

blue. This is, either node v13 or v24. The improvement in probabilities is given by
174·115

5062
≈ 0.078 for changing v13 and 147·260

5062
≈ 0.149 for changing v24. Thus, counter-

intuitively, although the influence of v13 is greater than v24’s, G will have a greater

improvement in their utility by changing the state of agent v24. The example above

motivates the following definition of the payoff of G.

Definition 4.5.2 (Single Player Utility) We define G’s utility of bribing an

agent a ∈ A, uG(a), by the change in probability that the topic definitively wins

after the agent a is successfully bribed. We define uG(i) as the change in probability

of G winning given that a currently blue node with highest influence (it might not

be unique) in partition Pi has been chosen, i.e., uG(i) = maxa∈Pi {uG(a)}. Let B

be an external agent that seeks to bribe a green agent to increase the probability of

the topic being rejected. We define uB(a) analogously and uB(i) as the change in

probability of B winning given that (one of) the most influential green nodes in

partition Pi have been chosen.

Before seeking to answer Questions D3 and D4 relating to the two briber problem,

we first define the following notation.

n-AF: we say an AF is an n-AF iff (1) A has only one SCC; (2) AF is bipartite

with partitions Pfor and Pag; and (3) if the greatest common divisor of the

length of all cycles in A is n. In particular, an n-AF is also a n-partite AF .

For example, in the AF depicted in Figure 4.6, the greatest common divisor

is 2, thus it is a 2-AF .
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P1, . . . , Pn: are the partitions of an n-AF such that Pi(K) ⊂ Pfor iff i is odd (and

Pi(K) ⊂ Pag iff i is even). Note that an n-AF is both bipartite (with partitions

Pfor and Pag) and n-partite (with partitions P1, . . . , Pn).

gi (resp. bi): is the highest influence among agents currently coloured green (resp.

blue) in partition Pi, i.e,

gi = max
a∈Pi andS(a)=1

{µ(a)} (4.19)

bi = max
a∈Pi andS(a)=0

{µ(a)} (4.20)

Θ̂g
I : is the product of Θi, 0 ≤ i ≤ n such that i /∈ I, where I ⊂ {1, . . . , n}. e.g.,

Θ̂g =
∏n

k=1 Θk, or Θ̂g
i =

∏n
k=1,k 6=i Θk. We define Θ̂b

I , b̂I , and ĝI analogously.

We omit the curly brackets from the set I (e.g., Θi,j) for readability.

Example 4.5.3. In the example in Section 4.5.1, we have a 2-AF , partitions P1

and P2, g1 = 138
506

, g2 = 101
506

, b1 = 174
506

, b2 = 147
506

, Θ̂g = 325
2783

, and finally Θ̂b = 2091
5566

.

4.5.2 The Case of a Single Briber

We formalise and answer Question D3 by presenting the following Lemma.

Lemma 4.5.4 (Bribery - Single Player) Consider a team persuasion game in

an n-AF . Let G be an external agent willing to bribe one currently blue agent.

Under these conditions, in order to bribe an agent, G is willing to pay (subject to

their risk profile) at most

max
0≤i≤n

{uG(i)} = max
0≤i≤n

{biΘ̂g
i } (4.21)

In other words, G will choose one from most influential nodes in each partition to

bribe. Analogously for agent B, we have

max
0≤i≤n

{uB(i)} = max
0≤i≤n

{giΘ̂b
i}. (4.22)

Proof. We just have to show that uG(i) = biΘ̂
g
i . Indeed, uG(i) = (bi+Θg

i )Θ̂
g
i − Θ̂g =

biΘ̂
g
i . �
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P1 P2

P1 1.6% , −5.5% −9.3% , −23.7%
P2 0.9% , −1.0% 4.7% , −4.4%

Table 4.1: A 2-Player Game. G plays in rows and B in columns. Cells denote payoff
of G (left) and B (right).

Example 4.5.5. Consider the example from Section 4.5.1 from the perspective of

agent B, who is seeking to bribe a green agent. B’s options are either node v11 or v23

given that they are the most influential nodes of their partitions. Applying Lemma

4.5.4, B is willing to pay at most max0≤i≤2{giΘ̂b
i} = max{ 51

242
, 24846

5062
} = 51

242
.

Remark 4.5.6. The solution for the briber in asynchronous games or synchronous

games with wi > 0 for some even i > 1, is to simply choose the agent with highest

influence currently not in the desired state.

4.5.3 The Case of Two Bribers

What if there are two competing external agents bribing nodes simultaneously? We

answer this question by considering two external agents G and B. As before, G is to

bribe a blue agent in order to increase the probability of the topic being accepted.

Also, B is to bribe a green agent in order to increase the probability of the topic

being rejected. Note that their options do not overlap, because a node is never

blue and green at the same time. Let us look back to our motivating example from

Section 4.5.1, in which G had the choice between bribing v13 or v24. Since v11 and

v23 are the most influential nodes currently green in partitions Pfor and Pag then B

should choose to bribe either one of these agents, because the effect of these agents

changing their colour gives the largest change in the probability of B obtaining a

desirable outcome. We assume both bribes from G and B occur simultaneously.

Which of the agents should each briber choose? Table 4.1 depicts the payoff of each

scenario.

We can see that strategy (P1, P1) is a pure strategy Nash equilibrum (PSNE)

of this game, and also the only one, since no agent can benefit from changing their

strategy while the other agents’ strategies remain the same. We then expect G to

have an increase of 1.6% on their probability of winning, whereas B will have their

probability decreased by 5.5%. Why would B play the game in the first place if they

lose? B’s decision of whether to play the game is not represented as an action in
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P1 Pk Pn
P1 (b1 − g1)Θ̂1 . . . [b1(Θk − gk)− gkΘ1]Θ̂1,k . . . [b1(Θn − gn)− gnΘ1]Θ̂1,n

...
. . .

...
. . .

...

Pk [bk(Θ1 − g1)− g1Θk]Θ̂k,1 . . . (bk − gk)Θ̂k . . . [bk(Θn − gn)− gnΘk]Θ̂k,n

...
. . .

...
. . .

...

Pn [bn(Θ1 − g1)− g1Θn]Θ̂n,1 . . . [bn(Θk − gk)− gkΘn]Θ̂n,k . . . (bn − gn)Θ̂n

Table 4.2: 2-player Game on a Bipartite Graph. G Plays in Rows and B in Columns.

the payoff matrix, but rather is assumed to have been made by B prior to the game.

One way of endogenising this information is to introduce a prior decision whether

each agent will play the game, and their expected utility either way. A simpler way,

however, is to say that B is willing to be paid (instead of pay) at least 5.5% utility

in order to play this game. The following definition formalises how we calculate

the payoff on the 2-player game in an n-AF and Table 4.2 can be used for quick

reference.

Definition 4.5.7 (2-Player Utility) Consider a team persuasion game in an n-

AF with current configuration sj. Let G and B be external agents bribing a blue

or green argument, respectively. We define uG(i, j) (resp. uB(i, j)) as the utility

function for player G (resp. R) given that G has chosen partition i and B partition

j to bribe, s.t. 0 ≤ i, j ≤ n. This function is given by the change in probability of

the respective team winning, i.e,

uG(i, j) =

{
(bi − gi)Θ̂g

i if i = j,[
bi(Θ

g
j − gj)− gjΘ

g
i

]
Θ̂g
i,j if i 6= j.

(4.23)

and

uB(i, j) =

{
(gi − bi)Θ̂b

i if i = j[
gj(Θ

b
i − bi)− biΘb

j

]
Θ̂b
i,j if i 6= j

(4.24)

We are now ready to explore the following question: is it a coincidence the

example showed in Table 4.1 has a PSNE? Recall that every n-player game where

each player can take finitely many actions has a mixed strategy Nash equilibrium

(MSNE) [55, 56]. We now prove it was not a coincidence: our two-person bribery

game always has a PSNE.

Lemma 4.5.8 A 2-player game in a 2-AF always admits at least one PSNE.
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P1 P2

P1 (b1 − g1)Θg
2 , (g1 − b1)Θb

2 b1(Θg
2 − g2)− g2Θg

1 , g2(Θb
1 − b1)− b1Θb

2

P2 b2(Θg
1 − g1)−Θg

2g1 , g1(Θb
2 − b2)− b2Θb

1 (b2 − g2)Θg
1 , (g2 − b2)Θb

1

Table 4.3: 2-player game on a 2-AF . G plays in rows and B in columns.

Proof. The payoff matrix for a general 2-player game in a 2-AF is given by Table

4.3. In order for the game to not have a PSNE, we need, wlog, that

(b1 − g1)Θg
2 ≤ b2(Θg

1 − g1)−Θg
2g1, and (4.25)

(b2 − g2)Θg
1 ≤ b1(Θg

2 − g2)−Θg
1g2. (4.26)

However, this condition leads to b1g2 ≤ −b2g1, a contradiction since influences are

all positive. In order to avoid the existence of a PSNE we would need a player that

deviates from both diagonal cells, and that can never be the case as shown above.�

We now explore the scenario in which there are two PSNE in a 2-AF . We

consider that, in case one of the equilibria is as good as the other for both players,

this will be the one to determine the expected utility. However, if not, we then

consider the expected payoff of the MSNE in which both partitions are chosen with

positive probability by both G and B. The next proposition evaluates this outcome.

Proposition 4.5.9 (Expected utility from mixed strategy in 2-AF s) Let

AF be a 2-AF in which the 2-person game has two PSNE. Then, the expected utility

for G is given by

E(uG) = −Θg
1Θg

2 +
1

g1b2 + g2b1

[
−b1b2g1g2 +

2∑
i=1

Θg
i b̂iĝi(Θ

g
i + bi − gi)

]
(4.27)

For B, we get E(uB) by swapping bk for gk and Θg
k for Θb

k in in the above formula.

The proof of the above proposition is given by direct calculation of the MSNE.

We now consider the case in which we have an n-AF . Is it the case that there is

also always a PSNE? The following theorem proves that indeed, a PSNE is always

present and, if unique, describes the expected utility for each player. We leave the

evaluation of the MSNE in the non-unique case for future work.

Theorem 4.5.10 A 2-player game in an n-AF always admits at least one PSNE.
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Proof. We prove this by contradiction by applying results in [53, Corollary 2.2 and

Theorem 2.8]. All we have to do is show that there is no set of four strategy profiles

of the form (l, u), (r, u), (l, d), (r, d) (i.e., forming a rectangle in Table 4.3, where l

denotes the left column, u the upper row, and so on) such that the four following

equations cannot simultaneously hold:

uB(r, u) > uB(l, u) (4.28)

uG(r, d) > uG(r, u) (4.29)

uB(l, d) > uB(r, d) (4.30)

uG(l, u) > uG(l, d) (4.31)

Assume by contradiction that we do have such a rectangle. We split the proof in

three cases and show that each of them lead to contradiction. Each case considers

a different number of strategies laying on the diagonal of 4.2, which can be:

(a) None; or

(b) Exactly one; or

(c) Exactly two.

For Case (a), on one hand, from Equation 4.29 we get guΘd > gdΘu. On the other

hand, from 4.31 we get guΘd < gdΘu, thus we have a contradiction (that could also

have been derived from the other two equations). For Case (b), we can consider

wlog that r = d. From Equation 4.28 we get blΘd > bdΘl. Also, from Equation 4.30

we get bdΘl− blΘd− gdbl > 0. Combining both, we get a contradiction by observing

that 0 < bdΘl − blΘd − gdbl < blΘd − blΘd − gdbl = −gdbl. For (c) we use Equations

4.28 and 4.30 and proceed analogously to proof of Lemma 4.5.8. �

4.6 Related Work

In this chapter we have presented and analysed an argumentation model for a very

common form of public debate. Our work has made two novel contributions. The

first contribution is the formalisation using argumentation frameworks of public pol-

icy debates where multiple parties with only local information propose arguments

to support (or attack) claims of interest to a wider audience, seeking to persuade

that audience of a claim (or not, as the case may be). The second contribution

is the use of Flag Coordination Games, specifically its analysis of the dynamics of
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graph colouring, to understand the properties of this formal framework. Analogues

of graph colouring have been used in argumentation, for example, in labelling se-

mantics to determine acceptability of arguments [13]. However, to the best of our

knowledge, interpreting such colourings as the argument having been asserted or

not, and the dynamics of how such a colouring changes, have not previously been

used in argumentation theory.

The general problem of two parties with contradictory viewpoints, each seeking

to persuade an impartial third party of their viewpoint, has been investigated in

economics, e.g. using game theory [70, 71] or mechanism design [31, 32]. Applying

argumentation theory to study multi-agent persuasion with two teams, in which

one is arguing for the acceptability of a topic and the other against, has been in-

vestigated in the work by Bonzon and Maudet [10]. They focus specifically on the

problem with respect to the kinds of dialogue that occur on social websites, specify-

ing that agents “vote” on the attack relations between arguments. One of the main

differences between their work and ours is that agents in their formulation do not

have any motivation to act in a way that might be detrimental to their team’s goal,

whereas agents in our work may also be motivated by their own individual goals.

In the context of bipartite graphs, the problem of determining the acceptability of

a specific argument, for both credulous and sceptical semantics, has been shown to

be decidable in polynomial time by Dunne in [26].

Dignum and Vreeswijk developed a testbed that allows an unrestricted number

of agents to take part in an inquiry dialogue [23]. The focus of their work is on the

practicalities of conducting a multi-party dialogue, concerned with issues like turn-

taking, rather than in the strategising of agents participating in such a dialogue.

Bodanza et al. [9] survey work on how multiple argumentation frameworks may be

aggregated into a single framework. While this direction of work considers how

frameworks from multiple agents might be merged, it removes the strategic aspect

of persuasion which we are interested in here. Building on the idea of the strength

of an argument, which has been in discussion since at least 1995 through work by

Krause et al. [45], Dunne et al. present a framework of weighted argument systems

in [28].

There is an established literature that applies ideas from game theory to argu-

mentation. For example, in using zero-sum two-player games to assign strengths to

arguments satisfying intuitive properties [49], or studying the strategy-proofness of

the grounded extension in the context of mechanism design [62]. Both these works

focus on the actions of the agents engaging in the dialogue rather than the actions
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of external bribers that can influence agents in the dialogue. Unlike the setup of

[49, 62], the assumption in team persuasion games that each agent only proffers one

argument may be seen as too restrictive. Future work can investigate how agents in

team persuasion games can proffer multiple arguments within, or perhaps across, a

partition. Dialogues have been studied in a game-theoretic perspective in order to

identify Nash Equilibria [40], however, unlike us, they consider the game from the

perspective of the interlocutors, not the bribers.

4.7 Summary of Results

We have shown how to determine the probability of each team winning in a team

persuasion game (Question D2), both when agents act synchronously (Theorem

4.4.10), and asynchronously (Theorem 4.4.12). Although we have depicted all con-

sensus states (Question D1), we have shown that not all synchronous games become

state-stable, having no definite winner.

We have conducted a game-theoretic analysis of how external agents can and

should bribe the agents of the game. We believe this is the first work that considers

the issues of bribery in dialogical argumentation. We have considered how external

agents in team persuasion games can interact with the interlocutors to influence the

outcome of the game in their favour. Specifically, we have derived expected utilities

for a briber in both the single-briber (Question D3) and two-briber (Question D4)

scenarios. In future work, the results for team persuasion games can be applied to

other types of argument dialogue games, such as negotiations [63]. While team per-

suasion games are similar to real-world political debates where bribery is common,

there are other forms of dialogue where it might also occur.
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Chapter 5

Biased Consensus Games

Problem 5 (Biased Game on a Cycle). Consider the 17-cycle in Figure 5.1.

As this is a non-bipartite graph, the theorem by Hassin and Peleg (Theorem 2.3.1)

gives us the probabilities involved in this game: Pr( ) = 8
17

and Pr( ) = 9
17

. Now

consider that there is a bias towards opinion blue. In particular, consider that the

decision algorithm of a node that currently lies between a blue node and a red node

consists of copying blue with a probability of 2
3

and red with a probability of 1
3
. We

can say that blue has an advantage under these circumstances. Is blue now more

likely to win than red, given a particular starting configuration, such as the one in

Figure 5.1? What are the probabilities involved in this case?

What if there is a
a bias towards blue?

Figure 5.1: Biased Consensus Game on a 17-Cycle.
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5.1 Introduction

We present Problem 5 as an abstraction of a wide range of possible concrete appli-

cations of what we will define as Biased Consensus Games.

In the context of voting algorithms, for example, consider a sequence of rounds

of voting that lead to a consensus in a given opinion x. Then assume this same

population is going to enter another voting game, with the same set of opinions to

be chosen from as before. It is natural to consider that there will be a bias towards

a given opinion in the light of their previous game. For instance, opinion x might

be preferred by voters, depending on their behaviour, as it has recently won.

In the context of population genetics models, in another application domain, we

consider that a new individual carrying a (x) mutation is introduced into a given

population. We can model a process in which an individual will be replaced by an

offspring of one of its neighbours. This neighbour is chosen taking in account its

mutation’s fitness.

As a refinement of Questions A7 and A8, in this chapter, we will explore the

following questions.

E1 Is the probability of a given colour winning a biased game a linear function

with respect to the number of nodes (or edges) of that colour in the initial

configuration?

E2 Is the initial relative position of nodes (of the same degree) irrelevant regarding

the probabilities of winning for each colour?

E3 Is there a martingale (with respect to the random variable {St}t≥0 that de-

scribes the game) that, together with Doob’s sampling theorem (Theorem

2.4.15), gives us the probabilities of consensus given the initial configuration?

E4 How do we further develop and prove the idea in Section 3.2.1 that connects

Flag Coordination Games and processes involving random walks?

E5 Given a game (F , S0), and a state s ∈ S, is Pr(St = s | S0) > 0 for some

t ≥ 0? This is the reachability problem presented in Question A8.

E6 Given a bias towards colour x, what is the minimum number of nodes of that

colour we need in order for x to be more likely to win than not? Conversely,

given a number of nodes coloured x in a given graph, what is the minimum bias
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towards x for which x is still more likely to win than not? In other words, we

are looking at what sort of trade-off there are between bias and bias towards

colour x and the amount of nodes coloured x in a given graph.

E7 How can we formally define a sequence of multiple iterations of similar games

in which biases towards each colour might change from one game to the next

depending on the consensus achieved in previous iterations?

In this chapter and dissertation, we are only looking into these questions in the

context of games played on cycles. To exploring other structures is left for future

work.

Note that the answers to Questions E1, E2, and E3 are affirmative in the context

of unbiased games on odd cycles, or more generally in the context of unbiased games

on regular undirected non-bipartite graphs.i The regularity and the lack of partition

asymmetry imply positive answer for Questions E1 and E2 (recall Theorem 2.3.1).

Regarding Question E3 we do not even need the use of regularity, since Theorem

2.3.1 guarantees that a martingale exists for any unbiased game on undirected non-

bipartite graph.

Our main objective in this chapter is to study whether these properties (related

to Questions E1, E2, and E3) also hold for the biased version of the consensus game

on cycles when only two colours are involved. Initially, we are restricting ourselves

to cycles of odd length, so there are no losing configurations involved. However,

earlier results (Theorem 3.2.26) will allow us to immediately generalise the results

for even cycles. This analysis will only be possible with results related to Question

E4, which will, in turn, play a key role when exploring Question E5.

This chapter is structured as follows: Section 5.2 briefly introduces the related

work pertinent to this chapter. In Section 5.3 we provide a formal definition of

biased consensus games to then give the results (Questions E1, E2, and E3) for

such games on cycles (Section 5.3.1), using results related to Question E4 (Section

5.3.1.1). In Section 5.4.1, we answer Question E5 for cycles, whereas in Sections

5.4.2 and 5.4.3, we motivate and formally define families of problems related to

Questions E6 and E7, respectively.

iRecall that an undirected graph is r-regular if for all v ∈ V , deg v = r.
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5.2 Related Work

We focus our attention first on a similar model initially proposed by Patrick Moran

in 1958 [54] in the context of population genetics models. Lieberman et al. (see

[48]) present a generalisation of Moran Processes with the use of weighted directed

graphs to represent the population individuals (nodes) and the probabilities that

each neighbour is chosen to be replaced (edges). More precisely, the process can be

described as follows.

(i) A population of fixed size is represented by a weighed directed graph G =

(V,E).

(ii) At each step an individual v ∈ V , is chosen proportional to its fitness. Then v

reproduces placing its offspring as a replacement of a given neighbouring node

w ∈ N (v) with probability according to the weighted edge e = (v, w) ∈ E.

The case where G is a complete graph with equally weighted edges represents the

original Moran Process. Note that this process differs from Biased Consensus games

in the following ways:

(i) The generalised Moran Process described above is asynchronous, in which one

node acts in each time step, whereas Biased Consensus Games consider that

all agents act at the same time.

(ii) Moran Processes, according to the way they have been described, are not Flag

Coordination Games since the replaced node w is not independently choosing

its state, but instead being replaced as a result of the decision of its neighbour

v.

Consider a Moran Process in complete graph size n in which all edges are equally

weighted and suppose all resident individuals are identical and one new mutant is

introduced (see [48]). The mutant has relative fitness r, whereas residents have

fitness 1. Then, the fixation probability of this new mutant is

ρ =
1− 1

r

1− 1
rn

(5.1)

Lieberman et al. provide solutions for other graph structures, such as the star graph

(ρ2), and the super-star (ρk), which are given by

ρ2 =
1− 1/r2

1− 1/r2n
and ρk =

1− 1
r2

1− 1
rkn

. (5.2)
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5.3 Formal Definitions and Results

We have seen in Section 3.2.4 that in generalised consensus games (see Definition

3.2.1) we can assign different weights to different nodes in the graph, and that the

impact of this change on evaluating probabilities of convergence is minimal: the

proof of Theorem 3.3.16 is essentially the same regardless of nodes having a bias

towards a given neighbour, as long as this is a constant bias (recall discussion in

Section 3.2.4).

What we explore in this Chapter, however, is something else. We analyse the

impact of bias on colours (or opinions) on the probability of a given opinion to win

a (generalised) consensus game.

We now formally define a biased consensus game in a general graph G = (V,E).

Later, we will focus our analysis on particular graph classes.

Definition 5.3.1 (Biased Generalised Consensus Game) We define the rules

of a biased consensus game F∆ = 〈G,X, T,Γ, φ, β, ψ, σ,A〉 as in Definition 3.2.1,

with the difference that we introduce bias into agents’ decision algorithms A. Let X

be the set of colours in this game, with colour biases δ1, δ2, . . . , δ|X| ∈ R.ii Also, for

each node v ∈ V , let |Nx(v)| be the number of neighbours of v that are coloured x in

the current configuration St. Finally, note that nodes act synchronously. Then, for

a given v, we have

Pr(St+1(v) = x | St) =
δx |Nx(v)|∑|X|
i=1 δi |Ni(v)|

. (5.3)

Remark 5.3.2. We can also think of biased consensus games as each node having

an urn in which they place δx balls of colour x for each neighbour currently coloured

x, and then drawing one ball uniformly at random from the urn. The only remark

to this analogy is that we allow, for generality, the biases to be real numbers.

Remark 5.3.3. Note that we are somewhat abusing notation in Definition 5.3.1 if

we want it to allow include generalised biased consensus games. In order to consider

generalised games, it is enough to replace the biases towards colours to biases towards

winning colourings γ ∈ Γ. As before (see Definition 3.2.1), we require that the goal

states can be uniquely identified from the colour any given node.

iiTo guarantee uniqueness, we can also define that
∑|X|

i=1 δi = 1. or, alternatively, that δ1 = 1.
Instead, however, we will give up uniqueness to improve readability of results later in this chapter.
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Given an initial configuration of the game, we are interested in the probability that

the consensus is achieved for each colour x. Note that, for biased consensus games

on general graphs, such probilities are likely to be hard to find. That is because of

its similarities with Moran-like processes on a general graph and the fact that such

problems are PSPACE-Hard [37].iii In this dissertation, we are not making use of

this result in any way but to indicate the hardness of finding analytic solutions for

the probabilities of consensus in biased consensus games.

That is the main reason why we are, from this point onward, going to focus only

on graphs that are cycles. Although there might exist other graph structures for

which an analytic solution is likely to be found (such as paths), this is beyond the

scope of this dissertation and will be left for future work.

5.3.1 Biased Games on Cycles with Two Colours

In this section, we will explore biased games on cycle graphs Cn. The following

formal definition will help us easily refer to this instance of Flag Coordination Games

throughout the rest of this chapter.

Definition 5.3.4 (Biased Two-colour Consensus Game on Cn) We say that
◦
F∆ = 〈G,X, T,Γ, φ, β, ψ, σ,A〉 is the set of rules of a biased two-colour consensus

game on a cycle if it satisfies Definition 5.3.1, and we have G = Cn, X = { , }
and biases δblue = b and δred = r.

We first answer Question E1 by means of a counterexample. This is, linearity must

not be a general property for biased consensus games on cycles, as in Example 5.3.5

shows that probabilities are not linear with respect to the number of nodes of a

given colour on C3.

Example 5.3.5 (Biased Game on C3). Let (
◦
F∆, S0) be a biased two-colour con-

sensus game on a cycle as in Definition 5.3.4 with G = C3. By symmetry there are

only four different configurations β0, . . . , β3, where βi represents a configuration in

which there are i blue nodes, as depicted in Figure 5.2. We define Bi as the probabil-

ity of colour blue winning the consensus game, given that the current configuration

has i blue nodes. For example, B0 = 0 and B3 = 1. Further, we combine the two

relations:

iiiPSPACE is the set of decision problems that, using a polynomial amount of space, can be
solved by a (deterministic or not) Turing Machine. PSPACE-Hard refers to the set of problems
that can be reduced to from all problems in PSPACE.
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β3 β2 β1 β0
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(r+b)2
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(r+b)2
r2

(r+b)2
1

2rb
(r+b)2

2rb
(r+b)2 1

Figure 5.2: Possible States and Their Transition Probabilities of a Biased Consensus
Game on C3.

B1 =
r2

(r + b)2
B0 +

2rb

(r + b)2
B1 +

b2

(r + b)2
B2 (5.4)

B2 =
r2

(r + b)2
B1 +

2rb

(r + b)2
B2 +

b2

(r + b)2
B3. (5.5)

Using B0 = 0 and B3 = 1, we get

B1 =
b4

b4 + b2r2 + r4
B2 =

b4 + b2r2

b4 + b2r2 + r4
. (5.6)

Also, the average probability of blue winning, considering all 8 possible initial states

with equal probability, is given by

49r4 + 25r2b2 + b4

8(r4 + b4 + r2b2)
. (5.7)

Based on Equation 5.6, we can conclude that the answer to Question E1 is negative

for biased consensus games on cycles.

Note that the relation Bi +An−i = 1 always holds, where Ai denotes the proba-

bility of colour red winning the consensus game. However, the relation Bi+An−i = 1

(which is equivalent to Bi = An−i) does not hold for a general set of biases ∆ on

cycles. This fact comes from the lack of linearity dealt in Question E1. Indeed, only

for the situation in which b = r is that we have Bi = Rn−i on cycles. In particular

for C3 we have the expected results in line with Theorem 2.3.1: B1 = 1
3

and B2 = 2
3
.

As an illustration of the impact of bias, applying the results from the example

above (Example 5.3.5) for the particular case in which b = 2r, we have B1 = 16
21

and

B2 = 20
21

. We are going to use this particular results to show in Remark 5.3.6 that

Moran processes and biased consensus games are different.
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β3,2

Figure 5.3: Configuration β3,2 of C5.

β3

Figure 5.4: Configuration β3 of C5.

Remark 5.3.6. Note that C3 = K3, so Equation 5.3 holds and we can then com-

pare the results between the biased game (with r = 1) and a Moran process (with

mutation fitness b) in the same graph, with same initial configuration β2. According

to Equation 5.3, we have

ρ =
4

7
6= 16

21
= B1 (5.8)

Thus, although similar, both processes are not equivalent.

The example with C3 does not allow us to establish whether the initial relative

positions of the same number of nodes of a given colour affect the result or not

(Question E2). However, we do not have to go too far to get non-isomorphic con-

figurations (considering nodes’ colours) with the same number of nodes of a given

colour. In order to help us to investigate Question E2, we calculate the probability

of the two initial configurations for the game in C5 as in Figures 5.3 and 5.4. As

before, B3, 2 and B3 represent the probabilities that games β3, 2 and β3, respectively,

converge to consensus in blue.

Direct calculation gives us the same result for both initial cases:

B3,2 = B3 =
b8 + b6r2 + b4r4

b8 + b6r2 + b4r4 + b2r6 + r8
, (5.9)

which might suggest that the answer to E2 is true for biased games on odd cycles.

We can also conjecture that there might exist a martingale for the general problem

in the cycle which resembles polynomials of the form
∑i

j=1 b
2(n−1−j)r2(j−1).iv We

investigate the matter further by translating this problem into one involving ran-

dom walks, analogous to the problem described in Chapter 3. The only difference

between Definition 3.2.4 and the one generated from biased games is that, in biased

games random-walking particles have different probabilities for moving clockwise or

counter-clockwise. It is thus enough to provide a proof for the biased version of

ivNote that this is a geometric sum with ratio
(
r
b

)2
.
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these consensus games on the cycle, since a solution for unbiased ones will follow

immediately from a solution for the more general biased version. We develop this

relationship in the next section.

5.3.1.1 More on Annihilating Random Walks and Flag Coordination
Games

We initially define the position of the random-walking particles as coinciding with the

positions in which nodes are randomising. We will prove that, given an appropriate

analogy between the two random choices, the position of random-walking particles

will still match with randomising nodes on the following round, and therefore for

the entire process.

We first define the process with random-walking particles independently to sub-

sequently connect both.

Definition 5.3.7 (Annihilating Biased Random Walks on a Cycle) Let

Cn be a cycle with n nodes, n odd, and assume there are initially 2m < n, with

m ∈ N, particles performing a biased random walk on this cycle (i.e., each particle

has a constant probability p of moving clockwise and q = 1 − p of moving counter-

clockwise). All the particles move synchronously. If, in the end of any round, two

particles meet at the same node, both disappear. In order to facilitate the description

of this process, we will also colour each particle according to set Y . Let R be the

random process {Rt | t ∈ T}, indexed by discrete time-set T , which describes this

game. Formally, Rt : V → ([0, 1]× Y ) ∪ {−1} such that

Rt(v) =

{
−1 if there are no particles in v in round t,

(p, y) otherwise.
(5.10)

Here p denotes the probability that this particle moves clockwise at each round and

y ∈ Y is this particle’s colour. Because there are an even number of particles and n

is odd, the process will eventually end, i.e., all particles will disappear.

In the case that n is even, we define this process as above, considering the re-

striction that each partition of this bipartite graph hosts an even number of particles

in the initial round (and therefore also in subsequent rounds).

Remark 5.3.8. Note that games described in Definition 5.3.7 are not Flag Coor-

dination Games, because nodes do not decide on their state in the following round.

Instead, we can see this as a push-model process (e.g. as seen in [18, 48]).
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We now recall Definition 3.2.4 from Chapter 3. In summary, we placed a particle on

randomising nodes. Now, however, particles are performing a biased random walk,

so we update the definition as follows.

Definition 5.3.9 (Correspondence Between Games 5.3.4 and 5.3.7) Let

(
◦
F∆, S0) be a biased two-colour consensus game on Cn, n ∈ N. We define the func-

tion f that takes a configuration S as input and returns a configuration of random

walks R, as in Definition 5.3.7 such that

(f(S))(vi) = R(vi) =


−1 if S(vi−1) = S(vi+1),(

b
b+r

, red
)

if S(vi−1) 6= S(vi+1) = red,(
r
b+r

, blue
)

if S(vi−1) 6= S(vi+1) = blue.

(5.11)

where vi+1 corresponds to the neighbour of vi clockwise, and vi−1 corresponds to the

counter-clockwise neighbour of vi. Note that both fractions lie in [0, 1], and that the

number of randomising nodes in S is always even, therefore the transformation does

give us a state of a process, as in Definition 5.3.7.

Example 5.3.10. Figure 5.5 illustrates two main aspects of what has been de-

scribed so far. Firstly, it provides the full Markov chain and the transition proba-

bilities for a biased game on C5. This example differs from the one involving the

graph C3 (shown in Figure 5.2) as there are, up to symmetry, more than one config-

uration in which two nodes are randomising. Note that symmetric states have been

identified in this illustration, and transition probabilities have been combined.

Secondly, Figure 5.5 exemplifies the position of random-walking particles on C5

after applying the function f . Red particles are represented by p1 and p3, whereas p2

and p4 represent blue particles. Note that the annihilation of pairs of particles that

occur when going from the top layer to the middle layer is only one of many possible

alternatives, as well as the reorientation of particles from β̂3 and β̂2. However, note

that the probabilities indicated correspond to the state transitions in the consensus

game rather than the one in the random walks process.v

Proposition 5.3.11 The function f �S\Γ is bijective when n is odd. Here Γ =

{γblue, γred} is the set of goal states, where γblue and γred represent consensus in blue

and red, respectively.

vThere might be connections between this and John Baez’s work on Categorification [3]
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Figure 5.5: Possible States Up To Symmetry and Their Transition Probabilities of
a Biased Consensus Game on C5.
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Proof. Here we exclude the consensus configurations because there are no coloured

random walks to help us reconstruct S. Otherwise, take vi and assume wlog that

f(S))(vi) = (k, red) for some k ∈ [0, 1]. We can reconstruct S as follows: we

know, by definition of f that S(vi+1) = red. Then, S(vi+3) = red if and only if

R(vi+2) = −1. We apply this reasoning successively until S is fully determined.

Note that when n is even, we can determine the colours of nodes in a given partition

if and only if there are random-walking particles on the other partition at a given

time. �

If function f would not register the colour of the random-walking particles, we would

have a two-to-one function, where inverse configurations (with all colours swapped)

would map to the same R for b = r. More generally, inverse configurations, each

in a game with swapped biases compared to the other, would map to the same R.

Here, swapped biases means that bias towards blue in one game coincides with the

bias towards red in the other and vice-versa.

Note that the higher the bias b, the greater the probability that a particle moves

away from a node coloured blue in the corresponding biased consensus game. Simi-

larly, by our definition above, the probability of a randomising node v choosing blue

is equal to the probability that the corresponding random particle moves away from

v’s blue neighbour.

We aim to show that the two games are somehow related. Having a clearer un-

derstanding of how this relationship can be established might allow us to transfer

the conclusions we derive from the random-walking particles scenario to the consen-

sus one. We will shortly prove that having analogous games running in parallel will

express similar behaviour. For example, we will show that the expected time taken

for all the particles to disappear is equal to the expected time taken for a consensus

to be achieved.

We at this point reach an impasse in our analogy that needs to be addressed.

Although the expected time to reach consensus and the time to annihiate all par-

ticles seem to be the same, we have no clear method by which to differentiate the

blue consensus from the red consensus just by looking at the particles game. This

difficulty becomes evident when we observe that, at any point in an annihilating

particles game, including in its last rounds, the number of blue and red particles is

the same.
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Proposition 5.3.12 Consider the initial state of a process of annihilating random-

walking particles in a cycle R0 such that R0 = f(S0), where S0 is the initial config-

uration of a game (
◦
F∆, S0). Then, considering the process {Ri}i≥0

(i) The number of particles always decreases;

(ii) Considering a cycle of the form (vi, vi+2, vi+4, . . . , vi), the colours of the parti-

cles in R alternate;

(iii) Thus, particles that meet and annihilate each other are always of different

colours.

(iv) The number of particles is always even;

Proof. Item (i) follows immediately from definition 5.3.7, as no particles are ever

created. The fact that the number of particles always decreases will be of use after

we show the equivalence between the two types of games, because then we will

conclude that the number of randomising nodes on a biased consensus game also

always decreases.

We now show Item (ii). Assume, wlog, that there is a blue particle in vi, then,

vi+1 = blue by definition. Also, vi+3 = blue if and only if there are no particles in

vi+2. Until no particles are present on nodes of the form vi+2j, j ∈ N, vi+3 = blue.

Thus, once a particle is present, its neighbouring clockwise node has to be red. Item

(iii) now follows immediately. Item (iv) can be shown from Item (ii): if the colours of

particles alternate in a given cycle, then there are an even number of such particles,

for the same reason as an odd cycle is not two-colourable. �

We will now prove what evidence has been pointing at thus far: two correspond-

ing games running in parallel and taking analogous random decisions, will still be

corresponding games during all subsequent rounds.

Lemma 5.3.13 (Equivalence Between Games) Let S\{γblue, γred} be the state-

space (excluding consensus states) for a given set of rules of biased consensus games

F∆, and let S \{r−1} be the state-space (excluding no-particles state r−1) for the set

of rules of an annihilating random-walking particles game generated by applying the

function f to states in S.

In these conditions, both digraphs that represent the states and transition proba-

bilities of both games are isomorphic, with isomorphism f .
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Proof. In order to prove that the two games are equivalent, we are going to show

that the transition matrix of both Markov chains are equal, i.e., that the directed

graphs H and Ĥ that represent the Markov chains of the consensus game and the

random-walking particles game, respectively, are isomorphic.

In order to show this isomorphism, we are going to restrict our analysis to n odd

and the bijective function f restricted to S \ {γblue, γred}. The extension from odd n

to natural n is simple given that partitions act independently, as seen several times

so far.

Let s1 and s2 be arbitrary states of H. We will show that the transition proba-

bility from s1 to s2 (i.e., the weight of the edge connecting the two states in H) is

the same as the one from r1 = f(s1) to r2 = f(s2) in Ĥ.

Case 1: Pr(St+1 = s2 | St = s1) = 0. We are going to show that, in this case,

Pr(Rt+1 = r2 | Rt = r1) = 0. Indeed, if s2 cannot be reached by s1 in one step,

there must be a non-randomising node that behaves differently from what is

expected. Let vi+1 be that node and say, wlog, that St(vi) = St(vi+2) =

blue (and thus St+1(vi+1) = red). Now there are two options: either vi−1 is

randomising in Si (and thus Rt(vi−1) 6= −1, or vi−1 is not randomising in Si

(and thus Rt(vi−1) = −1).

In the latter case, assuming vi−1 behaves as expected, we can conclude that

St+1(vi−1) = blue. However, if that were the case, it would mean that there

must be a particle on vi in Rt+1. We would then conclude that r1 cannot

transition to r2 since none of v′is neighbours host a particle in Rt. The only

case in which this would hold is when vi−1 does not behave as expected, but

then by induction we would end up either eventually reaching a randomising

node or the entire graph would have only non-randomising nodes , which

cannot be the case according to our hypothesis.

In the former case, if Rt(vi−1) 6= −1, then Rt(vi−1) =
(

r
b+r

, blue
)

has to be

a blue particle because St(vi) = blue. Assume by contradiction that r1 can

lead to r2 in a subsequent round. Then, if St+1(vi−1) = blue, then there

must be a particle in vi on Rt+1 that must have come from vi−1, thus it

must be blue; however, St+1(vi+1) = red. Otherwise, if St+1(vi−1) = red, the

probabilities involved are contradictory. In the case of different biases (r 6= b),

Pr (St+1(vi−1) = red) = r
b+r

, which is correlated to the random particle in vi−1

on Rt deciding on walking clockwise, which we already established above to

be impossible. However, the argument is not yet complete because we need to
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consider the unbiased case. Considering that the (blue) particle in vi−1 on Rt

moves counter-clockwise, the only way we do not reach a contradiction (note

that St+1(vi−1 = red)) is if it gets annihilated by another particle coming from

vi−3. Note that this node, vi−3, would have to be turning red from round t

to t + 1 as we know vi−2 is not randomising in St+1 because particles just

got annihilated by moving there. Finally, we observe that node vi−5 has to

be randomising in St, otherwise it will be blue in St+1, leaving vi−4 to be

randomising in St+1 with no possibility of a particle having landed there. For

the exact same reason as for vi−1, we need St+1(vi−5) = red. By induction, we

see that the only way to avoid a contradiction is to have allvi nodes randomising

and changing to red in St+1. However, by our hypothesis, s2 6= γred.

Case 2: Pr(Si+1 = s2 | Si = s1) = K > 0. We are going to show that we also

have Pr(Rt+1 = r2 | Rt = r1) = K. We can calculate K by looking at the

decision of randomising nodes from s1 to s2. Let, wlog, vi be a randomising

node in St with St(vi+1) = red. Thus, Rt(vi−1) =
(

b
r+b

, red
)
. With probabil-

ity b
r+b

, St+1(vi) = blue. In this case, vi+1 is randomising in St+1 unless vi+2

was also randomising in St and chose blue. Note that, considering that parti-

cles walk towards its red neighbour with probability b
r+b

and towards its blue

neighbour with probability r
r+b

, we know that with the same probability that

vi chooses blue in St, the red particle in vi in Rt decides to move clockwise,

to be annihilated if and only if there was a (blue) particle in vi+2 that moved

counter-clockwise (with probability b
r+b

). Thus, the probability of vi+1 being

randomising on St+1 is the same as the probability of there being a particle in

vi+1 on Rt+1. In conclusion, because the probabilities involved coincide for all

nodes in Cn, Pr(Rt+1 = r2 | Rt = r1) = K. �

Note that the games having the same behaviour implies, in particular, that the

expected time for the process to finish are also equal. In order to visualise this

fact, consider two (correspondent) initial configurations (
◦
F∆, S0) and R0 = f(S0)

according to Definition 5.3.9. Each one of these two configurations lie on correspon-

dent states of isomorphic Markov chains, and thus will have equal probabilities of

reaching the absorbing states. Note that the pre-image of absorbing state in the

random walks process is the set of (two) absorbing states in game (
◦
F∆, S0), i.e.,

f−1(r−1) = {γblue, γred}.
viIn case of even cycles, we would have all nodes in a given partition (instead of in the entire

graph) to be changing to red.
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5.3.1.2 Solving Biased Games on Cycles with Two Colours

When we consider annihilating random-walks that are moving between neighbouring

nodes of a graph in a synchronous fashion, particles on neighbouring nodes at a

given time might actually be far from meeting each other. That fact is particularly

interesting in a cycle: the actual minimum distance (the number of steps necessary

for an encounter) between random walks in neighbouring nodes in a cycle Cn in a

given time is n− 1.

The considerations described above motivate the definition that follows, in which

we duplicate cycles in order to capture a more realistic distance between the particles

in these games. We also apply an edge-colouring procedure to keep track of which

of the two consensus have been achieved after all particles have disappeared.

Definition 5.3.14 (Duplication) Let X be a set of colours and S(Cn) a set of

colourings of a cycle Cn, n ∈ N. We define the function doubleCn(s, x) that receives

s ∈ S(Cn) and x ∈ X as input creates a configuration s′ ∈ S(C2n), i.e., s′ : C2n →
X, and such that

s′(vi) =


x if i is odd,
s(vi) if i is even and i < n,
s(vi−n) if i is even and i > n.

(5.12)

If (
◦
F∆, S0) is a biased two-colour consensus game on Cn, n ∈ N, we say that the

game (
◦
F∆, S

′
0), played on C2n, is the augmented version of (

◦
F∆, S0). Finally, we

colour the edges between two nodes coloured x with colour x, and the edges between

nodes of different colour, say x and x̃, with colour x̃ (note we can never have two

consecutive nodes coloured both x̃ for x̃ 6= x). That will help us to keep track of the

amount of blue and red nodes in the original game.

Recall that a similar approach regarding colouring of edges has been presented in

Chapter 3, in Definition 3.2.11. Also from Chapter 3, note that the duplication

function has similarities with the split function in Definition 3.2.24.

Example 5.3.15. Consider Figure 5.6 for an illustration of the duplication function

applied to a configuration of a game played in C7. Note that (
◦
F∆, S

′
0), on C14 is the

augmented version of (
◦
F∆, S0), on C7. For convenience, random walks are also in

the same graph (represented by p1, . . . p4): the odd indexes represent red particles,

and even indexes represent the blue ones. Note that edges in (
◦
F∆, S

′
0) are red if, and

only if, they are connected to a red node. As usual, we denote the top most node
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Figure 5.6: Application of doubleC7(S0, blue). Randomising nodes have particles
on them, represented by p1, p2, p3, and p4.

in each graph as v1, and move clockwise until v7 in (
◦
F∆, S0), and v14 in (

◦
F∆, S

′
0).

Note that the blue particle p4 sits on v1 in both (
◦
F∆, S0) and (

◦
F∆, S

′
0). The also

blue particle p2 sits on v7 (node coloured red) in game (
◦
F∆, S0) and also on v7 in

game (
◦
F∆, S

′
0). On the other hand, the red particle p3 sits on v6 in game (

◦
F∆, S0)

and on v13 in game (
◦
F∆, S

′
0).

We are now going to present properties of augmented games in order to better under-

stand their behaviours and the connections with processes of annihilating random

walks on cycles.

Remark 5.3.16. To improve readability, we are, for the rest of this chapter, going

to assume colour x used as argument of the duplication function is the colour blue.

Therefore, when we refer to the augmented version of a biased consensus game

(
◦
F∆, S0), on Cn, we refer to game (

◦
F∆, S

′
0), where S ′0 = doubleCn(S0, blue).

Proposition 5.3.17 Let (
◦
F∆, S

′
0), on C2n be the augmented version of a biased

consensus game (
◦
F∆, S0), on Cn. Then, considering (

◦
F∆, S

′
0),

(i) Random walks are always positioned in odd nodes during even rounds, and

even nodes during odd rounds (therefore always on blue nodes).

(ii) Between two consecutive random walks there are either only blue nodes, or an

alternating sequence of red and blue nodes.
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Proof. The proposition follows immediately from observing that no even node can

be randomising in odd rounds, and no odd node can be randomising in even rounds.

Also, a pair of consecutive particles defines a group of edges between them. These

edges have to be of the same colour and the size of this group might either increase

by 2, decrease by 2, or stay the same. �

The previous definition can only be of use in a case in which there is some

straightforward way to ‘read’ the results on the original game by looking only at the

augmented game. The following proposition presents a solution for the problem of

comparing the behaviours of the two types of games.

Proposition 5.3.18 Let (
◦
F∆, S

′
0), on C2n be the augmented version of a biased

consensus game (
◦
F∆, S0), on Cn. Then,

(i) Blue consensus in (
◦
F∆, S0) is represented by blue consensus in (

◦
F∆, S

′
0).

(ii) Red consensus in (
◦
F∆, S0) is represented by failure to reach consensus in

(
◦
F∆, S

′
0), i.e., by reaching a losing state.

(iii) The number of blue edges in (
◦
F∆, S

′
0) is twice the number of blue nodes in

(
◦
F∆, S0).

(iv) The number of red edges in (
◦
F∆, S

′
0) is twice the number of red nodes in

(
◦
F∆, S0).

Proof. The first step to prove all items above is to observe that the function double

is objective when we consider only the partition that is not monochromatic at a

given time. With that in mind, Items (i) and (ii) become immediate. To see the

validity of Items (iii) and (iv), it is enough to observe that since one partition is

monochromatically blue, each node in the other partition determines whether we

have two red edges (if node is red) or two blue edges (if node is blue). �

The following proposition gives us a way to control the number of blue (or red)

nodes in a given game by looking at the colour of edges in the augmented version

of that game. The main difficulty with non-augmented games is the fact that non-

randomising nodes may or may not change according to their neighbours, so looking

at the random decisions does not immediately give us a way to infer the number

of a given colour in subsequent rounds. In other words, non-randomising nodes in

augmented games always choose blue (regardless of their current colour).

120



Proposition 5.3.19 Let (
◦
F∆, S

′
0), on C2n be the augmented version of a biased

consensus game (
◦
F∆, S0), on Cn. Then, a given set of consecutive blue (resp. red)

edges in a given round may either

(i) Decrease by 2 with probability r2

(r+b)2
(resp. b2

(r+b)2
); or

(ii) Increase by 2 with probability b2

(r+b)2
(resp. r2

(r+b)2
); or

(iii) Stay unchanged with probability 2br
(r+b)2

(resp. 2br
(r+b)2

).

Note that considering only one colour, the probabilities of growth of different sets

are independent, which is not the case if we consider any pair of neighbouring sets

(of consecutive edges) at the same time.

Proof. It is enough to note that a set of consecutive edges of the same colour in

augmented games have always an even number of edges. In other words, random-

walking particles cannot ‘jump over each other’. In other to confirm probabilities

shown in Items (i), (ii), and (iii), we simply use the fact that a blue (resp. red)

particle has a probability of b
r+b

(resp. r
r+b

) to move away from the nearest blue

(resp. red) edge. together with the fact that the change on size of each set of

consecutive edges depends on the movement of each of two particle at both its ends.

Neighbouring sets of consecutive edges do not have independent growth as they

share a common particle, which behaviour affect both sets. �

We are about to answer Question E2 by exploring Question E3: we define a ran-

dom variable and prove it is a martingale with respect to the configuration of the

augmented version of a given game in Cn.

Definition 5.3.20 Let (
◦
F∆, S0) be a biased two-colour consensus game on Cn,

n ∈ N. Also let kt be the number of blue nodes in St, and the function B (kt) :=∑kt
j=1 b

2(n−1−j)r2(j−1) be a polynomial defined by the integer kt. Finally, we define

the random variable Yt as

Yt := B (kt) =
kt∑
j=1

b2(n−1−j)r2(j−1) (5.13)

Our current conjecture is that, for game (
◦
F∆, S0) on Cn the random variable given

by Yt is a martingale with respect to St. To prove this, we are going to focus

our attention on the augmented version (
◦
F∆, S

′
0) on C2n. The following example

illustrates the steps of the proof of Theorem 5.3.22, to be presented shortly.
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Example 5.3.21 (Solving a simple case). Consider the game (
◦
F∆, S

′
0), on C7

described in Figure 5.6 and its augmented version. We are going to show that Yt is

a martingale for this game. Note that

Y0 = B (4) = b12 + b10r2 + b8r4 + b6r6 (5.14)

We will show that E(Y1) = Y0. Indeed,

E(Y1) =
1

(r + b)4

[
b4B(6) + 4b3rB(5) + 6b2r2B(4) + 4br3B(3) + r4B(2)

]
=

=
1

(r + b)4
[b4(b12 + b10r2 + b8r4 + b6r6 + b4r8 + b2r10)+

+4b3r(b12 + b10r2 + b8r4 + b6r6 + b4r8)+

+6b2r2(b12 + b10r2 + b8r4 + b6r6)+

+4br3(b12 + b10r2 + b8r4)+

+r4(b12 + b10r2)]

=
1

(r + b)4
[b4(b12 + b10r2 + b8r4 + b6r6) + r4(b8r4 + b6r6)+

+4b3r(b12 + b10r2 + b8r4 + b6r6) + 4br3(b6r6)+

+6b2r2(b12 + b10r2 + b8r4 + b6r6)+

+4br3(b12 + b10r2 + b8r4)+

+r4(b12 + b10r2)]

which gives us

E(Y1) =
1

(r + b)4

[
(r + b)4(b12 + b10r2 + b8r4 + b6r6)

]
= Y0

The fact that Yt is a martingale will be formally proven in Theorem 5.3.22. We will

then show that the probability in this case is given by

Pr(Sτ = γblue | S0) =
b12 + b10r2 + b8r4 + b6r6

b12 + b10r2 + b8r4 + b6r6 + b4r8 + b2r10 + r12
(5.15)

Theorem 5.3.22 (Probability of Consensus in Biased Games on Cycles)

Let (
◦
F∆, S0) be a biased two-colour consensus game on Cn, n odd, and let i be the

number of blue nodes in S0. Then,

Pr(Sτ = γblue | S0) =

∑i
j=1 b

2(n−1−j)r2(j−1)∑n
j=1 b

2(n−1−j)r2(j−1)
=

1−
(
r
b

)2i

1−
(
r
b

)2n (5.16)

We can get the probability of consensus in red using an analogous formula in which

i represents the number of red nodes in S0.
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Proof. Using Lemma 5.3.13 and Property 5.3.18, is enough to show that the result is

also the probability of the analogous random-walk process of the augmented version

(
◦
F∆, S

′
0) on C2n. As usual, S ′t stands for the random variable representing the

configuration of the augmented game in round t. We show that the random variable

Yt = B(i) =
∑i

j=1 b
2(n−1−j)r2(j−1), where i is half the quantity of blue edgesvii in

S ′t, is a martigale with respect to St. Note that each set of blue edges in a given

round changes according to probabilities given in Proposition 5.3.19. Note also

that possible annihilations due to encounter of two random walks, and therefore

connection of blue or red sets of edges, do not change the sum of blue nor red edges,

but solely the number of random-walking particles from one round to another.

Let wt be the number of random-walking particles in round t. Note that wt is

always less than or equal to the number of blue edges. We then have

E(Yt+1 | St) =
1

(r + b)wt

[
B
(
i+

wt
2

)
bwt +

(
wt
1

)
B

(
i+

wt − 2

2

)
bwt−1r+

· · ·+ B
(
i− wt

2

)
rwt
] (5.17)

=
1

(r + b)wt

wt∑
j=0

(
wt
j

)
B

(
i+

wt − 2j

2

)
bwt−jrj. (5.18)

In order to simplify notation, we define L = wt−2k
2

. The main step in this proof is

to use that
(
wt
j

)
=
(
wt
wt−j

)
in order to prove that(

wt
k

)
B (i+ L) bwt−krk +

(
wt

wt − k

)
B (i− L) bwt−(wt−k)rwt−k) (5.19)

is equal to (
wt
k

)
B (i)

(
bwt−krk + bkrwt−k

)
For an integer k. We assume, wlog, k < wt

2
. Indeed, developing Equation 5.19 we

get

(5.19) =

(
wt
k

)[
B (i+ L) bwt−krk + B (i− L) bkrwt−k

]
=

(
wt
k

)[
B (i)

(
bwt−krk + bkrwt−k

)
+K

]
where

K =

(
i+L∑
j=i+1

b2(n−1−j)r2(j−1)

)
bwt−krk −

(
i∑

j=i−L+1

b2(n−1−j)r2(j−1)

)
bkrwt−k = 0

viiNote that i is also the number of blue nodes in St.
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This can be seen by applying the substitution s = j− −wt+2k
2

= j+L on the second

sum, getting

K =

(
i+L∑
j=i+1

b2(n−1−j)r2(j−1)

)
bwt−krk −

(
i+L∑
s=i+1

b2(n−1−s+L)r2(s−L−1)

)
bkrwt−k

=

(
i+L∑
j=i+1

b2(n−1−j)+wt−kr2(j−1)+k

)
−

(
i+L∑
s=i+1

b2(n−1−s)+wt−kr2(s−1)+k

)
= 0

Going back to Equation 5.17, we have

E(Yt+1 | St) =
1

(r + b)wt

wt∑
j=0

(
wt
j

)
B

(
i+

wt − 2j

2

)
bwt−jrj

=
1

(r + b)wt

(wt
wt
2

)
B (i) b

wt
2 r

wt
2 +

wt
2
−1∑

j=0

(
wt
k

)
B (i)

(
bwt−krk + bkrwt−k

)
= B (i)

Finally, since b and r are constants and B (i) is bounded (by 0 and B (n)), and con-

sidering the game ends at round τ (random walks meet eventually with probability

1), we apply Doob’s Stopping Theorem to get

Y0 = E(Y0) = E(Y∞) = E(Yτ ) = B (0) Pr(Sτ 6= γblue | S0) + B (n) Pr(Sτ = γblue | S0)

Thus,

Pr(Sτ = γblue | S0) =
B (i)

B (n)
(5.20)

�

Corollary 5.3.23 We extend the results for a general cycle Cn. Let k1 (resp. k2)

be the number of blue nodes in partition 1 (resp. 2). Then,

Pr(Sτ = γblue | S0) =
B (k1)×B (k2)(

B
(
n
2

))2 =

(
1−

(
r
b

)2i
)(

1−
(
r
b

)2i
)

1− 2
(
r
b

)2n
+
(
r
b

)4n (5.21)

Analogously, we have

Pr(Sτ = γred | S0) =
B
(
n
2
− k1

)
×B

(
n
2
− k2

)(
B
(
n
2

))2 . (5.22)

Finally, the probability of non-convergence is given by

Pr(Sτ /∈ Γ | S0) =
B
(
n
2
− k1

)
×B (k2) + B (k1)×B

(
n
2
− k2

)(
B
(
n
2

))2 . (5.23)
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Proof. We just combine Theorems 5.3.22 and 3.2.26. �

We can now conclude that the answer to both Questions E2 and E3 is yes: the

relative position of particles of the same colour in an odd cycle (or within the same

partition in an even cycle) is irrelevant for the probability of convergence to each of

the consensus states, which comes from the fact that there is a martingale that only

takes in account the number of nodes of each colour, as proven by Theorem 5.3.22.

We now apply the results above to the motivational problem posed in the beginning

of this chapter.

Solution to Problem 5. Going back to the game depicted in Figure 5.1, we

can calculate the probabilities of each of the two colours winning. Applying Theo-

rem 5.3.22, we get

Pr(Sτ = γblue | S0) =
b32 + b30r2 + · · ·+ b20r12 + b18r14

b32 + b30r2 + · · ·+ b2r30 + r32
(5.24)

We have δblue = 2 and δred = 1, thus

Pr(Sτ = γblue | S0) =
1−

(
1
2

)16

1−
(

1
2

)34 ≈ 0.99998 (5.25)

5.4 Interesting Ramifications

We now motivate and formally define three family of problems that derive from the

study of biased consensus games. For the reachability problem (Section 5.4.1), we

provide a full solution for cycles based on the correspondence with random walks

studied earlier in this chapter.

5.4.1 The Reachability Problem

Consider a biased consensus game (
◦
F∆, S0) that starts as in Figure 5.7 (left). Is

there a positive probability that it will eventually reach s ∈ S as in Figure 5.7

(right)? We reproduce here a formal definition of this problem from [1].

Definition 5.4.1 (Markov Reachability Problem) Given a finite stochastic

matrix M with rational entries and given r rational, does there exist t ∈ N such

that (Mt)1,2 > r?
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(
◦
F∆, S0) s ∈ S

Figure 5.7: The Initial Configuration of a Game (
◦
F∆, S0) and a Given Configuration

s ∈ S. Can (
◦
F∆, S0) Eventually Reach s?

There is evidence that this is a hard problem in general as there is a reduction

to it from the Positivity Problem [1]. In turn, there is a reduction to the Positivity

Problem from the Skolem Problem [58]. Finally, Skolem Problem is known to be

NP-Hard [8].viii We look at the particular case in which M describes a consensus

game on an undirected cycle Cn, and r = 0. Also, for states s, s̃ ∈ S, we want

to know whether there exists t ≥ 0 such that (Mt)s,s̃ > 0, i.e., whether there is a

positive probability that a process starting at state s reaches state s̃ in t steps.

To provide a visual insight for the next theorem, it is helpful to refer back to

Figure 5.5, where random-walking particles are depicted in each configuration of a

game on C5. Note that in each level the number of particles decreases and that there

is no possibility for a game to ‘move up a level’. Note also that each configuration

in a given level reaches all the other ones from that same level (and consequentially

all the ones below as well). We now present the formal theorem and its proof.

Theorem 5.4.2 (Reachability Problem for Cycles) Let (
◦
F∆, S0), with S0 /∈

Γ, be a biased consensus game on a cycle Cn with two colours, and a state s ∈ S,

where S denotes, as usual, the set of all colourings of Cn with two colours.

(i) If n is odd, let N and M be the numbers of randomising nodesix in S0 and s,

viiiAlthough we are not going to use these definitions any further, here we provide, for complete-
ness, a brief description of the Positivity Problem and the Skolem problem. The former can be
understood as the decision problem in which, given a linear recurrence relation, we want to know
whether all its terms are positive. The latter is the decision problem in which, given a recurrence
relation, we want to know whether if ever reaches the value zero.

ixHere we abuse notation since the colouring s is not part of a process, therefore the term
‘randomising nodes’ should be understood as ‘nodes between two neighbours of different colour’ .
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respectively. In these conditions,

∃t ≥ 0 [Pr(St = s | S0) > 0]⇐⇒ N ≥M (5.26)

(ii) If n is even, let N1 and N2 be the numbers of randomising nodes in each of

the partitions of Cn in S0. Analogously, let M1 and M2 be the number of

randomising nodes in each of the partitions of Cn in s0. We assume, wlog,

that N1 ≤ N2 and that M1 ≤M2. In these conditions, if N1, N2 > 0, then

∃t ≥ 0 [Pr(St = s | S0) > 0]⇐⇒ [N1 ≥M1] ∧ [N2 ≥M2] (5.27)

Else, if N1 = N2 = 0, then S0 is a losing game (since S0 /∈ Γ), and can

only reach s if s is also a losing game. If N2 > N1 = 0 , then S0 has a γ-

monochromatic partition. And thus will only reach s if and only if s also has

a γ-monochomatic partition (not necessarily the same partition) for the same

γ ∈ Γ, and N2 ≥M2.

Proof. Part (i) comes immediately by observing that there is a bijective function

(Proposition 5.3.11) from biased consensus games to process of annihilating random-

walking particles on the same odd cycle. Recall that the number of randomising

nodes in the Flag Coordination Game corresponds (by Definition 5.3.9) to the num-

ber of particles in the random walks game. Because particles may jump over each

other on the odd cycle (note that they move synchronously), any configuration of

m particles can be reached from any other configuration of m particles.

Part (ii) can be shown by using the independence of partitions, and the fact that,

in the presence of monochromatic partitions, they alternate from one round to the

next. Note that you can get inverse configurations in the biased consensus game by

having red particles move where blue particles were initially and vice-versa in the

random walks process. �

Going back to Figure 5.7, note that Pr(St = s | S0) = 0, since N = 4 < 10 = M .

We now provide a solution for the second part of Problem 1, from Chapter 2.

Solution to Problem 1 (Take 2). Recall that we considered a line of au-

tonomous robots in a bucket brigade aiming to choose an action (colour) different

from their neighbours’, i.e., playing an anti-consensus game. Although we will not

provide a proof in this dissertation, it is not hard to see that we can also have a cor-

respondence between generalised consensus problems on paths and random-walking
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particles. Note that particles in the interior of a path behaves like in a cycle. If they

hit either end of the path, however, they disappear. Note that they also disappear if

they meet another particle, as in cycles. In these conditions, we can analyse whether

configuration A is reachable by configuration B and vice versa. Using terminology

from Theorem 5.4.2, we have, for configuration A, N1 = 1 and N2 = 1. For con-

figuration B, M1 = 1 and M2 = 4. Thus, a game that starts as B has a positive

probability of eventually reaching A, however, a game that starts in A can never

reach B.

5.4.2 Trade-off Between Bias and Presence on the Graph

In order to motivate our exploration of Question E6, let us look into the solution of

Problem 5 in more detail. We know that blue is far more likely to win than red. At

this point, we might suspect that having only 7 instead of 8 nodes initially would

be enough for blue to be more likely to win. That is indeed the case. This will

be immediate once we show that just one blue node is what is needed to have a

consensus in blue more likely than in red. The intuition is simple: r = 1 makes

B (m) a sum of powers of two. And this sum does not reach 2m+1. Therefore,

B (1)

B (n)
>

1

2
(5.28)

The solution of the above problem invites us to consider whether a slightly smaller

bias for blue would still guarantee a greater likelihood to win even with one node

in an initial configuration. For example, is one blue node still enough in case r = 1

and, say, b = 1.9? More formally, fixing r = 1, we are looking for

inf
b∈R

{
b

∣∣∣∣ B (1)

B (n)
>

1

2

}
(5.29)

We solve a particular case of this problem for C3 in the following example.

Example 5.4.3. Consider a biased consensus game on C3. The threshold for a

positive bias δblue = b for blue to be more likely to win starting from a configuration

of one blue node and two red ones is given by

inf
b∈R

{
b

∣∣∣∣ B (1)

B (n)
>

1

2

}
= φ

1
2 (5.30)

where here φ denotes the golden ratio, i.e., solution for the equation x2− x− 1 = 0.
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Motivated by the examples above, we define a problem to be investigated in future

work. Solving it will allow us to understand what is the trade-off between the bias

towards a given colour and how many nodes of that given colour there are in the

network.

Definition 5.4.4 Let (
◦
F∆, S0) be a biased two-colour consensus game on an odd

cycle Cn as in Definition 5.3.4. Let p ∈ [0, 1] be the minimum probability of winning

the game we want blue to have. We define

Ω(p,m) := inf
b∈R

{
b

∣∣∣∣ B (m)

B (n)
> p, and δblue = b

}
(5.31)

as the lower threshold for a positive bias δblue = b for which a game starting with m

blue nodes will have probability of blue winning greater than p. On the other hand,

we define

f(p, b) := min
m∈N

{
m

∣∣∣∣ B (m)

B (n)
> p, and δblue = b

}
(5.32)

as the minimum number of nodes that need to be blue in order for blue to have a

probability higher than p assuming that the bias towards blue is δblue = b.

5.4.3 Multiple Consecutive Biased Games

In this section we propose a problem to be investigated in future work. Consider a

sequence of biased consensus games in which the bias towards colours change from

one game to the other based on the previous consensus result. For example, assume

an unbiased consensus game is to happen on a cycle with a given initial configuration

S0 with colours red and blue. The colour that wins the unbiased game will, say,

have the bias towards it increased by 1 if already greater than 1, or decrease the

opposing colour’s bias by 1 otherwise. If blue wins, for example, the following game

will be a biased game with δblue = 2, and δred = 1, starting at the same configuration

S0. We say that the entire process ends whenever either colour reaches a positive

bias of a given integer M > 0.

This family of problems can be used to model path-dependent technologies, pro-

cesses in which the very use of a technology partially acts as a self-fulfilling prophecy

regarding the standard to be adopted, i.e., the more a given standard is used, the

harder it is to adopt a different one. A standard example of path-dependent tech-

nology is the QWERTY keyboard.

We now provide a formal definition, framing this process as a random walk on a

line.
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Definition 5.4.5 (Multiple Consecutive Biased Games) Consider the family

of biased games {(F∆, S0)z}z∈Z with set of biases varying according to z. More

precisely, ∆(z) = {δblue(z), δred(z)}. Consider now a (lazy) random walkx on the

integer line which position is described by the random variable {Yt}t∈T indexed on a

discrete time-set and with the update rule given by

Yt+1 =


Yt + 1, with probability Pr(Sτ = γblue | (F∆, S0)z=Yt)

Yt − 1, with probability Pr(Sτ = γred | (F∆, S0)z=Yt)

Yt, otherwise

(5.33)

We assume this random walk starts on z = 0 and gets absorbed on points z = M ,

and z = −M , for some constant M > 0.

Note that we allow the random walk defined above to be lazy so we can include

games that might not converge (probability represented by the probability that the

random walk does not move on that round).

In multiple consecutive biased games, we are interested in the probability of

reaching either absorbing state given the function ∆(z), as well as the expected

time for this process to end.

5.5 Summary of Results

In this chapter, we have studied a family of Flag Coordination Games in which

there are different biases towards different colours or flags. Although we defined the

problem in general, the focus of our attention was on the behaviours of such games

on cycle graphs. As the first step of our analysis, we discarded the possibility that

the probabilities of a given opinion to win increased linearly with the number of

nodes initially coloured according to that opinion (Question E1). We established

the probabilities to win of each colour by defining a martingale that describes the

process, firstly in cycles of odd length (Theorem 5.3.22); then, we applied the results

of Chapter 3 to extend the results for cycles of any length, resolving Question E3

for cycles. Such probabilities do not depend on the initial relative position of nodes

(in a given partition, if even cycle), but solely on the number of nodes of each colour

that are present in the initial configuration of the game, answering Question E2 for

cycles.

As part of this process of solving Questions E1, E2, and E3, we formally ad-

dressed Question E4 by showing a correspondence between a biased generalised

xA random walk is said to be lazy if there is a probability that it does not move at each round.
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consensus game on the cycle and a process of annihilating random walks on the

same cycle. This correspondence allowed us to determine whether a given state is

reachable by a game starting at an arbitrary initial configuration (Question E5).

Finally, we introduced and formally defined two families of interesting ramifi-

cations of biased consensus games. In the first, we proposed a deeper study into

the trade-off between biases in a consensus game and the number of nodes of each

colour (Question E6). In particular, what is the lower bound for bias towards a

given colour x that will allow x to be more likely to win than not even in situations

in which only one node is initially coloured x? The second family of problems to be

studied considers that multiple iterations of a game have been played in sequence,

with the difference that biases may vary from one iteration to the next. With that,

we may be able to model processes such as path-dependent technologies in which

current or past consensus may affect future consensus.

131



Chapter 6

Conclusions and Future Work

In this thesis, we studied decentralised multi-agent processes with restricted com-

munication capabilities, in which the only information each agent could send is their

current state. In Chapter 2, we showed that there are a wide range of problems from

different fields of study that can be viewed as Flag Coordination Games. For in-

stance, problems in Graph Theory, such as proper colouring of graphs, can be framed

as Flag Coordination Games (Example 2.2.7); Epistemic Logic, as portrayed in the

Muddy Children Problem (Example 2.2.6); and Statistical Mechanics appeared as

a Flag Coordination Game in Example 2.2.10. Later, we applied Flag Coordination

Games to the Theory of Argumentation (Chapter 4) and saw that some random

walk processes on graphs correspond to a family of consensus games (Chapter 5).

Not all sets of rules of Flag Coordination Games guarantee convergence for all

possible initial configurations, and Chapter 3 fully solves that problem by providing

a criterion for generalised consensus games in digraphs. Moreover, in Chapter 3

we presented probabilities for the convergence to each one of the goal states, given

an initial configuration of the game, on any undirected or directed graph. Finally,

Chapter 5 introduced the concept of biased (generalised) consensus games, in which

nodes show a tendency to choose a particular colour (goal state) by having different

weights associated to each colour. The problem is then fully solved for cycles when

only two colours are involved.

6.1 Summary of Results

We now reproduce and then provide a more detailed account of each of the questions

raised in Chapter 1.
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A1 Given a defined set of rules of a Flag Coordination Game and given an initial

state, what is the probability that the sequential decision process will enter an

infinite cycle that does not converge to a pre-specified global goal state (i.e., an

infinite cycle of non-convergence)?

A2 Given a defined set of rules of a Flag Coordination Game and given an initial

state, what is the probability that the sequential decision process will converge

to a pre-specified desired global goal state?

In Chapter 3 we studied a particular class of Flag Coordination Games in which the

number of goal states is equal to the number of colours or flags available to agents

in the game. Moreover, each agent is coloured differently in each goal state, which

makes it possible for each agent together with its current state to be matched with

one and only one goal state. Games under these conditions are called generalised

consensus games (Definition 3.2.1).

Considering undirected graphs, generalised consensus games arise in different

possible scenarios. One example of a situation in which agents of two clearly dis-

tinct groups make their decisions based on agents in the other group is a doctors

and patients bipartite network in which colours refer to different health insurance

providers. Alternatively, we can think of the Ising model for antiferromagnetism, in

which, spins in one partition tend to be in the opposite direction to the ones in the

other partition (Example 2.2.10). Note that these two examples represent two sides

of the same coin: one is a consensus game and the other is anticonsensus. Both

are particular cases of generalised consensus games. In the context of generalised

consensus games on bipartite graphs, we derive a formula for the probability of con-

vergence in each of the goal configurations as well as the probability of reaching a

goal configuration at all, as opposed to entering an infinite loop (Theorem 3.2.26).

A3 Given a defined set of rules of a Flag Coordination Game and given an initial

state, what is the expected number of decision rounds (time steps) to reach a

pre-specified global goal state?

Also in Chapter 3, we computed formulas for lower and upper bounds on the ex-

pected number of rounds a game in an undirected bipartite graph would take, given

its initial configuration, until reaching either a winning state or entering a loop

(Theorems 3.2.28 and 3.2.19) in generalised consensus games with two colours and

without bias. We used results on Zagreb indices [20] on graphs in order to provide

a tighter lower bound for the process to end. We reproduce Table 3.1 in Table 6.1
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Single-partition games on
bipartite graphs

General games on bipartite
graphs

Winning
probability

Pr(Sτ = γ | S0)

Y0

|E|
Y0X0

|E|2

Upper-bound
for expected

duration E(τ)

mY0 − Y 2
0 m(Y0 +X0)− (Y 2

0 +X2
0 )

Lower-bound
for expected

duration E(τ)

8(mY0 − Y 2
0 )

mn
+ 1

4(m(Y0 +X0)− (Y 2
0 +X2

0 )

mn

Table 6.1: (Reproduce of Table 3.1) Summary of Results of This Chapter for Undi-
rected Graphs.

A4 Which sufficient conditions on the rules of a Flag Coordination Game are such

that, for at least one possible initial state, there is a positive probability that

the state loop described in Question A1 is entered?

To try to understand the necessary and sufficient conditions for losing configurations

to appear in more general Flag Coordination Games, we explored what could lead

to state loops of size other than 2 (as observed in bipartite graphs). In Chapter

3, we introduced the generalised consensus games on directed graphs and showed

in Lemma 3.3.7 that losing loops of size k may appear if and only if the greatest

common divisor of the length of all cycles in the graph is k. We have shown that the

possibility of reaching losing configurations in generalised consensus games involve

processes that become deterministic at some point (in loops, the interference of

bias towards a given colour is irrelevant). Thus, this result is also valid for biased

consensus games.

Moreover, we answered Questions A1, and A2 for any digraph in Theorem

3.3.16.

A5 How can we apply the concept of Flag Coordination Games to the field of Argu-

mentation Theory to study a form of distributed argumentation in which each

argument is controlled by an independent agent?

In Chapter 4 we introduced the concept of Team Persuasion (Definition 4.3.2) as

a Flag Coordination Game in which each agent controls one argument and has to

decide whether or not to re-state it from time to time. There is a topic argument,
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which some agents are (directly or indirectly) attacking, and others are (directly

or indirectly) defending. In this model, we only consider bipartite argumentation

frameworks, and therefore we can separate all the arguments into two teams (de-

fending and attacking). If an argument is stated, we say it is on. We consider that

if the argument is not stated again when it could have been (there are differences

between synchronous and asynchronous games), the audience forgets it and it is

then considered to be off. We allow agents to have distinct algorithms that might

include the assignment of weights on attacks, and more generally on any path that

ends at the agent.

In these conditions, we studied the probability, given an initial configuration, of

the topic argument to be accepted in the long run of this process, and the probability

that it ends up being rejected (Corollary 4.4.10). For synchronous games, there is

also a positive probability that the game enters a loop (related to Question A4).

The only small difference between results in Chapter 4 and earlier ones in Chapter

3 is the introduction of a topic argument. In these situations, arguments that do

not affect the topic neither directly nor indirectly have no influence in the final

acceptability of the topic, and therefore are ignored when calculating probabilities

of convergence to goal states. Remember that in weakly connected graphs we may

have strongly connected components of the graph that cannot be either the start or

endpoint of a path to or from the topic argument.

A6 How can a Flag Coordination Game be influenced by external agents?

The context of Team Persuasion Games is ideal to consider the influence of external

agents, or bribers, who seek to locally modify the configuration of the game in order

to achieve a given global state. More specifically, a briber would pay (in function

of their payoff from the game’s result) a given agent to change their argument from

off to on, or vice versa. For the scenario with one briber, it is enough to calculate

the change in probability of their team of choice winning for each possible change

(Lemma 4.5.4). For two bribers working for opposing teams in synchronous games,

however, they have to consider each others’ possible choices when making their own.

We then provide a game-theoretical analysis (Proposition 4.5.9) of this game on

bipartite digraphs, which is essentially the same as the analysis for a general digraph.

We also show that there is always at least one pure strategy Nash equilibrium for

such games (Theorem 4.5.10).
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A7 What is the impact of the introduction of bias towards a given opinion (or flag

colour) in the set of rules of a Flag Coordination Game?

In Chapter 5 we discussed the impact of introducing bias in the choice of agents

in each round. For example, when between a blue and a red node, an agent might

choose blue with a probability higher than 1
2

in case there is a positive bias towards

opinion blue. Although there is an indication that this problem is hard for a general

undirected graph [37], we provide solutions for cycles (Theorem 5.3.22). We show

that such games have a correspondence with processes of annihilating random walks

on graphs, which is sustained by the fact that the formula found in Theorem 5.3.22

is similar to the solution of a biased random walk on a path, also known as the

gambler’s ruin problem (Example 2.4.11).

A8 Can every state in a Flag Coordination Game be reached from any other state

with positive probability?

The correspondence between consensus games on cycles and a process involving

random-walking particles also allowed us to solve, for particular Flag Coordination

Games, a known hard problem in general [1, 58, 8] : given two possible configura-

tions, A and B, in a distributed system that changes its state at successive time

steps, can a system that started in configuration A ever reach configuration B?

We showed that, for biased (or unbiased) Flag Coordination Games on cycles,

the problem of reachability can be solved, i.e., by looking at the equivalent process

involving random walks, we can establish whether a given state is reachable from

another. In sum, because random-walking particles annihilate each other as they

meet, and no new walk is created, configuration with more particles might reach

one with less, but not the other way round.

Refer to Table 6.2 for a remainder of symbols and definitions for each set of

rules of Flag Coordination Games. Finally, we present diagram in Figure 6.1 that

summarises the relationship between the different set of rules of Flag Coordination

Games, and highlight some of the theorems proven in this dissertation. Note that

results in the diagram are contributions of this dissertation. The exceptions are

Theorem 2.3.1 by Hassin and Peleg [35] and Theorem 2.4.17 by Cooper and Rivera

[18], which were added to show how they relate with the models we studied. We

also add some examples from Chapter 2, highlighting the fact that, although they

can be seen as Flag Coordination Games, they are not seen as generalised consensus

games.
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F

Example 2.2.7 Example 2.2.6

Example 2.2.8 Example 2.2.5

FGC

Unbiased Games

Undirected Graphs

Theorem 2.3.1

F2

Theorem 3.2.26

Theorem 3.2.27

Theorem 3.2.28

Directed Graphs

Theorem 2.4.17

#»Fk

Theorem 3.3.16

FTP

Theorem 4.4.10

F∆

Undirected Graphs
◦
F∆

Theorem 5.3.22 Theorem 5.4.2

Figure 6.1: Diagram Depicting the Connection Between the Different Set of Rules
for Flag Coordination Games Discussed in This Dissertation, Alongside Some Key
Results.

137



F Flag Coordination Game Definition 2.2.1

FGC Generalised Consensus Game Definition 3.2.1

F2 Game on (Undirected) Bipartite Graphs Definition 3.2.3
#»F Generalised Consensus in Directed Graphs Definition 3.3.2

#»Fk Generalised Consensus in k-partite Digraphs Definition 3.3.6

FTP Team Persuasion Game Definition 4.3.2

F∆ Biased Generalised Consensus Game Definition 5.3.1
◦
F∆ Biased Two-colour Consensus Game on Cycles Definition 5.3.4

Table 6.2: Notation of Each Set of Rules of Flag Coordination Games and Their
Original Definitions.

6.2 Future Work

Even considering the several examples of Flag Coordination Games presented in

Chapter 2, the wide range of possible applications does not seem to have yet been

fully explored. Indeed, in this section we present a few more avenues of research

bringing concepts and results of Flag Coordination Games into new areas. We also

propose directions to further develop the results presented in Section 6.1.

6.2.1 Improvements on Results

In this section we study possible ramifications of our results in Chapters 3, 4, and

5.

Regarding results from Chapter 3, one avenue of future work is to find bounds

for the expected duration of games in digraphs in a similar way to how we found

bounds for undirected bipartite graphs. I would also be interesting to understand

the effect of agents having longer memories in specific classes of graphs, such as

cycles or complete graphs. Note that a general solution for the longer memories

problem has been added to Appendix A. In that scenario, one could explore mixed

networks, in which different agents are being able to remember different sets of

previous rounds, and establish whether probabilities for reaching consensus increase

or decrease for each given memory profile. A more theoretical question regarding

games on bipartite graphs the one regarding conditional expectations on the time

for the process to finish. For example, given that a game will end successfully, what

is its the expected time?
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A interesting line of future work for not only generalised consensus games but

Flag Coordination Games in general, is the consideration of malicious agents that

seek to thwart the process to reach one of the goal states. It would be then necessary

to allow other agents to have a longer memory to be able to try to infer (with some

probability) whether a given agent is behaving as it should be.

Future work will generalise the techniques of Chapter 3 to the anti-consensus

problem on a directed graph investigated in Chapter 4. Specifically, if the Team

Persuasion game will reach a goal state, we can calculate the expected number of

rounds until that happens. We could also investigate different generalisations of

the team persuasion game. There are various assumptions on the digraph that we

could modify. For example, generalising from bipartite to multipartite argumenta-

tion frameworks in which many teams seek to persuade the audience. Additionally,

we can lift the assumption that no agent attacks its fellow agents of the same team.

Such a team seems quite unlikely (and thus is not considered here), but occasionally

this may occur, e.g. a campaigner who wishes to leave the EU because their envi-

ronmental laws are too restrictive on UK businesses, and a campaigner who wishes

to leave the EU because they do not have strong enough environmental laws; both

campaigners would be on the same team, but their arguments are seemingly conflict-

ing. Further generalisations include consideration of the case in which each agent

can assert more than one argument or the consideration of heterogeneous agents in

the same framework that can also be altruistic or timid. Ultimately, we hope such

generalisations can give insight into situations in which individual goals and societal

goals conflict to a greater extent, and how this conflict can be resolved.

In future work, the results for team persuasion games can be applied to other

types of argument dialogue games, such as negotiations [63]. Although team persua-

sion games are similar to real-world political debates in which bribery is common,

there are other forms of dialogue in which it might also occur, such as deliberations.

Considering games which do not become state-stable, it would be interesting to

investigate (1) in what proportion of rounds is the topic acceptable, and (2) what

is the probability that the topic is acceptable at a specific round in the future.

With respect to the first question, we might determine the winning team to be the

one who makes the topic acceptable/unacceptable in the majority of rounds. The

second question is particularly interesting in the context of referendum-like domains,

in which there is a set date (round t) in which the audience determines whether the

topic is acceptable (and thus which team wins): in this case it does not matter

whether there is state-stability, only that the topic is acceptable in round t.
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We could also extend the results for other types of team persuasion game, such as

by generalising the result of Proposition 4.5.9 to an n-AF with an arbitrary number

of PSNE. Currently, our model of bribery games assumes that bribers have no choice

but to play; given that the briber’s payoffs might be negative, it might be interesting

to consider giving the bribers the option not to play the game, by including this in

the game-theoretic analysis. Finally, by introducing a measure on the set of rounds

in which the topic is accepted, we could study the long-run density of a given result

in a distributed argumentation process.

With regards to biased consensus games, one could explore different graph struc-

tures for which biased consensus games posses analytic solutions regarding the prob-

abilities involved in the process, as well as the complexity of the absorbing time. An

ideal next candidate are path graphs, given its similarities with cycles in particular

with regards to the correspondence to processes involving random-walking particles.

Other good candidates are tree and star graphs. Another improvement on results

from Chapter 5 is to find time bounds for biased consensus games on cycles to finish

as well as extending the analysis to allow more than two colours.

In relation to the multiple consecutive games problem proposed in Section 5.4.3,

we might be able to use tools such as drift on random walks to try to approach ques-

tions regarding probabilities of absorption or time bounds. This drift will take into

account the position of the random walk, not the time in which it acts. Reachability

is studied by Dunne and Chevaleyre [27] in the context of distributed negotiation

schemes, in which we are interested in whether a desired allocation of resources can

be reached from an initial one by local reallocations. It might be possible to related

such processes with the reachability problem on cycles discussed in Section 5.4.1.

Still on the reachability problem involving random-walking particles, a possible re-

finement of our work is to combine results by Grigoriev and Priezzhev in [33] with

Theorem 5.4.2 to obtain not only whether a state A is reachable by state B, but

what is the probability of that occurring.

6.2.2 Future Applications of Flag Coordination Games

The identification of collusion in competitive markets is a known problem for state

agencies. Indeed, most western countries outlaw collusion between competing com-

panies and regulate this activity through agencies such as the Competition and

Markets Authorities in the UK. Seeking to broaden the spectrum of possible ap-

plications of Flag Coordination Games, we might be able to formalise this process
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using a sort of anti-consensus algorithm. Nodes in a complete graph would represent

market agents that have to avoid collusion as well as avoiding appearing like they

are colluding, regardless of their intentions. For that, they can follow an algorithm

that just avoids them sharing the same state (representing a monetary value) of any

other agent. There would be restrictions on which value to change to. The following

example provides a formal definition of a Flag Coordination Game that could be

used to model collusion.

Example 6.2.1 (Colouring of Complete Graphs). Consider a Flag Coordi-

nation Game F = 〈G,X, T,Γ, φ, β, ψ, σ,A〉 played in a complete graph G = Kn.

Nodes aim to proper colour this graph in a synchronous way (and discrete time-

set T ). Clearly, at least n colours are needed, but not necessarily available to all

nodes during all rounds. Indeed, we assume that the colours available to a node

in a given round depends on its current state. The way we depict this relation is

by a digraph H = (V (H), E(H)) in which V (H) = X is the set of colours in this

Flag Coordination Game and a direct edge (xi, xj) ∈ E(H) represents that if agent

v ∈ V (G) is currently coloured xi, i.e., St(v) = xi, then v can choose colour xj for

the next round. Formally, v chooses randomly from the set {x | (St(v), x) ∈ E(H)}.
The algorithm of a node v is to randomly select one of the colours currently at its

disposal if some neighbour (all other nodes in Kn are neighbours of v) is currently

coloured the same as v. Otherwise, v keeps its colour.

In these conditions, we are interested in how long the process is going to take

as a function of the number of nodes in V , and also in which colours end up being

used at the end, i.e., how far agents’ states travelled in graph H.

Considering H as a very long (or infinite) path with nodes representing monetary

values with as many decimal places wanted, we can devise a criterion to check

whether market agents are indeed avoiding collusion. For that, we apply the work

by Cooper et al. [17], in which dispersion processes are studied, including time

bounds and expected width of the dispersion in different graph structures. More

specifically, they study processes that start with a given number of random-walking

particles all on a given node on a graph, say, a path. At each step, if the particles

are not alone, they move to a random neighbour (regardless of this neighbouring

node being empty or not). The process ends whenever all particles are alone. Under

these conditions, if there are n initial random walks, dispersion will take O(n3 log n)

and the distance from the origin Ddisp will be, with high probability, for any ε > 0,

such that bn
2
c ≤ Ddisp ≤ 4(1 + ε)n log n [17, Theorem 4].
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Appendix A

Agents with Longer Memories

In this section, we provide a solution for the scenario in which agents can remember

past rounds and may take in account previous colours of some of the other nodes.

More formally, we present the following more general version of a consensus game:

Definition A.0.1 Let
#  »Fψ = 〈G,X, T,Γ, φ, β, ψ, σ,A〉 be a generalised consensus

game as in Definition 3.3.2 with the difference that we allow agents to have longer

memories. Although, different nodes might have different memory depths, we assume

that a given node has constant memory throughout a game.

In the following theorem, we are going to show that it is possible to model a longer

memory process as a memory-less one played in a suitable graph G′. In loose

terms, we are going to create G′ by combining m copies of G, where m is the

maximum depth of memory among all the nodes in G. These copies are numbered

0,−1, . . . ,−m, to indicate that layer k < 0 records the configuration of the game

on G k rounds prior to the current one. For that, we need to have nodes i in layer

k 6= 0, denoted by vki , to have an unique edge pointing from it to its copy in layer

k + 1. The out-matrix of G′ will have the following structure:

H ′ =



H0 H−1 . . . H−m

I 0 0 0

0
. . . . . . 0

0 0 I 0


(A.1)

Theorem A.0.2 Let (
#  »Fψ, S0) be a game as in Definition A.0.1, and let m =

maxv∈V {ψ(v)}. Consider the graph G′ as defined above with layers G0, G−1, . . . , G−m.
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Then, the probability that consensus is achieved in G is given by the probability that

consensus is achieved in G′, where the configuration of G′ is either given by the

previous rounds of the game or, if not enough rounds were played, by the expected

colours of each node as given by Chapman–Kolmogorov equations applied to the ini-

tial configurations.

Proof. There are two cases to be considered. The first assumes we have the record of

at least m rounds of this game. In this case, it is enough to evaluate the stationary

distribution of H ′ and apply theorem 3.3.16. Note that for consensus to be achieved

in G′, we need G0 to have reached consensus, and thus although there might some

time delay between G0 reaching consensus and all the other layers of G′ capturing

this consensus, we know that consensus will be reached in G if and only if it is

reached in G′.

The second case is when we do not have enough previous rounds to construct

the initial configuration of G′. In that case, we take the initial configuration of G

and copy it to G−m. Then, subsequently apply the Chapman-Kolmogorov equations

to the bottom layers to get the expected probability that nodes in layer k will have

the colour x. �

Example A.0.3. Consider a consensus game played on G := G0 = C4 in which

nodes have probability p of copying the current colour of one of its neighbours

(uniformly at random), and probability (1 − p) of copying the previous round’s

colour of of one of its neighbours (uniformly at random). In this case, we have

ψ(v, t) = 1 for all v ∈ V and t > 0

We now have to find the stationary distribution of the out-matrix of the new graph

G′, where G′(V ) = G0(V ) ∪ G−1(V ), G−1 = C4, and edges of G′ are given by the

out-matrix

H =



0 p
2

0 p
2

0 1−p
2

0 1−p
2

0 p
2

0 p
2

0 1−p
2

0 1−p
2

p
2

0 p
2

0 1−p
2

0 1−p
2

0
p
2

0 p
2

0 1−p
2

0 1−p
2

0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


(A.2)
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The (normalised) stationary distribution of H is given by

µ =
1− p

4p

(
1

1− p
,

1

1− p
,

1

1− p
,

1

1− p
, 1, 1, 1, 1

)
(A.3)

144



Appendix B

Black and White Figures

Key:

blue or purple vertices.

red, orange, or green vertices.

black or blue edges.

red or green edges.

(a) Configuration A.

(b) Configuration B.

Figure B.1: Two possible configurations of Robot Bucket Brigade.
(black and white version of Figure 2.1)
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Will consensus be
achieved from this

configuration?

Figure B.2: Consensus Game on a Cycle C20 with 3 Colours.
(black and white version of Figure 3.1)

A winning
configuration

A losing
configuration

Figure B.3: A Consensus in Blue (left) and a Configuration from which Consensus
Will Never be Achieved (right) on a Cycle C12.

(black and white version of Figure 3.2)
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p1

p5

p2

p3

p6

p4

(F2, S0)

Figure B.4: Initial states of a Flag Coordination Game, and its Correspondent
Annihilating Random-Walking Particles, Depicted in the Same Graph. Nodes with
pi Indicate the Presence of Random Walking Particle i on that Node.

(black and white version of Figure 3.3)

Figure B.5: Example of a Single-
partition Round.

(black and white version of
Figure 3.4)

Figure B.6: Only Reachable Consen-
sus From Game in Figure 3.4.

(black and white version of
Figure 3.5)

Figure B.7: Example of a Winning
Configuration.

(black and white version of
Figure 3.6)

Figure B.8: Example of a Losing Con-
figuration.

(black and white version of
Figure 3.7)
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Figure B.9: Game (F2, S0) as in Example 3.2.23.
(black and white version of Figure 3.8)

(F2, S0)

(F2, ρ0) (F2, σ0)

Figure B.10: Example of Game (F2, S0) Being Split in (F2, σ0) and (F2, ρ0) .
(black and white version of Figure 3.9)

Figure B.11: Alternative Display of the Cycle in Figure 3.1 Evidencing Partitions
of G.

(black and white version of Figure 3.10)
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(a) Configuration A’.

(b) Configuration B’.

Figure B.12: Translation of Robot Bucket Brigades Configurations Into Consensus
Games.

(black and white version of Figure 3.11)

v11

v12

v21

v22

v23

v31

v32

v33

v34

Figure B.13: A Generalised Consensus Game (
#»F , S0) in a Digraph G that Might

Not Lead to Consensus.
(black and white version of Figure 3.12)
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42

v11

18

v12

21

v21

30

v22

9

v23

34

v31

10

v32

13

v33

3

v34

Figure B.14: Game (
#»F 3, S0) with Influences of Each Node (Multiplied by 60 for

Readability).
(black and white version of Figure 3.13)

1 4 0 0

3 0 2 0 0

Figure B.15: A Game (
#»F , S0) on a Weakly Connected Graph.

(black and white version of Figure 3.14)

v11 v12 v13 t

v21 v22 v23 v24 v25

Figure B.16: The defenders’ goal state
γfor; all defenders are asserting their ar-
gument.

(black and white version of
Figure 4.2)

v11 v12 v13 t

v21 v22 v23 v24 v25

Figure B.17: The attackers’ goal state
γag; all attackers are asserting their ar-
gument.

(black and white version of
Figure 4.3)
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v11 v12 v13 t

v21 v22 v23 v24 v25

Figure B.18: An Initial Configuration (FTP, S0) for the example in Figure 4.1.
(black and white version of Figure 4.4)
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Figure B.19: The AF Underlying our Example. Current Colouring and Influences
Depicted in Each Argument. Influences were Multiplied by 506 for readability.

(black and white version of Figure 4.6)

What if there is a
a bias towards blue?

Figure B.20: Biased Consensus Game on a 17-Cycle.
(black and white version of Figure 5.1)
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Figure B.21: Possible States and Their Transition Probabilities of a Biased Consen-
sus Game on C3.

(black and white version of Figure 5.2)

β3,2

Figure B.22: Configuration β3,2 of C5.
(black and white version of

Figure 5.3)

β3

Figure B.23: Configuration β3 of C5.
(black and white version of

Figure 5.4)
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Figure B.24: Possible States Up To Symmetry and Their Transition Probabilities
of a Biased Consensus Game on C5.

(black and white version of Figure 5.5)
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Figure B.25: Application of doubleC7(S0, blue). Randomising nodes have particles
on them, represented by p1, p2, p3, and p4.

(black and white version of Figure 5.6)

(
◦
F∆, S0) s ∈ S

Figure B.26: The Initial Configuration of a Game (
◦
F∆, S0) and a Given Configura-

tion s ∈ S. Can (
◦
F∆, S0) Eventually Reach s?

(black and white version of Figure 5.7)
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Kathleen Steinhöfel. Multi-agent flag coordination games. In Proceedings of the

16th Conference on Autonomous Agents and MultiAgent Systems (AAMAS),

pages 1442–1450. International Foundation for Autonomous Agents and Mul-

tiagent Systems, 2017.

[45] Paul Krause, Simon Ambler, Morten Elvang-Goransson, and John Fox. A logic

of argumentation for reasoning under uncertainty. Computational Intelligence,

11(1):113–131, 1995.

[46] Fabian Kuhn and Rogert Wattenhofer. On the complexity of distributed graph

coloring. In Proceedings of 25th ACM Symposium on Principles of Distributed

Computing, pages 7–15. ACM, 2006.

[47] Leslie Lamport. Solved problems, unsolved problems and non-problems in con-

currency. ACM SIGOPS Operating Systems Review, 19(4):34–44, 1985.

[48] Erez Lieberman, Christoph Hauert, and Martin A Nowak. Evolutionary dy-

namics on graphs. Nature, 433(7023):312, 2005.

[49] Paul-Amaury Matt and Francesca Toni. A game-theoretic measure of argu-

ment strength for abstract argumentation. In European Workshop on Logics in

Artificial Intelligence, pages 285–297. Springer, Springer, 2008.

[50] Barry M McCoy and Tai Tsun Wu. The two-dimensional Ising model. Courier

Corporation, 2014.

[51] Mihail Mihaylov. Decentralized Coordination in Multi-Agent Systems. PhD

thesis, Vrije Universiteit Brussel, 2012.

[52] Mihail Mihaylov, Karl Tuyls, and Ann Nowé. A decentralized approach for
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