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Robocentric Conversational Group Discovery

Viktor Schmuck, Tingran Sheng and Oya Celiktutan

Abstract— Detecting people interacting and conversing with
each other is essential to equipping social robots with au-
tonomous navigation and service capabilities in crowded social
scenes. In this paper, we introduced a method for unsupervised
conversational group detection in images captured from a
mobile robot’s perspective. To this end, we collected a novel
dataset called Robocentric Indoor Crowd Analysis (RICA). The
RICA dataset features over 100,000 RGB, depth, and wide-
angle camera images as well as LIDAR readings, recorded
during a social event where the robot navigated between
participants and captured interactions among groups using its
on-board sensors. Using the RICA dataset, we implemented an
unsupervised group detection method based on agglomerative
hierarchical clustering. Our results show that incorporating the
depth modality and using normalised features in the clustering
algorithm improved group detection accuracy by a margin of
3% on average.

I. INTRODUCTION

As robots are becoming progressively more widespread
in our society, it is getting more important for them to
take human-aware actions with full autonomy in dynamic
human environments. Therefore, crowded social scene anal-
ysis, detecting people and their interactions with each other,
predicting their actions and intentions plays a key role within
this context. In service robotics applications, scene analysis
enables robots to safely navigate in indoor spaces such as
museums or airports, approach groups or individuals, and
assist them in performing their tasks, or in achieving their
goals through human-robot interaction. Such tasks require a
mobile robot to have sufficient understanding of people and
their position in different areas, as well as that of the social
dynamics in the scene.

The research conducted in the past decade on crowded
social scene analysis and group detection shows promising
results as it utilises the concept of F-formations to determine
interaction spaces [1]. Most approaches have relied on head
and/or body posture detection to build models [2], based
on top-down or bird-eye viewpoint images [3]-[8]. How-
ever, crowded social scene analysis from a mobile robot’s
perspective has not been thoroughly explored, which brings
about a long list of challenges, including a narrower field
of view, dynamic camera, non-ideal illumination conditions,
and noise resulting from ego- or robocentric view.

This paper introduces a novel dataset called Robocentric
Indoor Crowd Analysis (RICA). As shown in Fig. 1, the
RICA dataset comprises of recordings from a social event
where a mobile robot (i.e., Human Support Robot - HSR

*The authors are with the Centre for Robotics Research, De-
partment of Engineering; King’s College London, London, WC2R
2LS United Kingdom; {viktor.schmuck; tingran.sheng;
oya.celiktutan}@kcl.ac.uk

Fig. 1. Sample images captured by (a-b) RGB-D camera and (c-d) Wide-
angle camera.

from Toyota Motor Europe) navigated between participants
and captured the interactions among groups using its onboard
RGB, depth and LIDAR sensors. The RICA dataset is anno-
tated at both group-level (i.e., with respect to conversational
groups) and individual-level (i.e., with respect to whether an
individual belongs to a group). Using the RICA dataset, we
focus on the problem of unsupervised group detection. Given
a crowded scene image, we first extract a set of features
from both RGB and depth modalities, and then use an
Agglomerative Hierarchical Clustering (AHC) algorithm to
identify any (unknown) number of groups. Our experimental
results show that our multimodal approach improved the
error rate from 1.03 to 0.98 in terms of Mean Average Error
and from 1.21 to 1.15 in terms of Root Mean Square Error
as compared to the state-of-the-art approach.

II. RELATED WORK

This section summarises the related work from two per-
spectives, namely unsupervised group detection approaches
based on top-view (bird-eye view) vision systems and pub-
licly available robocentric datasets for crowd analysis.

A. Unsupervised Group Detection

Many efforts have been made on unsupervised group
detection, but exclusively focusing on top-view or bird-
eye view images captured via static cameras. Bazzani et
al. [3] proposed DEcentralizEd Particle filtER for Joint
Individual-Group Tracking (DEEPER-JIGT), where they ini-
tially identify groups based on the distribution and trajectory
similarities of individuals, and then jointly track individuals
and groups, recognising merging and splitting behaviour
to update the groups. A line of works investigated group



detection in crowded videos by utilising agglomerative clus-
tering methods [4], or social force modelling [5]. Chan-
dran et al. [6] proposed a Non-recursive Motion Similarity
Clustering algorithm that did not calculate trajectories or
social forces, but motion similarities defined by distance,
speed, and direction of motion. Recently, Wang et al. [9]
also used akin motion similarity descriptors in conjunction
with a Self-weighted Multi-view Clustering method. While
these features were shown to be useful in top-view settings,
they cannot be reliably extracted from the robot’s viewpoint
due to the height of the robot. Also, the robot’s self-motion
when moving and noise resulting from its sensors introduce
further errors in estimating the speed of the individuals.
During the analysis and navigation of crowded spaces, robots
need to make fast decisions, which requires online methods
that can deliver predictions from unsegmented data in a
continuous stream. However, the aforementioned methods do
not perform online group detection as they need sequences
of images to calculate trajectories, and hence are unable to
deliver the detected groups entirely on-the-fly.

To achieve an online solution, Chen et al. [8] proposed an
Anchor-based Manifold Ranking method for group detection
in single images. They used a small set of consecutive frames
to identify individuals as anchor points within a group.
Then these anchor points (centroids) were used in manifold
ranking to assign the rest of the individuals to the groups
in each frame. Japar et al. [10] also proposed a method
based on a single image. They first detected faces with
the TinyFace detector [11], then used bounding box corners
and centroid coordinates as feature vectors with an array of
linkage algorithms to perform Agglomerative Hierarchical
Clustering [4]. Since the number of groups were within
a frame was unknown, they calculated the Davies-Bouldin
index [12] for each possible number of groups (/K) ranging
from 1 to the number of clusters detected, and then selected
the K value giving the lowest score to determine the number
of groups in an unsupervised manner.

B. Available Robocentric Datasets

Despite the growing need, thus far there has been only
one publicly available dataset for studying social navigation
and crowded social scene analysis from a robot’s perspec-
tive. The Jack Rabbot Dataset and Benchmark (JRDB) [13]
provides a large set of recordings containing 2D and 3D
information in 360 degrees around the moving robot as well
as bounding box annotations of people. However, it is not
entirely applicable to robocentric indoor crowd analysis for
several reasons. Most importantly, the captured environments
are in general not too crowded, 1 person per 3 square meters
or denser, and there is no annotation available for detecting
conversational groups. Instead, this dataset comprises of
recordings in both indoor and outdoor areas, usually with
people queuing, walking in or out of rooms alone or in small
groups.

C. Our Work

As highlighted by Taylor and Riek [14], the techniques
summarised in Section II-A do not keep a robotic context

in mind, as they often do not consider the unpredictability
of human spaces. Moreover, they do not deal with the
different types of noise introduced by the robot’s sensors
and movement [15], nor do they approach the problem
from a robot’s point-of-view. This makes the previously
proposed solutions [3]-[8] less accurate when applied to
an egocentric view. There have also been some efforts
introducing egocentric datasets for social interaction analysis
[16]-[19]. However, their egocentric data was either recorded
from a distance with a static camera facing in a single
direction, or the camera wearer was often already part of
the conversational group [19].

Our work addresses the gaps highlighted above in several
aspects. First, we collected a novel dataset called Robocentric
Indoor Crowd Analysis Dataset (RICA), which features
multimodal recordings of a social event attended by over
50 participants, which were captured from the viewpoint of
a moving robot (i.e., Human Support Robot (HSR) from
Toyota Research Europe [20]). In comparison to the JRDB
dataset [13], our dataset was acquired with less high-end
sensors and in indoor areas only. Nevertheless, in our dataset
social scene images were denser and were annotated to
enable human detection as well as group detection. Secondly,
we proposed an online, unsupervised approach to group
detection based on agglomerative hierarchical clustering by
building upon the method proposed by Japar et al. [10].
We further improved this method by incorporating depth
information as an additional modality and performing feature
normalisation, as evidenced by the results from our extensive
experimental evaluation.

III. ROBOCENTRIC INDOOR CROWD ANALYSIS DATASET

The Robocentric Indoor Crowd Analysis (RICA) dataset!
was recorded during a reception-style semi-public event
in an indoor environment, attended by approximately 50
participants. Participants provided written informed consent,
and the data collection protocol was approved by the Ethical
Committee of King’s College London, United Kingdom.
As a robotic platform, we used the Human Support Robot
(HSR) [20], a mobile support robot designed to communicate
with people and hand over objects. It has 8 degrees of
freedom (DoF) for manipulation, 3 DoF of the mobile base
(which is equipped with IMU and laser ranger sensors), 4
DoF of the arm, and 1 DoF of the torso lift. It also has 2 DoF
of its head, which has an array of both 2D and 3D cameras as
well as a microphone for input sensors. The robot recorded
the event with an “ASUS Xtion PRO LIVE” — RGB-D —
camera, a wide-angle camera (Nippon Chemi-Con NCM13-
J-02), and a “Laser measuring range sensor (UST-20LX)” —
LIDAR - sensor for over one hour.

To obtain a diverse dataset, the robot was remotely driven
around at different speeds, following varying paths. Using
the height and head adjustment of the robot, its cameras
were raised to different elevations, and its head was set to
record at a variety of tilt and roll angles. Sample snapshots

IFor further details about the dataset, visit https://sairlab.github.io/rica/.



Fig. 2. An annotated image recorded with the RGB-D camera, showing a
person (ID 21 — blue bounding box on the right-hand side) not belonging
to any group, and two individuals (IDs 19-20 — red bounding boxes in the
middle) belonging to group ID 57 (green bounding box in the middle),
where the group formation of group ID 57 is annotated as face-to-face.

from the dataset can be seen in Fig. 1, where the image
data was captured at a resolution of 640 x 480. For privacy-
preserving reasons, the faces of the attendees were blurred
and only distance and image data was recorded (i.e., no
audio data was collected). The participants were aware of the
recording taking place but were avoided and not disturbed
by the navigating robot for the entire duration of the event.
In addition to image and LIDAR data, we recorded IMU
measurements of the robot and the joint positions of its
head while moving, for example, which can be used to
find correspondence between image modalities and LIDAR
readings (963 samples from —2.098 to 2.098 radians per
sample).

We annotated the dataset using a modified and improved
version of the Actanno annotation tool [21]. We performed
two types of manual annotation: (1) group-level annota-
tion — we labelled bounding boxes enclosing the groups
and assigned a unique identifier (ID) to each group per
frame; (2) person-level annotation — we labelled bounding
boxes enclosing individuals and assigned them to the group
IDs they belonged to if any. In addition, the group-level
annotation involved labelling the type of group formation
(F-formation) that groups of people displayed. These F-
formation types included L-arrangement, face-to-face, side-
by-side, semi-circular, and rectangular [22]. In summary, all
RGB-D images (a total of 40,336 frames) were annotated
at the group-level with respect to bounding boxes, group
IDs, and the five types of group formation. Out of this,
8,148 frames were further annotated at the person-level.
The annotations of the remaining modalities (e.g. LIDAR
readings) can be automatically derived from the labelled
bounding boxes based on the timestamps and the joint
positions. A sample annotated image can be seen in Fig. 2.

A. Summary Statistics of the Data

The sample size of the collected data compared to JRDB
can be seen in Fig. 3. While our dataset has a lower number
of image samples than JRDB, it has also been annotated
on the group-level, indicating F-formations of conversational
groups. Regarding these annotations, the dataset comprises
of 1 to 4 groups in each frame, with an average of 1.62
groups across the entire dataset. The groups are visible for
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Sample size comparison of the recorded modalities in RICA and

periods ranging from a single frame to 597 frames, with
an average period of 108.19 frames. In total, there are 112
distinct groups identified in the dataset. However, we did
not take into account the cases where a group disappeared
from the view and reappeared at a later time instant, and we
considered these cases as new distinct groups.

Regarding person-level annotations, the number of people
ranges from 1 to 8 with an average of 3.92 individuals per
frame. Some people are not in groups, and as a result, there
are 1 to 5 people with an average of 1.54 individuals in
each frame who are not assigned to groups. In this paper,
the group formation annotations have not been used as we
focus on group detection only.

B. Benchmarking Human Detection Algorithms

We defined a series of tests to evaluate the performance of
state-of-the-art human detection algorithms on our collected
dataset. In particular, we test three methods on our RICA
dataset, without fine-tuning: (1) Histogram of Oriented Gra-
dients (HOG) [23] combined with non-maxima suppression
(NMS); (2) MobileNet-SSD (SSD) [24] — trained on MS-
COCO [25], and then fine-tuned on VOC0712 [26] — with
centroid tracking, and (3) YOLO [27] — trained on MS-
COCO [25]. In addition, we detected faces with the TinyFace
detector (TF) [11] — trained on the WIDER-face dataset [28],
which was later used as one of the input types to the
unsupervised group detection method. After retrieving the
bounding boxes by using all four methods (i.e., HOG, SSD,
YOLO and TF), we computed their intersection over union
(IOU) values against GT. However, for the TF detector, since
the detected bounding boxes were much smaller than the GT
bounding boxes, we computed the ratio between the area
overlapping with the GT and the whole area of the detected
box by TF.

The results of these comparisons are shown in Fig. 4. The
best mean 10U score (1 = 0.64,0 = 0.26) was obtained
with the SSD detector, and the TF detector yielded boxes
with large overlapping areas as compared to GT (area overlap
pu = 0.88,0 = 0.22). Therefore, we used the outputs of
the SSD and TF detectors to implement our group detection
method as described in the next section.
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(d) Histogram of overlapping area values for between GT and TF. The
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a bounding box as a True Positive detection. Green vertical lines indicate
the IOU and overlap scores above which the detection is considered as
successful.

IV. UNSUPERVISED GROUP DETECTION

In this paper, we exclusively focused on the problem
of unsupervised group detection and left the problem of
group formation recognition as future work. In particular, we
investigated the contribution of depth modality and feature
normalisation by building upon the method proposed by
Japar et al. [10]. The pipeline of our proposed approach was
as follows. We first obtained the bounding boxes automati-
cally and extracted a set of features describing the location
and depth information. These features, or their normalised
values, were then used as input to the agglomerative hierar-
chical clustering method to find the number of conversational
groups in an image.

A. Feature Extraction

Given a single crowd image I, the problem of group
detection can be defined as identifying social clusters, de-
noted by ¢ = (c1,...,Ck,...,cx) where k = {1,..., K}.
Differently from [10], in our case, there were individuals in
the scene who did not belong to any group. K refers to the
number of computed clusters as not all clusters correspond
to conversational groups. Therefore, conversational groups
S can be defined as S C ¢, where any ¢, € S if
¢k = (Ck1y-ees Chiy--ycrr) and L >= 2, where L is the
number of people forming a conversational group.

Once an individual p is detected in a crowd image I using
one of the methods described in Section III-B, the individual
p can be described with feature vectors A, and B,,. Inspired

by [10], we define feature vector A, = {a;,ag,a;f,a;‘},

where a; and a} are the spatial coordinates of the upper-left
corner, and a;j’ and a;} are the width and height values of
the bounding box, respectively. Similarly, B, = {b5", b5¥} is
defined by calculating the centroid coordinates (b5 and b;Y)
of the bounding box. Japar et al. [10] also reported that
the concatenation of the two RGB features yielded the best
results, hence we define C), = {ay,a}, a,, az, b, b3V}, the
concatenation of feature vectors A, and B,,.

In addition to these 4-dimensional and 2-dimensional fea-
tures extracted from RGB images, we designed a new feature
using the depth modality. From a depth image corresponding
to an RGB image, we retrieved the depth values within
the bounding box for each individual. As a feature, we
computed the weighted average of the depth values to take
into consideration the depth sensor’s noise and situations
where individuals were occluded by static objects in the
conversation floor, or by each other. Also, to maximise the
area occupied by an individual in a box, we used 90% of
the detected box areas, resulting in depth values D,q;. The
weight for each pixel D,, can be calculated by:

dy) = \/(b;c)z —i)2 4 (byY —j)?, foralliand j

e Gy X0.9 er @y X 0.9
where bl;'—nggb};'Jr? , (D

o G x09 o akx09

and  byY — o <G < b+

Then for each individual p, the depth value d, can be
calculated by:
N M m,n
) DM D™
dp(Dw,Dval) _ Z’IZG] Zmez w val ’
M x N

where M = a;’ x 0.9 and N = aZ x 0.9

2)

We combined the depth features with RGB features
and obtained three multimodal feature vectors, namely,
AL = {a},a¥,a, al, dy}, BY = {b5",b¥,dp}, and Cff =
{ay,ay,ay, ag, be®, byY, dy }. Furthermore, to investigate the
effect of normalised feature inputs, we calculated the same
feature vectors with their min-max normalised values, which
were denoted by A}, B, and C;, for RGB features and by

A;d, B;d and C’;,d for multimodal features.

B. Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering is a bottom-up ap-
proach. Given a crowd image I, each individual p represents
a cluster with a single element initially. At each step of the
algorithm, two clusters are merged based on similarity, until a
single cluster is created. This similarity comparison is guided
by different linkage approaches. In our experiments, we used
the average [29] and ward [30] linkage algorithms, which
were found to be the best performing methods according to
the state-of-the-art results [10].

Due to the nature of unsupervised detection, the number
of clusters should be detected is unknown in advance. To
determine the optimal number of clusters, we used the
Calinski and Harabasz Score [31] (CH score), which is a
ratio calculated based on the within- and between-cluster
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dispersion. To determine the optimal number of clusters, on
each iteration of the AHC method we measured the CH
score. The clusters with the highest resulting score were
chosen as the solution that best described the image.

V. EXPERIMENTAL RESULTS

We evaluated the proposed method for unsupervised group
detection on the RICA dataset. In particular, we compared
the two methods for obtaining the bounding boxes (i.e., SSD
and TF) with the ground-truth (GT). We systematically eval-
uated the three different feature types both singly and jointly,
and two different linkage approaches (i.e., average linkage
vs. ward linkage) for agglomerative hierarchical clustering.
In Fig. 5, we presented the results in terms of Mean Average
Error and Root Mean Squared Error by following [10].

The results of the comparison are given in Fig. 5. We
observed that the use of average linkage and weighted
linkage made no significant difference between the resulting
MAE and RMSE scores, as the difference was below 1%.
Therefore, we make no distinction between the two linkage
types henceforth.

As for human detectors, GT and TF generated bounding
boxes both yielded the smallest MAE (1.01) on average,
while the generated TF bounding boxes outperformed both
other methods based on the RMSE measurements (1.21).
This might be due to the fact that bounding boxes are smaller,
therefore their weighted average depth information is less
likely to include confounding factors such as occlusions in
the final feature. Moreover, it can be observed that the SSD
input was outperformed by both other input types in many
cases, which can be the result of inaccurate detections (see
III-B), as even though it performed best out of the three
tested human detectors, its mean IOU score is low.

As for the added depth modality, we present how it
improved the error metrics (MAE and RMSE) for 6 feature
vectors A,, By, Cb, A;,, Bz’) and CIQ for GT, SSD and TF
generated inputs. As illustrated by our results in Fig. 5, the
added depth modality improves group detection for GT and

Root Mean Squared Error Results - Average linkage
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TF generated inputs as compared to the original features (i.e.,
Ay, By, Cp) proposed by Japar et al. [10]. The best results
obtained with GT bounding boxes as input are 0.99 (3%
improvement) and 1.17 (4% improvement) in terms of MAE
and RMSE, respectively, obtained for feature vector B;d.
Similarly, the best error rates for the TF generated inputs
are achieved with feature vector B;)d, and the resulting MAE
and RMSE scores are 0.98 (6% improvement) and 1.15 (5%
improvement), respectively. When SSD generated bounding
boxes are used, the added depth information either increases
the error rates or has no effect. In other words, adding depth
to the feature vectors did not improve the solution in the case
of the TF generated input. As discussed earlier, this might be
due to the fact that the TF generated boxes are less prone to
occlusions when detected correctly, resulting in more reliable
depth features.

Lastly, we observed that normalising the input features
results in significant improvements when the GT and TF
human detectors are used. Our results show that feature
normalisation of our multimodal approach improved the error
rate from 1.03 to 0.98 in terms of Mean Average Error and
from 1.21 to 1.15 in terms of Root Mean Squared Error.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced RICA, a novel robocentric
dataset for indoor crowd analysis. We used the RICA dataset
to enhance and extend a state-of-the-art unsupervised group
detection method by including depth information and fea-
ture normalisation. Our results showed that both techniques
improved the overall accuracy of the group detection in
challenging robocentric images. In addition, we compared
multiple detectors to acquire human bounding boxes and
showed that in most cases detecting faces only could be
a better approach rather than taking into account full-body
bounding boxes for group detection. Our future work will
focus on developing novel methods for unsupervised online
group detection and group formation recognition using the
RICA dataset.
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