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Abstract

The availability of intracellular, stabilized B-catenin, a transcription factor co-activator, is tightly
regulated; B-catenin is translocated into the nucleus in response to Wnt ligand binding to its cell
membrane receptors. Here we show that Wnt signal activation in mammalian cells activates
intracellular mobilization of Connexin 43 which belongs to a gap junction protein family, a new
target protein in response to extracellular Wnt signal activation. Transmission electron microscopy
(TEM) showed that the nuclear localization of Cx43 was increased by 8-10 fold in Wnt5A and 9B
treated cells compared to controls; this Wnt induced increase was negated in the cells where Cx43
and R-catenin were knocked down using shRNA. There was a significant (p<0.001) and concomitant
depletion of the cell membrane and cytosolic signal of Cx43 in Wnt treated cells with an increase in
the nuclear signal for Cx43; this was more obvious in cells where B-catenin was knocked down using
shRNA. Conversely, Cx43 knockdown resulted in increased -catenin in the nucleus, in the absence
of Wnt activation. Co-immunoprecipitation of Cx43 and R-catenin proteins with a casein kinase
(CKI18) antibody showed that Cx43 interacts with R-catenin and may form part of the so-called
destruction complex. Functionally, Wnt activation increased the rate of wound re-epithelization in

rat skin, in vivo.
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Introduction

The Wnt signaling pathway is known to play a key role in development (e.g. bone and limb
morphogenesis) and disease (12), including cancer, osteoporosis and also in wound healing (54).
There are two major intracellular transducers of Wnt signaling CTNNB1 (cadherin associated protein
R or R-catenin, (34) and Ca®* (40); R-catenin and CTNNB1 are used interchangeably in this
manuscript). B-catenin, was first discovered as a part of the adherent junction complex in the cell
membranes of NIH 3T3 cell line (32). Wnt ligand binding to its plasma membrane receptor complex
(5) activates intracellular calcium [Ca2+]i and desequesters and stabilizes B-catenin from a multi-
protein complex termed the R-catenin destruction complex (44). Subsequent to its release from the
destruction complex in the cytosol B-catenin is translocated to the nucleus where it activates gene
transcription in conjunction with LEF/TCF proteins (4). Recent studies have shown that, in
mammalian cells, Ca** and B-catenin signaling act in a coordinated, interdependent manner (48).
Whether Wnt signaling activation is involved in the translocation of a protein other than B-catenin to
the nucleus is not known. We demonstrate that Wnt signaling activation initiates translocation of at
least one other protein, namely Connexin 43 (Cx43), a member of the gap junctional intercellular

communication (GJIC) family of proteins.

GJIC is involved in tissue homeostasis and Connexins, a family of gap junction forming proteins, are a
key component of GJIC. The Connexin gene family comprises of 21 members in man and 20 in mouse
(19 of which can be grouped as orthologous genes) that share high sequence similarity at both gene
and protein levels (42); GJA1 (gap junction a-1 or Cx43) is one member of the Connexin family that is
highly conserved in mammals (98% protein sequence identity in human and mouse protein
sequences) (41). Mutations in Cx43 have been associated with occulo-dentodigital dysplasia (33) and
autosomal recessive craniometaphyseal dysplasia (20). Cx43 is the most abundant of the Connexins

in skin, and is expressed in keratinocytes, fibroblasts, endothelial cells and dermal appendages (3).
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Besides the formation of GJIC, C-terminal portion of Cx43 (CT-Cx43) was reported to localize to the
cytosol and nucleus of both cardiomyocytes and Hela cells(15). Stable expression of CT-Cx43 in Hela
cells induced significant gowth suppression(15). Cx43 plays a role in wound healing during which a
decrease in the expression of Cx43 protein is observed within the first 6-48h after injury at the
wound edge (3). Topical application of a Cx43-specific antisense oligodeoxynucleotide to acute
wounds in rodent models speeds up the wound healing process (27, 36); incidentally, a recent study

showed acceleration of wound healing via the activation of the Wnt signaling pathway (54).

Previous work has hinted at a relationship between Wnt signaling, particularly R-catenin (37) and
Cx43 using over-expression or knockdown of Wnt signaling related proteins or Cx43. For example,
Cx43 is considered a target of B-catenin transcription through the activation Wnt signaling with
Whntl (1, 30, 49); activation of Wnt signaling by Wnt3A, for 72h, also increased expression of Cx43 in
vascular smooth muscle cells (9); B-catenin knockdown reduced Cx43 expression and GJIC in mouse
granulosa cells or osteocytes (52, 55). Furthermore, Cx43 overexpression decreased nuclear levels of
R-catenin (46, 47), and reduced TCF luciferase activity in colorectal cancer and neural progenitor
cells (37, 39). R-catenin level increased in conditional osteocytes or sertoli cell knockout Cx43
transgenic mice (6, 7), however, B-catenin expression is attenuated in Cx43 deficient fractures (23).

Interestingly, B-catenin and Cx43 are thought partly to co-localize in the cell membrane (39).

Considering the key functions of Wnt signaling and the putative relationship between B-catenin, a
key transducer of Wnt signaling, and Cx43, we questioned whether Wnt signal activation might
modulate Cx43 in mammalian cells? We show here that subsequent to Wnt signaling activation Cx43
is translocated into the nucleus in a similar manner to that of B-catenin in at least two different
mammalian cell lines. ShARNA mediated knockdown of B-catenin increased intracellular movement of
Cx43 to the nucleus and vice versa. Quantitation of Cx43 expression shows that the membrane and

cytosolic Cx43 is translocated in response to the activation of Wnt signaling and that it interacts with
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the proteins associated with the so called B-catenin destruction complex. We propose that there is
cross-talk between Wnt signaling and Cx43 and that Wnt signal activation modulates intracellular
Cx43 movement. We provide a new, in vitro, model for the regulation of Cx43 by Wnt signaling and

identify a new target protein in response to the activation of Wnt signaling.

Materials and methods

Wnt Peptides

Recombinant Wnts (5A, 9B and 10B) peptides were obtained from (R&D Systems part of Bio-Techne)
and were made into stock solutions (at 0.1pg/ul) in phosphate buffered saline (PBS, GIBCO). Cells
were treated with Wnts at concentrations described in the figure legends; controls represent

untreated or vehicle only treated cells.

Cell lines

Cell lines (PC3 human prostate cancer, 3T3 mouse fibroblast) were obtained through ATCC via John
Masters (University College London). PC3 cells were grown in RPMI 1640 (Gibco) cell culture medium
supplemented with 10% fetal bovine serum (FBS) and L-glutamine. 3T3 fibroblasts were grown in
DMEM-GlutaMAX™-1 (Gibco) supplemented with 10% FBS; cells were grown in 5% CO, at 37°C.
Human embryonic kidney (GP-293 and 293FT) cell lines were used for viral transduction and were

obtained from the kit manufacturer (Clontech) (25).

Retroviral and lentiviral constructs and transduction

Cx43-specific shRNA target sequence GGTGTGGCTGTCAGTGCTC (50) was a gift of W.H. Moolenaar
(The Netherlands Cancer Institute); a retroviral pSuper vector (OligoEngine) containing this
sequence, designated Cx43shRNA, was used to establish a stable knockdown of Cx43 in cell lines
(25); pSuper retroviral vector without Cx43shRNA was used as control. All retroviral vectors were

transduced into the packaging cell line GP2—293 (Clontech) as described previously (8).
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Lentiviral vectors containing the target sequence for R-catenin shRNA were obtained from Addgene
(MA) and included: pLKO.1 (catalog number, 8453), R-catenin target (18803) and scramble shRNA
(1864). Lentiviral particles were produced in 293FT cells (ATCC, at 7x10°) and the transfection
complex was prepared using FUGENE 6 Transfection Reagent according to the manufacturer’s
instructions (Roche). PC3 and 3T3 cells were transduced with retrovirus or lentivirus for 2 days and

were selected on the basis of antibiotic resistance.

Immunocytochemistry

Immunostaining was performed in two independent laboratories with the experimenter blinded to
the identity of the experiments. Cells were grown in eight-well chambered glass slides (Lab Tek II,
Nunc) as described, previously (25, 48). The following primary antibodies were used according to the
manufacturer’'s recommendations: Cx43 (catalog number C6219, Sigma) and B-catenin (ab22656,
Abcam). Secondary antibodies (Alexa 488 or 633; Molecular Probes), goat anti-mouse peroxidase
Fab (Abcam) and tyramide Cy3 (Perkin Elmer) with Hoechst 33342 or 4',6-diamidino-2-phenylindole
(DAPI, Sigma) as a nuclear counterstain were used. Secondary antibody incubation in the absence of
primary antibody was used as negative control. A Leica SPE confocal microscope (Leica
Microsystems) was used (40x, 1.25 NA objective, sometimes with a zoom of 3x) for imaging; at least
three images per well, from 3-5 independent experiments were acquired. Nuclear co-localization of
B-catenin was calculated by JACoP analysis in Image J software (38) and represented by Pearson

correlation coefficient. Statistical analysis was performed using Mann—Whitney U test.

Transmission Electron Microscopy (TEM)

Cells were grown on glass coverslips, treated as previously described (48), and fixed in a mixture of
4% formaldehyde, 0.01% glutaraldehyde in PBS, pH 7.4 for 30mins at 4°C. Primary antibodies (Cx43,
diluted 1:2000, Sigma or R-catenin, diluted 1:300) were incubated at 4°C overnight followed by

incubation with appropriate secondary antibodies (1.4nm Gold; ab30814 or ab30812 Abcam) also at
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4°C overnight and post-fixed in 1% glutaraldehyde in phosphate buffer. Post-fixed cells were treated
with HQ Silver enhancement kit (Nanoprobes) for 3 min in the dark and then 2% osmium tetraoxide
(in the phosphate buffer) for 10min, rinsed, and dehydrated in a series of graded alcohols followed
by embedding in Agar 100 resin (Agar Scientific) as an inter-medium. Sections of 80 nm thickness
were collected on 300 mesh copper grids and visualised using a Joel 1010 transmission electron
microscope (TEM). Images were recorded using a Gatan Orius camera and analyzed using Image J.
The levels of Cx43 and B-catenin of different conditions and positions were calculated by setting the
same threshold and pixel size. For some types of analysis, images were demarcated into cell
membrane, cytosol and nucleus and used to calculate the level of expression of proteins in the
demarcated organelle by manually counting the electron dense puncta for analysis. Statistical
analysis for significance of difference between two groups was performed using Mann—Whitney U

test.

Western blotting

PC3 cells (wild type, Cx43shRNA-, pSuper, pLKO.1, scramble shRNA or B-catenin shRNA transduced)
were centrifuged (1500 xg) and cell pellets resuspended in ice-cold radioimmunoprecipitation assay
buffer (RIPA) buffer with phosphatase and protease inhibitors (Roche). Protein was loaded and
separated on a 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
trans-blotted to nitrocellulose membrane (Bio-Rad). The membranes were probed with two
different primary antibodies against: Cx43 (C6219, Sigma, diluted 1:4000) and R-catenin (diluted
1:500; ab22656, Abcam). Antibodies against a-tubulin (Sigma) or Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH, Sigma) were used as controls for protein quantitation; Horseradish
peroxidase (HRP)-conjugated secondary antibodies were used, and proteins were visualized using an
enhanced chemiluminescence (ECL) system. Semi-quantitative analysis was performed using Image)

software and statistical analysis was performed using ANOVA or t-test.
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Co-immunoprecipitation

Cells were lysed using immunoprecipitation buffer (50mM Tris, 150mM NaCl, and 1%NP-40, Sigma)
with protease and phosphatase inhibitors to a final volume of 1ml, the lysate was centrifuged
(10,000 x g for 5 min at 4°C) and protein concentration measured using a BCA assay (Pierce). CK16
(2-4pg, sc-20709; Santa Cruz Biotechnology) or Cx43 (4ug; C6219, Sigma) antibody was added to 1-
2mg total protein and mixed for 1h at 4°C. Protein A agarose (Sigma) was washed with lysis buffer
(3x) followed by blocking beads using 1%-2% low-1gG serum for 1h in cold room shaker. Protein A
agarose beads (30ul) were added to cell lysate/antibody and mixed O/N, on a rotary shaker, at 4°C.
The beads were washed 3x in lysis buffer at 4°C and added 50ul 2x loading buffer containing B-
mercaptoethanol (10%) to the washed beads to elute the precipitate. Samples were loaded onto a
10% SDS-PAGE gel for electrophoresis to resolve the proteins and Precision Plus Protein™ Dual Color
Protein Standards, (Bio Rad) used as molecular weight markers. The resolved protein was
transferred onto a nitrocellulose membrane which was cut into strips of 250-75kDa and 70-25kDa as
visualized by the markers. The membrane strips were probed with the following antibodies: B-
catenin(1:500; ab22656, Abcam), CK16(1:200; sc-55553, Santa Cruz Biotechnology, Inc.) and
Cx43(1:4000; C8093, Sigma) and then incubated with appropriate secondary antibodies: goat anti-
mouse IgG-HRP (1:2000; sc-2005, Santa Cruz Biotechnology) or Goat F(ab')2 Anti-Mouse IgM mu
chain-HRP (1:2000; ab5930, Abcam). The signals were detected by ECL detection using ChemiDoc™

XRS+ System with Image Lab™ Software (Bio Rad).

In vivo rat cutaneous wound-healing model + Wnts

All animal procedures were subject to institutional ethical review and performed under the terms of
a UK Home Office license. Animals were maintained according to the United Kingdom Home Office
Animal (Scientific procedures) Act 1986 Code of Practice and all procedures were approved in a
Home Office License. A sample size calculation (a = 0.05 and B = 0.05 and difference of mean of 100)

indicated a minimum sample size of 12 animals (8 experimental and 4 control). The animals were
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housed with 12 hour light — dark cycle with free access to food and water in climatically controlled
rooms. Male (8 week old) Sprague-Dawley rats (Harlan Laboratories) were anesthetized by
inhalation of 5% halothane and maintained with 1.5% halothane. Their backs were shaved and hair
depilatory cream applied, washed with warm water then wiped with 70% ethanol. Skin was then
tented and 4 full thickness excision wounds were made with a 6mm diameter punch biopsy (27). A
single, topical, application of Wnt5A or Wnt9B (0.2 — 0.5ug/ml) or vehicle control was delivered to
each independent wound in 30% Pluronic F-127 gel (Sigma). Wounds were dressed with tegaderm
and animals were given analgesic before recovery. They were housed individually before they were
humanely killed one or three days after wounding and the wound tissue harvested for further
analysis (51, 54). Tissue processing, sectioning and H&E staining were performed as describe before
(16). The extent of re-epithelialization was measured and calculated from the wound edge (where
the incision was made) to the tip of new growth using Image J. Statistical analysis for significant

difference among different groups was performed using ANOVA.

Results

Whnt signaling activates translocation of 3-catenin and Cx43

We previously showed that addition of Wnt ligands (e.g. 5A, 9B) activates the Wnt-signaling pathway
as measured by translocation of B-catenin into the nucleus in PC3 and other mammalian cells (48).
Similar results were found in our experiments using immunocytochemistry: there was visible but low
expression of B-catenin (Fig 1 A) in control, vehicle treated, cells. Addition of Wnts increased the
expression of B-catenin in the cytosol and in the nucleus (Fig 1 B-C). We tested the hypothesis that
Cx43 may also translocate to the nucleus in response to the activation of Wnt signaling. In PC3 cell
line, Cx43 expression was found to be in the cell membrane (Fig 1 D) with punctate staining pattern
as has been observed, previously, in other cell types (25). The staining pattern of Cx43 after addition
of Wnt5A and 9B (0.2ug/ml), compared to control (vehicle only), PC3 cells, showed Cx43

translocation towards the nucleus in a manner similar to that of B-catenin (Fig 1 E-F). These results
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show for the first time that the activation of Wnt signaling results in the intracellular movement of
Cx43 towards the nucleus in addition to the established mechanism of translocation of B-catenin
into the nucleus in mammalian cells. Indeed, composite images indicate a level of apparent co-
translocation of B-catenin (red) and Cx43 (green) in Wnt treated PC3 cells (Fig 1) and for Wnt 10B,
(Supplemental Fig S1). The Wnt induced translocation of Cx43 was not limited to PC3 cell line only.
3T3 cells treated with Wnt9B showed similar translocation of Cx43 (Supplemental Fig S2) as that
observed for PC3 cells. The expression of Cx43 was visible in the nucleus of 3T3 cells after treatment
with Wnt9B compared to vehicle control (Supplemental Fig S2). The translocation of Cx43 was also
investigated using Western blots in different cell fractions (Supplemental Fig S3). These results
confirm the relocation of Cx43 to the nucleus in response to Wnt activation as observed using

conventional immunocytochemistry (Fig 1).

Does the activation of Wnt signaling translocate Cx43 into the nucleus?

In response to Wnt signaling activation, cytosolic B-catenin is known to desequester from the
‘destruction complex’ (44) and translocate into the nucleus where it acts as an activator of
transcription factors to increase the expression of genes such as c-Myc, cyclin D1, FRA1 and others
(19, 22). Our novel observation that Cx43 also appeared relocated in PC3 cells in response to Wnt
signaling (e.g. Fig 1 and Supplemental Fig S3) raised the question whether Cx43, like R-catenin, also
translocates into the nucleus? We used electron microscopy to investigate this, using the same
antibodies as those used for immunocytochemistry (Fig 1). The expression of Cx43 was observed on
cell membrane and in the cytoplasm in PC3 cells (Fig 2A). It is evident in the electron micrographs
that the majority of Cx43 signal appears inside the nucleus subsequent to Wnt signaling activation
with Wnt5A or 9B (Fig 2B and 2C). The expression of Cx43 was quantified using Image J from at least
18 micrographs for vehicle control, Wnt5A and Wnt9B treated cells. What was seen by eye was
confirmed by quantitation of Cx43 signal in PC3 cells (Fig 2D). We further analyzed the expression of

Cx43 in different part of cell (membrane, cytosol and nucleus). Wnt5A or 9B reduced the expression
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of Cx43 both on cell membrane and in cytosol (Fig 2 E, F and G); meanwhile both Wnts increased
Cx43 expression in the nucleus (Fig 2H). These results indicate, not only that Wnt signaling relocates
Cx43 into the cytosol, but also Cx43 translocates to the nucleus in a manner that has previously been
shown for R-catenin (Fig 21). Cx43 knockdown: Cx43 and f3-catenin expression

In order to validate the role of Wnt signaling in translocating Cx43, in addition to its known target, i3-
catenin, and to confirm that Cx43 was indeed translocated into the nucleus in response to Wnt
activation, we tested the following hypotheses: (i) that down-regulation of Cx43 expression in PC3
cells and other cell lines should eliminate the apparent translocation of Cx43 in response to Wnt
signaling (ii) that as with R-catenin, Cx43 is translocated into the cell nucleus, subsequent to the

activation of Wnt signaling.

We tested the above hypotheses by using PC3 cells transduced with a Cx43 short-hairpin RNA
(Cx43shRNA) (50) or a control plasmid only (pSuper, termed control). The efficiency of Cx43shRNA
knockdown was confirmed by measuring the protein levels of Cx43 by Western blotting; Cx43
protein expression was reduced by 80% in cells transduced with Cx43shRNA compared to control
plasmid only transduced cells (Supplemental Fig S4). Cx43shRNA knockdown cells were henceforth

termed Cx43kd and the corresponding plasmid only control cells as Cx43c.

We first validated if transduction of control plasmid affected the observed Wnt response for Cx43
and R-catenin in wild type PC3 cells. Expression of Cx43 and R-catenin was measured using
fluorescence immunocytochemistry as in the wild type cells (as seen in Fig 1, above) with Cx43c cells
+ Wnt5A or 9B (Fig 3 A-F). Control experiments demonstrate that plasmid transduction did not alter
Wnt mediated Cx43 or R-catenin response as observed in the wild type cells (Fig 1). Activation of
Wnt signaling appeared to relocate intracellular Cx43 protein expression in Cx43c cells and
compared to PBS treated cells (Fig 3A) addition of Wnt5A (Fig 3B) or Wnt9B (Fig 3C) appeared to

translocate Cx43 protein expression. Furthermore, compared to PBS treated Cx43c cells (Fig 3D),
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addition of Wnt ligands (5A and 9B) also induced R-catenin translocation (Fig 3E and F) as observed
in wild type cells. These results also support the notion that Cx43 location is regulated by the Wnt

signaling pathway.

Cx43kd cells showed decreased Cx43 expression when measured using immunofluorescence (Fig
3G), this was also the case after Wnt5A or 9B treatment (Fig 3H and I). These results indicate that
Cx43 shRNA mediated knockdown reduces the protein expression of Cx43 in Cx43kd cells and

supports the data obtained using Western blotting (Supplemental Fig S4).

The expression and distribution of B-catenin was also determined in Cx43kd cells treated with Wnt
ligands using western blot (Supplemental Fig S4) and immunofluorescence (Fig 3 J-L). The total R-
catenin protein levels did not alter significantly after Cx43 knockdown measured using Western blot
technique, however, remarkably, the intracellular distribution of B-catenin was changed (Fig 3J): RB-
catenin in the Cx43kd cells appears to be released into the cytosol with limited nuclear co-
localization compared to Cx43c cells (Fig 3) compared to Fig 3D and Fig 4A; co-localization of R-
catenin and the nuclear stain, DAPI, was determined using Image J software as described in
materials and method). There was a significant increase in the co-localization coefficients of nuclear
co-localization of R-catenin in Cx43kd PC3 cells (Fig 4A). Activation of Wnt signaling by Wnt5A or
Wnt9B in Cx43kd cells further increased the nuclear co-localization of B-catenin compared to these
cells with vehicle treatment (Cx43c-vehicle treated < Cx43kd-vehicle treated < Cx43kd Wnt treated,
Fig 3K and L and Fig 4A). In addition to the experiments with Cx43kd in PC3 cells (above), similar

results were obtained in Cx43kd-3T3 cells (Fig 4B).

These results were validated using electron microscopy (Fig 5) with observations similar to those

obtained using immunofluorescence (Fig 3). Compared with vehicle controls (Fig 5A), the nuclear

Cx43 expression was increased, significantly, in Cx43c cells treated with Wnts 5A and 9B (Fig 5B-C).
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The amount of nuclear Cx43 expression was drastically reduced in all groups of Cx43kd cell (Fig 5D-

G), whether or not these were treated with Wnts.

R-catenin expression was also determined in Cx43kd and Cx43c PC3 cells + Wnts using TEM (Fig 5H-
N); the signal for R-catenin was increased in Cx43kdshRNA cells relative to Cx43c cells (Fig 5H and K).
Subsequent to the activation of Wnt signaling the nuclear expression of R-catenin was increased
significantly (p<0.001) in Cx43kd cells (Fig 5L-N) compared to the cells with vehicle treatment (Fig
5K). These results indicate that the decrease in the expression of Cx43 leads to R-catenin
displacement in the nucleus without the activation of Wnt signaling and that this process appears to

be enhanced after Wnt treatment.

S-Catenin knockdown: Cx43 and f3-catenin expression

To address whether Cx43 distribution was also altered after downregulation of R-catenin protein we
transduced PC3 cells with a R-catenin short-hairpin RNA (R-catenin (CTNNB1) shRNA, termed
CTNNB1kd) (31) to reduce RB-catenin protein expression; scrambled shRNA (CTNNB1sc) or a plasmid
(pLKO.1) only (termed CTNNB1c) transduced cells were used as controls. The efficiency of B-catenin
shRNA knockdown was confirmed by Western blotting. Cells transduced with B-catenin shRNA
showed reduced protein expression (around 80%) compared to CTNNB1sc or CTNNBIc
(Supplemental Fig S4). Incidentally, no significant difference was observed in the total Cx43 protein

level after CTNNB1 knockdown in Western blots (Supplemental Fig S4).

Immunofluorescence was used to establish that Wnt response in CTNNB1sc or CTNNB1c was not
altered for R-catenin or Cx43 expression and regulation. Expression of B-catenin was visible in the
nucleus of CTNNB1sc or CTNNB1c cells treated with Wnt5A and Wnt9B compared to the cells that
were treated with vehicle control (Fig 6A-C and G-1). The quantified data is given in Fig 4C. Similar

results were obtained for Cx43 expression in response to Wnt activation (Fig 6D-F and J-L). These
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results indicate that viral transduction did not cause a change in Wnt mediated R-catenin or Cx43

response as observed in the wild type cells (Fig 1).

CTNNB1kd cells also showed decreased B-catenin expression using immunofluorescence (Fig 6M),
this was also the case even after Wnt treatment (Fig 6N and O). The apparent cellular distribution of
Cx43 was different to that observed in CTNNB1c, CTNNB1sc (Fig 6D and J) or wild type cells (Fig 1).
There was little Cx43 in the nucleus in CTNNB1c and CTNNB1sc cells (Fig 6D and J), but Cx43 was
found in nucleus of CTNNB1kd PC3 cells (Fig 6P); addition of Wnt5A and Wnt9B in CTNNB1kd PC3
cells induced further Cx43 protein to translocate to nucleus compared to vehicle treated cells (Fig 6Q

and R).

To further confirm these observations, Cx43 expression was determined in CTNNB1kd cells,
CTNNB1c and CTNNB1sc cells in response to Wnts by TEM (Fig 7). Cx43 expression was calculated as
expression / nucleus from multiple micrographs. Relative to CTNNB1c and CTNNB1sc cells the
nuclear expression of Cx43 was increased in CTNNB1kd cells (Fig 7A, D and G). Also, compared to
vehicle treated CTNNB1kd PC3 cells (Fig 7G), cells treated with Wnts 5A or 9B showed an increased
nuclear expression of Cx43 (Fig 7H and 1). These results indicate that B-catenin knockdown leads to
Cx43 translocation to nucleus and this translocation increased in response to Wnt signaling

activation.

Cx43 is a likely partner in the 3-catenin destruction complex

To examine whether Cx43 was a component of the so called destruction complex (44) we used co-
immunoprecipitation technique with B-catenin and CK1 & (part of the destruction complex proteins),
to investigate if Cx43 interacts with the two destruction complex proteins in PC3 cells. We found that
both B-catenin and Cx43 were in native CK16 complexes from PC3 cells (Fig 8). Furthermore, B-

catenin and CK16 were also detected in Cx43 complexes (Fig 8). These results indicate that Cx43,
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CK16 and B-catenin interacts with each other in PC3 cells and Cx43 may be a component of the

destruction complex.

Accelerated re-epithelialization in Wnt ligand-treated wounds in vivo

A reduction in Cx43 protein expression plays a key role in the wound healing process (3). If Wnt
signaling regulates Cx43 in vitro, as seen by the experiments described above, can Wnt mediated
translocation of Cx43 from in vivo wounds show similar therapeutic effects on reepithelialisation
rates? Having observed that Wnt signal activation accelerates fibroblast cell migration, we next
assessed addition of Wnts improved wound healing, in vivo, with a gel containing Wnts 5A and 9B,
applied to the wound at the time of injury (25). Wnt5A or Wnt9B treatment accelerated the rate of
re-epithelialization compared to control rats at 1 day after wounding (Fig 9A-C and G). The
significantly increased rate of re-epithelialization, following Wnt5A or 9B treatment, disappeared at
3 days after wounding (Fig 9D-F and G). These results indicated that activation of Wnt signaling has

significant effects in vivo, similar to those observed for Cx43 knockdown in previous studies (36).

Discussion

The mechanism of Wnt signaling has been conventionally thought to be via two distinct pathways
the Wnt/ B-Catenin (canonical) and Wnt / Ca** (non-canonical) (29). In this report, we demonstrate,
for the first time, that Wnt signal activation, in addition to the well-established activation of
intracellular calcium and translocation of R-catenin into the nucleus, also leads to the translocation
of Cx43 to the nucleus, in mammalian cell lines. Immunostaining, both using fluorescence and TEM,
showed Cx43 protein behaves in a similar manner to -catenin in response to the activation of Wnt
signaling.

Cx43 is best known as a key component of GJIC on the membrane (3, 28) and much research in this
field is directed towards understanding the role Cx43 plays in GJIC. For example, in cardiomyocytes

and Hela cells the C-terminal portion of Cx43 (CT-Cx43) is reported to be localized in the cytosol and
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nucleus (15). Our results demonstrate that it is the membrane and possibly cytosolic Cx43 that
appears, largely, to be translocated into the nucleus subsequent to Wnt signaling activation. These
results were validated as the cytosolic/membrane Cx43 signal and its translocation to the nucleus
after Wnt activation, were almost completely abolished in cells knocked down for Cx43 in both PC3

and 3T3 cells.

Nuclear expression of Cx43

Cx43 contains a nuclear targeting sequence in its C-terminal domain (35, 58) and therefore its
presence in the nucleus is not surprising. This occurs for both, the whole, or partial (C-terminus),
acetylated or phosphorylated Cx43 protein (10, 11, 13-15, 17, 18, 21, 24, 26, 56, 57). There are other
structural clues as to why Cx43 expression is often found in the nucleus. For example,
immunoprecipitation and mass spectrometric analysis suggests that Cx43 interacts with two
components of the nuclear translocation system: the GTP-binding nuclear protein Ran (RAN) and
importin (KPNB1)(18). Furthermore, by using cNLS (nuclear localization signal) Mapper the C-
terminal tail of Cx43 has been shown to contain two potential NLSs that are recognized by the
importin a/p complex, which imports proteins to the nucleus through the RAN-GTP cycle (18). Also,
many Cx43-nuclear interactors have been identified, including several histones, transcription factors
and nucleolar proteins, such as nucleolin or the polymerase | and transcript release factor (PTRF).
This suggests that Cx43 or its C-terminal tail might affect chromatin organization, nucleolar activity,
rRNA transcription and termination (18). During cell cycle progression of A549 lung cancer cell lines,
Cx43 is translocated to the nucleus via A-kinase anchoring protein 95 (AKAP95) in late G1 phase. In
the nucleus, Cx43-AKAP95 protein complex simultaneously binds DNA and this co-localization
implies that Cx43 regulate DNA expression or participate in DNA aggregation and condensation (11).
Functionally, nuclear localization of Cx43 has been co-related to slower growth (26), cell cycle
progression (11), apoptosis induction (24, 56, 57), activation of gene transcription (13, 18), or tumor

formation (14, 17, 21). The extracellular signals that modulate have not been greatly elucidated.
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Previous studies have shown that Wnt treatment (with Wntl or Wnt3A) for at least 24h or even
longer increased the expression of Cx43 and promoted intercellular communication in several cell
lines (1, 30, 49). Our investigations demonstrate an effect of Wnt activation on Cx43 in a shorter
time span (within minutes), similar to that observed for the documented translocation of Wnt

mediated R-catenin translocation (48).

Where is Cx43 translocated from in response to Wnt signal activation?

Estimates from our electron micrographs (Fig 2) show that the range of distribution of Cx43 signal
within wild type cells is 10-20%, 20-50% and 5-10% in the cell membrane, cytosol and nucleus,
respectively (Fig 2E, F and G). Activation of Wnt signaling results in the re-distribution of Cx43 signal
as follows: 5-10%, 10-20% and 50-60% in the cell membrane, cytosol and nucleus, respectively (Fig
2E, F and G). It must be emphasized that these are estimates, based on TEM, and may not reflect the
true total distribution of Cx43 within PC3 cells. If, however, the assumptions hold and this is the
‘normal’ distribution of Cx43 in these cell lines, it would indicate that the majority of Wnt mediated

translocation of Cx43 occurs from the cytosolic pool.

Cx43 expression and f3-catenin, localization and translocation in response to Wnts

A major extracellular signal for nuclear translocation for Cx43 appears to be extracellular Wnt signal
activation. The Wnt signaling pathway is well established as an activator of intracellular B-catenin
translocation into the nucleus. A surprising observation in our study was the apparent relocation of
R-catenin due to Cx43 knockdown (Fig 3J-L, Fig 4 and Fig 5H-N). This observation is complementary
to previous studies in which over-expression of Cx43 was reported to show a decrease in the nuclear
levels of R-catenin (46, 47) and reduced TCF luciferase activity in colorectal cancer and neural
progenitor cells (37, 39). Conversely, knockdown of B-catenin appears to alter the spatial distribution

of Cx43 in PC3 cells. There have been suggestions, sometimes contradictory (6, 7, 23, 52, 55), that
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knockdown of either Cx43 or B-catenin alters the expression of the other. We did not observe
alterations in the expression levels of Cx43 or R-catenin in either PC3 or 3T3 cells that some previous
studies suggested (6, 7, 23, 52, 55). This suggests a structural link between intracellular R-catenin

and Cx43 proteins.

Considering that R-catenin and Cx43 are thought partly to co-localize on the cell membrane (39) and
some researchers found that B-catenin appeared to be sequestrated by Cx43 as part of a complex
within the junctional membrane (2, 6, 37, 47), these two proteins (B-catenin and Cx43) may share a
closer relationship than expected or reported, previously. Our data add significant weight to this
notion, by demonstrating a direct co-relation between the Wnt signaling pathway that regulates the
topographical location of R-catenin and Cx43. These results suggest for the first time, that the two
proteins exerting a caging effect upon each other— similar to that of the destruction complex on
intracellular R-catenin (44). And our results indicate that Cx43 may be a component of the
destruction complex (Fig 8). The overall impact of R-catenin and Cx43 appears to be a brake on the
displacement of each other under normal conditions whilst moving concomitantly in response to

Whnt signal activation.

The results from this study showed that Wnts reduced the expression of Cx43 on the membrane and
the cytosol and promoted the translocation of Cx43 into the nucleus. We applied the Wnt5A and 9B
ligands to full thickness skin wounds in rats and discovered that Wnt signaling increased the rate of
wound healing in vivo. As with gene transcription, we observed an impact of Cx43 expression in the

migratory capabilities of mammalian cells, in vitro (Supplemental Fig S5) and in vivo (Fig 9).

We propose a new model (Fig 10) in which activation of Wnt signaling by Wnt ligand / receptor

binding activates not only desequestration and translocation of B-catenin from the destruction
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complex into the nucleus, as is well known (43), but also release and translocate Cx43 from the

membrane and cytosolic compartments into the nucleus.

Perspectives and significance

This is the first demonstration of Wnt translocating another protein, other than B-catenin indicating
that Wnt signaling, an evolutionarily conserved signal transduction pathway, may be regulating the
topography and the movement of membrane or cytosolic proteins other than the well documented
B-catenin. These results provide a novel mechanism of regulation of a clinically significant
cytoskeletal component by a critical cell signaling pathway. This study further demonstrates, for the
first time, that Wnt signaling activation translocates Cx43 not just in the cytosol but into the nucleus.
Our research provides a novel link between two key areas of cell biology and demonstrates a unique

cross talk between these important cell function regulators.
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Figure Legends

Figurel

Translocation of B-catenin (red) and Cx43 (green) to the nucleus (counterstained with DAPI, blue) in
response to activation by Wnt ligands (200ng/ml) in PC3 cell line using immunocytochemistry.
Control vehicle treated (A, D) or after activation with Wnt5A (B, E) and Wnt9B (C, F). Inset: shows the
larger field from which the higher magnification images were taken. Z-stacks were obtained using a
Leica SPE confocal microscope. Wnt activation increases the translocation of both R-catenin (red)
and Cx43 (green) translocation towards the nucleus. Representative images of three individual

experiments are shown. Scale bar= 10um.

Figure 2

Translocation of Cx43 to the nucleus in response to Wnt ligands (200ng/ml) in PC3 cell line, control
(A) or after activation with Wnt5A (B) and Wnt9B (C). PC3 cells were grown on coverslips, treated
with Wnt ligands, fixed, and stained for Cx43 EM investigation. Representative images obtained
using a TEM microscope are shown; white dotted lines demarcate the nuclear boundary; white
arrows indicate some of the Cx43 labelled electron dense puncta; purple arrows indicate putative
Cx43 hemi-channels. Inset: High-magnification images of the nuclear region. Scale bar, 2um.
Between 18-25 cells were analyzed and box plots show calculated Cx43 level/nucleus (D); there was
a significant (***p<0.0001) increase in the Cx43 signal in the nuclei of cells treated with Wnt (5A, box
shaded green and 9B, box shaded blue) compared to vehicle control (box shaded yellow). The

distribution of calculated Cx43 expression (data binned) on the cell membrane (green), in the cytosol
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(red) and nucleus (purple) separately in response to activation by Wnt ligands (200ng/ml) in PC3
cells (E-G). Cells were analyzed from EM images of control (E) or after activation with Wnt5A (F) and
Wnt9B (G) were analyzed as described under “Experimental Procedures.” Activation of Wnt signaling
results in the re-distribution of Cx43 signal as follows: 5-10, 10-20 and 50-60 in the cell membrane,
cytosol and nucleus, respectively. Box plot of calculated Cx43 (H) and B-catenin (I) expression,
represented by mean count of electron dense puncta, on the cell membrane (box border:
blue/green), in the cytosol (box border: pink) and nucleus (box border: purple) in untreated controls
(box fill: orange) and in response to activation by Wnt (200ng/ml) 5A (box fill: green) and 9B (box fill:
blue) in PC3 prostate cancer cell line. Images were obtained using a TEM microscope similar to those
used in e.g. Figs 2 and 7. Cx43 (H) expression was reduced in the membrane and cytosol, increased in
nucleus, significantly for Wnt-treated compared to control cells. The expression of B-catenin (l) in
cytosol and nucleus increased significantly for Wnt-treated versus control cells; 25 cells from 3
independent experiments were analyzed. Mann-Whitney U test was used to measure the
significance of difference between control and Wnt treated cells is annotated (ns = not significantly

different; *p<0.05; **p<0.01;***p<0.0001).

Figure 3

Cx43 and B-catenin translocation to the nucleus in response to activation by Wnt ligands (200ng/ml)
in Cx43c PC3 prostate cancer cell lines, control (A, D) or after activation with Wnt5A (B, E) and
Wnt9B (C, F); Cx43 expression was decreased in Cx43kd cells, control (G) or after Wnt5A (H) or 9B
treatment (l), as would be expected, and more B-catenin translocation were observed in Cx43kd
cells, control (J) or after activation with Wnt5A (K) and Wnt9B (L). Cells were grown in eight-well
chamber slides, treated with Wnt ligands, fixed, and stained for B-catenin (red), Cx43 (green) and
nucleus (blue). Representative images from three independent experiments are shown as Z-stacks

obtained using a Leica SPE confocal microscope. Scale bar, 10um.
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Figure 4

Co-localization of B-catenin or Cx43 with DAPI (nuclear counterstain) in wild type and knock-down

cells

(A) Box plots of calculated Pearson coefficient for B-catenin co-localization in the nucleus in Cx43c
and Cx43kd PC3 cells. Immunohistochemistry and image analysis was performed as described under
“Experimental Procedures”. Cy3 (label for B-catenin) showed significantly increased co-localization
coefficients with DAPI (nuclear counterstain) for Wnt-treated (200 ng/ml) versus control cells in both
Cx43c and Cx43kd cells (at least *p<0.05). Co-localization coefficients of B-catenin was significantly
increased in Cx43kd cells compared with Cx43c cells ( § p<0.0002) and between vehicle treated
controls and Wnt (5A or 9B) treated cells (asterisks, *p<0.05*** p <0.001) within Cx43c (hollow bars)
and Cx43kd cells (shaded bars), respectively (n= 49-106 cells for each condition from 2-3

independent experiments).

(B) Box plots of calculated Pearson coefficient for B-catenin co-localization in the nucleus in Cx43c
and Cx43kd 3T3 cells. Immunohistochemistry and image analysis was performed as described under
“Experimental Procedures”. Cy3 (label for B-catenin) showed significantly increased co-localization
coefficients with DAPI (nuclear counterstain) for Wnt-treated (200 ng/ml) versus control cells in both
Cx43c and Cx43kd cells (p<0.05). Co-localization coefficients of B-catenin was significantly increased
in Cx43kd cells compared with Cx43c cells ( § p<0.02) and between vehicle treated controls and Wnt
(5A or 9B) treated cells (asterisks *p <0.05 and ** p <0.01) within Cx43c (hollow bars) and Cx43kd

cells (shaded bars), respectively (n = 32-172 cells from 2-3 independent experiments).

(C) Box plots for the calculated Pearson co-localization coefficient of B-catenin and nuclear
counterstain DAPI indicating B-catenin translocation into the nucleus in CTNNB1c (wild type, hollow
bars), CTNNB1sc (scramble shRNA control, hatched bars) and CTNNB1kd (Cx43 knockdown, shaded

bars) PC3 cells. Immunohistochemistry and image analysis was performed as described under
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"Experimental Procedures” and between 16-144 cells for each conditions from 2-3 independent
experiments were analyzed. There was no significant difference in the co-localization coefficients of
R-catenin between control, CTNNB1c (hollow gray bar) and CTNNB1sc (hatched gray bar). Co-
localization coefficient for B-catenin was significantly (asterisks *p<0.05, *** p<0.001) increased in
Wnt treated CTNNB1c (hollow, 5A green, 9B blue) and CTNNB1sc (hatched, 5A green, 9B blue),

compared to their respective control, vehicle treated, cells.

Figure 5

TEM of Cx43 and B-catenin translocation to the nucleus in response to activation by Wnt ligands
(200ng/ml) in Cx43c (vector only control) and Cx43kd (shRNA knockdown) PC3 cells. Cx43 protein
expression was measured in vehicle only (A,D) or after activation with Wnt5A (B,E) and Wnt9B (C,F)
in Cx43c and Cx43kd cells, respectively. There was a significant increase in puncta/nucleus in Wnt
treated Cx43c cells compared to vehicle controls (**, p<0.001). There was no statistically significant
difference in the Cx43 positive puncta/nucleus between vehicle treated or Wnt treated Cx43kd cells
(G). Similar to fluorescence immunohistochemistry results, there was a significant increase in the
translocation of B-catenin protein into the nucleus in Wnt treated cells (I,J) compared to vehicle
control (H) Cx43c cells using TEM. Measurement of the expression of B-catenin protein (N) also
showed that significantly (section, § p<0.001) more B-catenin-positive puncta were translocated to
the nucleus in Cx43kd cells (K), compared to Cx43c cells (H); There was also a significant (star %
p<0.001) increase in R-catenin expression in Wnt5A treated compared to vehicle control in Cx43kd
cells (L); there was no significant difference in vehicle control vs Wnt 9B treated Cx43kd cells (M). A
quantitation of B-catenin protein expression in Cx43c and Cx43kd cells is given in (N). Inset: shows
the larger field from which the higher magnification images were taken. Scale bar, 2um. EM image
analysis was performed as described under “Experimental Procedures.” Between 17-38 cells from 3
independent experiments were analyzed and box plots show calculated number of electron dense

puncta of Cx43 (G) or B-catenin (N) per nucleus.
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Figure 6

Immunocytochemical analysis of B-catenin (red) and Cx43 (green) translocation to the nucleus (blue)
in response to activation by Wnt ligands (200ng/ml) in CTNNB1c and CTNNB1sc PC3 prostate cancer
cell line, vehicle control (A, D,G, J) or after activation with Wnt5A (B,E,H,K) and Wnt9B (C,F,l,L); more
Cx43 translocation was observed in CTNNB1kd cells, control (P) or after activation with Wnt5A (Q)
and Wnt9B (R). B-catenin expression was decreased in CTNNB1kd cells (M), this was also the case
even after Wnt treatment (N and O). Cells were grown in eight-well chamber slides, treated with
Whnt ligands, fixed, and stained for B-catenin, Cx43 and nucleus using immunocytochemistry
protocols described under “Experimental Procedures”. Z-stacks obtained using a Leica SPE confocal
microscope are shown. Representative images of three individual experiments are shown. Scale bar

=10um.

Figure 7

Translocation of Cx43 to the nucleus in response to activation by Wnt ligands (200ng/ml) in
CTNNB1c and CTNNB1sc PC3 cells line using TEM. Vehicle treated, control (A, D) or after activation
with Wnt5A (B, E) and Wnt9B (C, F). Increased Cx43 translocation was observed in CTNNB1kd cells,
control (G) or after activation with Wnt5A (H) and Wnt9B (I) compared to Wnt treated CTNNB1c and
CTNNB1sc. Between 20-76 cells from 2-3 independent experiments were analyzed. Representative

images of three individual experiments are shown. Scale bar = 2um.

Figure 8

B-catenin, Cx43 and CK16 interact with each other in PC3 cells. (A) Immunoblot/co-IP analysis of the
native CK16 complex from whole-cell PC3 lysates using antibody indicated at the left of each panel.
Both pB-catenin and Cx43 were detected in native CK18 complexes from PC3 cells. (B)
Immunoblot/co-IP analysis of the native Cx43 complex from whole-cell PC3 lysates using antibody

indicated at the left of each panel. Both B-catenin and CK16 were detected in Cx43 complexes from
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PC3 cells. The IP antibodies were used with CK16 (4ug; sc-20709; Santa Cruz Biotechnology) and
Cx43 (4ug; C6219, Sigma). The primary antibodies for Western blot were used with B-catenin (1:500;
ab22656, Abcam), CK16 (1:200; sc-55553, Santa Cruz Biotechnology) and Cx43 (1:4000; C8093,
Sigma). The secondary antibodies were used with goat anti-mouse IgG-HRP (1:2000; sc-2005, Santa
Cruz Biotechnology) and Goat F(ab')2 Anti-Mouse I1gM mu chain-HRP (1:2000; ab5930, Abcam).
Lanes are numbered 1, 2 and 3 for input, CKI6 and IgG, respectively; MW indicates the molecular
weight marker lane. A representative of 3 independent experiments is shown.

Figure 9

Re-epithelialization rates (straight-line measurement from wound edge to distal tongue of re-
epithelization into the wound-bed) following injury in control and Wnts treated rat skin epidermis.
Images show examples of re-epithelialization in rat skin epidermis rates at 1 day post-wounding
(dpw), control (A), Wnt5A (B), and Wnt9B (C) treated; and at 3 day post-wounding, control (D),
Wnt5A (E), and Wnt9B (F) treated. White dotted lines indicate the dermal-epidermal border of re-
epithelialization. (G) Box plot (shaded yellow for vehicle control, green for Wnt5A and blue for
Wnt9B treated animals; n=8 for Wnt treated rats and n=5 for control at 1 and 3 dpw) showing the
rate of re-epithelialization was significantly (** p<0.02) increased relative to controls in Wnt treated
rats at 1 day post-wounding (dpw, brown outlined box). The rate of re-epithelialization was similar

relative to controls in Wnt treated rats at 3 day post-wounding (gray outlined box).

Figure 10

A model for Wnt signaling pathway that regulates -catenin and Cx43 in mammalian cell lines (only
the cell membrane and the nucleus shown in the schematic for clarity). Proposed steps of Wnt
signaling in mammalian cells are as follows: binding of Wnts (1) results in the activation of
intracellular calcium stores (2) that increase in the intracellular concentration of free calcium (3). The
increase in free calcium depolarizes the cell membrane and as calcium enters the nucleus (4), the

nuclear envelope (NE) is depolarized (48); the activation of Wnt/Ca2+ pathway also increases (5)
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Ca2+/calmodulin-dependent kinase (CamKII) activity (53). It is well established by previous studies
(29) (that activation of Wnt signaling (6) desequesters the caged PB-catenin (B-cat) that is
phosphorylated (P) and ubiquitinated (UUU) prior to degradation in proteasomes, gray square) in
the cytosol. The desequestered B-catenin (7) translocation is facilitated across the NE, which is now
depolarized (8) and has increased nucleoplasmic calcium (9). Cx43 and B-catenin are partly
colocalized at the cell membrane (39). Cx43 is a likely partner in the B-catenin destruction complex.
The membrane and cytosolic Cx43 are moving with B-catenin concomitantly and largely translocated
into the nucleus subsequent to Wnts signaling activation. B-catenin and Cx43 are co-localized in the
nucleus where B-catenin binds to LEF/TCF proteins to initiate gene transcription and Cx43 is a likely
co-transcription factor. For simplification, many other proteins involved in Wnt signaling are not
shown and multiple other pathways such as Wnt/PCP pathways are not included in the illustration.

The steps for which evidence is given in the manuscript are shown with arrows shaded purple.

Downloaded from www.physiology.org/journal/ajpregu at Univ Col London (128.041.035.142) on June 7, 2019.



793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812
813
814
815
816

Supplemental Figure 1

Confocal images of simultaneous detection of R-catenin and Cx43 translocation to the nucleus in
response to activation by Wnt 10B in PC3 prostate cancer cell line. Cells were grown in eight-well
chamber slides and wells were either treated with Wnt 10B (200ng/ml) or with PBS (control) —
manual staining was performed using primary (see methods) and appropriate secondary fluorophore
labelled antibodies. A to D are individual channels for (A) DAPI, nuclear stain (blue), (B) Cx43 (green)
and (C)B-catenin (red); D is a composite image of all the channels. Images E to H are for Wnt 10B
treated cells; individual channels for (E) DAPI, nuclear stain (blue), (f) Cx43 (green) and (G)R-catenin
(red); H is a composite image of all the channels. Individual Z-stacks were obtained using a Leica SPE
confocal microscope are shown. Representative images of three individual experiments are shown.

Scale bar = 10um.

Supplemental Figure S2

Confocal images of Cx43 translocation to the nucleus in response to activation by Wnt ligands
(200ng/ml) in 3T3 fibroblast cell line, in control (A) and Wnt 9B treated cells (B). Cells were grown in
eight-well chamber slides, treated with Wnt ligands, fixed, and stained for Cx43 (green) and nucleus
(counterstained with DAPI, blue) using protocols described under “Experimental Procedures.” Z-
stacks obtained using a Leica SPE confocal microscope are shown. Representative images of three

individual experiments are shown. Scale bar = 10um.

Supplemental Figure S3

A representative Western blot (n=3) from two independent cell fractionation experiments of PC3
cells with and without (A) Wnt 5A and (B) Wnt 9B treatment. Each lane of the gel was loaded with 12
pg of fractionated protein (untreated and treated, respectively — see methods below): cytosolic
(Cytosol, lanes 2 and 3), cell membrane (Cell Memb., lanes 5 and 6) and nuclear (Nuclear, lanes 8

and 9); lanes 1, 4, 7 and 10 were loaded with Precision Plus Protein Dual Color Standards (Bio Rad).
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The PVDF membranes were cut into two strips of 250 to 50 kDa and 50 to 10 kDa and incubated with
anti-Lamin A (expected size ~70k Da), a marker for the nuclear fraction, and anti-Cx43 (expected size
~41-43k Da) antibodies (both shown in black boxes), respectively. The 50 to 10kDa blot was

‘stripped’ (shown in a blue box) and further probed with B-actin (expected size ~42k Da).

Cell fractionation was performed using Qproteome cell compartment kit (Qiagen) according to
manufacturer’s protocol. Briefly, PC3 cells were grown in 25ml flasks and treated with Wnt5A and
Wnt9B in PBS (1.5ml) at 37°C as described in methods; vehicle treated PC3 cells were used as
controls. The cell were lysed and fractionated into cytosolic (Cytosol), cell membrane (Cell Memb.)
and nuclear (Nuclear) fractions using the Qproteome (Qiagen) followed by protein quantitation using
Pierce BCA protein assay kit (Thermo Fisher Scientific); 12 ug protein for each fraction was loaded
onto gels and resolved on Precast Gels (Bio Rad)using Mini-PROTEAN (Bio Rad) system. The resolved
proteins were transferred onto a PVDF membrane using Trans-Blot® TurboTM Blotting System (Bio
Rad). The PVDF membranes were cut into two strips of 250 to 50 kDa and 50 to 10 kDa and
incubated with anti-Lamin A (cat no. L1238, Sigma, at 1:5000 dilution), a marker for the nuclear
fraction, and anti-Cx43 (C6219, Sigma, at 1:8000 dilution, expected size ~41-43k Da) antibodies,
respectively for over-night at 4°C. Following this, the PVDF membranes were washed and probed
with appropriate Horse Radish Peroxidase (HRP) conjugated secondary antibodies (Peroxidase
AffiniPure Donkey Anti-Rabbit IgG (H+L), dilution 1:10000, Jackson ImmunoResearch Laboratories,
Inc) for 120 min at RT. The HRP signal was detected using Bio Rad Clarity Western Enhanced Chemi-
luminescence (ECL) substrate and blots were imaged using Chemi Doc (Bio Rad) system. Dual colored
standard protein markers (Bio Rad Precision Plus Protein, Bio Rad) were used which are recognized
by the Chemi Doc system. R-actin, a 42 kDa ubiquitous protein, a commonly used as a protein
loading control was also used. To detect B-actin the 50 to 10 kDa PVDF membrane strip (see above)
was ‘stripped’ using Thermo Scientific Restore PLUS Western Blot Stripping Buffer (Ref: 46430) using
standard protocols and incubated with anti-R-actin antibody (ab6276, Abcam, at 1:5000 dilution,
expected size ~42k Da). Subsequent to detection with an HRP secondary antibody (Peroxidase
AffiniPure Donkey Anti-Mouse IgG (H+L), Jackson ImmunoResearch Laboratories, Inc), the HRP signal

was detected as described earlier.

Supplemental Figure S4
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Western blots to confirm knockdown of Cx43 and R-catenin using Tubulin (Tub) was included as

loading control.

(A) Cx43 expression in control and Cx43 knockdown cells measured by Western blotting in Cx43c and
Cx43kd in PC3 cells (representative blots on top and quantified data underneath). Cx43 level was
significantly reduced in Cx43kd cells compared with Cx43c cells. Quantitation of the signal shows
that Cx43 protein levels were knocked down in Cx43kd PC3 cells compared to Cx43c cells (* p<0.05;

n=3).

(B) R-catenin expression in control and Cx43 knockdown cells measured by Western blotting.
Knockdown of Cx43 did not change the expression levels of B-catenin in PC3 cells. B-catenin levels
were analyzed by Western blot in Cx43c and Cx43kd PC3 prostate cancer cell lines. Quantitation of

the signal shows that knockdown of Cx43 did not change the expression levels of B-catenin.

(C) Anti-B-catenin antibody on PC3 cells; vector only control (CTNNB1c), scrambled shRNA control
(CTNNB1sc) and short-hairpin RNA to knockdown R-catenin expression (CTNNB1kd). B-catenin levels
were significantly reduced in CTNNB1kd PC3 cells compared with CTNNB1c and CTNNB1sc cells.
Quantitation of the signal shows that B-catenin knockdown in CTNNB1kd PC3 cells compared to
CTNNB1c and CTNNB1sc cells (* indicates significant change in expression compared to control,

p<0.05; n = 3).

(D) Knockdown of B-catenin did not change the expression levels of Cx43 in PC3 cells using Western
blotting. Cx43 levels were measured in CTNNB1c, CTNNB1sc and CTNNB1kd PC3 prostate cancer cell
line. Quantitation of the signal shows that knockdown of B-catenin did not change the expression

levels of Cx43.
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Supplemental Figure S5

Box plots of the rate of wound closure, in Cx43c (vector only, gray outlined box) and Cx43kd (Cx43
knockdown, brown outlined box) 3T3 fibroblast cells. Cells were wounded using WoundMaker
(Essen) and imaged for 48h at 2h interval. Cx43 knockdown accelerated the rate of cell migration
compared with Cx43c control cells (yellow shaded box, § p<0.001). Addition of Wnt5A (shaded
green) and Wnt 9B (shaded blue) accelerated the rate of wound closure in Cx43c cells compared to
vehicle treated controls (asterisks, **p<0.01;***p<0.001) but did not impact (ns, not significant)
upon the rate of wound closure in Cx43kd vehicle treated control cells compared to the respective
Wnt treated cells. Significance of difference between conditions was measured using the Mann

Whitney U test.

Supplemental data can be accessed at: https://figshare.com/s/1e0dcadelc40ab536ce9
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Fig 8
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Fig 10
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